1
|
Geng W, Li P, Zhang G, Zhong R, Xu L, Kang L, Liu X, Wu M, Ji M, Guan H. Targeted Activation of OGG1 Inhibits Paraptosis in Lens Epithelial Cells of Early Age-Related Cortical Cataract. Invest Ophthalmol Vis Sci 2025; 66:29. [PMID: 39804629 PMCID: PMC11734758 DOI: 10.1167/iovs.66.1.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 12/16/2024] [Indexed: 01/18/2025] Open
Abstract
Purpose To investigate potential modes of programmed cell death in the lens epithelial cells (LECs) of patients with early age-related cortical cataract (ARCC) and to explore early-stage intervention strategies. Methods Anterior lens capsules were collected from early ARCC patients for comprehensive analysis. Ultrastructural examination of LECs was performed using transmission electron microscopy. Cell death-associated protein markers were quantified via Western blot analysis, including those for paraptosis (ALIX, GRP78), apoptosis (cleaved caspase 3 and caspase 9), pyroptosis (N-GSDMD), and ferroptosis (GPX4). Intracellular vesicle-organelle colocalization was assessed through immunofluorescence. OGG1 protein expression and activity were evaluated through multiple methods, including Western blot, laser micro-irradiation, and immunofluorescence. The therapeutic potential of the OGG1 activator TH10785 on paraptosis was investigated using an ex vivo rat lens model. Results Morphologic changes revealed significant endoplasmic reticulum (ER) swelling in ARCC patient LECs, with no characteristic apoptotic features. Paraptosis-related proteins exhibited significant alterations, while other cell death pathway markers (apoptosis, pyroptosis, and ferroptosis) remained unchanged. In the reactive oxygen species-induced paraptosis model, vesicular structures showed exclusive colocalization with ER-specific fluorescence. Elevated levels of the DNA damage marker 7,8-dihydro-8-oxoguanine were observed concurrent with decreased OGG1 activity. The OGG1 activator TH10785 showed efficacy in suppressing LECs paraptosis in ex vivo rat lens cultures. Conclusions Paraptosis was identified in the LECs of patients with early ARCC. TH10785 activates OGG1 to suppress paraptosis in LECs, suggesting a novel therapeutic approach for early ARCC intervention.
Collapse
Affiliation(s)
- Wenjing Geng
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Pengfei Li
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Guowei Zhang
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Renhao Zhong
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Linhui Xu
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Lihua Kang
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Xi Liu
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Miaomiao Wu
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Min Ji
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Huaijin Guan
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
2
|
Wei S, Li J, Zhang Y, Li Y, Wang Y. Ferroptosis in eye diseases: a systematic review. Eye (Lond) 2025; 39:18-27. [PMID: 39379520 PMCID: PMC11733247 DOI: 10.1038/s41433-024-03371-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 08/09/2024] [Accepted: 09/20/2024] [Indexed: 10/10/2024] Open
Abstract
Ferroptosis is a type of iron-dependent cell death that differs from apoptosis, necroptosis, autophagy, and other forms of cell death. It is mainly characterized by the accumulation of intracellular lipid peroxides, redox imbalance, and reduced levels of glutathione and glutathione peroxidase 4. Studies have demonstrated that ferroptosis plays an important regulatory role in the occurrence and development of neurodegenerative diseases, stroke, traumatic brain injury, and ischemia-reperfusion injuries. Multiple mechanisms, such as iron metabolism, ferritinophagy, p53, and p62/Keap1/Nrf2, as well as the combination of FSP1/CoQ/NADPH and hepcidin/FPN-1 can alter the vulnerability to ferroptosis. Nevertheless, there has been limited research on the development and management of ferroptosis in the realm of eye disorders, with most studies focusing on retinal conditions such as age-related macular degeneration and retinitis pigmentosa. This review offers a thorough examination of the disruption of iron homeostasis in eye disorders, investigating the underlying mechanisms. We anticipate that the occurrence of ferroptotic cell death will not only establish a fresh field of study in eye diseases, but also present a promising therapeutic target for treating these diseases.
Collapse
Affiliation(s)
- Shengsheng Wei
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an, China
| | - Jing Li
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an, China
| | - Yaohua Zhang
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an, China
| | - Yong Li
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an, China
| | - Yan Wang
- Tianjin Eye Institute, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Hospital, Tianjin, China.
- Nankai University Eye Institute, Nankai University, Tianjin, China.
| |
Collapse
|
3
|
Ni Y, Liu L, Jiang F, Wu M, Qin Y. JAG1/Notch Pathway Inhibition Induces Ferroptosis and Promotes Cataractogenesis. Int J Mol Sci 2025; 26:307. [PMID: 39796164 PMCID: PMC11719987 DOI: 10.3390/ijms26010307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/23/2024] [Accepted: 12/29/2024] [Indexed: 01/13/2025] Open
Abstract
Cataracts remain the leading cause of visual impairment worldwide, yet the underlying molecular mechanisms, particularly in age-related cataracts (ARCs), are not fully understood. The Notch signaling pathway, known for its critical role in various degenerative diseases, may also contribute to ARC pathogenesis, although its specific involvement is unclear. This study investigates the role of Notch signaling in regulating ferroptosis in lens epithelial cells (LECs) and its impact on ARC progression. RNA sequencing of anterior lens capsule samples from ARC patients revealed a significant downregulation of Notch signaling, coupled with an upregulation of ferroptosis-related genes. Notch1 expression decreased, while ferroptosis markers increased in an age-dependent manner. In vitro, upregulation of Notch signaling alleviated ferroptosis by decreasing ferritin heavy chain 1 (FTH1) and p53 levels while enhancing the expression of nuclear factor erythroid 2-related factor 2 (Nrf2), glutathione peroxidase 4 (GPX4), and solute carrier family 7 member 11 (SLC7A11). Conversely, inhibition of Notch signaling exacerbated ferroptosis, as evidenced by reduced Nrf2, GPX4, and SLC7A11 expression. These findings suggest that downregulation of Notch signaling promotes ferroptosis in LECs by impairing the Nrf2/GPX4 antioxidant pathway, thereby contributing to ARC development. This study offers new insights into ARC pathogenesis and highlights the Notch signaling pathway as a potential therapeutic target for preventing or mitigating ARC progression.
Collapse
Affiliation(s)
- Yan Ni
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China; (Y.N.) (L.L.); (F.J.)
- Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510033, China
| | - Liangping Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China; (Y.N.) (L.L.); (F.J.)
- Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510033, China
| | - Fanying Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China; (Y.N.) (L.L.); (F.J.)
- Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510033, China
| | - Mingxing Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China; (Y.N.) (L.L.); (F.J.)
- Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510033, China
| | - Yingyan Qin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China; (Y.N.) (L.L.); (F.J.)
- Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510033, China
| |
Collapse
|
4
|
Alrouji M, Anwar S, Venkatesan K, Shahwan M, Hassan MI, Islam A, Shamsi A. Iron homeostasis and neurodegeneration in the ageing brain: Insight into ferroptosis pathways. Ageing Res Rev 2024; 102:102575. [PMID: 39515619 DOI: 10.1016/j.arr.2024.102575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/25/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Ageing is a major risk factor for various chronic diseases and offers a potential target for developing novel and broadly effective preventatives or therapeutics for age-related conditions, including those affecting the brain. Mechanisms contributing to ageing have been summarized as the hallmarks of ageing, with iron imbalance being one of the major factors. Ferroptosis, an iron-mediated lipid peroxidation-induced programmed cell death, has recently been implicated in neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD) and Huntington's disease (HD). Addressing ferroptosis offers both opportunities and challenges for treating neurodegenerative diseases, though the specific mechanisms remain unclear. This research explores the key processes behind how ferroptosis contributes to brain ageing, with a focus on the complex signaling networks that are involved. The current article aims to uncover that how ferroptosis, a specific type of cell death, may drive age-related changes in the brain. Additionally, the article also unveils its role in neurodegenerative diseases, discussing how understanding these mechanisms could open up new therapeutic avenues.
Collapse
Affiliation(s)
- Mohammed Alrouji
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia.
| | - Saleha Anwar
- Center for Global Health Research, Saveetha medical college, Saveetha institute of Medical and Technical Sciences, Chennai, India.
| | - Kumar Venkatesan
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia.
| | - Moyad Shahwan
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, United Arab Emirates.
| | - Md Imtaiyaz Hassan
- Center for Interdsicplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India.
| | - Asimul Islam
- Center for Interdsicplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India.
| | - Anas Shamsi
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, United Arab Emirates.
| |
Collapse
|
5
|
Wei Z, Hao C, Radeen KR, Hao Z, Kettimuthu K, Maner-Smith K, Toyokuni S, Fan X. Deficiency in glutathione peroxidase 4 (GPX4) results in abnormal lens development and newborn cataract. Proc Natl Acad Sci U S A 2024; 121:e2407842121. [PMID: 39560644 PMCID: PMC11621771 DOI: 10.1073/pnas.2407842121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 10/03/2024] [Indexed: 11/20/2024] Open
Abstract
The human lens is composed of a monolayer of lens epithelial cells (LECs) and elongated fibers that align tightly but are separated by the plasma membrane. The integrity of the lens plasma membrane is crucial for maintaining lens cellular structure, homeostasis, and transparency. Glutathione peroxidase 4 (GPX4), a selenoenzyme, plays a critical role in protecting against lipid peroxidation. This study aims to elucidate the role of GPX4 in lens plasma membrane stability during lens development using in vitro, ex vivo, and in vivo systems. Our findings reveal that GPX4 deficiency triggers lens epithelial apoptosis-independent but ferroptosis-mediated cell death. Blocking lens GPX4 activity during ex vivo culture induces lens opacification, LEC death, and disruption of lens fiber cell arrangement. Deletion of lens-specific Gpx4 results in significant unsaturated phospholipid loss and an increase in oxidized phospholipids. Consequently, lenses with Gpx4 deficiency exhibit massive disruption of lens fiber cell structure, significant loss of LECs via ferroptosis, and formation of newborn cataracts. Remarkably, administering the lipid peroxidation inhibitor, liproxstatin-1, to pregnant mothers at embryonic days 9.5 significantly prevents lipid peroxidation, LEC death, and lens developmental defects. Our study unveils the crucial role of GPX4 in lens development and transparency, and also provides a successful intervention approach to prevent lens developmental defects through lipid peroxidation inhibition.
Collapse
Affiliation(s)
- Zongbo Wei
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA30912
| | - Caili Hao
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA30912
| | - Kazi Rafsan Radeen
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA30912
| | - Zheng Hao
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Aichi464-0083, Japan
| | - Kavitha Kettimuthu
- School of Medicine, Emory Integrated Metabolomics and Lipidomics Core, Emory University, Atlanta, GA30322
| | - Kristal Maner-Smith
- School of Medicine, Emory Integrated Metabolomics and Lipidomics Core, Emory University, Atlanta, GA30322
| | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Aichi464-0083, Japan
| | - Xingjun Fan
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA30912
| |
Collapse
|
6
|
Qiu ZY, Shi KN, Li HH, Zhang B. CBR-470-1 protects against cardiomyocyte death in ischaemia/reperfusion injury by activating the Nrf2-GPX4 cascade. Toxicol Appl Pharmacol 2024; 492:117113. [PMID: 39343043 DOI: 10.1016/j.taap.2024.117113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/14/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Cardiac ischaemia/reperfusion (I/R) impairs mitochondrial function, resulting in excessive oxidative stress and cardiomyocyte ferroptosis and death. Nuclear factor E2-related factor 2 (Nrf2) is a key regulator of redox homeostasis and has cardioprotective effects against various stresses. Here, we tested whether CBR-470-1, a noncovalent Nrf2 activator, can protect against cardiomyocyte death caused by I/R stress. Compared with vehicle treatment, the administration of CBR-470-1 (2 mg/kg) to mice significantly increased Nrf2 protein levels and ameliorated the infarct size, the I/R-induced decrease in cardiac contractile performance, and the I/R-induced increases in cell apoptosis, ROS levels, and inflammation. Consistently, the beneficial effects of CBR-470-1 on cardiomyocytes were verified in a hypoxia/reoxygenation (H/R) model in vitro, but this cardioprotection was dramatically attenuated by the GPX4 inhibitor RSL3. Mechanistically, CBR-470-1 upregulated Nrf2 expression, which increased the expression levels of antioxidant enzymes (NQO1, SOD1, Prdx1, and Gclc) and antiferroptotic proteins (SLC7A11 and GPX4) and downregulated the protein expression of p53 and Nlrp3, leading to the inhibition of ROS production and inflammation and subsequent cardiomyocyte death (apoptosis, ferroptosis and pyroptosis). In summary, CBR-470-1 prevented I/R-mediated cardiac injury possibly through inhibiting cardiomyocyte apoptosis, ferroptosis and pyroptosis via Nrf2-mediated inhibition of p53 and Nlrp3 and activation of the SLC7A11/GPX4 pathway. Our data also highlight that CBR-470-1 may serve as a valuable agent for treating ischaemic heart disease.
Collapse
Affiliation(s)
- Ze-Yang Qiu
- Department of Cardiology, First Affiliated Hospital, Dalian Medical University, Dalian, Liaoning 116011, China
| | - Kai-Na Shi
- Department of Emergency Medicine, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Hui-Hua Li
- Department of Emergency Medicine, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China.
| | - Bo Zhang
- Department of Cardiology, First Affiliated Hospital, Dalian Medical University, Dalian, Liaoning 116011, China.
| |
Collapse
|
7
|
Zhang MY, Wei TT, Han C, Tan CY, Xie TH, Cai J, Yao Y, Zhu L. YAP O-GlcNAcylation contributes to corneal epithelial cell ferroptosis under cigarette smoke exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124764. [PMID: 39154884 DOI: 10.1016/j.envpol.2024.124764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/06/2024] [Accepted: 08/16/2024] [Indexed: 08/20/2024]
Abstract
Cigarette smoke (CS) is an important indoor air pollutant associated with an increased risk of ocular surface disease. As the eye's outermost layer, the cornea is highly sensitive to air pollutants like CS. However, the specific mechanisms linking CS exposure to corneal dysfunction have not been fully elucidated. In the present study, we found that CS exposure damages corneal epithelial cells, accompanied by increased iron (Fe2+) levels and lipid peroxidation, both hallmarks of ferroptosis. Ferroptosis inhibitors, including Ferrostatin-1 (Fer-1) and Deferoxamine mesylate (DFO), protect against CS-induced cell damage. To understand the underlying mechanisms, we investigated how CS affects iron and lipid metabolism. Our results showed that CS could upregulate intracellular iron levels by increasing TFRC expression and promote lipid peroxidation by increasing ACSL4 expression. Silencing ACSL4 or TFRC expression prevented CS-induced ferroptosis. Furthermore, we found that the upregulation of TFRC and ACSL4 was driven by increased YAP transcription. Pharmacological or genetic inhibition of YAP effectively prevented corneal epithelial cell ferroptosis under CS stimulation. Additionally, our results suggest that CS exposure could increase O-GlcNAc transferase activity, leading to YAP O-GlcNAcylation. This glycosylation of YAP interfered with its K48-linked ubiquitination, resulting in YAP stabilization. Collectively, we found that CS exposure induces corneal epithelial cell ferroptosis via the YAP O-GlcNAcylation, and provide evidence that CS exposure is a strong risk factor for ocular surface disease.
