1
|
Van de Hoek M, Rickard JP, de Graaf SP. Manipulation of metabolism to improve liquid preservation of mammalian spermatozoa. Anim Reprod Sci 2024; 271:107631. [PMID: 39515267 DOI: 10.1016/j.anireprosci.2024.107631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/27/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Reproductive success in mammals hinges on the ability of sperm to generate sufficient energy through cellular metabolism to perform the energy-intensive processes required for fertilisation, including motility, maturation, and oocyte interactions. It is now widely accepted that sperm exhibit metabolic flexibility, utilising a combination of glycolysis and oxidative phosphorylation (supported by the Krebs cycle and other complementary pathways) to meet their energy demands. However, the preferred pathway for energy production varies significantly among species, making it challenging to map species-specific metabolic strategies, particularly in species with high metabolic flexibility, like the ram. Additionally, differences in methodologies used to measure metabolism have led to biased interpretations of species' metabolic strategies, complicating the development of liquid storage methods aimed at preserving spermatozoa by manipulating energy generation based on species-specific requirements. This review examines sperm energy requirements, current methods for assessing metabolic capacity, and the current research on species-specific metabolism. Future research should focus on establishing a standardised approach for determining metabolic preferences to accurately map species-specific strategies, a critical step before developing effective liquid preservation methods. By identifying species-specific regulatory points, strategies can be designed to temporarily inhibit metabolic pathways, conserving resources and reducing the accumulation of metabolic by-products. Alternatively, supplementation with depleted metabolites can be guided by understanding areas of excessive consumption during prolonged metabolism. Applying this knowledge to develop tailored preservation techniques will help minimise sperm damage and improve survival during in vitro processing and liquid storage, ultimately enhancing the success of artificial breeding programs.
Collapse
Affiliation(s)
| | | | - Simon P de Graaf
- The University of Sydney, Faculty of Science, NSW 2006, Australia
| |
Collapse
|
2
|
Abruzzese GA, Sanchez-Rodriguez A, Roldan ERS. Sperm Metabolism. Mol Reprod Dev 2024; 91:e23772. [PMID: 39407445 DOI: 10.1002/mrd.23772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 12/18/2024]
Abstract
Bioenergetics plays a crucial role in sperm functions, including motility, capacitation-related protein modifications, oocyte recognition and interaction, all of which are essential for fertilization. Sperm metabolism is recognized as flexible, responding to environmental cues and energetic demands during ejaculation, the journey along the female tract, and until fertilization. Recent studies suggest that sperm metabolic functions are relevant beyond fertilization and may influence zygote and embryo development, impacting paternal-derived effects on offspring development and health. In recent years, sperm metabolic functions and homeostasis have gained increasing interest in male reproduction research. Given the crucial implications of sperm metabolism on fertility-related processes, this field is of interest not only in human male fertility but also in livestock research, semen conservation, and assisted reproductive techniques. Newly developed assessment tools are allowing a better understanding of sperm metabolism under different conditions and identifying species-specific peculiarities. This review aims to discuss the current knowledge of mammalian sperm metabolism, focusing on species-specific features, changes during the sperm journey, and potential contributions to translational research and reproductive biotechnologies. Furthermore, we propose future perspectives on sperm bioenergetics research.
Collapse
Affiliation(s)
- Giselle Adriana Abruzzese
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (CSIC), Madrid, Spain
| | - Ana Sanchez-Rodriguez
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (CSIC), Madrid, Spain
| | - Eduardo R S Roldan
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (CSIC), Madrid, Spain
| |
Collapse
|
3
|
Wei C, Xiao Z, Zhang Y, Luo Z, Liu D, Hu L, Shen D, Liu M, Shi L, Wang X, Lan T, Dai Q, Liu J, Chen W, Zhang Y, Sun Q, Wu W, Wang P, Zhang C, Hu J, Wang C, Yang F, Li Q. Itaconate protects ferroptotic neurons by alkylating GPx4 post stroke. Cell Death Differ 2024; 31:983-998. [PMID: 38719928 PMCID: PMC11303683 DOI: 10.1038/s41418-024-01303-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 08/09/2024] Open
Abstract
Neuronal ferroptosis plays a key role in neurologic deficits post intracerebral hemorrhage (ICH). However, the endogenous regulation of rescuing ferroptotic neurons is largely unexplored. Here, we analyzed the integrated alteration of metabolomic landscape after ICH using LC-MS and MALDI-TOF/TOF MS, and demonstrated that aconitate decarboxylase 1 (Irg1) and its product itaconate, a derivative of the tricarboxylic acid cycle, were protectively upregulated. Deficiency of Irg1 or depletion of neuronal Irg1 in striatal neurons was shown to exaggerate neuronal loss and behavioral dysfunction in an ICH mouse model using transgenic mice. Administration of 4-Octyl itaconate (4-OI), a cell-permeable itaconate derivative, and neuronal Irg1 overexpression protected neurons in vivo. In addition, itaconate inhibited ferroptosis in cortical neurons derived from mouse and human induced pluripotent stem cells in vitro. Mechanistically, we demonstrated that itaconate alkylated glutathione peroxidase 4 (GPx4) on its cysteine 66 and the modification allosterically enhanced GPx4's enzymatic activity by using a bioorthogonal probe, itaconate-alkyne (ITalk), and a GPx4 activity assay using phosphatidylcholine hydroperoxide. Altogether, our research suggested that Irg1/itaconate-GPx4 axis may be a future therapeutic strategy for protecting neurons from ferroptosis post ICH.
Collapse
Affiliation(s)
- Chao Wei
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Zhongnan Xiao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yanling Zhang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Zhaoli Luo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Dongyang Liu
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Liye Hu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Danmin Shen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Meng Liu
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Lei Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Xiaotong Wang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Ting Lan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Qingqing Dai
- Department of Geriatrics, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| | - Jing Liu
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Wen Chen
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yurui Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Qingyu Sun
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Weihua Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Peipei Wang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Chenguang Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Junchi Hu
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Chu Wang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| | - Fei Yang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
- Laboratory for Clinical Medicine, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, 100069, China.
| | - Qian Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing Key Laboratory of Neural Regeneration and Repair, Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
4
|
Becerro-Rey L, Martín-Cano FE, Ferrusola CO, Rodríguez-Martínez H, Gaitskell-Phillips G, da Silva-Álvarez E, Silva-Rodríguez A, Gil MC, Peña FJ. Aging of stallion spermatozoa stored in vitro is delayed at 22°C using a 67 mm glucose-10 mm pyruvate-based media. Andrology 2024; 12:1170-1185. [PMID: 38041502 DOI: 10.1111/andr.13565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/03/2023] [Accepted: 11/17/2023] [Indexed: 12/03/2023]
Abstract
BACKGROUND Most commerce of equine seminal doses is carried out using commercial extenders under refrigeration at 5°C. OBJECTIVES To determine if 10 mm pyruvate in a 67 mm glucose extender and storage at 22°C could be the basis of an alternative storage method to cooling to 5°C. MATERIAL AND METHODS Stallion ejaculates were extendedin: INRA96 (67 mm glucose, non-pyruvate control), modified Tyrode's (67 mm glucose-10 mm pyruvate), supplemented with 0, 10, 50, and 100 μM itaconate. As itaconate was vehiculated in DMSO, a control vehicle was also included. Sperm motility, viability, mitochondrial membrane potential, and production of reactive oxygen species were measured after collection and again after 48 and 96 h of storage at 22°C. To disclose molecular metabolic changes, spermatozoa were incubated up to 3 h in modified Tyrode's 67 mm glucose-10 mm pyruvate and modified Tyrode's 67 mm glucose, and metabolic analysis conducted. RESULTS After 96 h of storage aliquots stored in the control, INRA96 had a very poor total motility of 5.6% ± 2.3%, while in the 67 mm glucose-10 mm pyruvate/10 μm itaconate extender, total motility was 34.7% ± 3.8% (p = 0.0066). After 96 h, viability was better in most pyruvate-based media, and the mitochondrial membrane potential in spermatozoa extended in INRA96 was relatively lower (p < 0.0001). Metabolomics revealed that in the spermatozoa incubated in the high pyruvate media, there was an increase in the relative amounts of NAD+, pyruvate, lactate, and ATP. DISCUSSION AND CONCLUSIONS Aliquots stored in a 67 mm glucose-10 mm pyruvate-based medium supplemented with 10 μM itaconate, maintained a 35% total motility after 96 h of storage at 22°C, which is considered the minimum acceptable motility for commercialization. Improvements may be related to the conversion of pyruvate to lactate and regeneration of NAD+.