Collapse
Affiliation(s)
- Meng-Yuan Zhang
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Ting-Ting Wei
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Cheng Han
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Cheng-Ye Tan
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Tian-Hua Xie
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Jiping Cai
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Yong Yao
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China.
| | - Lingpeng Zhu
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China.
| |
Collapse
|
8
|
Zhang X, Zheng C, Zhao J, Xu X, Yao J. LncRNA MEG3 regulates ferroptosis of lens epithelial cells via PTBP1/GPX4 axis to participate in age-related cataract. J Cell Physiol 2024; 239:e31330. [PMID: 38828927 DOI: 10.1002/jcp.31330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 06/05/2024]
Abstract
Age-related cataract (ARC) is regarded as the principal cause of vision impairment among the aged. The regulatory role of long noncoding RNAs (LncRNAs) in ARC remains unclear. The lncRNA maternally expressed gene 3 (MEG3) has been reported to promote ARC progression, and the underlying mechanism was further investigated in this study. Lens epithelium samples were collected to verify the expression of MEG3. Lens epithelial cells (LECs) were treated with H2O2 to mimic microenvironment of ARC in vitro. Cell viability, reactive oxygen species, and ferroptosis were evaluated during the in viro experiments. In the present work, lncRNA MEG3 was highly expressed in ARC group, compared with normal group. MEG3 was induced, cell viability and glutathione peroxidase 4 (GPX4) level were inhibited, and ferroptosis was promoted in H2O2 treated LECs. LncRNA MEG3 silence reversed the effects of H2O2 on viability and ferroptosis in LECs. Thereafter, lncRNA MEG3 was found to bind to PTBP1 for GPX4 degradation. Silencing of GPX4 reversed the regulation of lncRNA MEG3 inhibition in H2O2-treated LECs. To sum up, lncRNA MEG3 exhibited high expression in ARC. In H2O2-induced LECs, inhibition of lncRNA MEG3 accelerated cell viability and repressed ferroptosis by interaction with PTBP1 for GPX4 messenger RNA decay. Targeting lncRNA MEG3 may be a novel treatment of ARC.
Collapse
Affiliation(s)
- Xinyuan Zhang
- Department of Clinical Forensic Medicine, School of Forensic Medicine, China Medical University, Shenyang, Liaoning, China
| | - Chuanfei Zheng
- Department of Clinical Forensic Medicine, School of Forensic Medicine, China Medical University, Shenyang, Liaoning, China
| | - Jiuhong Zhao
- Department of Human Anatomy and Histology, School of Fundamental Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Xiaoming Xu
- Department of Clinical Forensic Medicine, School of Forensic Medicine, China Medical University, Shenyang, Liaoning, China
| | - Jun Yao
- Department of Forensic Genetics and Biology, School of Forensic Medicine, China Medical University, Shenyang, China
| |
Collapse
|
9
|
Dai Y, Li Y, Xu J, Zhang J. A highly selective inhibitor of discoidin domain receptor-1 (DDR1-IN-1) protects corneal epithelial cells from YAP/ACSL4-mediated ferroptosis in dry eye. Br J Pharmacol 2024; 181:4245-4261. [PMID: 38978400 DOI: 10.1111/bph.16491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/03/2024] [Accepted: 05/26/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND AND PURPOSE This study investigated the involvement of discoidin domain receptor (DDR) in dry eye and assessed the potential of specific DDR inhibitors as a therapeutic strategy for dry eye by exploring the underlying mechanism. EXPERIMENTAL APPROACH Dry eye was induced in Wistar rats by applying 0.2% benzalkonium chloride (BAC), after which rats were treated topically for 7 days with DDR1-IN-1, a selective inhibitor of DDR1. Clinical manifestations of dry eye were assessed on Day-7 post-treatment. Histological evaluation of corneal damage was performed using haematoxylin and eosin (H&E) staining. In vitro, immortalized human corneal epithelial cells (HCECs) exposed to hyperosmotic stress (HS) were treated with varying doses of DDR1-IN-1 for 24 h. The levels of lipid peroxidation in dry eye corneas or HS-stimulated HCECs were assessed. Protein levels of DDR1/DDR2 and related pathways were detected by western blotting. The cellular distribution of acyl-CoA synthetase long chain family member 4 (ACSL4) and Yes-associated protein (YAP) was evaluated using immunohistochemistry or immunofluorescent staining. KEY RESULTS In dry eye corneas, only DDR1 expression was significantly up-regulated compared with normal controls. DDR1-IN-1 treatment significantly alleviated dry eye symptoms in vivo. The treatment remarkably reduced lipid hydroperoxide (LPO) levels and suppressed the expression of ferroptosis markers, particularly ACSL4. Overexpression or reactivation of YAP diminished the protective effects of DDR1-IN-1, indicating the involvement of the Hippo/YAP pathway in DDR1-targeted therapeutic effects. CONCLUSIONS AND IMPLICATIONS This study confirms the significance of DDR1 in dry eye and highlights the potential of selective DDR1 inhibitor(s) for dry eye treatment.
Collapse
Affiliation(s)
- Yiqin Dai
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Yue Li
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Jianjiang Xu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Jing Zhang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| |
Collapse
|
10
|
Li J, Buonfiglio F, Zeng Y, Pfeiffer N, Gericke A. Oxidative Stress in Cataract Formation: Is There a Treatment Approach on the Horizon? Antioxidants (Basel) 2024; 13:1249. [PMID: 39456502 PMCID: PMC11505147 DOI: 10.3390/antiox13101249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/04/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Cataracts, a leading cause of blindness worldwide, are closely linked to oxidative stress-induced damage to lens epithelial cells (LECs). Key factors contributing to cataract formation include aging, arterial hypertension, and diabetes mellitus. Given the high global prevalence of cataracts, the burden of cataract-related visual impairment is substantial, highlighting the need for pharmacological strategies to supplement surgical interventions. Understanding the molecular pathways involved in oxidative stress during cataract development may offer valuable insights for designing novel therapeutic approaches. This review explores the role of oxidative stress in cataract formation, focusing on critical mechanisms, such as mitochondrial dysfunction, endoplasmic reticulum stress, loss of gap junctions, and various cell death pathways in LECs. Additionally, we discuss emerging therapeutic strategies and potential targeting options, including antioxidant-based treatments.
Collapse
Affiliation(s)
- Jingyan Li
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (F.B.); (Y.Z.); (N.P.)
| | | | | | | | - Adrian Gericke
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (F.B.); (Y.Z.); (N.P.)
| |
Collapse
|
11
|
Li Y, Chang P, Xu L, Zhu Z, Hu M, Cen J, Li S, Zhao YE. TiO2-Nanoparticle-Enhanced Sonodynamic Therapy for Prevention of Posterior Capsular Opacification and Ferroptosis Exploration of Its Mechanism. Invest Ophthalmol Vis Sci 2024; 65:24. [PMID: 39417751 PMCID: PMC11500051 DOI: 10.1167/iovs.65.12.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/30/2024] [Indexed: 10/19/2024] Open
Abstract
Purpose To explore the application and potential ferroptosis mechanisms of sonodynamic therapy (SDT) using titanium dioxide nanoparticles (TiO2-NPs) as sonosensitizers for the prevention of posterior capsule opacification (PCO). Methods We fabricated TiO2-NP-coated intraocular lenses (TiO2-IOLs) using the spin-coating method, followed by ultrasound activation of the photosensitizer TiO2. In vitro experiments were performed with human lens epithelial cells (HLECs) to explore the appropriate concentration of TiO2 and ultrasonic parameters. Investigations included reactive oxygen species (ROS) generation, glutathione (GSH) depletion, glutathione peroxidase 4 (GPX4) western blot analysis, lipid peroxidation assays, and transcriptomics analysis. Finally, TiO2-IOLs were implanted in rabbit eyes to explore the in vivo performance of SDT. Results Through both in vitro and in vivo experiments, the study determined that the ultrasound parameters of 5-minute duration, 1-MHz frequency, 50% duty cycle, and 1.2-W/cm2 intensity were reliable and valid for killing HLECs without damaging other ocular structures. In vitro experiments demonstrated that SDT generated excess ROS, which disrupted the mitochondrial membrane potential and significantly reduced the GSH content. Additionally, the downregulation of GPX4, accumulation of lipid peroxides, and alteration of mitochondrial morphology were observed, suggesting that ferroptosis may be the underlying mechanism. The RNA-sequencing analysis results also showed an increase in the expression of multiple pro-ferroptosis genes and the ferroptosis marker gene PTGS2. Animal experiments preliminarily demonstrated the safety and effectiveness of SDT in treating PCO in vivo. Conclusions TiO2-IOLs combined with SDT effectively prevented PCO by generating ROS and intracellular ferroptosis.
Collapse
Affiliation(s)
- Yuanyuan Li
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- Eye Hospital of Wenzhou Medical University Hangzhou Branch, Hangzhou, China
| | - Pingjun Chang
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- Eye Hospital of Wenzhou Medical University Hangzhou Branch, Hangzhou, China
| | - Liming Xu
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- Eye Hospital of Wenzhou Medical University Hangzhou Branch, Hangzhou, China
| | - Zehui Zhu
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- Eye Hospital of Wenzhou Medical University Hangzhou Branch, Hangzhou, China
| | - Man Hu
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- Eye Hospital of Wenzhou Medical University Hangzhou Branch, Hangzhou, China
| | - Jiaying Cen
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- Eye Hospital of Wenzhou Medical University Hangzhou Branch, Hangzhou, China
| | - Siyan Li
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- Eye Hospital of Wenzhou Medical University Hangzhou Branch, Hangzhou, China
| | - Yun-e Zhao
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- Eye Hospital of Wenzhou Medical University Hangzhou Branch, Hangzhou, China
| |
Collapse
|
12
|
Kulbay M, Wu KY, Nirwal GK, Bélanger P, Tran SD. Oxidative Stress and Cataract Formation: Evaluating the Efficacy of Antioxidant Therapies. Biomolecules 2024; 14:1055. [PMID: 39334822 PMCID: PMC11430732 DOI: 10.3390/biom14091055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
This comprehensive review investigates the pivotal role of reactive oxygen species (ROS) in cataract formation and evaluates the potential of antioxidant therapies in mitigating this ocular condition. By elucidating the mechanisms of oxidative stress, the article examines how ROS contribute to the deterioration of lens proteins and lipids, leading to the characteristic aggregation, cross-linking, and light scattering observed in cataracts. The review provides a thorough assessment of various antioxidant strategies aimed at preventing and managing cataracts, such as dietary antioxidants (i.e., vitamins C and E, lutein, and zeaxanthin), as well as pharmacological agents with antioxidative properties. Furthermore, the article explores innovative therapeutic approaches, including gene therapy and nanotechnology-based delivery systems, designed to bolster antioxidant defenses in ocular tissues. Concluding with a critical analysis of current research, the review offers evidence-based recommendations for optimizing antioxidant therapies. The current literature on the use of antioxidant therapies to prevent cataract formation is sparse. There is a lack of evidence-based conclusions; further clinical studies are needed to endorse the use of antioxidant strategies in patients to prevent cataractogenesis. However, personalized treatment plans considering individual patient factors and disease stages can be applied. This article serves as a valuable resource, providing insights into the potential of antioxidants to alleviate the burden of cataracts.
Collapse
Affiliation(s)
- Merve Kulbay
- Department of Ophthalmology & Visual Sciences, McGill University, Montreal, QC H4A 3S5, Canada
| | - Kevin Y Wu
- Division of Ophthalmology, Department of Surgery, University of Sherbrooke, Sherbrooke, QC J4K 0A8, Canada
| | - Gurleen K Nirwal
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Paul Bélanger
- Division of Ophthalmology, Department of Surgery, University of Sherbrooke, Sherbrooke, QC J4K 0A8, Canada
| | - Simon D Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
13
|
Tang Y, Liang H, Su L, Xue X, Zhan J. Ferroptosis: a new perspective on the pathogenesis of radiation-induced cataracts. Front Public Health 2024; 12:1449216. [PMID: 39220446 PMCID: PMC11363423 DOI: 10.3389/fpubh.2024.1449216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Ionizing radiation is a significant risk factor for cataracts, but the pathogenesis of radiation-induced cataracts remains incompletely understood. Ferroptosis, an iron-dependent form of programmed cell death discovered in recent years, has gained increasing attention for its role in various diseases. This article systematically reviews research progress on ionizing radiation, ferroptosis, age-related cataracts, and radiation-induced cataracts. It proposes the "ferroptosis hypothesis" for the pathogenesis of radiation-induced cataracts. Through ionization and oxidative stress effects, ionizing radiation leads to elevated free iron levels and exacerbated lipid peroxidation in lens cells, activating the ferroptosis pathway and resulting in lens opacity. The involvement of ferroptosis in the development of age-related cataracts suggests that it may also be an important pathogenic mechanism of radiation-induced cataracts. Targeting the ferroptosis pathway may be a novel strategy for preventing and treating radiation-induced cataracts. Furthermore, developing new ferroptosis-specific inhibitors with improved targeting and pharmacokinetic properties is also an essential direction for research on preventing and treating radiation-induced cataracts. The study of ferroptosis provides new insights into the mechanism and management of radiation-induced cataracts, potentially transforming radiation-induced cataracts from "inevitable" to "preventable and treatable."
Collapse
Affiliation(s)
| | | | | | - Xiangming Xue
- Division of Radiology and Environmental Medicine, China Institute for Radiation Protection, Taiyuan, China
| | - Jingming Zhan
- Division of Radiology and Environmental Medicine, China Institute for Radiation Protection, Taiyuan, China
| |
Collapse
|
14
|
Cvekl A, Vijg J. Aging of the eye: Lessons from cataracts and age-related macular degeneration. Ageing Res Rev 2024; 99:102407. [PMID: 38977082 DOI: 10.1016/j.arr.2024.102407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/18/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024]
Abstract
Aging is the greatest risk factor for chronic human diseases, including many eye diseases. Geroscience aims to understand the effects of the aging process on these diseases, including the genetic, molecular, and cellular mechanisms that underlie the increased risk of disease over the lifetime. Understanding of the aging eye increases general knowledge of the cellular physiology impacted by aging processes at various biological extremes. Two major diseases, age-related cataract and age-related macular degeneration (AMD) are caused by dysfunction of the lens and retina, respectively. Lens transparency and light refraction are mediated by lens fiber cells lacking nuclei and other organelles, which provides a unique opportunity to study a single aging hallmark, i.e., loss of proteostasis, within an environment of limited metabolism. In AMD, local dysfunction of the photoreceptors/retinal pigmented epithelium/Bruch's membrane/choriocapillaris complex in the macula leads to the loss of photoreceptors and eventually loss of central vision, and is driven by nearly all the hallmarks of aging and shares features with Alzheimer's disease, Parkinson's disease, cardiovascular disease, and diabetes. The aging eye can function as a model for studying basic mechanisms of aging and, vice versa, well-defined hallmarks of aging can be used as tools to understand age-related eye disease.
Collapse
Affiliation(s)
- Ales Cvekl
- Departments of Genetics and Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Jan Vijg
- Departments of Genetics and Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
15
|
Yang Y, Lin Y, Han Z, Wang B, Zheng W, Wei L. Ferroptosis: a novel mechanism of cell death in ophthalmic conditions. Front Immunol 2024; 15:1440309. [PMID: 38994366 PMCID: PMC11236620 DOI: 10.3389/fimmu.2024.1440309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/14/2024] [Indexed: 07/13/2024] Open
Abstract
Ferroptosis, a new type of programmed cell death proposed in recent years, is characterized mainly by reactive oxygen species and iron-mediated lipid peroxidation and differs from programmed cell death, such as apoptosis, necrosis, and autophagy. Ferroptosis is associated with a variety of physiological and pathophysiological processes. Recent studies have shown that ferroptosis can aggravate or reduce the occurrence and development of diseases by targeting metabolic pathways and signaling pathways in tumors, ischemic organ damage, and other degenerative diseases related to lipid peroxidation. Increasing evidence suggests that ferroptosis is closely linked to the onset and progression of various ophthalmic conditions, including corneal injury, glaucoma, age-related macular degeneration, diabetic retinopathy, retinal detachment, and retinoblastoma. Our review of the current research on ferroptosis in ophthalmic diseases reveals significant advancements in our understanding of the pathogenesis, aetiology, and treatment of these conditions.
Collapse
Affiliation(s)
- Yaqi Yang
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yumeng Lin
- Naniing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zhongyu Han
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
- Naniing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Bo Wang
- Ophthalmology Department, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Wei Zheng
- Ophthalmology Department, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Lijuan Wei
- Ophthalmology Department, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| |
Collapse
|
16
|
Li R, Yan X, Xiao C, Wang T, Li X, Hu Z, Liang J, Zhang J, Cai J, Sui X, Liu Q, Wu M, Xiao J, Chen H, Liu Y, Jiang C, Lv G, Chen G, Zhang Y, Yao J, Zheng J, Yang Y. FTO deficiency in older livers exacerbates ferroptosis during ischaemia/reperfusion injury by upregulating ACSL4 and TFRC. Nat Commun 2024; 15:4760. [PMID: 38834654 PMCID: PMC11150474 DOI: 10.1038/s41467-024-49202-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 05/24/2024] [Indexed: 06/06/2024] Open
Abstract
Older livers are more prone to hepatic ischaemia/reperfusion injury (HIRI), which severely limits their utilization in liver transplantation. The potential mechanism remains unclear. Here, we demonstrate older livers exhibit increased ferroptosis during HIRI. Inhibiting ferroptosis significantly attenuates older HIRI phenotypes. Mass spectrometry reveals that fat mass and obesity-associated gene (FTO) expression is downregulated in older livers, especially during HIRI. Overexpressing FTO improves older HIRI phenotypes by inhibiting ferroptosis. Mechanistically, acyl-CoA synthetase long chain family 4 (ACSL4) and transferrin receptor protein 1 (TFRC), two key positive contributors to ferroptosis, are FTO targets. For ameliorative effect, FTO requires the inhibition of Acsl4 and Tfrc mRNA stability in a m6A-dependent manner. Furthermore, we demonstrate nicotinamide mononucleotide can upregulate FTO demethylase activity, suppressing ferroptosis and decreasing older HIRI. Collectively, these findings reveal an FTO-ACSL4/TFRC regulatory pathway that contributes to the pathogenesis of older HIRI, providing insight into the clinical translation of strategies related to the demethylase activity of FTO to improve graft function after older donor liver transplantation.
Collapse
Affiliation(s)
- Rong Li
- Guangdong Provincial Key Laboratory of Liver Disease Research, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Xijing Yan
- Guangdong Provincial Key Laboratory of Liver Disease Research, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China
| | - Cuicui Xiao
- Department of Anesthesiology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Tingting Wang
- Guangdong Provincial Key Laboratory of Liver Disease Research, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China
| | - Xuejiao Li
- Guangdong Provincial Key Laboratory of Liver Disease Research, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Zhongying Hu
- Guangdong Provincial Key Laboratory of Liver Disease Research, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Jinliang Liang
- Guangdong Provincial Key Laboratory of Liver Disease Research, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Jiebin Zhang
- Guangdong Provincial Key Laboratory of Liver Disease Research, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China
| | - Jianye Cai
- Guangdong Provincial Key Laboratory of Liver Disease Research, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China
| | - Xin Sui
- Surgical ICU, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Qiuli Liu
- The Biotherapy Center, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Manli Wu
- Department of ultrasound, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Jiaqi Xiao
- Guangdong Provincial Key Laboratory of Liver Disease Research, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China
| | - Haitian Chen
- Guangdong Provincial Key Laboratory of Liver Disease Research, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China
| | - Yasong Liu
- Guangdong Provincial Key Laboratory of Liver Disease Research, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China
| | - Chenhao Jiang
- Guangdong Provincial Key Laboratory of Liver Disease Research, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China
| | - Guo Lv
- Guangdong Provincial Key Laboratory of Liver Disease Research, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Guihua Chen
- Guangdong Provincial Key Laboratory of Liver Disease Research, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China
| | - Yingcai Zhang
- Guangdong Provincial Key Laboratory of Liver Disease Research, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China.
| | - Jia Yao
- Guangdong Provincial Key Laboratory of Liver Disease Research, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China.
| | - Jun Zheng
- Guangdong Provincial Key Laboratory of Liver Disease Research, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China.
| | - Yang Yang
- Guangdong Provincial Key Laboratory of Liver Disease Research, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China.
| |
Collapse
|
17
|
Chen X, Tsvetkov AS, Shen HM, Isidoro C, Ktistakis NT, Linkermann A, Koopman WJ, Simon HU, Galluzzi L, Luo S, Xu D, Gu W, Peulen O, Cai Q, Rubinsztein DC, Chi JT, Zhang DD, Li C, Toyokuni S, Liu J, Roh JL, Dai E, Juhasz G, Liu W, Zhang J, Yang M, Liu J, Zhu LQ, Zou W, Piacentini M, Ding WX, Yue Z, Xie Y, Petersen M, Gewirtz DA, Mandell MA, Chu CT, Sinha D, Eftekharpour E, Zhivotovsky B, Besteiro S, Gabrilovich DI, Kim DH, Kagan VE, Bayir H, Chen GC, Ayton S, Lünemann JD, Komatsu M, Krautwald S, Loos B, Baehrecke EH, Wang J, Lane JD, Sadoshima J, Yang WS, Gao M, Münz C, Thumm M, Kampmann M, Yu D, Lipinski MM, Jones JW, Jiang X, Zeh HJ, Kang R, Klionsky DJ, Kroemer G, Tang D. International consensus guidelines for the definition, detection, and interpretation of autophagy-dependent ferroptosis. Autophagy 2024; 20:1213-1246. [PMID: 38442890 PMCID: PMC11210914 DOI: 10.1080/15548627.2024.2319901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/29/2023] [Accepted: 10/19/2023] [Indexed: 03/07/2024] Open
Abstract
Macroautophagy/autophagy is a complex degradation process with a dual role in cell death that is influenced by the cell types that are involved and the stressors they are exposed to. Ferroptosis is an iron-dependent oxidative form of cell death characterized by unrestricted lipid peroxidation in the context of heterogeneous and plastic mechanisms. Recent studies have shed light on the involvement of specific types of autophagy (e.g. ferritinophagy, lipophagy, and clockophagy) in initiating or executing ferroptotic cell death through the selective degradation of anti-injury proteins or organelles. Conversely, other forms of selective autophagy (e.g. reticulophagy and lysophagy) enhance the cellular defense against ferroptotic damage. Dysregulated autophagy-dependent ferroptosis has implications for a diverse range of pathological conditions. This review aims to present an updated definition of autophagy-dependent ferroptosis, discuss influential substrates and receptors, outline experimental methods, and propose guidelines for interpreting the results.Abbreviation: 3-MA:3-methyladenine; 4HNE: 4-hydroxynonenal; ACD: accidentalcell death; ADF: autophagy-dependentferroptosis; ARE: antioxidant response element; BH2:dihydrobiopterin; BH4: tetrahydrobiopterin; BMDMs: bonemarrow-derived macrophages; CMA: chaperone-mediated autophagy; CQ:chloroquine; DAMPs: danger/damage-associated molecular patterns; EMT,epithelial-mesenchymal transition; EPR: electronparamagnetic resonance; ER, endoplasmic reticulum; FRET: Försterresonance energy transfer; GFP: green fluorescent protein;GSH: glutathione;IF: immunofluorescence; IHC: immunohistochemistry; IOP, intraocularpressure; IRI: ischemia-reperfusion injury; LAA: linoleamide alkyne;MDA: malondialdehyde; PGSK: Phen Green™ SK;RCD: regulatedcell death; PUFAs: polyunsaturated fatty acids; RFP: red fluorescentprotein;ROS: reactive oxygen species; TBA: thiobarbituricacid; TBARS: thiobarbituric acid reactive substances; TEM:transmission electron microscopy.
Collapse
Affiliation(s)
- Xin Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Andrey S. Tsvetkov
- Department of Neurology, The University of Texas McGovern Medical School at Houston, Houston, TX, USA
| | - Han-Ming Shen
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Macau, China
| | - Ciro Isidoro
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | | | - Andreas Linkermann
- Division of Nephrology, Department of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Germany
- Division of Nephrology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Werner J.H. Koopman
- Department of Pediatrics, Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland
- Institute of Biochemistry, Brandenburg Medical School, Neuruppin, Germany
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA
| | - Shouqing Luo
- Peninsula Medical School, University of Plymouth, Plymouth, UK
| | - Daqian Xu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Wei Gu
- Institute for Cancer Genetics, and Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Olivier Peulen
- Metastasis Research Laboratory, GIGA Cancer-University of Liège, Liège, Belgium
| | - Qian Cai
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - David C. Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge, UK
| | - Jen-Tsan Chi
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Donna D. Zhang
- Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, AZ, USA
| | - Changfeng Li
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Shinya Toyokuni
- Department of Pathology and Biological Response, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Center for Low-temperature Plasma Sciences, Nagoya University, Nagoya, Japan
| | - Jinbao Liu
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jong-Lyel Roh
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Enyong Dai
- The Second Department of Hematology and Oncology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Gabor Juhasz
- Biological Research Center, Institute of Genetics, Szeged, Hungary
- Department of Anatomy, Cell and Developmental Biology, Eotvos Lorand University, Budapest, Hungary
| | - Wei Liu
- Department of Orthopedics, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Jianhua Zhang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Minghua Yang
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Pediatric Cancer, Changsha, China
| | - Jiao Liu
- DAMP Laboratory, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ling-Qiang Zhu
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weiping Zou
- Departments of Surgery and Pathology, University of Michigan Medical School, Ann Arbor, USA
| | - Mauro Piacentini
- Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
- National Institute for Infectious Diseases IRCCS “Lazzaro Spallanzani”, Rome, Italy
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS, USA
| | - Zhenyu Yue
- Department of Neurology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yangchun Xie
- Department of Oncology, Central South University, Changsha, Hunan, China
| | - Morten Petersen
- Functional genomics, Department of Biology, Copenhagen University, Denmark
| | - David A. Gewirtz
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Massey Cancer Center, Richmond, VA, USA
| | - Michael A. Mandell
- Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, USA
| | - Charleen T. Chu
- Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Debasish Sinha
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA; Wilmer Eye lnstitute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Eftekhar Eftekharpour
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer, Villejuif, France; Gustave Roussy Cancer, Villejuif, France
| | - Boris Zhivotovsky
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden, Europe
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
- Engelhardt Institute of Molecular Biology, Moscow, Russia
| | - Sébastien Besteiro
- LPHI, University Montpellier, CNRS, Montpellier, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | | | - Do-Hyung Kim
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Valerian E. Kagan
- Department of Environmental Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hülya Bayir
- Department of Pediatrics, Columbia University, New York, USA
| | - Guang-Chao Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Scott Ayton
- Florey Institute, University of Melbourne, Parkville, Australia
| | - Jan D. Lünemann
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Masaaki Komatsu
- Department of Physiology, Juntendo University School of Medicine, Bunkyo-ku Tokyo, Japan
| | - Stefan Krautwald
- Department of Nephrology and Hypertension, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Ben Loos
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Eric H. Baehrecke
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jiayi Wang
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Thoracic Oncology Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Medical Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jon D. Lane
- School of Biochemistry, University of Bristol, Bristol, UK
| | - Junichi Sadoshima
- Rutgers New Jersey Medical School, Department of Cell Biology and Molecular Medicine, Newark, USA
| | - Wan Seok Yang
- Department of Biological Sciences, St. John’s University, New York City, NY, USA
| | - Minghui Gao
- The HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Christian Münz
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Michael Thumm
- Department of Cellular Biochemistry, University Medical Center Goettingen, Goettingen, Germany
| | - Martin Kampmann
- Department of Biochemistry & Biophysics, University of California, San Francisco, USA
- Institute for Neurodegenerative Diseases, University of California, San Francisco, USA
| | - Di Yu
- Faculty of Medicine, Frazer Institute, University of Queensland, Brisbane, Australia
- Faculty of Medicine, Ian Frazer Centre for Children’s Immunotherapy Research, Child Health Research Centre, University of Queensland, Brisbane, Australia
| | - Marta M. Lipinski
- Department of Anesthesiology & Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jace W. Jones
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, USA
| | - Xuejun Jiang
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Herbert J. Zeh
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Daniel J. Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer, Villejuif, France; Gustave Roussy Cancer, Villejuif, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
18
|
Wei Z, Hao C, Radeen KR, Srinivasagan R, Chen JK, Sharma S, McGee-Lawrence ME, Hamrick MW, Monnier VM, Fan X. Prevention of age-related truncation of γ-glutamylcysteine ligase catalytic subunit (GCLC) delays cataract formation. SCIENCE ADVANCES 2024; 10:eadl1088. [PMID: 38669339 PMCID: PMC11051666 DOI: 10.1126/sciadv.adl1088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 03/22/2024] [Indexed: 04/28/2024]
Abstract
A sharp drop in lenticular glutathione (GSH) plays a pivotal role in age-related cataract (ARC) formation. Despite recognizing GSH's importance in lens defense for decades, its decline with age remains puzzling. Our recent study revealed an age-related truncation affecting the essential GSH biosynthesis enzyme, the γ-glutamylcysteine ligase catalytic subunit (GCLC), at aspartate residue 499. Intriguingly, these truncated GCLC fragments compete with full-length GCLC in forming a heterocomplex with the modifier subunit (GCLM) but exhibit markedly reduced enzymatic activity. Crucially, using an aspartate-to-glutamate mutation knock-in (D499E-KI) mouse model that blocks GCLC truncation, we observed a notable delay in ARC formation compared to WT mice: Nearly 50% of D499E-KI mice remained cataract-free versus ~20% of the WT mice at their age of 20 months. Our findings concerning age-related GCLC truncation might be the key to understanding the profound reduction in lens GSH with age. By halting GCLC truncation, we can rejuvenate lens GSH levels and considerably postpone cataract onset.
Collapse
Affiliation(s)
- Zongbo Wei
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Caili Hao
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Kazi Rafsan Radeen
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Ramkumar Srinivasagan
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jian-Kang Chen
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Shruti Sharma
- Department of Ophthalmology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Meghan E. McGee-Lawrence
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Mark W. Hamrick
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Vincent M. Monnier
- Department of Pathology and Biochemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Xingjun Fan
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
19
|
Gao JF, Dong YY, Jin X, Dai LJ, Wang JR, Zhang H. Identification and Verification of Ferroptosis-Related Genes in Keratoconus Using Bioinformatics Analysis. J Inflamm Res 2024; 17:2383-2397. [PMID: 38660574 PMCID: PMC11041983 DOI: 10.2147/jir.s455337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 04/10/2024] [Indexed: 04/26/2024] Open
Abstract
Objective Keratoconus is a commonly progressive and blinding corneal disorder. Iron metabolism and oxidative stress play crucial roles in both keratoconus and ferroptosis. However, the association between keratoconus and ferroptosis is currently unclear. This study aimed to analyze and verify the role of ferroptosis-related genes (FRGs) in the pathogenesis of keratoconus through bioinformatics. Methods We first obtained keratoconus-related datasets and FRGs. Then, the differentially expressed FRGs (DE-FRGs) associated with keratoconus were screened through analysis, followed by analysis of their biological functions. Subsequently, the LASSO and SVM-RFE algorithms were used to screen for diagnostic biomarkers. GSEA was performed to explore the potential functions of the marker genes. Finally, the associations between these biomarkers and immune cells were analyzed. qRT‒PCR was used to detect the expression of these biomarkers in corneal tissues. Results A total of 39 DE-FRGs were screened, and functional enrichment analysis revealed that the DE-FRGs were closely related to apoptosis, oxidative stress, and the immune response. Then, using multiple algorithms, 6 diagnostic biomarkers were selected, and the ROC curve was used to verify their risk prediction ability. In addition, based on CIBERSORT analysis, alterations in the immune microenvironment of keratoconus patients might be associated with H19, GCH1, CHAC1, and CDKN1A. Finally, qRT‒PCR confirmed that the expression of H19 and CHAC1 was elevated in the keratoconus group. Conclusion This study identified 6 DE-FRGs, 4 of which were associated with immune infiltrating cells, and established a diagnostic model with predictive value for keratoconus.