Collapse
Affiliation(s)
- Laura Becerro-Rey
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, Universidad de Extremadura, Cáceres, Spain
| | - Francisco Eduardo Martín-Cano
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, Universidad de Extremadura, Cáceres, Spain
| | - Cristina Ortega Ferrusola
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, Universidad de Extremadura, Cáceres, Spain
| | - Heriberto Rodríguez-Martínez
- Department of Biomedical and Clinical Sciences (BKV), Obstetrics & Gynaecology (BKH), University of Linköping, Linköping, Sweden
| | - Gemma Gaitskell-Phillips
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, Universidad de Extremadura, Cáceres, Spain
| | - Eva da Silva-Álvarez
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, Universidad de Extremadura, Cáceres, Spain
| | - Antonio Silva-Rodríguez
- Facility of Innovation and Analysis in Animal Source Foodstuffs, Universidad de Extremadura, Cáceres, Spain
| | - María Cruz Gil
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, Universidad de Extremadura, Cáceres, Spain
| | - Fernando J Peña
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, Universidad de Extremadura, Cáceres, Spain
| |
Collapse
|
5
|
Ciccarone F, Ciriolo MR. Reprogrammed mitochondria: a central hub of cancer cell metabolism. Biochem Soc Trans 2024; 52:1305-1315. [PMID: 38716960 DOI: 10.1042/bst20231090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 06/27/2024]
Abstract
Mitochondria represent the metabolic hub of normal cells and play this role also in cancer but with different functional purposes. While cells in differentiated tissues have the prerogative of maintaining basal metabolism and support the biosynthesis of specialized products, cancer cells have to rewire the metabolic constraints imposed by the differentiation process. They need to balance the bioenergetic supply with the anabolic requirements that entail the intense proliferation rate, including nucleotide and membrane lipid biosynthesis. For this aim, mitochondrial metabolism is reprogrammed following the activation of specific oncogenic pathways or due to specific mutations of mitochondrial proteins. The main process leading to mitochondrial metabolic rewiring is the alteration of the tricarboxylic acid cycle favoring the appropriate orchestration of anaplerotic and cataplerotic reactions. According to the tumor type or the microenvironmental conditions, mitochondria may decouple glucose catabolism from mitochondrial oxidation in favor of glutaminolysis or disable oxidative phosphorylation for avoiding harmful production of free radicals. These and other metabolic settings can be also determined by the neo-production of oncometabolites that are not specific for the tissue of origin or the accumulation of metabolic intermediates able to boost pro-proliferative metabolism also impacting epigenetic/transcriptional programs. The full characterization of tumor-specific mitochondrial signatures may provide the identification of new biomarkers and therapeutic opportunities based on metabolic approaches.
Collapse
Affiliation(s)
- Fabio Ciccarone
- Department of Biology, University of Rome 'Tor Vergata', 00133 Rome, Italy
- IRCCS San Raffaele Roma, 00166 Rome, Italy
| | - Maria Rosa Ciriolo
- Department of Biology, University of Rome 'Tor Vergata', 00133 Rome, Italy
- IRCCS San Raffaele Roma, 00166 Rome, Italy
| |
Collapse
|
6
|
Cui X, Cai X, Zhang F, Zhang W, Liu H, Mu S, Guo S, Wan H, Zhang H, Zhang Z, Kang X. Comparative Proteomics Elucidates the Potential Mechanism of Sperm Capacitation of Chinese Mitten Crabs ( Eriocheir sinensis). J Proteome Res 2024; 23:1603-1614. [PMID: 38557073 DOI: 10.1021/acs.jproteome.3c00711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Sperm capacitation is broadly defined as a suite of biochemical and biophysical changes resulting from the acquisition of fertilization ability. To gain insights into the regulation mechanism of crustacean sperm capacitation, 4D label-free quantitative proteomics was first applied to analyze the changes of sperm in Eriocheir sinensis under three sequential physiological conditions: seminal vesicles (X2), hatched with the seminal receptacle content (X3), and incubated with egg water (X5). In total, 1536 proteins were identified, among which 880 proteins were quantified, with 82 and 224 proteins significantly altered after incubation with the seminal receptacle contents and egg water. Most differentially expressed proteins were attributed to biological processes by Gene Ontology annotation analysis. As the fundamental bioenergetic metabolism of sperm, the oxidative phosphorylation, glycolysis, and the pentose phosphate pathway presented significant changes under the treatment of seminal receptacle contents, indicating intensive regulation for sperm in the seminal receptacle. Additionally, the seminal receptacle contents also significantly increased the oxidation level of sperm, whereas the enhancement of abundance in superoxide dismutase, peroxiredoxin 1, and glutathione S-transferase after incubation with egg water significantly improved the resistance against oxidation. These results provided a new perspective for reproduction studies in crustaceans.
Collapse
Affiliation(s)
- Xiaodong Cui
- College of Life Sciences, Hebei University, Baoding 071000, China
| | - Xueqian Cai
- College of Life Sciences, Hebei University, Baoding 071000, China
| | - Fenghao Zhang
- College of Life Sciences, Hebei University, Baoding 071000, China
| | - Weiwei Zhang
- College of Life Sciences, Hebei University, Baoding 071000, China
| | - Huan Liu
- College of Life Sciences, Hebei University, Baoding 071000, China
| | - Shumei Mu
- College of Life Sciences, Hebei University, Baoding 071000, China
| | - Shuai Guo
- College of Life Sciences, Hebei University, Baoding 071000, China
| | - Haifu Wan
- College of Life Sciences, Hebei University, Baoding 071000, China
| | - Han Zhang
- College of Life Sciences, Hebei University, Baoding 071000, China
| | - Zhaohui Zhang
- Department of Reproductive Medicine, Baoding First Central Hospital, Baoding 071000, China
| | - Xianjiang Kang
- College of Life Sciences, Hebei University, Baoding 071000, China
| |
Collapse
|
7
|
Martín-Cano FE, Gaitskell-Phillips G, Becerro-Rey L, da Silva E, Masot J, Redondo E, Silva-Rodríguez A, Ortega-Ferrusola C, Gil MC, Peña FJ. Pyruvate enhances stallion sperm function in high glucose media improving overall metabolic efficiency. Theriogenology 2024; 215:113-124. [PMID: 38029686 DOI: 10.1016/j.theriogenology.2023.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 12/01/2023]
Abstract
If a mechanism of more efficient glycolysis depending on pyruvate is present in stallion spermatozoa, detrimental effects of higher glucose concentrations that are common in current commercial extenders could be counteracted. To test this hypothesis, spermatozoa were incubated in a 67 mM Glucose modified Tyrode's media in the presence of 1- or 10-mM pyruvate and in the Tyrode's basal media which contains 5 mM glucose. Spermatozoa incubated for 3 h at 37 °C in 67 mM Tyrode's media with 10 mM pyruvate showed increased motility in comparison with aliquots incubated in Tyrode's 5 mM glucose and Tyrode's 67 mM glucose (57.1 ± 3.5 and 58.1 ± 1.9 to 73.0 ± 1.1 %; P < 0.01). Spermatozoa incubated in Tyrode's with 67 mM glucose 10 mM pyruvate maintained the viability along the incubation (64.03 ± 15.4 vs 61.3 ± 10.2), while spermatozoa incubated in 67 mM Glucose-Tyrode's showed a decrease in viability (38.01 ± 11.2, P < 0.01). 40 mM oxamate, an inhibitor of the lactate dehydrogenase LDH, reduced sperm viability (P < 0.05, from 76 ± 5 in 67 mM Glucose/10 mM pyruvate to 68.0 ± 4.3 %, P < 0.05). Apoptotic markers increased in the presence of oxamate. (P < 0.01). UHPLC/MS/MS showed that 10 mM pyruvate increased pyruvate, lactate, ATP and NAD+ while phosphoenolpyruvate decreased. The mechanisms that explain the improvement of in presence of 10 mM pyruvate involve the conversion of lactate to pyruvate and increased NAD+ enhancing the efficiency of the glycolysis.