Collapse
Affiliation(s)
- Jing-Fan Gao
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, People’s Republic of China
| | - Yue-Yan Dong
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, People’s Republic of China
| | - Xin Jin
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, People’s Republic of China
| | - Li-Jun Dai
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, People’s Republic of China
| | - Jing-Rao Wang
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, People’s Republic of China
| | - Hong Zhang
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, People’s Republic of China
| |
Collapse
|
20
|
Fan C, Wang C, Wang Y, Jiang J. Transcriptome exploration of ferroptosis-related genes in TGFβ- induced lens epithelial to mesenchymal transition during posterior capsular opacification development. BMC Genomics 2024; 25:352. [PMID: 38594623 PMCID: PMC11003017 DOI: 10.1186/s12864-024-10244-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/21/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND Posterior capsular opacification (PCO) is the main reason affecting the long-term postoperative result of cataract patient, and it is well accepted that fibrotic PCO is driven by transforming growth factor beta (TGFβ) signaling. Ferroptosis, closely related to various ocular diseases, but has not been explored in PCO. METHODS RNA sequencing (RNA-seq) was performed on both TGF-β2 treated and untreated primary lens epithelial cells (pLECs). Differentially expressed genes (DEGs) associated with ferroptosis were analyzed using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) to investigate their biological function. Additionally, protein-to-protein interactions among selected ferroptosis-related genes by PPI network and the top 10 genes with the highest score (MCC algorithm) were selected as the hub genes. The top 20 genes with significant fold change values were validated using quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS Our analysis revealed 1253 DEGs between TGF-β2 treated and untreated pLECs, uncovering 38 ferroptosis-related genes between two groups. Among these 38 ferroptosis-related genes,the most prominent GO enrichment analysis process involved in the response to oxidative stress (BPs), apical part of cell (CCs),antioxidant activity (MFs). KEGG were mainly concentrated in fluid shear stress and atherosclerosis, IL-17 and TNF signaling pathways, and validation of top 20 genes with significant fold change value were consistent with RNA-seq. CONCLUSIONS Our RNA-Seq data identified 38 ferroptosis-related genes in TGF-β2 treated and untreated pLECs, which is the first observation of ferroptosis related genes in primary human lens epithelial cells under TGF-β2 stimulation.
Collapse
Affiliation(s)
- Cong Fan
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Chao Wang
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yan Wang
- Department of Biological Sciences, University of Delaware, Newark, USA
| | - Jian Jiang
- Eye Center of Xiangya Hospital, Central South University, Changsha, China.
- Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
21
|
Hall SA, Lesniewski LA. Targeting vascular senescence in cardiovascular disease with aging. THE JOURNAL OF CARDIOVASCULAR AGING 2024; 4:16. [PMID: 39119148 PMCID: PMC11309369 DOI: 10.20517/jca.2023.45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Aging is a major risk factor for atherosclerosis and cardiovascular disease (CVD). Two major age-associated arterial phenotypes, endothelial dysfunction and large elastic arterial stiffness, are autonomous predictors of future CVD diagnosis and contribute to the progression of CVD in older adults. Senescent cells lose the capacity to proliferate but remain metabolically active and secrete inflammatory factors termed senescence-associated secretory phenotype (SASP), leading to an increase in inflammation and oxidative stress. Accumulation of senescent cells is linked with the progression of age-related diseases and has been known to play a role in cardiovascular disease. In this brief review, we describe the characteristics and mechanisms of senescent cell accumulation and how senescent cells promote endothelial dysfunction and arterial stiffness. We focus on a range of novel therapeutic strategies aimed at reducing the burden of endothelial dysfunction leading to atherosclerosis through targeting senescent cells. Studies have begun to investigate a specific class of drugs that are able to selectively eliminate senescent cells, termed senolytics, which have shown great promise in reversing the aging phenotype and ameliorating pathologies in age-related disorders, creating a new opportunity for aging research. Generating therapies targeting the elimination of senescent cells would improve health span and increase longevity, making senolytics a promising therapy for cardiovascular diseases.
Collapse
Affiliation(s)
- Shelby A Hall
- Department of Nutrition and Integrated Physiology, University of Utah, Salt Lake City, UT 84112, USA
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Lisa A Lesniewski
- Department of Nutrition and Integrated Physiology, University of Utah, Salt Lake City, UT 84112, USA
- Internal Medicine, University of Utah, Salt Lake City, UT 84112, USA
- Geriatric Research Education and Clinical Centers, Veterans Affairs Medical Center, Salt Lake City, UT 84148, USA
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
22
|
Yuan M, He Q, Xiang W, Deng Y, Lin S, Zhang R. Natural compounds efficacy in Ophthalmic Diseases: A new twist impacting ferroptosis. Biomed Pharmacother 2024; 172:116230. [PMID: 38350366 DOI: 10.1016/j.biopha.2024.116230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/18/2024] [Accepted: 01/29/2024] [Indexed: 02/15/2024] Open
Abstract
Ferroptosis, a distinct form of cell death, is characterized by the iron-mediated oxidation of lipids and is finely controlled by multiple cellular metabolic pathways. These pathways encompass redox balance, iron regulation, mitochondrial function, as well as amino acid, lipid, and sugar metabolism. Additionally, various disease-related signaling pathways also play a role in the regulation of ferroptosis. In recent years, with the introduction of the concept of ferroptosis and the deepening of research on its mechanism, ferroptosis is closely related to various biological conditions of eye diseases, including eye organ development, aging, immunity, and cancer. This article reviews the development of the concept of ferroptosis, the mechanism of ferroptosis, and its latest research progress in ophthalmic diseases and reviews the research on ferroptosis in ocular diseases within the framework of metabolism, active oxygen biology, and iron biology. Key regulators and mechanisms of ferroptosis in ocular diseases introduce important concepts and major open questions in the field of ferroptosis and related natural compounds. It is hoped that in future research, further breakthroughs will be made in the regulation mechanism of ferroptosis and the use of ferroptosis to promote the treatment of eye diseases. At the same time, natural compounds may be the direction of new drug development for the potential treatment of ferroptosis in the future. Open up a new way for clinical ophthalmologists to research and prevent diseases.
Collapse
Affiliation(s)
- Mengxia Yuan
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, China.
| | - Qi He
- People's Hospital of Ningxiang City, Ningxiang, China
| | - Wang Xiang
- The First People's Hospital of Changde City, Changde, China
| | - Ying Deng
- People's Hospital of Ningxiang City, Ningxiang, China
| | - Shibin Lin
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, China
| | - Riping Zhang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, China.
| |
Collapse
|
23
|
Shu X, Liu Y, He F, Gong Y, Li J. A bibliometric and visualized analysis of the pathogenesis of cataracts from 1999 to 2023. Heliyon 2024; 10:e26044. [PMID: 38390089 PMCID: PMC10881887 DOI: 10.1016/j.heliyon.2024.e26044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024] Open
Abstract
Research on the pathogenesis of cataracts is ongoing and the number of publications on this topic is increasing annually. This study offers an overview of the research status, popular topics, and scholarly tendencies in the field of cataract pathogenesis over recent decades,which helps to guide future research directions, and optimize resource allocation. In the present study, we performed a bibliometric analysis of cataract pathogenesis. Publications from January 1, 1999, to December 20, 2023, were collected from the Web of Science Core Collection (WoSCC), and the extracted data were quantified and analyzed. We analyzed and presented the data using Microsoft Excel, VOSviewer, CiteSpace, and Python. In all, 4006 articles were evaluated based on various characteristics, including publication year, authors, countries, institutions, journals, citations, and keywords. This study utilized VOSviewer to conduct visualized analysis, including co-authorship, co-citation, co-occurrence, and network visualization. The CiteSpace software was used to identify keywords with significant bursts of activity. The number of annual global publications climbed from 76 to 277 between 1999 and 2023, a 264.47% rise. Experimental Eye Research published the most manuscripts (178 publications), whereas Investigative Ophthalmology & Visual Science received the most citations (6675 citations). The most influential and productive country, institution, and author were the United States (1244 publications, 54,456 citations), University of California system (136 publications, 5401 citations), and Yao Ke (49 publications, 838 citations), respectively. The top 100 ranked keywords are divided into four clusters through co-occurrence analysis: (1) secondary cataracts, (2) oxidative stress, (3) gene mutations and protein abnormalities, and (4) alteration of biological processes in lens epithelial cells. Further discussions on the four subtopics outline the research topics and trends. In conclusion, the specific mechanism of cataract formation remains a popular topic for future research and should be explored in greater depth.
Collapse
Affiliation(s)
- Xinjie Shu
- Department of Ophthalmology, Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, No. 55, University Town Central Road, Shapingba District, Chongqing, 401331, People's Republic of China
| | - Yingying Liu
- Department of Ophthalmology, Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, No. 55, University Town Central Road, Shapingba District, Chongqing, 401331, People's Republic of China
| | - Fanfan He
- Department of Ophthalmology, Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, No. 55, University Town Central Road, Shapingba District, Chongqing, 401331, People's Republic of China
| | - Yu Gong
- Department of Ophthalmology, Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, No. 55, University Town Central Road, Shapingba District, Chongqing, 401331, People's Republic of China
| | - Jiawen Li
- Department of Ophthalmology, Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, No. 55, University Town Central Road, Shapingba District, Chongqing, 401331, People's Republic of China
| |
Collapse
|
24
|
Takashima M, Yamamura S, Tamiya C, Inami M, Takamura Y, Inatani M, Oki M. Glutamate is effective in decreasing opacity formed in galactose-induced cataract model. Sci Rep 2024; 14:4123. [PMID: 38374148 PMCID: PMC10876653 DOI: 10.1038/s41598-024-54559-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/14/2024] [Indexed: 02/21/2024] Open
Abstract
Although cataract is the leading cause of blindness worldwide, the detailed pathogenesis of cataract remains unclear, and clinically useful drug treatments are still lacking. In this study, we examined the effects of glutamate using an ex vivo model in which rat lens is cultured in a galactose-containing medium to induce opacity formation. After inducing lens opacity formation in galactose medium, glutamate was added, and the opacity decreased when the culture was continued. Next, microarray analysis was performed using samples in which the opacity was reduced by glutamate, and genes whose expression increased with galactose culture and decreased with the addition of glutamate were extracted. Subsequently, STRING analysis was performed on a group of genes that showed variation as a result of quantitative measurement of gene expression by RT-qPCR. The results suggest that apoptosis, oxidative stress, endoplasmic reticulum (ER) stress, cell proliferation, epithelial-mesenchymal transition (EMT), cytoskeleton, and histones are involved in the formation and reduction of opacity. Therefore, glutamate may reduce opacity by inhibiting oxidative stress and its downstream functions, and by regulating the cytoskeleton and cell proliferation.
Collapse
Affiliation(s)
- Masaru Takashima
- Department of Industrial Creation Engineering, Graduate School of Engineering, University of Fukui, Fukui, Japan
| | - Shunki Yamamura
- Department of Industrial Creation Engineering, Graduate School of Engineering, University of Fukui, Fukui, Japan
| | - Chie Tamiya
- Department of Industrial Creation Engineering, Graduate School of Engineering, University of Fukui, Fukui, Japan
| | - Mayumi Inami
- Technical Division, School of Engineering, University of Fukui, Fukui, Japan
| | - Yoshihiro Takamura
- Department of Ophthalmology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Masaru Inatani
- Department of Ophthalmology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Masaya Oki
- Department of Industrial Creation Engineering, Graduate School of Engineering, University of Fukui, Fukui, Japan.
- Life Science Innovation Center, University of Fukui, Fukui, Japan.
| |
Collapse
|
25
|
Wang L, Liu J, Ma D, Zhi X, Li L, Li S, Li W, Zhao J, Qin Y. Glycine recalibrates iron homeostasis of lens epithelial cells by blocking lysosome-dependent ferritin degradation. Free Radic Biol Med 2024; 210:258-270. [PMID: 38042221 DOI: 10.1016/j.freeradbiomed.2023.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 12/04/2023]
Abstract
One of the major pathological processes in cataracts has been identified as ferroptosis. However, studies on the iron metabolism mechanism in lens epithelial cells (LECs) and the methods of effectively alleviating ferroptosis in LECs are scarce. Along these lines, we found that in the ultraviolet radiation b (UVB) induced cataract model in vitro and in vivo, the ferritin of LECs is over-degraded by lysosomes, resulting in the occurrence of iron homeostasis disorder. Glycine can affect the ferritin degradation through the proton-coupled amino acid transporter (PAT1) on the lysosome membrane, further upregulating the content of nuclear factor erythrocyte 2 related factor 2 (Nrf2) to reduce the damage of LECs from two aspects of regulating iron homeostasis and alleviating oxidative stress. By co-staining, we further demonstrate that there is a more sensitive poly-(rC)-binding protein 2 (PCBP2) transportation of iron ions in LECs after UVB irradiation. Additionally, this study illustrated the increased expression of nuclear receptor coactivator 4 (NCOA4) in NRF2-KO mice, indicating that Nrf2 may affect ferritin degradation by decreasing the expression of NCOA4. Collectively, glycine can effectively regulate cellular iron homeostasis by synergistically affecting the lysosome-dependent ferritin degradation and PCBP2-mediated ferrous ion transportation, ultimately delaying the development of cataracts.
Collapse
Affiliation(s)
- Ludi Wang
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Eye Hospital of China Medical University, Key Lens Research Laboratory of Liaoning Province, Shenyang City, Liaoning Province, 110005, PR China
| | - Jinxia Liu
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Eye Hospital of China Medical University, Key Lens Research Laboratory of Liaoning Province, Shenyang City, Liaoning Province, 110005, PR China
| | - Dongyue Ma
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Eye Hospital of China Medical University, Key Lens Research Laboratory of Liaoning Province, Shenyang City, Liaoning Province, 110005, PR China
| | - Xinyu Zhi
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Eye Hospital of China Medical University, Key Lens Research Laboratory of Liaoning Province, Shenyang City, Liaoning Province, 110005, PR China
| | - Luo Li
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Eye Hospital of China Medical University, Key Lens Research Laboratory of Liaoning Province, Shenyang City, Liaoning Province, 110005, PR China
| | - Shanjiao Li
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Eye Hospital of China Medical University, Key Lens Research Laboratory of Liaoning Province, Shenyang City, Liaoning Province, 110005, PR China
| | - Weijia Li
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Eye Hospital of China Medical University, Key Lens Research Laboratory of Liaoning Province, Shenyang City, Liaoning Province, 110005, PR China
| | - Jiangyue Zhao
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Eye Hospital of China Medical University, Key Lens Research Laboratory of Liaoning Province, Shenyang City, Liaoning Province, 110005, PR China.
| | - Yu Qin
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Eye Hospital of China Medical University, Key Lens Research Laboratory of Liaoning Province, Shenyang City, Liaoning Province, 110005, PR China.
| |
Collapse
|
26
|
Wang Y, Li P, Wang C, Bao S, Wang S, Zhang G, Zou X, Wu J, Guan Y, Ji M, Guan H. Lens epithelium cell ferroptosis mediated by m 6A-lncRNA and GPX4 expression in lens tissue of age-related cataract. BMC Ophthalmol 2023; 23:514. [PMID: 38110879 PMCID: PMC10726616 DOI: 10.1186/s12886-023-03205-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 11/06/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND In the present study, we explored the role of N6-methyladenosine (m6A) modification of long non-coding RNAs (lncRNAs) and its association with ferroptosis in lens epithelium cells (LECs) of age-related cataract (ARC). METHODS Through m6A RNA immunoprecipitation sequencing (m6A-RIP-seq) and RNA sequencing (RNA-seq), we identified m6A mediated and differentially expressed lncRNAs (dme-lncRNAs) in ARC patients. Based on bioinformatics analysis, we selected critical dme-lncRNAs and pathways associated with ARC formation to reveal their potential molecular mechanisms. The downregulation of glutathione peroxidase 4 (GPX4), a key component of ferroptosis, was confirmed by real-time RT-PCR (RT-qPCR) and Western blotting in age-related cortical cataract (ARCC) samples. Transmission electron microscopy was used to assess the change in mitochondrial in LECs. RESULTS The analysis revealed a total of 11,193 m6A peaks within lncRNAs, among which 7043 were enriched and 4150 were depleted. Among those, lncRNA ENST00000586817(upstream of the GPX4 gene) was not only significantly upregulated in the LECs of ARCC but also potentially augmented the expression of GPX4 through a cis mechanism. The expression of m6A-modified lncRNA (ENST00000586817) was correlated with that of GPX4 and was downregulated in ARC patients. The TEM results indicated significant mitochondrial changes in ARCC samples. GPX4 downregulation enhanced LEC ferroptosis and decreased viability via RSL3 in SRA01/04 cells. CONCLUSIONS Our results provide insight into the potential function of m6A-modified lncRNAs. M6A-modified lncRNA ENST00000586817 might regulate the expression of GPX4 by a cis mechanism and be implicated in ferroptosis in ARCs.
Collapse
Affiliation(s)
- Yong Wang
- Eye Institute, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu, China
- Nantong University, Nantong, Jiangsu, China
- The Second Affiliated Hospital of Nantong University and First People's Hospital of Nantong City, Nantong, China
| | - Pengfei Li
- Eye Institute, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu, China
- Nantong University, Nantong, Jiangsu, China
| | - Congyu Wang
- Eye Institute, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu, China
| | - Sijie Bao
- Eye Institute, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu, China
| | - Siwen Wang
- Eye Institute, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu, China
| | - Guowei Zhang
- Eye Institute, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu, China
| | - Xi Zou
- Department of Ophthalmology, The Third People's Hospital of Changzhou, Jiangsu, China
| | - Jian Wu
- Eye Institute, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu, China
| | - Yu Guan
- Eye Institute, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu, China
| | - Min Ji
- Eye Institute, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu, China.
| | - Huaijin Guan
- Eye Institute, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu, China.
| |
Collapse
|
27
|
Zhang D, Jia X, Lin D, Ma J. Melatonin and ferroptosis: Mechanisms and therapeutic implications. Biochem Pharmacol 2023; 218:115909. [PMID: 37931663 DOI: 10.1016/j.bcp.2023.115909] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/03/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023]
Abstract
Ferroptosis, a regulated form of cell death, is characterized by iron-dependent lipid peroxidation leading to oxidative damage to cell membranes. Cell sensitivity to ferroptosis is influenced by factors such as iron overload, lipid metabolism, and the regulation of the antioxidant system. Melatonin, with its demonstrated capacity to chelate iron, modulate iron metabolism proteins, regulate lipid peroxidation, and regulate antioxidant systems, has promise as a potential therapeutic agent in mediating ferroptosis. The availability of approved drugs targeting ferroptosis is limited; therefore, melatonin is a candidate for broad application due to its safety and efficacy in attenuating ferroptosis in noncancerous diseases. Melatonin has been demonstrated to attenuate ferroptosis in cellular and animal models of noncancerous diseases, showcasing effectiveness in organs such as the heart, brain, lung, liver, kidney, and bone. This review outlines the molecular mechanisms of ferroptosis, investigates melatonin's potential effects on ferroptosis, and discusses melatonin's therapeutic potential as a promising intervention against diseases associated with ferroptosis. Through this discourse, we aim to lay a strong foundation for developing melatonin as a therapeutic strategy to modulate ferroptosis in a variety of disease contexts.
Collapse
Affiliation(s)
- Dongni Zhang
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Xiaotong Jia
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| | - Duomao Lin
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| | - Jun Ma
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| |
Collapse
|
28
|
Kong D, Liu Y, Li L, Wang H, Li K, Zheng G. Astaxanthin ameliorates oxidative stress in lens epithelial cells by regulating GPX4 and ferroptosis. Chem Biol Interact 2023; 383:110684. [PMID: 37648051 DOI: 10.1016/j.cbi.2023.110684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/12/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023]
Abstract
Ferroptosis is a form of regulated cell death closely associated with oxidative stress and mitochondrial dysfunction and is characterised by the accumulation of reactive oxygen species (ROS) and lipid species and iron overload. Damage to human lens epithelial cells (LECs) is associated with age-related cataract progression. Astaxanthin (ATX), a carotenoid with natural antioxidant properties, counteracts ferroptosis in the treatment of various degenerative diseases. However, this mechanism has not been reported with respect to cataract treatment. In this study, the differential expression levels of glutathione peroxidase 4 (GPX4) in the lens of young and aged mice were analysed. Continuous ATX supplementation for 8 months upregulated GPX4 expression in the mouse LECs and delayed the progression of ferroptosis. Upon treatment with erastin, ROS and malondialdehyde accumulated and the mitochondrial membrane potential decreased. At the same time, the expressions of GPX4, SLC7A11, and ferritin were suppressed in human LECs. All of these phenomena were partially reversed by ATX and Fer-1, a ferroptosis inhibitor. This study confirmed that the ATX-mediated targeting of GPX4 might alleviate human LECs damage by inhibiting ferroptosis and ameliorating oxidative stress and that this could represent a promising therapeutic approach for age-related cataract.
Collapse
Affiliation(s)
- Deqian Kong
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450000, China
| | - Yue Liu
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450000, China
| | - Li Li
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450000, China
| | - Huajun Wang
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450000, China
| | - Ke Li
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450000, China
| | - Guangying Zheng
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450000, China.
| |
Collapse
|
29
|
Ma DY, Liu JX, Wang LD, Zhi XY, Luo L, Zhao JY, Qin Y. GSK-3β-dependent Nrf2 antioxidant response modulates ferroptosis of lens epithelial cells in age-related cataract. Free Radic Biol Med 2023; 204:161-176. [PMID: 37156294 DOI: 10.1016/j.freeradbiomed.2023.04.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/05/2023] [Accepted: 04/29/2023] [Indexed: 05/10/2023]
Abstract
Oxidative stress-induced lens epithelial cells (LECs) death plays a pivotal role in age-related cataract (ARC) with severe visual impairment, in which ferroptosis is gradually receiving numerous attention resulting from lipid peroxide accumulation and reactive oxygen species (ROS) overproduction. However, the essential pathogenic factors and the targeted medical strategies still remain skeptical and indistinct. In this work, by transmission electron microscopy (TEM) analysis, the major pathological courses in the LECs of ARC patients have been identified as ferroptosis, which was manifested with remarkable mitochondrial alterations, and similar results were found in aged mice (24-month-old). Furthermore, the primary pathological processes in the NaIO3-induced mice and HLE-B3 cell model have also been verified to be ferroptosis with an irreplaceable function of Nrf2, proved by the increased sensitivity to ferroptosis when Nrf2 was blocked in Nrf2-KO mice and si-Nrf2-treated HLE-B3 cells. Importantly, it has been found that an increased expression of GSK-3β was indicated in low-Nrf2-expressed tissues and cells. Subsequently, the contributions of abnormal GSK-3β expression to NaIO3-induced mice and HLE-B3 cell model were further evaluated, inhibition of GSK-3β utilizing SB216763 significantly alleviated LECs ferroptosis with less iron accumulation and ROS generation, as well as reversed expression alterations of ferroptosis markers, including GPX4, SLC7A11, SLC40A1, FTH1 and TfR1, in vitro and in vivo. Collectively, our findings conclude that targeting GSK-3β/Nrf2 balance might be a promising therapeutic strategy to mitigate LECs ferroptosis and thus probably delay the pathogenesis and development of ARC.
Collapse
Affiliation(s)
- Dong-Yue Ma
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Eye Hospital of China Medical University, Key Lens Research Laboratory of Liaoning Province, Shenyang City, Liaoning Province, 110005, PR China
| | - Jin-Xia Liu
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Eye Hospital of China Medical University, Key Lens Research Laboratory of Liaoning Province, Shenyang City, Liaoning Province, 110005, PR China
| | - Lu-di Wang
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Eye Hospital of China Medical University, Key Lens Research Laboratory of Liaoning Province, Shenyang City, Liaoning Province, 110005, PR China
| | - Xin-Yu Zhi
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Eye Hospital of China Medical University, Key Lens Research Laboratory of Liaoning Province, Shenyang City, Liaoning Province, 110005, PR China
| | - Li Luo
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Eye Hospital of China Medical University, Key Lens Research Laboratory of Liaoning Province, Shenyang City, Liaoning Province, 110005, PR China
| | - Jiang-Yue Zhao
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Eye Hospital of China Medical University, Key Lens Research Laboratory of Liaoning Province, Shenyang City, Liaoning Province, 110005, PR China
| | - Yu Qin
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Eye Hospital of China Medical University, Key Lens Research Laboratory of Liaoning Province, Shenyang City, Liaoning Province, 110005, PR China.
| |
Collapse
|
30
|
Xiong X, Wang G, Wang Y, Zhang T, Bao Y, Wang K, Ainiwaer D, Sun Z. Klotho protects against aged myocardial cells by attenuating ferroptosis. Exp Gerontol 2023; 175:112157. [PMID: 36990131 DOI: 10.1016/j.exger.2023.112157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
Klotho (KL) is a renal protein with aging-suppression properties that mediates its regulatory effect during cardiac fibroblast aging. However, to determine whether KL can protect aged myocardial cells by attenuating ferroptosis, this study aimed to investigate the protective effect of KL on aged cells and to explore its potential mechanism. Cell injury of H9C2 cells was induced with D-galactose (D-gal) and treated with KL in vitro. This study demonstrated that D-gal induces aging in H9C2 cells. D-gal treatment increased β-GAL(β-galactosidase) activity, decreased cell viability, enhanced oxidative stress, reduced mitochondrial cristae, and decreased the expression of solute carrier family 7 member 11 (SLC7A11), glutathione peroxidase-4 (GPx4), and P53, which are primary regulators of ferroptosis. The results showed that KL can eliminate D-gal-induced aging in H9C2 cells, likely due to its ability to increase the expression of the ferroptosis-associated proteins SLC7A11 and GPx4. Moreover, pifithrin-α, a P53-specific inhibitor, attenuated the expression of SLC7A11 and GPx4. These results suggest that KL may be involved in D-gal-induced H9C2 cellular aging during ferroptosis, mainly through the P53/SLC7A11/GPx4 signaling pathway.
Collapse
Affiliation(s)
- Xicheng Xiong
- Department of Pathophysiology, College of Basic Medicine, Xinjiang Medical University, Urumqi 830000, China
| | - Gang Wang
- Department of Pathophysiology, College of Basic Medicine, Xinjiang Medical University, Urumqi 830000, China
| | - Yiping Wang
- Department of Pathophysiology, College of Basic Medicine, Xinjiang Medical University, Urumqi 830000, China
| | - Tian Zhang
- Department of Pathophysiology, College of Basic Medicine, Xinjiang Medical University, Urumqi 830000, China
| | - Yali Bao
- Department of Pathophysiology, College of Basic Medicine, Xinjiang Medical University, Urumqi 830000, China
| | - Kun Wang
- Laboratory Animal Centre of Xinjiang Medical University, Urumqi 830000, China
| | - Dina Ainiwaer
- Department of Pathophysiology, College of Basic Medicine, Xinjiang Medical University, Urumqi 830000, China
| | - Zhan Sun
- Department of Pathophysiology, College of Basic Medicine, Xinjiang Medical University, Urumqi 830000, China; Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Xinjiang Medical University, Urumqi 830000, China.
| |
Collapse
|
31
|
Mong MA. Vitamin K and the Visual System-A Narrative Review. Nutrients 2023; 15:nu15081948. [PMID: 37111170 PMCID: PMC10143727 DOI: 10.3390/nu15081948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
Vitamin K occupies a unique and often obscured place among its fellow fat-soluble vitamins. Evidence is mounting, however, that vitamin K (VK) may play an important role in the visual system apart from the hepatic carboxylation of hemostatic-related proteins. However, to our knowledge, no review covering the topic has appeared in the medical literature. Recent studies have confirmed that matrix Gla protein (MGP), a vitamin K-dependent protein (VKDP), is essential for the regulation of intraocular pressure in mice. The PREDIMED (Prevención con Dieta Mediterránea) study, a randomized trial involving 5860 adults at risk for cardiovascular disease, demonstrated a 29% reduction in the risk of cataract surgery in participants with the highest tertile of dietary vitamin K1 (PK) intake compared with those with the lowest tertile. However, the specific requirements of the eye and visual system (EVS) for VK, and what might constitute an optimized VK status, is currently unknown and largely unexplored. It is, therefore, the intention of this narrative review to provide an introduction concerning VK and the visual system, review ocular VK biology, and provide some historical context for recent discoveries. Potential opportunities and gaps in current research efforts will be touched upon in the hope of raising awareness and encouraging continued VK-related investigations in this important and highly specialized sensory system.
Collapse
Affiliation(s)
- Michael A Mong
- Department of Ophthalmology, Veteran Affairs North Texas Health Care Medical Center, Dallas, TX 75216, USA
| |
Collapse
|
32
|
Caro AA, Barrett D, Garcia C, Northington W, Pinkney J, Shuja R, Stovall H. CYP2E1 overexpression protects COS-7 cancer cells against ferroptosis. RESEARCH SQUARE 2023:rs.3.rs-2702878. [PMID: 36993697 PMCID: PMC10055644 DOI: 10.21203/rs.3.rs-2702878/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Ferroptosis is a recently described form of regulated cell death initiated by the iron-mediated one-electron reduction of lipid hydroperoxides (LOOH). Cytochrome P450 2E1 (CYP2E1) induction, a consequence of genetic polymorphisms or/and gene induction by xenobiotics, may promote ferroptosis by contributing to the cellular pool of LOOH. However, CYP2E1 induction also increases the transcription of anti-ferroptotic genes that regulate the activity of glutathione peroxidase 4 (GPX4), the main ferroptosis inhibitor. Based on the above, we hypothesize that the impact of CYP2E1 induction on ferroptosis depends on the balance between pro- and anti-ferroptotic pathways triggered by CYP2E1. To test our hypothesis, ferroptosis was induced with class 2 inducers (RSL-3 or ML-162) in mammalian COS-7 cancer cells that don't express CYP2E1 (Mock cells), and in cells engineered to express human CYP2E1 (WT cells), and the impact on viability, lipid peroxidation and GPX4 was assessed. CYP2E1 overexpression protected COS-7 cancer cells against ferroptosis, evidenced by an increase in the IC50 and a decrease in lipid ROS in WT versus Mock cells after exposure to class 2 inducers. CYP2E1 overexpression produced an 80% increase in the levels of the GPX4 substrate glutathione (GSH). Increasing GSH in Mock cells protected cells against ferroptosis by ML-162. Depleting GSH, or inhibiting Nrf2 in WT cells reverted the protective effect mediated by CYP2E1, causing a decrease in the IC50 and an increase in lipid ROS after exposure to ML-162. These results show that CYP2E1 overexpression protects COS-7 cancer cells against ferroptosis, an effect probably mediated by Nrf2-dependent GSH induction.