Collapse
Affiliation(s)
- Francisco E Martín-Cano
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Gemma Gaitskell-Phillips
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Laura Becerro-Rey
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Eva da Silva
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Javier Masot
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Eloy Redondo
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Antonio Silva-Rodríguez
- Facility of Innovation and Analysis in Animal Source Foodstuffs, University of Extremadura, Cáceres, Spain
| | - Cristina Ortega-Ferrusola
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - María Cruz Gil
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Fernando J Peña
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain.
| |
Collapse
|
8
|
Brahmajosyula M, Morimoto Y. Exogenous GSH Supplementation to Raw Semen Alters Sperm Kinematic Parameters in Infertile Patients. Reprod Sci 2023; 30:2853-2865. [PMID: 37012490 DOI: 10.1007/s43032-023-01221-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/15/2023] [Indexed: 04/05/2023]
Abstract
Glutathione is an important antioxidant found in all mammalian cells. Sperm motility is positively correlated with seminal reduced glutathione (GSH) levels, and infertile men are known to have lower GSH levels. Studies on GSH supplementation in improving sperm functions in infertility patients are limited. Here, we re-investigate the effect of exogenous GSH supplementation on human sperm motility and kinematic parameters. Residual semen samples from 71 infertility patients who came for routine semen analysis for infertility assessment were studied. Liquefied raw semen was supplemented with GSH (0-10 mM) for 1 h. The untreated sample was the blank control. Only a 5 mM concentration was tested in all 71 samples. After two washes, the sperm was incubated and then analyzed for sperm motility and kinematic parameters by computer-assisted semen analysis (CASA), followed by adenosine triphosphate (ATP), reactive oxygen species (ROS) levels, free thiols, and DNA damage analyses. At 2 hrs post-treatment, GSH supplementation significantly altered many of the kinematics, compared to the control. Straight line velocity (VSL) (p = 0.0459), curvilinear velocity (VCL) (p < 0.0001), average path velocity (VAP) (p < 0.0001), and lateral head amplitude (ALH) (p < 0.0001) were decreased, whereas straightness (STR) (p = 0.0003), linearity (LIN) (p = 0.0008), and beat cross frequency (BCF) (p = 0.0291) were increased in 5 mM group. Wobble (WOB) (p = 0.4917), motility (MOT) (p = 0.9574), and progressive motility (PROG) (p = 0.5657) were unchanged. ATP level was significantly increased in the 5 mM group (p < 0.05). It is concluded that exogenous GSH supplementation does alter sperm kinematics in humans. These altered kinematic parameters together with increased energy (ATP) may have a positive role in influencing the success rates of ART procedures.
Collapse
Affiliation(s)
| | - Yoshiharu Morimoto
- HORAC Grand Front Osaka Clinic, 3-1 Ofuka-cho, Kita-ku, Osaka, 530-0011, Japan
| |
Collapse
|
9
|
Olesti E, Boccard J, Rahban R, Girel S, Moskaleva NE, Zufferey F, Rossier MF, Nef S, Rudaz S, González-Ruiz V. Low-polarity untargeted metabolomic profiling as a tool to gain insight into seminal fluid. Metabolomics 2023; 19:53. [PMID: 37271779 PMCID: PMC10239740 DOI: 10.1007/s11306-023-02020-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/15/2023] [Indexed: 06/06/2023]
Abstract
INTRODUCTION A decrease in sperm cell count has been observed along the last several decades, especially in the most developed regions of the world. The use of metabolomics to study the composition of the seminal fluid is a promising approach to gain access to the molecular mechanisms underlying this fact. OBJECTIVES In the present work, we aimed at relating metabolomic profiles of young healthy men to their semen quality parameters obtained from conventional microscopic analysis. METHODS An untargeted metabolomics approach focusing on low- to mid-polarity compounds was used to analyze a subset of seminal fluid samples from a cohort of over 2700 young healthy men. RESULTS Our results show that a broad metabolic profiling comprising several families of compounds (including acyl-carnitines, steroids, and other lipids) can contribute to effectively distinguish samples provided by individuals exhibiting low or high absolute sperm counts. CONCLUSION A number of metabolites involved in sexual development and function, signaling, and energy metabolism were highlighted as being distinctive of samples coming from either group, proving untargeted metabolomics as a promising tool to better understand the pathophysiological processes responsible for male fertility impairment.
Collapse
Affiliation(s)
- Eulalia Olesti
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
- Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland
| | - Julien Boccard
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
- Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland
| | - Rita Rahban
- Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Sergey Girel
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Natalia E Moskaleva
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, I. M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Fanny Zufferey
- Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland
- Service of Clinical Chemistry & Toxicology, Central Institute of Hospitals, Hospital of Valais, Sion, Switzerland
| | - Michel F Rossier
- Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland
- Service of Clinical Chemistry & Toxicology, Central Institute of Hospitals, Hospital of Valais, Sion, Switzerland
- Department of Internal Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Serge Nef
- Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Serge Rudaz
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland.
- Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland.
| | - Víctor González-Ruiz
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
- Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| |
Collapse
|
10
|
Li Z, Zheng W, Kong W, Zeng T. Itaconate: A Potent Macrophage Immunomodulator. Inflammation 2023:10.1007/s10753-023-01819-0. [PMID: 37142886 PMCID: PMC10159227 DOI: 10.1007/s10753-023-01819-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/25/2023] [Accepted: 04/06/2023] [Indexed: 05/06/2023]
Abstract
With advances in immunometabolic studies, more and more evidence has shown that metabolic changes profoundly affect the immune function of macrophages. The tricarboxylic acid cycle is a central metabolic pathway of cells. Itaconate, a byproduct of the tricarboxylic acid cycle, is an emerging metabolic small molecule that regulates macrophage inflammation and has received much attention for its potent anti-inflammatory effects in recent years. Itaconate regulates macrophage function through multiple mechanisms and has demonstrated promising therapeutic potential in a variety of immune and inflammatory diseases. New progress in the mechanism of itaconate continues to be made, but it also implies complexity in its action and a need for a more comprehensive understanding of its role in macrophages. In this article, we review the primary mechanisms and current research progress of itaconate in regulating macrophage immune metabolism, hoping to provide new insights and directions for future research and disease treatment.
Collapse
Affiliation(s)
- Zeyu Li
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Diabetes and Metabolic Disease Clinical Research Center of Hubei Province, Wuhan, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Wuhan, China
- Hubei Branch of National Center for Clinical Medical Research of Metabolic Diseases, Wuhan, China
| | - Wenbin Zheng
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Diabetes and Metabolic Disease Clinical Research Center of Hubei Province, Wuhan, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Wuhan, China
- Hubei Branch of National Center for Clinical Medical Research of Metabolic Diseases, Wuhan, China
| | - Wen Kong
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Diabetes and Metabolic Disease Clinical Research Center of Hubei Province, Wuhan, China.
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Wuhan, China.
- Hubei Branch of National Center for Clinical Medical Research of Metabolic Diseases, Wuhan, China.
| | - Tianshu Zeng
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Diabetes and Metabolic Disease Clinical Research Center of Hubei Province, Wuhan, China.