Collapse
|
33
|
Xu B, Liu Z, Zhao J, Yu Z. Selenium intake help prevent age-related cataract formation: Evidence from NHANES 2001-2008. Front Nutr 2023; 10:1042893. [PMID: 36776608 PMCID: PMC9912772 DOI: 10.3389/fnut.2023.1042893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 01/09/2023] [Indexed: 01/28/2023] Open
Abstract
Introduction Cataract is one of the leading causes of blindness and visual impairment, about 16 million people around the world. Trace elements play an important role in a variety of the processes in human body. This study aimed to investigate the association between daily dietary intake of trace elements and age-related cataract incidence based on data from the National Health and Nutrition Examination Survey (NHANES) 2001-2008. Methods Iron, zinc, copper, and selenium were conducted in this study among subjects aged 50 years and older for African Americans and 55 and older in US adults. Multivariate logistic regression analysis was used in different models to investigate the association of trace elements intake and cataract. Results After screening, 7,525 subjects were ultimately included in this study. A significant negative association was found between selenium intake and cataract incidence in adjusted models using multivariate logistic regression analysis (model 1: OR = 0.998, 95% CI = 0.997-1.000; model 2: OR = 0.997, 95% CI = 0.995-1.000; and model 3: OR = 0.998, 95% CI = 0.995-1.000). After dividing selenium intake into quintiles, significant negative associations between selenium intake and cataract were observed in the first quintile of model 3, the fourth and fifth quintiles of all models. In subgroup analyses adjusted for age and sex, a significant negative association was observed only in women aged 65-74 years. Discussion Our study points out that maintaining daily dietary selenium intake at higher levels is helpful for cataract prevention, and that increasing daily dietary selenium intake in American women aged 65-74 years may contribute to the prevention of age-related cataract. The intakes of iron, zinc, copper may not be associated with age-related cataract.
Collapse
Affiliation(s)
- Baiwei Xu
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China,Department of Ophthalmology, Eye Hospital of China Medical University, Shenyang, China,Key Lens Research Laboratory of Liaoning Province, Shenyang, China
| | - Zhongwei Liu
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China,Department of Ophthalmology, Eye Hospital of China Medical University, Shenyang, China,Key Lens Research Laboratory of Liaoning Province, Shenyang, China
| | - Jiangyue Zhao
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China,Department of Ophthalmology, Eye Hospital of China Medical University, Shenyang, China,Key Lens Research Laboratory of Liaoning Province, Shenyang, China,*Correspondence: Jiangyue Zhao,
| | - Ziyan Yu
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China,Department of Ophthalmology, Eye Hospital of China Medical University, Shenyang, China,Key Lens Research Laboratory of Liaoning Province, Shenyang, China,Ziyan Yu,
| |
Collapse
|
34
|
Ferroptosis: mechanisms and advances in ocular diseases. Mol Cell Biochem 2023:10.1007/s11010-022-04644-5. [PMID: 36617346 DOI: 10.1007/s11010-022-04644-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 12/14/2022] [Indexed: 01/09/2023]
Abstract
As an essential trace element in the body, iron is critical for the maintenance of organismal metabolism. Excessive iron facilitates reactive oxygen species generation and inflicts damage on cells and tissues. Ferroptosis, a newly identified iron-dependent type of programmed cell death, has been implicated in a broad set of metabolic disorders. Ferroptosis is mainly characterized by excess iron accumulation, elevated lipid peroxides and reactive oxygen species, and reduced levels of glutathione and glutathione peroxidase 4. The vast emerging literature on ferroptosis has shown that numerous diseases, such as cancers, neurodegeneration, and autoimmune diseases, are associated with ferroptosis. Meanwhile, recent studies have confirmed the relationship between ferroptosis and eye diseases including keratopathy, cataract, glaucoma, retinal ischemia-reperfusion injury, age-related macular degeneration, retinitis pigmentosa, diabetic retinopathy, and retinoblastoma, indicating the critical role of ferroptosis in ocular diseases. In this article, we introduce the primary signaling pathways of ferroptosis and review current advances in research on ocular diseases involving iron overload and ferroptosis. Furthermore, several unanswered questions in the area are raised. Addressing these unanswered questions promises to provide new insights into preventing, controlling, and treating not only ocular diseases but also a variety of other diseases in the near future.
Collapse
|
35
|
Chhunchha B, Kubo E, Krueger RR, Singh DP. Hydralazine Revives Cellular and Ocular Lens Health-Span by Ameliorating the Aging and Oxidative-Dependent Loss of the Nrf2-Activated Cellular Stress Response. Antioxidants (Basel) 2023; 12:140. [PMID: 36671002 PMCID: PMC9854670 DOI: 10.3390/antiox12010140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/10/2023] Open
Abstract
A major hallmark of aging-associated diseases is the inability to evoke cellular defense responses. Transcriptional protein Nrf2 (nuclear factor erythroid-derived 2-related factor) plays a pivotal role in the oxidative stress response, cellular homeostasis, and health span. Nrf2's activation has been identified as a therapeutic target to restore antioxidant defense in aging. Here, we demonstrated that FDA-approved drug, hydralazine (Hyd), was a reactivator of the Nrf2/ARE (antioxidant response element) pathway in various ages and types of mouse (m) or human (h) lens epithelial cells (LECs) and mice lenses in-vitro/in-vivo. This led to Hyd-driven abatement of carbonyls, reduced reactive oxygen species (ROS), and reduced 4-HNE/MDA-adducts with cytoprotection, and extended lens healthspan by delaying/preventing lens opacity against aging/oxidative stress. We elucidated that Hyd activated the protective signaling by inducing Nrf2 to traverse from the cytoplasm to the nucleus and potentiated the ARE response by direct interaction of Nrf2 and ARE sequences of the promoter. Loss-of-function study and cotreatment of Hyd and antioxidant, N-acetyl cysteine (NAC) or Peroxiredoxin (Prdx)6, specified that Nrf2/ARE-driven increase in the promoter activity was Hyd-dependent. Our study provides proof-of concept evidence and, thereby, paves the way to repurposing Hyd as a therapeutic agent to delay/prevent aging and oxidative-related disorders.
Collapse
Affiliation(s)
- Bhavana Chhunchha
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Eri Kubo
- Department of Ophthalmology, Kanazawa Medical University, Kanazawa 9200293, Japan
| | - Ronald R. Krueger
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Dhirendra P. Singh
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
36
|
Wei Z, Hao C, Chen JK, Gan L, Fan X. A tamoxifen-inducible Cre knock-in mouse for lens-specific gene manipulation. Exp Eye Res 2023; 226:109306. [PMID: 36372215 PMCID: PMC9839650 DOI: 10.1016/j.exer.2022.109306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022]
Abstract
Mouse models are valuable tools in studying lens biology and biochemistry, and the Cre-loxP system is the most used technology for gene targeting in the lens. However, numerous genes are indispensable in lens development. The conventional knockout method either prevents lens formation or causes simultaneous cataract formation, hindering the studies of their roles in lens structure, growth, metabolism, and cataractogenesis during lens aging. An inducible Cre-loxP mouse line is an excellent way to achieve such a purpose. We established a lens-specific Cre ERT2 knock-in mouse (LCEK), an inducible mouse model for lens-specific gene targeting in a spatiotemporal manner. LCEK mice were created by in-frame infusion of a P2A-CreERT2 at the C-terminus of the last coding exon of the gene alpha A crystallin (Cryaa). LCEK mice express tamoxifen-inducible Cre recombinase uniquely in the lens. Through ROSAmT/mG and two endogenous genes (Gclc and Rbpj) targeting, we found no Cre recombinase leakage in the lens epithelium, but 50-80% leakage was observed in the lens cortex and nucleus. Administration of tamoxifen almost completely abolished target gene expression in both lens epithelium and cortex but only mildly enhanced gene deletion in the lens nucleus. Notably, no overt leakage of Cre activity was detected in developing LCEK lens when bred with mice carrying loxP floxed genes that are essential for lens development. This newly generated LCEK line will be a powerful tool to target genes in the lens for gene functions study in lens aging, posterior capsule opacification (PCO), and other areas requiring precision gene targeting.
Collapse
Affiliation(s)
- Zongbo Wei
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Caili Hao
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Jian-Kang Chen
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Lin Gan
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Xingjun Fan
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, USA.
| |
Collapse
|
37
|
Liao S, Huang M, Liao Y, Yuan C. HMOX1 Promotes Ferroptosis Induced by Erastin in Lens Epithelial Cell through Modulates Fe 2+ Production. Curr Eye Res 2023; 48:25-33. [PMID: 36300537 DOI: 10.1080/02713683.2022.2138450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE Ferroptosis is defined by the iron-dependent cell death caused by the accumulation of lipid peroxidation. As a major intracellular Fe pools, heme could be metabolized into ferrous iron, carbon monoxide, and biliverdin by Heme oxygenase-1 (HMOX1). Aged human lens epithelium was reported to highly susceptible to ferroptosis, the functional molecular involved in this progress is not explored. Here, we have demonstrated the function of HMOX1 in human lens epithelium during ferroptotic cell death. METHODS HMOX1 stably expressed cell line was constructed by lentivirus transfection. HMOX1 knock-out cell line was constructed by Crispr-cas9 technology. Protein expression was detected by western blot. Inverted microscope was applied to record the morphological changes among different treatments. CCK8 assay and colony formation assay were applied to detect the cell proliferation rate. Cell death was detected by PI staining. Lipid Peroxidation was detected by Cell malondialdehyde (MDA) assay. Intracellular Ferrous and Ferric ions were determined using an iron assay kit. RESULTS HMOX1 expression was induced significantly in HLECs under erastin treatment in a time-dependent and dosage-dependent manner. Forced expression of HMOX1 increase the sensitivity of HLECs to erastin treatment. However, knock-out or knock-down of HMOX1 improved the cell viability of HLECs significantly under erastin treatment. Iron liberated from heme by HMOX1 might play pivotal role to improve the sensitivity of HLECs in response to erastin. CONCLUSION HMOX1 is an essential pro-ferroptosis enzyme which increase the susceptibility of human lens epithelium to erastin. Ferrous iron, a byproduct of heme, might accelerate erastin triggered ferrotosis cell death in human lens epithelium cells.
Collapse
Affiliation(s)
- Shengjie Liao
- Department of Basic Medicine, Zhaoqing Medical College, Zhaoqing, China
| | - Mi Huang
- Department of Basic Medicine, Zhaoqing Medical College, Zhaoqing, China
| | - Yanli Liao
- Department of Public Health, Zhaoqing Medical College, Zhaoqing, China
| | - Chao Yuan
- Department of Basic Medicine, Zhaoqing Medical College, Zhaoqing, China
| |
Collapse
|
38
|
Mi Y, Wei C, Sun L, Liu H, Zhang J, Luo J, Yu X, He J, Ge H, Liu P. Melatonin inhibits ferroptosis and delays age-related cataract by regulating SIRT6/p-Nrf2/GPX4 and SIRT6/NCOA4/FTH1 pathways. Biomed Pharmacother 2023; 157:114048. [PMID: 36463827 DOI: 10.1016/j.biopha.2022.114048] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Cataracts are the main cause of reversible blindness worldwide. The ageing of the lens caused by ultraviolet B (UVB) radiation is mostly related to oxidative stress (OS). Little is known about whether OS induced by UVB enhances the sensitivity of lens epithelial cells to ferroptotic stress, which may be a new mechanism leading to age-related cataracts (ARCs). METHODS Ferroptosis was detected by transmission electron microscopy (TEM), iron assay, lipid peroxidation (MDA) assay, real-time PCR, western blotting, and immunofluorescence. Genetic engineering technology was used to investigate the regulatory relationship among Sirtuin 6 (SIRT6), nuclear factor erythroid 2-related factor 2 (Nrf2), nuclear receptor coactivator 4 (NCOA4), glutathione peroxidase 4 (GPX4) and ferritin heavy chain (FTH1). Knockdown and overexpression of SIRT6 locally in vivo in rats were performed to probe the regulatory mechanism of SIRT6 in ferroptosis in ARCs. FINDINGS Here, we observed that UVB can drastically induce ferroptosis in lens epithelial cells in vivo and in vitro. Surprisingly, inhibition of ferroptosis was the direct reason that melatonin rescued B-3, SRA01/04 and HEK-293 T cells survival; the pan-caspase inhibitor Z-Vad-FMK did not significantly reverse the death of UVB-irradiated cells compared with that in the UVB+DMSO group. SIRT6 was an upstream regulator of phosphorylated Nrf2 (p-Nrf2) and NCOA4 in B-3, SRA01/04 and HEK-293 T cells. Melatonin inhibited ferroptosis through the SIRT6/p-Nrf2/GPX4 and SIRT6/COA4/FTH1 pathways to neutralize lipid peroxidation toxicity, which protected cells against ferroptotic stress in vitro and delayed cataract formation caused by UVB exposure in rats. INTERPRETATION Our findings reveal a novel causal role of melatonin in the pathogenesis of ARCs, which raises the possibility of selectively targeting the activation of SIRT6 and ferroptotic resistance as a latent antioxidative therapeutic strategy for ARCs.
Collapse
Affiliation(s)
- Yu Mi
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Harbin 150001, China; Key Laboratory of Ischemia-reperfusion, Harbin Medical University, Ministry of Education, Harbin 150001, China; Experimental Animal Centre, the Second Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Chaoqun Wei
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Harbin 150001, China; Key Laboratory of Ischemia-reperfusion, Harbin Medical University, Ministry of Education, Harbin 150001, China; Experimental Animal Centre, the Second Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Liyao Sun
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Harbin 150001, China
| | - Huirui Liu
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Harbin 150001, China; Key Laboratory of Ischemia-reperfusion, Harbin Medical University, Ministry of Education, Harbin 150001, China; Experimental Animal Centre, the Second Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Jiayue Zhang
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Harbin 150001, China; Key Laboratory of Ischemia-reperfusion, Harbin Medical University, Ministry of Education, Harbin 150001, China; Experimental Animal Centre, the Second Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Jialin Luo
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Harbin 150001, China
| | - Xiaohan Yu
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Harbin 150001, China
| | - Jie He
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Harbin 150001, China
| | - Hongyan Ge
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Harbin 150001, China.
| | - Ping Liu
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Harbin 150001, China.
| |
Collapse
|
39
|
Zhang J, Yu Y, Mekhail MA, Wu H, Green KN. A macrocyclic molecule with multiple antioxidative activities protects the lens from oxidative damage. Front Chem 2022; 10:996604. [PMID: 36385982 PMCID: PMC9650109 DOI: 10.3389/fchem.2022.996604] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/05/2022] [Indexed: 10/25/2023] Open
Abstract
Growing evidence links oxidative stress to the development of a cataract and other diseases of the eye. Treatments for lens-derived diseases are still elusive outside of the standard surgical interventions, which still carry risks today. Therefore, a potential drug molecule OHPy2N2 was explored for the ability to target multiple components of oxidative stress in the lens to prevent cataract formation. Several pathways were identified. Here we show that the OHPy2N2 molecule activates innate catalytic mechanisms in primary lens epithelial cells to prevent damage induced by oxidative stress. This protection was linked to the upregulation of Nuclear factor erythroid-2-related factor 2 and downstream antioxidant enzyme for glutathione-dependent glutaredoxins, based on Western Blot methods. The anti-ferroptotic potential was established by showing that OHPy2N2 increases levels of glutathione peroxidase, decreases lipid peroxidation, and readily binds iron (II) and (III). The bioenergetics pathway, which has been shown to be negatively impacted in many diseases involving oxidative stress, was also enhanced as evidence by increased levels of Adenosine triphosphate product when the lens epithelial cells were co-incubated with OHPy2N2. Lastly, OHPy2N2 was also found to prevent oxidative stress-induced lens opacity in an ex vivo organ culture model. Overall, these results show that there are multiple pathways that the OHPy2N2 has the ability to impact to promote natural mechanisms within cells to protect against chronic oxidative stress in the eye.