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Wuhan, China.
- Hubei Branch of National Center for Clinical Medical Research of Metabolic Diseases, Wuhan, China.
| |
Collapse
|
11
|
Maassen S, Coenen B, Ioannidis M, Harber K, Grijpstra P, Van den Bossche J, van den Bogaart G. Itaconate promotes a wound resolving phenotype in pro-inflammatory macrophages. Redox Biol 2022; 59:102591. [PMID: 36574745 PMCID: PMC9800195 DOI: 10.1016/j.redox.2022.102591] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/25/2022] Open
Abstract
Pathological conditions associated with dysfunctional wound healing are characterized by impaired remodelling of extracellular matrix (ECM), increased macrophage infiltration, and chronic inflammation. Macrophages also play an important role in wound healing as they drive wound closure by secretion of molecules like transforming growth factor beta-1 (TGF-β). As the functions of macrophages are regulated by their metabolism, local administration of small molecules that alter this might be a novel approach for treatment of wound-healing disorders. Itaconate is a tricarboxylic acid (TCA) cycle-derived metabolite that has been associated with resolution of macrophage-mediated inflammation. However, its effects on macrophage wound healing functions are unknown. In this study, we investigated the effects of the membrane-permeable 4-octyl itaconate (4-OI) derivative on ECM scavenging by cultured human blood monocyte-derived macrophages (hMDM). We found that 4-OI reduced signalling of p38 mitogen-activated protein kinase (MAPK) induced by the canonical immune stimulus lipopolysaccharide (LPS). Likely as a consequence of this, the production of the inflammatory mediators like tumor necrosis factor (TNF)-α and cyclooxygenase (COX)-2 were also reduced. On the transcriptional level, 4-OI increased expression of the gene coding for TGF-β (TGFB1), whereas expression of the collagenase matrix metalloprotease-8 (MMP8) was reduced. Furthermore, surface levels of the anti-inflammatory marker CD36, but not CD206 and CD11c, were increased in these cells. To directly investigate the effect of 4-OI on scavenging of ECM by macrophages, we developed an assay to measure uptake of fibrous collagen. We observed that LPS promoted collagen uptake and that this was reversed by 4-OI-induced signaling of nuclear factor erythroid 2-related factor 2 (NRF2), a regulator of cellular resistance to oxidative stress and the reduced glycolytic capacity of the macrophage. These results indicate that 4-OI lowers macrophage inflammation, likely promoting a more wound-resolving phenotype.
Collapse
Affiliation(s)
- Sjors Maassen
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology, University of Groningen, Groningen, the Netherlands
| | - Britt Coenen
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology, University of Groningen, Groningen, the Netherlands
| | - Melina Ioannidis
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology, University of Groningen, Groningen, the Netherlands
| | - Karl Harber
- Department of Molecular Cell Biology and Immunology, Amsterdam Cardiovascular Sciences, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam Institute for Infection and Immunity, Cancer Centre Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Pieter Grijpstra
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology, University of Groningen, Groningen, the Netherlands
| | - Jan Van den Bossche
- Department of Molecular Cell Biology and Immunology, Amsterdam Cardiovascular Sciences, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam Institute for Infection and Immunity, Cancer Centre Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Geert van den Bogaart
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology, University of Groningen, Groningen, the Netherlands; Department of Medical Biology and Pathology, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
12
|
Giaretta E, Mislei B, Martínez-Pastor F, Nesci S, Spinaci M, Galeati G, Nerozzi C, Mari G, Tamanini C, Bucci D. Use of specific mitochondrial complex inhibitors to investigate mitochondrial involvement on horse sperm motility and ROS production. Res Vet Sci 2022; 147:12-19. [PMID: 35397468 DOI: 10.1016/j.rvsc.2022.03.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/14/2022] [Accepted: 03/21/2022] [Indexed: 12/30/2022]
Abstract
Equine spermatozoa highly rely on oxidative phosphorylation for their energy management. The present work aimed to characterize the role of mitochondria on horse sperm motility and ROS production by incubating spermatozoa with specific inhibitors of the different mitochondrial complexes. Equine spermatozoa were incubated 1 h and 3 h at 37 °C with: complex I inhibitor rotenone (5 μM, ROT), complex II inhibitor dimethyl-malonate (10 mM, DMM), complex III inhibitor antimycin A (1.8 μM, ANTI), the uncoupling agent carbonyl cyanide m-chlorophenyl hydrazine (5 μM, CCCP), ATP synthase inhibitor oligomycin (5 μM, OLIGO), and 2 μL vehicle DMSO (control, CTL). Samples were analyzed for sperm motility and for mitochondrial membrane potential (MMP), mitochondrial integrity, mitochondrial O2•- production, and cytoplasmic H2O2. A multivariate analysis was performed on the data. CCCP caused a pronounced MMP reduction at both time points while ROT and ANTI showed the same effect at 3 h. All treatments at 3 h incubation significantly reduced the percentage of sperm with early changes in membrane permeability with active mitochondria. The H2O2 production of live cells was low at 1 h incubation in all treatments; after 3 h a slight decrease in the percentage of low-H2O2 producing cells was recorded. All treatments, except DMM, induced a significant decline in sperm motility and kinematics and modified the pattern of sperm subpopulations. The effect of DMM was evident only after 3 h, increasing the percentage of slow sperm subpopulation. In conclusion, the disruption of mitochondrial integrity induces an increase of mitochondrial ROS production that could be detrimental for cell function and survivior.
Collapse
Affiliation(s)
- Elisa Giaretta
- Department of Comparative Biomedicine and Food Science, University of Padova, Via dell'Università 6, 35020 Legnaro (PD), Italy.
| | - Beatrice Mislei
- INFA-AUB, University of Bologna, Via Gandolfi 16, Cadriano (BO), Italy
| | - Felipe Martínez-Pastor
- INDEGSAL and Molecular Biology (Cell Biology), Universidad de León, Campus de Vegazana, 24071 León, (ES), Italy
| | - Salvatore Nesci
- Department of Veterinary Medical Sciences, Alma Mater Studiorum - University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano dell'Emilia, BO, Italy
| | - Marcella Spinaci
- Department of Veterinary Medical Sciences, Alma Mater Studiorum - University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano dell'Emilia, BO, Italy
| | - Giovanna Galeati
- Department of Veterinary Medical Sciences, Alma Mater Studiorum - University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano dell'Emilia, BO, Italy
| | - Chiara Nerozzi
- Department of Veterinary Medical Sciences, Alma Mater Studiorum - University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano dell'Emilia, BO, Italy
| | - Gaetano Mari
- INFA-AUB, University of Bologna, Via Gandolfi 16, Cadriano (BO), Italy; Department of Veterinary Medical Sciences, Alma Mater Studiorum - University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano dell'Emilia, BO, Italy
| | - Carlo Tamanini
- Department of Veterinary Medical Sciences, Alma Mater Studiorum - University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano dell'Emilia, BO, Italy
| | - Diego Bucci
- Department of Veterinary Medical Sciences, Alma Mater Studiorum - University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano dell'Emilia, BO, Italy
| |
Collapse
|
13
|
Serafini S, O'Flaherty C. Redox Regulation to Modulate Phosphorylation Events in Human Spermatozoa. Antioxid Redox Signal 2022; 37:437-450. [PMID: 34714121 DOI: 10.1089/ars.2021.0117] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Significance: Spermatozoa are complex and compartmentalized cells that undergo capacitation, a series of biochemical and morphological changes to acquire the ability to fertilize oocytes. Reactive oxygen species (ROS) have a prominent dual role in capacitation. At physiological levels, ROS regulate numerous cellular processes, including increases of cyclic adenosine monophosphate, calcium, and activation of phosphorylation events needed for capacitation. On the contrary, at high concentrations that do not impair sperm viability, ROS can cause loss of motility and inhibition of capacitation. Higher ROS concentrations promote oxidation of lipids, proteins, and DNA leading to cell death, and these damages have been associated with male infertility. Critical Issues: When incubated under specific conditions, spermatozoa can produce low and controlled amounts of ROS that are not harmful but instead regulate numerous cellular processes, including the phosphorylation of tyrosine, serine, and threonine residues in critical proteins needed for sperm capacitation. Here, we outline the complex redox signaling in human spermatozoa needed to achieve fertility and the role of ROS as physiological mediators that trigger phosphorylation cascades. Moreover, we illustrate the importance of various phosphoproteins in spermatozoa capacitation, viability, and hyperactive motility. Future Directions: Further studies to elucidate the different phosphorylation players during sperm capacitation and acrosome reaction (the regulated exocytotic event that releases proteolytic enzymes allowing the spermatozoon to penetrate the zona pellucida and fertilize the oocyte) are essential to understand how the spermatozoon acquires the fertilizing ability to fertilize the oocyte. This knowledge will serve to develop novel diagnostic tools and therapy for male infertility. Antioxid. Redox Signal. 37, 437-450.