Collapse
Affiliation(s)
- Jinmin Zhang
- Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Yu Yu
- Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Magy A. Mekhail
- Department of Chemistry and Biochemistry, Texas Christian University, Fort Worth, TX, United States
| | - Hongli Wu
- Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, United States
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Kayla N. Green
- Department of Chemistry and Biochemistry, Texas Christian University, Fort Worth, TX, United States
| |
Collapse
|
40
|
Liao CM, Wulfmeyer VC, Chen R, Erlangga Z, Sinning J, von Mässenhausen A, Sörensen-Zender I, Beer K, von Vietinghoff S, Haller H, Linkermann A, Melk A, Schmitt R. Induction of ferroptosis selectively eliminates senescent tubular cells. Am J Transplant 2022; 22:2158-2168. [PMID: 35607817 DOI: 10.1111/ajt.17102] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/27/2022] [Accepted: 05/22/2022] [Indexed: 01/25/2023]
Abstract
The accumulation of senescent cells is an important contributor to kidney aging, chronic renal disease, and poor outcome after kidney transplantation. Approaches to eliminate senescent cells with senolytic compounds have been proposed as novel strategies to improve marginal organs. While most existing senolytics induce senescent cell clearance by apoptosis, we observed that ferroptosis, an iron-catalyzed subtype of regulated necrosis, might serve as an alternative way to ablate senescent cells. We found that murine kidney tubular epithelial cells became sensitized to ferroptosis when turning senescent. This was linked to increased expression of pro-ferroptotic lipoxygenase-5 and reduced expression of anti-ferroptotic glutathione peroxidase 4 (GPX4). In tissue slice cultures from aged kidneys low dose application of the ferroptosis-inducer RSL3 selectively eliminated senescent cells while leaving healthy tubular cells unaffected. Similar results were seen in a transplantation model, in which RSL3 reduced the senescent cell burden of aged donor kidneys and caused a reduction of damage and inflammatory cell infiltration during the early post-transplantation period. In summary, these data reveal an increased susceptibility of senescent tubular cells to ferroptosis with the potential to be exploited for selective reduction of renal senescence in aged kidney transplants.
Collapse
Affiliation(s)
- Chieh M Liao
- Department of Nephrology and Hypertension, Medical School Hannover, Hannover, Germany
| | - Vera C Wulfmeyer
- Department of Nephrology and Hypertension, Medical School Hannover, Hannover, Germany
| | - Rongjun Chen
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Medical School Hannover, Hannover, Germany
| | - Zulrahman Erlangga
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Medical School Hannover, Hannover, Germany
| | - Julius Sinning
- Department of Nephrology and Hypertension, Medical School Hannover, Hannover, Germany
| | - Anne von Mässenhausen
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische University of Dresden, Dresden, Germany
| | - Inga Sörensen-Zender
- Department of Nephrology and Hypertension, Medical School Hannover, Hannover, Germany
| | - Kristina Beer
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische University of Dresden, Dresden, Germany
| | - Sibylle von Vietinghoff
- Department of Nephrology and Hypertension, Medical School Hannover, Hannover, Germany.,Nephrology Section, First Medical Clinic, University Clinic and Rheinische Friedrich-Wilhelms Universität Bonn, Bonn, Germany
| | - Hermann Haller
- Department of Nephrology and Hypertension, Medical School Hannover, Hannover, Germany
| | - Andreas Linkermann
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische University of Dresden, Dresden, Germany
| | - Anette Melk
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Medical School Hannover, Hannover, Germany
| | - Roland Schmitt
- Department of Nephrology and Hypertension, Medical School Hannover, Hannover, Germany
| |
Collapse
|
41
|
Biliverdin Reductase A Protects Lens Epithelial Cells against Oxidative Damage and Cellular Senescence in Age-Related Cataract. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5628946. [PMID: 35910837 PMCID: PMC9325611 DOI: 10.1155/2022/5628946] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 07/01/2022] [Indexed: 02/07/2023]
Abstract
Age-related cataract (ARC) is the common cause of blindness globally. Reactive oxygen species (ROS), one of the greatest contributors to aging process, leads to oxidative damage and senescence of lens epithelial cells (LECs), which are involved in the pathogenesis of ARC. Biliverdin reductase A (BVRA) has ROS-scavenging ability by converting biliverdin (BV) into bilirubin (BR). However, little is known about the protective effect of BVRA against ARC. In the present study, we measured the expression level of BVRA and BR generation in human samples. Then, the antioxidative property of BVRA was compared between the young and senescent LECs upon stress condition. In addition, we evaluated the effect of BVRA on attenuating H2O2-induced premature senescence in LECs. The results showed that the mRNA expression level of BVRA and BR concentration were decreased in both LECs and lens cortex of age-related nuclear cataract. Using the RNA interference technique, we found that BVRA defends LECs against oxidative stress via (i) restoring mitochondrial dysfunction in a BR-dependent manner, (ii) inducing heme oxygenase-1 (HO-1) expression directly, and (iii) promoting phosphorylation of ERK1/2 and nuclear delivery of nuclear factor erythroid 2-related factor 2 (Nrf2). Intriguingly, the antioxidative effect of BVRA was diminished along with the reduced BR concentration and repressed nuclear translocation of BVRA and Nrf2 in senescent LECs, which would be resulted from the decreased BVRA activity and impaired nucleocytoplasmic trafficking. Eventually, we confirmed that BVRA accelerates the G1 phase transition and prevents against H2O2-induced premature senescence in LECs. In summary, BVRA protects LECs against oxidative stress and cellular senescence in ARC by converting BV into BR, inducing HO-1 expression, and activating the ERK/Nrf2 pathway. This trial is registered with ChiCTR2000036059.
Collapse
|
42
|
Wei Z, Gordon P, Hao C, Huangfu J, Fan E, Zhang X, Yan H, Fan X. Aged Lens Epithelial Cells Suppress Proliferation and Epithelial–Mesenchymal Transition-Relevance for Posterior Capsule Opacification. Cells 2022; 11:cells11132001. [PMID: 35805085 PMCID: PMC9265589 DOI: 10.3390/cells11132001] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/14/2022] [Accepted: 06/18/2022] [Indexed: 02/01/2023] Open
Abstract
Posterior capsule opacification (PCO) is a frequent complication after cataract surgery, and advanced PCO requires YAG laser (Nd: YAG) capsulotomy, which often gives rise to more complications. Lens epithelial cell (LEC) proliferation and transformation (i.e., epithelial–mesenchymal transition (EMT)) are two critical elements in PCO initiation and progression pathogenesis. While PCO marginally impacts aged cataract surgery patients, PCO incidences are exceptionally high in infants and children undergoing cataract surgery. The gene expression of lens epithelial cell aging and its role in the discrepancy of PCO prevalence between young and older people have not been fully studied. Here, we conducted a comprehensive differentially expressed gene (DEG) analysis of a cell aging model by comparing the early and late passage FHL124 lens epithelial cells (LECs). In vitro, TGFβ2, cell treatment, and in vivo mouse cataract surgical models were used to validate our findings. We found that aged LECs decelerated rates of cell proliferation accompanied by dysregulation of cellular immune response and cell stress response. Surprisingly, we found that LECs systematically downregulated epithelial–mesenchymal transition (EMT)-promoting genes. The protein expression of several EMT hallmark genes, e.g., fibronectin, αSMA, and cadherin 11, were gradually decreased during LECs aging. We then confirmed these findings in vitro and found that aged LECs markedly alleviated TGFβ2-mediated EMT. Importantly, we explicitly confirmed the in vitro findings from the in vivo mouse cataract surgery studies. We propose that both the high proliferation rate and EMT-enriched young LECs phenotypic characteristics contribute to unusually high PCO incidence in infants and children.
Collapse
Affiliation(s)
- Zongbo Wei
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd., CB Building, Room CB1119, Augusta, GA 30912, USA; (Z.W.); (C.H.); (J.H.)
| | - Pasley Gordon
- Department of Ophthalmology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA;
| | - Caili Hao
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd., CB Building, Room CB1119, Augusta, GA 30912, USA; (Z.W.); (C.H.); (J.H.)
| | - Jingru Huangfu
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd., CB Building, Room CB1119, Augusta, GA 30912, USA; (Z.W.); (C.H.); (J.H.)
| | - Emily Fan
- Lakeside High School at Columbia County, Evans, GA 30809, USA;
| | - Xiang Zhang
- Genomics, Epigenomics and Sequencing Core, Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH 45221, USA;
| | - Hong Yan
- Xi’an Fourth Hospital, Xi’an Jiaotong University, Xi’an 710049, China;
| | - Xingjun Fan
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd., CB Building, Room CB1119, Augusta, GA 30912, USA; (Z.W.); (C.H.); (J.H.)
- Correspondence:
| |
Collapse
|
43
|
Liang J, Shen Y, Wang Y, Huang Y, Wang J, Zhu Q, Tong G, Yu K, Cao W, Wang Q, Li Y, Zhao Y. Ferroptosis participates in neuron damage in experimental cerebral malaria and is partially induced by activated CD8 + T cells. Mol Brain 2022; 15:57. [PMID: 35725567 PMCID: PMC9208218 DOI: 10.1186/s13041-022-00942-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/08/2022] [Indexed: 12/28/2022] Open
Abstract
Cerebral malaria is the most serious complication of malaria infection, with 26% of surviving children having neurological sequelae, which may be caused by neuron damage, but the mechanism is not clear. Ferroptosis has been reported to play an important role in neuron damage in several nervous system diseases. However, the occurrence of ferroptosis in experimental cerebral malaria (ECM) pathogenesis is still unknown. In this study, we firstly detected increased levels of malondialdehyde (MDA) and iron, which are indicators of ferroptosis, in the cerebrum of ECM mice. Some important regulators of ferroptosis, including upregulated expression of transferrin receptor 1 (TfR1) and acyl-CoA synthetase long-chain family member 4 (ACSL4), and downregulation of glutathione peroxidase 4 (GPX4) levels, were also confirmed in ECM mice. Consistently, neuron damage, which was detected in the cerebrum of ECM mice, was positively correlated with reduced GPX4 expression and furtherly rescued by administration of the ferroptosis inhibitor ferrostatin-1 (Fer-1). In addition, primary neurons were damaged by activated CD8+ T cells, an effect that was also partially rescued by Fer-1 on amyloid precursor protein expression and mitochondrial membrane potential levels in vitro. Activated CD8+ T cells were also shown to infiltrate the cerebrum of ECM mice and upregulate TfR1 expression in primary neurons, which may be an important event for inducing ferroptosis in ECM. Altogether, we show that ferroptosis contributes to neuron damage in ECM pathogenesis, and activated CD8+ T cells may be important inducers of neuronal ferroptosis. Hence, targeting ferroptosis may be a promising adjuvant therapeutic strategy for neurological sequelae in patients with cerebral malaria.
Collapse
Affiliation(s)
- Jiao Liang
- Department of Medical Microbiology and Parasitology, Fourth Military Medical University, 169# Changle West Road, Xi'an, 710032, China
| | - Yan Shen
- Department of Medical Microbiology and Parasitology, Fourth Military Medical University, 169# Changle West Road, Xi'an, 710032, China
| | - Yi Wang
- Department of Medical Microbiology and Parasitology, Fourth Military Medical University, 169# Changle West Road, Xi'an, 710032, China
| | - Yuxiao Huang
- Department of Medical Microbiology and Parasitology, Fourth Military Medical University, 169# Changle West Road, Xi'an, 710032, China
| | - Jun Wang
- Department of Medical Microbiology and Parasitology, Fourth Military Medical University, 169# Changle West Road, Xi'an, 710032, China
| | - Qinghao Zhu
- Department of Medical Microbiology and Parasitology, Fourth Military Medical University, 169# Changle West Road, Xi'an, 710032, China
| | - Guodong Tong
- College of Life Sciences, Northwest University, Xi'an, China
| | - Kangjie Yu
- Department of Pathology, Air Force Hospital of Eastern Theater, Nanjing, China
| | - Wei Cao
- Second Student Brigade, School of Basic Medical Sciences, Fourth Military Medical University, Xi'an, China
| | - Qi Wang
- Second Student Brigade, School of Basic Medical Sciences, Fourth Military Medical University, Xi'an, China
| | - Yinghui Li
- Department of Medical Microbiology and Parasitology, Fourth Military Medical University, 169# Changle West Road, Xi'an, 710032, China.
| | - Ya Zhao
- Department of Medical Microbiology and Parasitology, Fourth Military Medical University, 169# Changle West Road, Xi'an, 710032, China.
| |
Collapse
|
44
|
Zhang J, Sheng S, Wang W, Dai J, Zhong Y, Ren J, Jiang K, Li S, Bian X, Liu L. Molecular Mechanisms of Iron Mediated Programmed Cell Death and Its Roles in Eye Diseases. Front Nutr 2022; 9:844757. [PMID: 35495915 PMCID: PMC9038536 DOI: 10.3389/fnut.2022.844757] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/28/2022] [Indexed: 01/09/2023] Open
Abstract
Ferroptosis, a newly identified, iron-dependent type of programmed cell death, is active in several diseases, such as heart disease, brain damage, and cancer. Its main characteristics commonly involve excess iron accumulation, elevated lipid peroxides and reactive oxygen species, and reduced levels of glutathione and glutathione peroxidase 4 levels. The effects of ferroptosis in eye diseases cannot be underestimated, with ferroptosis becoming a research target in ocular disorders and emerging evidence from a series of in vivo and in vitro researches into ferroptosis revealing its role in eye conditions. However, no report provides comprehensive information on the pathophysiology of ferroptosis in eye diseases and its possible treatments. In the current review, we present an up-to-date overview of ferroptosis biology and its involvement in the pathological processes of ocular diseases. Furthermore, we pose several outstanding questions and areas for future research in this topic. We deem ferroptosis-associated cell death a pivotal new field of scientific study in ocular diseases and consider it a new therapeutic target in the treatment of some eye disorders.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Public Health, Weifang Medical University, Weifang, China.,Department of Ophthalmology, Weifang Eye Hospital, Weifang, China
| | - Shuai Sheng
- Department of Ophthalmology, Weifang Eye Hospital, Weifang, China
| | - Wenting Wang
- Department of Ophthalmology, Weifang Eye Hospital, Weifang, China
| | - Jiazhen Dai
- Department of Ophthalmology, Weifang Eye Hospital, Weifang, China
| | - Yifan Zhong
- Department of Ophthalmology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jiantao Ren
- Department of Ophthalmology, Weifang Eye Hospital, Weifang, China
| | - Keke Jiang
- Department of Ophthalmology, Weifang Eye Hospital, Weifang, China
| | - Shuchan Li
- Department of Ophthalmology, Weifang Eye Hospital, Weifang, China
| | - Xiaoyan Bian
- Department of Ocular Surface, Baotou Chaoju Eye Hospital, Boatou, China
| | - Lei Liu
- Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Eye Institute, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
45
|
Zhang M, Luo J, Chen X, Chen Y, Li P, Zhang G, Guan H, Lu P. Identification and Integrated Analysis of the miRNA-mRNA Regulatory Network in Lens from an H 2O 2-Induced Zebrafish Cataract Model. Curr Eye Res 2022; 47:854-865. [PMID: 35315700 DOI: 10.1080/02713683.2022.2050263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PURPOSE This study aimed to explore the regulatory mechanisms of age-related cataract (ARC) formation. METHODS Cataracts in zebrafish were induced by injecting hydrogen peroxide into the fish anterior chamber. The mRNA and miRNA expression profiles of the lens from H2O2-injected and PBS-injected zebrafishes were detected by RNA sequencing. The LIMMA package was applied to identify differentially expressed genes (DEGs). Gene Ontology categories were enriched by the R "cluster Profiler" package and Kyoto Encyclopedia of Genes and Genomes pathway enrichment was performed based on hypergeometric distribution using the R "phyper" function. The protein-protein interaction network of DEGs was built via the STRING. Target genes of differentially expressed miRNAs (DEmiRs) were predicted by miRanda. Furthermore, DEGs were selected as DEmiR targets and a DEmiR-DEG regulatory network was constructed via Cytoscape. RESULTS In total, 3689 DEGs (such as opn1mw4, LOC103908930, si:dkeyp-1h4.8, crispld1b, cyp1a, and gdpd3a) including 2478 upregulated and 1211 downregulated genes were identified. 177 DEmiRs (such as dre-miR-96-3p, dre-miR-182-5p, dre-miR-9-7-3p, and dre-miR-124-4-5p) including 108 upregulated and 69 downregulated miRNAs were detected. The DEGs are involved in cell death, DNA repair, and cell development-related pathways. A protein-protein interaction network including 79 node genes was constructed to explore the interactions of DEGs. Furthermore, a DEmiR-DEG regulatory network focusing on the DNA repair process was constructed, including 21 hub DEGs and 15 hub DEmiRs. CONCLUSIONS We identified several DEGs and constructed a miRNA-mRNA regulatory network related to the DNA repair process in a zebrafish cataract model. These genes participate in the oxidative stress response of lens epithelium cells and finally contribute to the formation of zebrafish cataracts. The hub DEGs and hub DEmiRs could be potential therapeutic targets for ARC.
Collapse
Affiliation(s)
- Mu Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jiawei Luo
- Eye Institute, The Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xiaoqing Chen
- Department of Party Committee Personnel Work, The Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Yanhua Chen
- Center for Disease Prevention and Control of Nantong City, Nantong, Jiangsu, China
| | - Pengfei Li
- Eye Institute, The Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Guowei Zhang
- Eye Institute, The Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Huaijin Guan
- Eye Institute, The Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Peirong Lu
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
46
|
Wang S, Li W, Zhang P, Wang Z, Ma X, Liu C, Vasilev K, Zhang L, Zhou X, Liu L, Hayball J, Dong S, Li Y, Gao Y, Cheng L, Zhao Y. Mechanical overloading induces GPX4-regulated chondrocyte ferroptosis in osteoarthritis via Piezo1 channel facilitated calcium influx. J Adv Res 2022; 41:63-75. [PMID: 36328754 PMCID: PMC9637484 DOI: 10.1016/j.jare.2022.01.004] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/19/2021] [Accepted: 01/07/2022] [Indexed: 11/17/2022] Open
Abstract
Our study proved that mechanical overloading induces ferroptosis of chondrocyte, which might be a potential therapeutic target for mechanical damage of chondrocyte and OA. Our study demonstrated Piezo1 facilitated calcium influx leads to reduction of GSH, decrease of Gpx4 and activation of oxidative stress in chondrocyte under high strain mechanical stimulation. Mechanical signals were converted into ferroptosis-associated signals through Piezo1 channel induced calcium influx, which might shed light on therapeutic interventions for treatment of OA and other diseases associated with ferroptosis.
Introductions Excessive mechanical stress is closely associated with cell death in various conditions. Exposure of chondrocytes to excessive mechanical loading leads to a catabolic response as well as exaggerated cell death. Ferroptosis is a recently identified form of cell death during cell aging and degeneration. However, it's potential association with mechanical stress remains to be illustrated. Objectives To identify whether excessive mechanical stress can cause ferroptosis. To explore the role of mechanical overloading in chondrocyte ferroptosis. Methods Chondrocytes were collected from loading and unloading zones of cartilage in patients with osteoarthritis (OA), and the ferroptosis phenotype was analyzed through transmission electron microscope and microarray. Moreover, the relationship between ferroptosis and OA was analyzed by GPX4-conditional knockout (Col2a1-CreERT: GPX4flox/flox) mice OA model and chondrocytes cultured with high strain mechanical stress. Furthermore, the role of Piezo1 ion channel in chondrocyte ferroptosis and OA development was explored by using its inhibitor (GsMTx4) and agonist (Yoda1). Additionally, chondrocyte was cultured in calcium-free medium with mechanical stress, and ferroptosis phenotype was tested. Results Human cartilage and mouse chondrocyte experiments revealed that mechanical overloading can induce GPX4-associated ferroptosis. Conditional knockout of GPX4 in cartilage aggravated experimental OA process, while additional treatment with ferroptosis suppressor protein (FSP-1) and coenzyme Q10 (CoQ10) abated OA development in GPX4-CKO mice. In mouse OA model and chondrocyte experiments, inhibition of Piezo1 channel activity increased GPX4 expression, attenuated ferroptosis phenotype and reduced the severity of osteoarthritis. Additionally, high strain mechanical stress induced ferroptosis damage in chondrocyte was largely abolished by blocking calcium influx through calcium-free medium. Conclusions Our findings show that mechanical overloading induces ferroptosis through Piezo1 activation and subsequent calcium influx in chondrocytes, which might provide a potential target for OA treatment.
Collapse
|
47
|
Logie E, Van Puyvelde B, Cuypers B, Schepers A, Berghmans H, Verdonck J, Laukens K, Godderis L, Dhaenens M, Deforce D, Vanden Berghe W. Ferroptosis Induction in Multiple Myeloma Cells Triggers DNA Methylation and Histone Modification Changes Associated with Cellular Senescence. Int J Mol Sci 2021; 22:12234. [PMID: 34830117 PMCID: PMC8618106 DOI: 10.3390/ijms222212234] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/29/2021] [Accepted: 11/08/2021] [Indexed: 12/20/2022] Open
Abstract
Disease relapse and therapy resistance remain key challenges in treating multiple myeloma. Underlying (epi-)mutational events can promote myelomagenesis and contribute to multi-drug and apoptosis resistance. Therefore, compounds inducing ferroptosis, a form of iron and lipid peroxidation-regulated cell death, are appealing alternative treatment strategies for multiple myeloma and other malignancies. Both ferroptosis and the epigenetic machinery are heavily influenced by oxidative stress and iron metabolism changes. Yet, only a limited number of epigenetic enzymes and modifications have been identified as ferroptosis regulators. In this study, we found that MM1 multiple myeloma cells are sensitive to ferroptosis induction and epigenetic reprogramming by RSL3, irrespective of their glucocorticoid-sensitivity status. LC-MS/MS analysis revealed the formation of non-heme iron-histone complexes and altered expression of histone modifications associated with DNA repair and cellular senescence. In line with this observation, EPIC BeadChip measurements of significant DNA methylation changes in ferroptotic myeloma cells demonstrated an enrichment of CpG probes located in genes associated with cell cycle progression and senescence, such as Nuclear Receptor Subfamily 4 Group A member 2 (NR4A2). Overall, our data show that ferroptotic cell death is associated with an epigenomic stress response that might advance the therapeutic applicability of ferroptotic compounds.
Collapse
Affiliation(s)
- Emilie Logie
- Laboratory of Protein Science, Proteomics and Epigenetic Signaling (PPES) and Integrated Personalized and Precision Oncology Network (IPPON), Department of Biomedical Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (E.L.); (H.B.)
| | - Bart Van Puyvelde
- Laboratory of Pharmaceutical Biotechnology, Proteomics and Mass Spectrometry Department, Ghent University, 9000 Ghent, Belgium; (B.V.P.); (M.D.); (D.D.)
| | - Bart Cuypers
- Biomedical Informatics Network Antwerp (Biomina), Department of Computer Science, University of Antwerp, 2610 Antwerp, Belgium; (B.C.); (K.L.)
| | - Anne Schepers
- Center of Medical Genetics, University of Antwerp & Antwerp University Hospital, 2650 Edegem, Belgium;
| | - Herald Berghmans
- Laboratory of Protein Science, Proteomics and Epigenetic Signaling (PPES) and Integrated Personalized and Precision Oncology Network (IPPON), Department of Biomedical Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (E.L.); (H.B.)
| | - Jelle Verdonck
- Center for Environment and Health, Department of Public Health and Primary Care, KU Leuven, 3000 Leuven, Belgium; (J.V.); (L.G.)
| | - Kris Laukens
- Biomedical Informatics Network Antwerp (Biomina), Department of Computer Science, University of Antwerp, 2610 Antwerp, Belgium; (B.C.); (K.L.)
| | - Lode Godderis
- Center for Environment and Health, Department of Public Health and Primary Care, KU Leuven, 3000 Leuven, Belgium; (J.V.); (L.G.)
- IDEWE, External Service for Prevention and Protection at Work, 3001 Heverlee, Belgium
| | - Maarten Dhaenens
- Laboratory of Pharmaceutical Biotechnology, Proteomics and Mass Spectrometry Department, Ghent University, 9000 Ghent, Belgium; (B.V.P.); (M.D.); (D.D.)
| | - Dieter Deforce
- Laboratory of Pharmaceutical Biotechnology, Proteomics and Mass Spectrometry Department, Ghent University, 9000 Ghent, Belgium; (B.V.P.); (M.D.); (D.D.)
| | - Wim Vanden Berghe
- Laboratory of Protein Science, Proteomics and Epigenetic Signaling (PPES) and Integrated Personalized and Precision Oncology Network (IPPON), Department of Biomedical Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (E.L.); (H.B.)
| |
Collapse
|
48
|
Wishart TFL, Flokis M, Shu DY, Das SJ, Lovicu FJ. Hallmarks of lens aging and cataractogenesis. Exp Eye Res 2021; 210:108709. [PMID: 34339681 DOI: 10.1016/j.exer.2021.108709] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/05/2021] [Accepted: 07/26/2021] [Indexed: 12/18/2022]
Abstract
Lens homeostasis and transparency are dependent on the function and intercellular communication of its epithelia. While the lens epithelium is uniquely equipped with functional repair systems to withstand reactive oxygen species (ROS)-mediated oxidative insult, ROS are not necessarily detrimental to lens cells. Lens aging, and the onset of pathogenesis leading to cataract share an underlying theme; a progressive breakdown of oxidative stress repair systems driving a pro-oxidant shift in the intracellular environment, with cumulative ROS-induced damage to lens cell biomolecules leading to cellular dysfunction and pathology. Here we provide an overview of our current understanding of the sources and essential functions of lens ROS, antioxidative defenses, and changes in the major regulatory systems that serve to maintain the finely tuned balance of oxidative signaling vs. oxidative stress in lens cells. Age-related breakdown of these redox homeostasis systems in the lens leads to the onset of cataractogenesis. We propose eight candidate hallmarks that represent common denominators of aging and cataractogenesis in the mammalian lens: oxidative stress, altered cell signaling, loss of proteostasis, mitochondrial dysfunction, dysregulated ion homeostasis, cell senescence, genomic instability and intrinsic apoptotic cell death.
Collapse
Affiliation(s)
| | - Mary Flokis
- School of Medical Sciences, The University of Sydney, NSW, Australia
| | - Daisy Y Shu
- School of Medical Sciences, The University of Sydney, NSW, Australia; Save Sight Institute, The University of Sydney, NSW, Australia; Schepens Eye Research Institute of Mass Eye and Ear. Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Shannon J Das
- School of Medical Sciences, The University of Sydney, NSW, Australia
| | - Frank J Lovicu
- School of Medical Sciences, The University of Sydney, NSW, Australia; Save Sight Institute, The University of Sydney, NSW, Australia.
| |
Collapse
|
49
|
Mazhar M, Din AU, Ali H, Yang G, Ren W, Wang L, Fan X, Yang S. Implication of ferroptosis in aging. Cell Death Discov 2021; 7:149. [PMID: 34226536 PMCID: PMC8257567 DOI: 10.1038/s41420-021-00553-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/05/2021] [Accepted: 05/29/2021] [Indexed: 02/06/2023] Open
Abstract
Life is indeed continuously going through the irreversible and inevitable process of aging. The rate of aging process depends on various factors and varies individually. These factors include various environmental stimuli including exposure to toxic chemicals, psychological stress whereas suffering with various illnesses specially the chronic diseases serve as endogenous triggers. The basic underlying mechanism for all kinds of stresses is now known to be manifested as production of excessive ROS, exhaustion of ROS neutralizing antioxidant enzymes and proteins leading to imbalance in oxidation and antioxidant processes with subsequent oxidative stress induced inflammation affecting the cells, tissues, organs and the whole body. All these factors lead to conventional cell death either through necrosis, apoptosis, or autophagy. Currently, a newly identified mechanism of iron dependent regulated cell death called ferroptosis, is of special interest for its implication in pathogenesis of various diseases such as cardiovascular disease, neurological disorders, cancers, and various other age-related disorders (ARD). In ferroptosis, the cell death occur neither by conventional apoptosis, necrosis nor by autophagy, rather dysregulated iron in the cell mediates excessive lipid peroxidation of accumulated lethal lipids. It is not surprising to assume its role in aging as previous research have identified some solid cues on the subject. In this review, we will highlight the factual evidences to support the possible role and implication of ferroptosis in aging in order to declare the need to identify and explore the interventions to prevent excessive ferroptosis leading to accelerated aging and associated liabilities of aging.
Collapse
Affiliation(s)
- Maryam Mazhar
- National Traditional Chinese Medicine Clinical Research Base, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
- Cardiovascular and Cerebrovascular Research Center of Integrated Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Ahmad Ud Din
- Drug Discovery Research Center, Southwest Medical University Luzhou, Luzhou, China
| | - Hamid Ali
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Guoqiang Yang
- National Traditional Chinese Medicine Clinical Research Base, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
- Department of Acupuncture and Rehabilitation, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Wei Ren
- National Traditional Chinese Medicine Clinical Research Base, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
- Cardiovascular and Cerebrovascular Research Center of Integrated Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Li Wang
- National Traditional Chinese Medicine Clinical Research Base, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
- Cardiovascular and Cerebrovascular Research Center of Integrated Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Xiaohui Fan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Sijin Yang
- National Traditional Chinese Medicine Clinical Research Base, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China.
- Cardiovascular and Cerebrovascular Research Center of Integrated Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|