Collapse
Affiliation(s)
- Steven Serafini
- Department of Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Montréal, Canada
| | - Cristian O'Flaherty
- Department of Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Montréal, Canada.,Urology Division, Department of Surgery, Faculty of Medicine, McGill University, Montréal, Canada.,Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montréal, Canada.,The Research Institute, McGill University Health Centre, Montréal, Canada
| |
Collapse
|
14
|
Peña FJ, O'Flaherty C, Ortiz Rodríguez JM, Martín Cano FE, Gaitskell-Phillips G, Gil MC, Ortega Ferrusola C. The Stallion Spermatozoa: A Valuable Model to Help Understand the Interplay Between Metabolism and Redox (De)regulation in Sperm Cells. Antioxid Redox Signal 2022; 37:521-537. [PMID: 35180830 DOI: 10.1089/ars.2021.0092] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Significance: Proper functionality of the spermatozoa depends on the tight regulation of their redox status; at the same time these cells are highly energy demanding and in the energetic metabolism, principally in the electron transport chain in the mitochondria, reactive oxygen species are continuously produced, in addition to that observed in the Krebs cycle and during the β-oxidation of fatty acids. Recent Advances: In addition, in glycolysis, elimination of phosphate groups from glyceraldehyde 3-phosphate and dihydroxyacetone phosphate results in the byproducts glyoxal (G) and methylglyoxal (MG); these products are 2-oxoaldehydes. The presence of adjacent carbonyl groups makes them strong electrophiles that react with nucleophiles in proteins, lipids, and DNA, forming advanced glycation end products. Critical Issues: This mechanism is behind subfertility in diabetic patients; in the animal breeding industry, commercial extenders for stallion semen contain a supraphysiological concentration of glucose that promotes MG production, constituting a potential model of interest. Future Directions: Increasing our knowledge of sperm metabolism and its interactions with redox regulation may improve current sperm technologies in use, and shall provide new clues to understanding infertility in males. Moreover, stallion spermatozoa due to its accessibility, intense metabolism, and suitability for proteomics/metabolomic studies may constitute a suitable model for studying regulation of metabolism and interactions between metabolism and redox homeostasis. Antioxid. Redox Signal. 37, 521-537.
Collapse
Affiliation(s)
- Fernando J Peña
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Cristian O'Flaherty
- Urology Division, Department of Surgery, Faculty of Medicine, McGill University, Montréal, Quebec, Canada.,Department of Pharmacology and Therapeutics and Faculty of Medicine, McGill University, Montréal, Quebec, Canada.,Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montréal, Quebec, Canada
| | - José M Ortiz Rodríguez
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Francisco E Martín Cano
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Gemma Gaitskell-Phillips
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - María C Gil
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Cristina Ortega Ferrusola
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| |
Collapse
|
15
|
Chen F, Elgaher WAM, Winterhoff M, Büssow K, Waqas FH, Graner E, Pires-Afonso Y, Casares Perez L, de la Vega L, Sahini N, Czichon L, Zobl W, Zillinger T, Shehata M, Pleschka S, Bähre H, Falk C, Michelucci A, Schuchardt S, Blankenfeldt W, Hirsch AKH, Pessler F. Citraconate inhibits ACOD1 (IRG1) catalysis, reduces interferon responses and oxidative stress, and modulates inflammation and cell metabolism. Nat Metab 2022; 4:534-546. [PMID: 35655026 PMCID: PMC9170585 DOI: 10.1038/s42255-022-00577-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 04/20/2022] [Indexed: 01/08/2023]
Abstract
Although the immunomodulatory and cytoprotective properties of itaconate have been studied extensively, it is not known whether its naturally occurring isomers mesaconate and citraconate have similar properties. Here, we show that itaconate is partially converted to mesaconate intracellularly and that mesaconate accumulation in macrophage activation depends on prior itaconate synthesis. When added to human cells in supraphysiological concentrations, all three isomers reduce lactate levels, whereas itaconate is the strongest succinate dehydrogenase (SDH) inhibitor. In cells infected with influenza A virus (IAV), all three isomers profoundly alter amino acid metabolism, modulate cytokine/chemokine release and reduce interferon signalling, oxidative stress and the release of viral particles. Of the three isomers, citraconate is the strongest electrophile and nuclear factor-erythroid 2-related factor 2 (NRF2) agonist. Only citraconate inhibits catalysis of itaconate by cis-aconitate decarboxylase (ACOD1), probably by competitive binding to the substrate-binding site. These results reveal mesaconate and citraconate as immunomodulatory, anti-oxidative and antiviral compounds, and citraconate as the first naturally occurring ACOD1 inhibitor.
Collapse
Affiliation(s)
- F Chen
- Research Group Biomarkers for Infectious Diseases, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Research Group Biomarkers for Infectious Diseases, TWINCORE Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - W A M Elgaher
- Helmholtz Institute for Pharmaceutical Research Saarland - Helmholtz Centre for Infection Research, Saarbrücken, Germany
| | - M Winterhoff
- Research Group Biomarkers for Infectious Diseases, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Research Group Biomarkers for Infectious Diseases, TWINCORE Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - K Büssow
- Department of Structure and Function of Proteins, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - F H Waqas
- Research Group Biomarkers for Infectious Diseases, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Research Group Biomarkers for Infectious Diseases, TWINCORE Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - E Graner
- Department of Structure and Function of Proteins, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Y Pires-Afonso
- Neuro-Immunology Group, Department of Cancer Research, LIH Luxembourg Institute of Health, Luxembourg, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-Belval, Luxembourg
| | - L Casares Perez
- Division of Molecular Medicine, University of Dundee, Dundee, UK
| | - L de la Vega
- Division of Molecular Medicine, University of Dundee, Dundee, UK
| | - N Sahini
- Research Group Biomarkers for Infectious Diseases, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Research Group Biomarkers for Infectious Diseases, TWINCORE Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - L Czichon
- Research Group Biomarkers for Infectious Diseases, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Research Group Biomarkers for Infectious Diseases, TWINCORE Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - W Zobl
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - T Zillinger
- Institute of Clinical Chemistry and Clinical Pharmacology, University Medical Centre Bonn, Bonn, Germany
- Institute of Immunology, Philipps-University Marburg, Marburg, Germany
| | - M Shehata
- Institute of Medical Virology, Justus-Liebig-University Giessen, Giessen, Germany
- National Research Centre, Giza, Egypt
| | - S Pleschka
- Institute of Medical Virology, Justus-Liebig-University Giessen, Giessen, Germany
- German Center for Infection Research partner site Giessen, Giessen, Germany
| | - H Bähre
- Research Core Unit Metabolomics, Hannover Medical School, Hannover, Germany
| | - C Falk
- Department of Transplantation Immunology, Hannover Medical School, Hannover, Germany
| | - A Michelucci
- Neuro-Immunology Group, Department of Cancer Research, LIH Luxembourg Institute of Health, Luxembourg, Luxembourg
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-Belval, Luxembourg
| | - S Schuchardt
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - W Blankenfeldt
- Department of Structure and Function of Proteins, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - A K H Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland - Helmholtz Centre for Infection Research, Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - F Pessler
- Research Group Biomarkers for Infectious Diseases, Helmholtz Centre for Infection Research, Braunschweig, Germany.
- Research Group Biomarkers for Infectious Diseases, TWINCORE Centre for Experimental and Clinical Infection Research, Hannover, Germany.
- Centre for Individualised Infection Medicine, Hannover, Germany.
| |
Collapse
|
16
|
Zhu Z, Zhang W, Li R, Zeng W. Reducing the Glucose Level in Pre-treatment Solution Improves Post-thaw Boar Sperm Quality. Front Vet Sci 2022; 9:856536. [PMID: 35433908 PMCID: PMC9009312 DOI: 10.3389/fvets.2022.856536] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/18/2022] [Indexed: 11/13/2022] Open
Abstract
Frozen–thawed boar sperm was not widely used in pig artificial insemination as the sperm quality was damaged by biochemical and physical modifications during the cryopreservation process. The aim of this study was to investigate whether reduction of the glucose level in diluted medium could protect the post-thaw boar sperm or not. Boar sperm was diluted with the pre-treatment medium with different doses of glucose (153, 122.4, 91.8, 61.2, 30.6, and 0 mM) during the cooling process. The sperm motility patterns and glycolysis were evaluated during the cooling process. Meanwhile, the post-thaw sperm quality, ATP level, mitochondrial function as well as apoptosis were also measured. It was observed that 153 mM glucose treatment showed the highest glycolysis in boar sperm as the activities of hexokinase, fructose-bisphosphate aldolase A, and lactate dehydrogenase are the highest as well as the lactate level. Reduction of the glucose level from 153 to 30.6 mM suppressed sperm glycolysis. In addition, treatment with 153 mM glucose made the sperm demonstrate a circle-like movement along with a high value of curvilinear velocity and amplitude of the lateral head, while decreasing the glucose level reduced those patterns in the cooling process. Moreover, reduction of the glucose level also significantly increased the post-thaw sperm's total motility, progressive motility, straight-linear velocity, membrane integrity, and acrosome integrity. The treatment with 30.6 mM glucose showed the highest value among the treatments. Furthermore, the post-thaw sperm's succinate dehydrogenase activity, malate dehydrogenase activity, mitochondrial membrane potential as well as ATP level were increased by reducing the glucose level from 153 to 30.6 mM. Interestingly, the treatment with 30.6 mM glucose showed the lowest apoptosis of post-thaw sperm among the treatments. Those observations suggest that reduction of the glucose level in diluted medium increased the post-thaw boar sperm quality via decreasing the glycolytic metabolism. These findings provide novel insights that reduction of boar sperm activity via decreasing sperm glycolysis during the cooling process helps to improve the post-thaw sperm quality during cryopreservation.
Collapse
Affiliation(s)
- Zhendong Zhu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Weijing Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Rongnan Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Wenxian Zeng
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
- *Correspondence: Wenxian Zeng
| |
Collapse
|
17
|
Fu L, Liu H, Cai W, Han D, Zhu X, Yang Y, Xie S. 4-Octyl Itaconate Supplementation Relieves Soybean Diet-Induced Liver Inflammation and Glycolipid Metabolic Disorders by Activating the Nrf2-Pparγ Pathway in Juvenile Gibel Carp. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:520-531. [PMID: 34881880 DOI: 10.1021/acs.jafc.1c05783] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Itaconate is a promising new candidate for anti-inflammatory and metabolic reprogramming, and 4-octyl itaconate (OI) is a cell-permeable itaconate derivative. To investigate the effect of OI in inflammatory response and glycolipid metabolism, we fed gibel carp with a 40% dietary soybean meal diet containing 0.1% OI (SBM + 0.1OI) or not (SBM) and compared these with fishmeal (FM) as reference. Compared with FM, dietary SBM decreased the growth performance, induced inflammation in the intestine and liver, and decreased the glucose utilization ability of the liver. However, 0.1% OI supplementation in SBM significantly increased the growth performance (from 20.11 ± 0.77 to 23.33 ± 0.45 g, P < 0.05), reduced inflammation in different organs through Nrf2 activation, and alleviated SBM-induced high plasma glucose (from 6.06 ± 0.23 to 4.37 ± 0.14 g, P < 0.05) and low crude body lipid (from 4.08 ± 0.17 to 4.91 ± 0.10 g, P < 0.05). Multi-omics revealed that OI had obvious effects on carbohydrate metabolism. OI regulates peroxisome proliferator-activated receptor gamma (ppar-γ), and its target genes (glut2 and gk) enhance liver glycolysis and lipid de novo lipogenesis, which are also dependent on Nrf2 activation. To conclude, dietary 0.1% OI can promote the growth of gibel carp and alleviate foodborne intestinal and hepatic inflammation and abnormal glycolipid metabolism by Nrf2-regulated Pparγ expression.
Collapse
Affiliation(s)
- Lele Fu
- State Key Laboratory of Fresh Water Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Haokun Liu
- State Key Laboratory of Fresh Water Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Wanjie Cai
- State Key Laboratory of Fresh Water Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Dong Han
- State Key Laboratory of Fresh Water Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
- Hubei Engineering Research Center for Aquatic Animal Nutrition and Feed, Wuhan 430072, China
| | - Xiaoming Zhu
- State Key Laboratory of Fresh Water Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- Hubei Engineering Research Center for Aquatic Animal Nutrition and Feed, Wuhan 430072, China
| | - Yunxia Yang
- State Key Laboratory of Fresh Water Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Shouqi Xie
- State Key Laboratory of Fresh Water Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
- Hubei Engineering Research Center for Aquatic Animal Nutrition and Feed, Wuhan 430072, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
18
|
Effect of 2-Cys Peroxiredoxins Inhibition on Redox Modifications of Bull Sperm Proteins. Int J Mol Sci 2021; 22:ijms222312888. [PMID: 34884692 PMCID: PMC8657687 DOI: 10.3390/ijms222312888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 01/18/2023] Open
Abstract
Sperm peroxiredoxins (PRDXs) are moonlighting proteins which, in addition to their antioxidant activity, also act as redox signal transducers through PRDX-induced oxidative post-translational modifications of proteins (oxPTMs). Despite extensive knowledge on the antioxidant activity of PRDXs, the mechanisms related to PRDX-mediated oxPTMs are poorly understood. The present study aimed to investigate the effect of bull sperm 2-Cys PRDX inhibition by Conoidin A on changes in oxPTM levels under control and oxidative stress conditions. The results showed that a group of sperm mitochondrial (LDHAL6B, CS, ACO2, SDHA, ACAPM) and actin cytoskeleton proteins (CAPZB, ALDOA, CCIN) is oxidized due to the action of 2-Cys PRDXs under control conditions. In turn, under oxidative stress conditions, 2-Cys PRDX activity seems to be focused on antioxidant function protecting glycolytic, TCA pathway, and respiratory chain enzymes; chaperones; and sperm axonemal tubulins from oxidative damage. Interestingly, the inhibition of PRDX resulted in oxidation of a group of rate-limiting glycolytic proteins, which is known to trigger the switching of glucose metabolism from glycolysis to pentose phosphate pathway (PPP). The obtained results are expected to broaden the knowledge of the potential role of bull sperm 2-Cys in both redox signal transmission and antioxidant activity.
Collapse
|
19
|
Owumi SE, Popoola O, Otunla MT, Okuu UA, Najophe ES. Benzo-a-pyrene-induced reproductive toxicity was abated in rats co-treated with taurine. TOXIN REV 2021. [DOI: 10.1080/15569543.2021.1949617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Solomon E. Owumi
- ChangeLab, Cancer Research and Molecular Biology Laboratory, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Opeoluwa Popoola
- ChangeLab, Cancer Research and Molecular Biology Laboratory, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Moses T. Otunla
- ChangeLab, Cancer Research and Molecular Biology Laboratory, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Uche A. Okuu
- Cancer Immunology and Biotechnology, The University of Nottingham, Nottingham, UK
| | - Eseroghene S. Najophe
- Nutrition and Industrial Biochemistry Research Laboratory, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
20
|
Islam MM, Umehara T, Tsujita N, Shimada M. Saturated fatty acids accelerate linear motility through mitochondrial ATP production in bull sperm. Reprod Med Biol 2021; 20:289-298. [PMID: 34262396 PMCID: PMC8254171 DOI: 10.1002/rmb2.12381] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/04/2021] [Accepted: 03/09/2021] [Indexed: 12/26/2022] Open
Abstract
PURPOSE The present study was undertaken to clarify whether bovine sperm could take up fatty acids (FAs) and produce ATP to maintain linear motility. METHODS Frozen bovine semen was thawed in media containing either lipid mixture (LM) or FAs, and sperm motility was analyzed. The kinetic changes in FA levels in sperm were detected using gas chromatography-mass spectrometry. The mitochondrial activity of sperm thawed in media containing LM or FAs was analyzed based on the fluorescence intensity of JC-1 staining and the oxygen consumption rate. FA transporters were observed using whole-mounted immunofluorescence. RESULTS Sperm linear motility was significantly (P < .05) increased after thawing in media with LM and FA. Moreover, saturated fatty acids were predominant in sperm thawed in media with LM. Notably, our study revealed that frozen bovine sperm possessed FA transporters in the midpiece where the fluorescence signals were detected after treatment with fluorescence-tagged FA. Treatment with FA activated electron transport in mitochondria through β-oxidation. CONCLUSIONS Sperm linear motility is facilitated by FAs in the thawing media used for frozen bovine sperm. This might provide a new approach for upgrading the artificial insemination technique used in both livestock animals and human infertility care.
Collapse
Affiliation(s)
- Md. Mazharul Islam
- Laboratory of Reproductive EndocrinologyGraduate School of Biosphere ScienceHiroshima UniversityHiroshimaJapan
- Department of Animal Breeding and GeneticsBangabandhu Sheikh Mujibur Rahman Agricultural UniversityGazipurBangladesh
| | - Takashi Umehara
- Laboratory of Reproductive BiologyGraduate School of Integrated Sciences for LifeHiroshima UniversityHiroshimaJapan
| | - Natsumi Tsujita
- Laboratory of Reproductive BiologyGraduate School of Integrated Sciences for LifeHiroshima UniversityHiroshimaJapan
| | - Masayuki Shimada
- Laboratory of Reproductive EndocrinologyGraduate School of Biosphere ScienceHiroshima UniversityHiroshimaJapan
- Laboratory of Reproductive BiologyGraduate School of Integrated Sciences for LifeHiroshima UniversityHiroshimaJapan
| |
Collapse
|
21
|
Li R, Yang W, Yin Y, Ma X, Zhang P, Tao K. 4-OI Attenuates Carbon Tetrachloride-Induced Hepatic Injury via Regulating Oxidative Stress and the Inflammatory Response. Front Pharmacol 2021; 12:651444. [PMID: 34113251 PMCID: PMC8185275 DOI: 10.3389/fphar.2021.651444] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 05/05/2021] [Indexed: 12/12/2022] Open
Abstract
The liver is an important metabolic organ, and acute liver injury (ALI) is potentially lethal. Itaconate, a metabolic intermediate from the tricarboxylic acid cycle, showed emerging anti-oxidative and anti-inflammation properties, and an accumulating protective effect in multiple diseases, but its role in ALI still needs to be further explored. Here we established an ALI model induced by carbon tetrachloride in mice. Our results showed that 4-Octyl itaconate (OI), a derivate of itaconate, mitigated hepatic damage by improving liver function, reducing histopathological damage, and decreasing the death of hepatocytes. Additionally, OI decreased myeloperoxidase and thiobarbituric acid reactive substances (TBARS) levels in the ALI model. OI also inhibited the inflammatory response by reducing pro-inflammatory cytokine secretion (IL-6, TNF-α, IL-1β, and MCP-1) and infiltration of macrophages and neutrophils in the ALI model. However, administration of ML385, a specified Nrf2 inhibitor, eliminated the protective properties of OI in the CCl4-induced liver injury model by increasing hepatic damage and oxidative stress. Furthermore, OI increased the expression and nuclear translocation of Nrf2 and elevated the expression of heme oxygenase-1 and NAD(P)H quinone oxidoreductase 1, while knockdown of Nrf2 eliminated these effects in murine hepatocyte NCTC 1469 under CCl4 treatment. Moreover, we found that OI reduced serum High-mobility group box 1 (HMGB1) levels in CCl4-treated mice. Finally, OI inhibited nuclear translocation of factor-kappa B (NF-𝜅B) and inflammatory cytokine production in murine macrophages. In conclusion, these results indicated that OI ameliorated CCl4-induced ALI by mitigating oxidative stress and the inflammatory response. The possible mechanism was associated with the elevation of Nrf2 nuclear translocation and inhibition of HMGB1 mediated the nuclear translocation of NF-𝜅B.
Collapse
Affiliation(s)
- Ruidong Li
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenchang Yang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuping Yin
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xianxiong Ma
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Zhang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
22
|
Zhang B, Wang Y, Wu C, Qiu S, Chen X, Cai B, Xie H. Freeze-thawing impairs the motility, plasma membrane integrity and mitochondria function of boar spermatozoa through generating excessive ROS. BMC Vet Res 2021; 17:127. [PMID: 33752649 PMCID: PMC7986419 DOI: 10.1186/s12917-021-02804-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 02/16/2021] [Indexed: 02/06/2023] Open
Abstract
Background Cryopreservation is an efficient way to store spermatozoa and is closely associated with the quality of sperm after the freeze-thaw process. During freeze-thaw cycling, excessive reactive oxygen species (ROS) are produced, and the effects of ROS on boar sperm during cryopreservation have not been identified. Results In this study, we evaluated the quality of boar spermatozoa in different steps of cryopreservation (extension, cooling, and thawing for 30 min and 240 min) with or without boar-sperm antioxidant (N-acetylcysteine (NAC)). The ROS levels, sperm motility, plasma membrane integrity, mitochondrial activity, sperm chromatin structure, ATP content, and sperm apoptosis were assayed. After thawing, the ROS level and sperm apoptosis were significantly increased, and the sperm motility, plasma membrane integrity, mitochondrial activity, sperm chromatin structure, and ATP content were significantly impaired compared with those at the extension period and cooling period. Moreover, the addition of N-acetyl L-cysteine (NAC) reversed these changes. Conclusion The freeze-thawing of boar spermatozoa impaired their motility, plasma membrane, mitochondrial activity, sperm chromatin structure and apoptosis by producing excessive ROS. Thus, the downregulation of ROS level by antioxidants, especially the NAC, is important for manufacturing frozen pig sperm to increase reproductive cells and livestock propagation, as well as to improve the application of frozen semen in pigs worldwide. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-021-02804-1.
Collapse
Affiliation(s)
- Bin Zhang
- Jiangsu Agri-animal Husbandry Vocational College, 8 Feng Huang East Road, Taizhou, Jiangsu, People's Republic of China
| | - Yan Wang
- Food, Animal and Plant Inspection and Quarantine Technical Center of Shanghai Customs, Shanghai, People's Republic of China
| | - Caihong Wu
- Jiangsu Agri-animal Husbandry Vocational College, 8 Feng Huang East Road, Taizhou, Jiangsu, People's Republic of China.
| | - Shulei Qiu
- Jiangsu Agri-animal Husbandry Vocational College, 8 Feng Huang East Road, Taizhou, Jiangsu, People's Republic of China
| | - Xiaolan Chen
- Jiangsu Agri-animal Husbandry Vocational College, 8 Feng Huang East Road, Taizhou, Jiangsu, People's Republic of China
| | - Bingyan Cai
- Jiangsu Agri-animal Husbandry Vocational College, 8 Feng Huang East Road, Taizhou, Jiangsu, People's Republic of China
| | - Huimei Xie
- Jiangsu Agri-animal Husbandry Vocational College, 8 Feng Huang East Road, Taizhou, Jiangsu, People's Republic of China
| |
Collapse
|
23
|
Hoque SAM, Umehara T, Kawai T, Shimada M. Adverse effect of superoxide-induced mitochondrial damage in granulosa cells on follicular development in mouse ovaries. Free Radic Biol Med 2021; 163:344-355. [PMID: 33385538 DOI: 10.1016/j.freeradbiomed.2020.12.434] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/13/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022]
Abstract
High mitochondrial oxidative phosphorylation (mt-OXPHOS) levels are required to supply the ATP necessary for follicle-stimulating hormone (FSH)-induced granulosa cell proliferation during the follicular development process. Consequently, excessive reactive oxygen species (ROS) might be generated and have an adverse effect on follicular health. This study aimed to elucidate the negative effects of ROS on mitochondrial functions in FSH-stimulated granulosa cells during the follicular development process and to investigate whether pyrroloquinoline quinone (PQQ) treatment could accelerate this process by ameliorating the adverse effects. To do this, both in vitro and in vivo experiments were performed with granulosa cells from superovulated immature (3-week-old) mice that were pretreated with or without PQQ, and a natural mating study was also performed. The ROS level in FSH-/eCG-stimulated granulosa cells was significantly increased. Moreover, high oxidative stress and mtDNA damage levels were evident in the granulosa cells. PQQ treatment not only reduced the ROS and oxidative stress levels but also ameliorated mtDNA damage, accelerated FSH-/eCG-induced ATP production, and increased the mitochondrial membrane potential and the expression levels of mitochondrial genes (Nd1, Cytb, Cox1, ATPase6) and the mt-ND1 protein. Accordingly, the proliferation and viability of granulosa cells, numbers of healthy preovulatory follicles and ovulated oocytes and serum estrogen level were significantly improved, while the apoptosis of granulosa cells was reduced. However, PQQ treatment did not change the fertility parameters in mature mice with natural cycles but did significantly increased the number of offspring born per delivery. These results revealed that ROS-associated damage in FSH-stimulated granulosa cells adversely affects their physiology and follicular health during the follicular development process. Treatment with PQQ is a beneficial tool to increase both the number of ovulated oocytes and pups per delivery.
Collapse
Affiliation(s)
- S A Masudul Hoque
- Laboratory of Reproductive Endocrinology, Graduate School of Biosphere Science, Hiroshima University, Hiroshima, Japan; Department of Animal Breeding and Genetics, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Takashi Umehara
- Laboratory of Reproductive Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Tomoko Kawai
- Laboratory of Reproductive Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Masayuki Shimada
- Laboratory of Reproductive Endocrinology, Graduate School of Biosphere Science, Hiroshima University, Hiroshima, Japan; Laboratory of Reproductive Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan.
| |
Collapse
|
24
|
Umehara T, Tsujita N, Goto M, Tonai S, Nakanishi T, Yamashita Y, Shimada M. Methyl-beta cyclodextrin and creatine work synergistically under hypoxic conditions to improve the fertilization ability of boar ejaculated sperm. Anim Sci J 2021; 91:e13493. [PMID: 33314533 DOI: 10.1111/asj.13493] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 11/04/2020] [Accepted: 11/09/2020] [Indexed: 01/06/2023]
Abstract
Although successful fertilization is completed by only 150 sperm in the pig oviduct, more than 50,000 sperms are required to achieve a fertilization rate of more than 70% by pig in vitro fertilization (IVF). In this study, to improve the efficiency of pig IVF, the effects of hypoxic conditions and treatment with creatine and methyl-beta cyclodextrin (MβCD) on the glycolytic pathway were investigated. Under low O2 conditions, zig-zag motility was strongly induced within 30 min; however, the induction disappeared at 60 min. Although caffeine suppressed zig-zag motility under low O2 conditions, creatine induced and sustained zig-zag motility until 120 min. Additionally, pretreatment with MβCD for 15 min greatly enhanced zig-zag motility via ATP production in sperm incubated with creatine under low O2 conditions. Sperm pretreated with MβCD were used for IVF in medium containing creatine under low O2 conditions. A fertilization rate of approximately 70% was achieved with only 1.0 x 104 sperms/mL, and there were few polyspermic embryos. Therefore, our novel method was beneficial for efficient production of pig embryos in vitro. Moreover, the zig-zag motility may be a novel movement which boar capacitated sperm exhibit in the culture medium.
Collapse
Affiliation(s)
- Takashi Umehara
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Natsumi Tsujita
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Masaaki Goto
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan.,Livestock Research Institute, Oita Prefectural Agriculture, Forestry and Fisheries Research Center, Oita, Japan
| | - Shingo Tonai
- Graduate School of Comprehensive Scientific Research, Prefectural University of Hiroshima, Shobara, Japan
| | - Tomoya Nakanishi
- Graduate School of Comprehensive Scientific Research, Prefectural University of Hiroshima, Shobara, Japan
| | - Yasuhisa Yamashita
- Graduate School of Comprehensive Scientific Research, Prefectural University of Hiroshima, Shobara, Japan
| | - Masayuki Shimada
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| |
Collapse
|
25
|
Alleviation of the Adverse Effect of Dietary Carbohydrate by Supplementation of Myo-Inositol to the Diet of Nile Tilapia ( Oreochromis niloticus). Animals (Basel) 2020; 10:ani10112190. [PMID: 33238508 PMCID: PMC7700398 DOI: 10.3390/ani10112190] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/20/2020] [Accepted: 11/20/2020] [Indexed: 11/16/2022] Open
Abstract
This study investigated the effect of dietary myo-inositol (MI) on alleviating the adverse effect of the high carbohydrate diet in Nile tilapia (Oreochromis niloticus). Six diets contained either low carbohydrate (LC 30%) or high carbohydrate (HC 45%) with three levels of MI supplementation (0, 400 and 1200 mg/kg diet) to each level of the carbohydrate diet. After an 8-week trial, the fish fed 400 mg/kg MI under HC levels had the highest weight gain and fatness, but the fish fed 1200 mg/kg MI had the lowest hepatosomatic index, visceral index and crude lipid in the HC group. The diet of 1200 mg/kg MI significantly decreased triglyceride content in the serum and liver compared with those fed the MI supplemented diets regardless of carbohydrate levels. Dietary MI decreased triglyceride accumulation in the liver irrespective of carbohydrate levels. The content of malondialdehyde decreased with increasing dietary MI at both carbohydrate levels. Fish fed 1200 mg/kg MI had the highest glutathione peroxidase, superoxide dismutase, aspartate aminotransferase and glutamic-pyruvic transaminase activities. The HC diet increased the mRNA expression of key genes involved in lipid synthesis (DGAT, SREBP, FAS) in the fish fed the diet without MI supplementation. Dietary MI significantly under expressed fatty acid synthetase in fish fed the HC diets. Moreover, the mRNA expression of genes related to lipid catabolism (CPT, ATGL, PPAR-α) was significantly up-regulated with the increase of dietary MI levels despite dietary carbohydrate levels. The gene expressions of gluconeogenesis, glycolysis and MI biosynthesis were significantly down-regulated, while the expression of the pentose phosphate pathway was up-regulated with the increase of MI levels. This study indicates that HC diets can interrupt normal lipid metabolism and tend to form a fatty liver in fish. Dietary MI supplement can alleviate lipid accumulation in the liver by diverging some glucose metabolism into the pentose phosphate pathway and enhance the antioxidant capacity in O. niloticus.
Collapse
|