1
|
Walzik D, Wences Chirino TY, Zimmer P, Joisten N. Molecular insights of exercise therapy in disease prevention and treatment. Signal Transduct Target Ther 2024; 9:138. [PMID: 38806473 PMCID: PMC11133400 DOI: 10.1038/s41392-024-01841-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/30/2024] Open
Abstract
Despite substantial evidence emphasizing the pleiotropic benefits of exercise for the prevention and treatment of various diseases, the underlying biological mechanisms have not been fully elucidated. Several exercise benefits have been attributed to signaling molecules that are released in response to exercise by different tissues such as skeletal muscle, cardiac muscle, adipose, and liver tissue. These signaling molecules, which are collectively termed exerkines, form a heterogenous group of bioactive substances, mediating inter-organ crosstalk as well as structural and functional tissue adaption. Numerous scientific endeavors have focused on identifying and characterizing new biological mediators with such properties. Additionally, some investigations have focused on the molecular targets of exerkines and the cellular signaling cascades that trigger adaption processes. A detailed understanding of the tissue-specific downstream effects of exerkines is crucial to harness the health-related benefits mediated by exercise and improve targeted exercise programs in health and disease. Herein, we review the current in vivo evidence on exerkine-induced signal transduction across multiple target tissues and highlight the preventive and therapeutic value of exerkine signaling in various diseases. By emphasizing different aspects of exerkine research, we provide a comprehensive overview of (i) the molecular underpinnings of exerkine secretion, (ii) the receptor-dependent and receptor-independent signaling cascades mediating tissue adaption, and (iii) the clinical implications of these mechanisms in disease prevention and treatment.
Collapse
Affiliation(s)
- David Walzik
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, 44227, Dortmund, North Rhine-Westphalia, Germany
| | - Tiffany Y Wences Chirino
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, 44227, Dortmund, North Rhine-Westphalia, Germany
| | - Philipp Zimmer
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, 44227, Dortmund, North Rhine-Westphalia, Germany.
| | - Niklas Joisten
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, 44227, Dortmund, North Rhine-Westphalia, Germany.
- Division of Exercise and Movement Science, Institute for Sport Science, University of Göttingen, 37075, Göttingen, Lower Saxony, Germany.
| |
Collapse
|
2
|
Chong MC, Shah AD, Schittenhelm RB, Silva A, James PF, Wu SSX, Howitt J. Acute exercise-induced release of innate immune proteins via small extracellular vesicles changes with aerobic fitness and age. Acta Physiol (Oxf) 2024; 240:e14095. [PMID: 38243724 DOI: 10.1111/apha.14095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/04/2023] [Accepted: 01/01/2024] [Indexed: 01/21/2024]
Abstract
AIM Physical exercise triggers the secretion of small extracellular vesicles (sEVs) into the circulation in humans, enabling signalling crosstalk between tissues. Exercise-derived EVs and their cargo have been proposed to mediate adaptations to exercise; however, our understanding of how exercise-derived EV protein cargo is modulated by factors such as aerobic fitness and age of an individual is currently unknown. Here, we examined the circulating sEV proteome following aerobic exercise in healthy males of different ages and aerobic fitness to understand exercise-induced EV response during the aging process. METHODS Twenty-eight healthy men completed a bout of 20-min cycling exercise at 70% estimated VO2peak . Small EVs were isolated from blood samples collected before and immediately after exercise, and then quantified using particle analysis and Western blotting. Small EV proteome was examined using quantitative proteomic analysis. RESULTS We identified a significant increase in 13 proteins in small plasma EVs following moderate-to-vigorous intensity exercise. We observed distinct changes in sEV proteome after exercise in young, mature, unfit, and fit individuals, highlighting the impact of aerobic fitness and age on sEV protein secretion. Functional enrichment and pathway analysis identified that the majority of the significantly altered sEV proteins are associated with the innate immune system, including proteins known to be damage-associated molecular patterns (DAMPs). CONCLUSION Together, our findings suggest that exercise-evoked acute stress can positively challenge the innate immune system through the release of signalling molecules such as DAMPs in sEVs, proposing a novel EV-based mechanism for moderate-to-vigorous intensity exercise in immune surveillance pathways.
Collapse
Affiliation(s)
- Mee Chee Chong
- School of Health Sciences, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Anup D Shah
- Monash Proteomics and Metabolomics Facility, Monash University, Clayton, Victoria, Australia
| | - Ralf B Schittenhelm
- Monash Proteomics and Metabolomics Facility, Monash University, Clayton, Victoria, Australia
| | - Anabel Silva
- Exopharm Limited, Melbourne, Victoria, Australia
| | | | - Sam Shi Xuan Wu
- School of Health Sciences, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Jason Howitt
- School of Health Sciences, Swinburne University of Technology, Hawthorn, Victoria, Australia
- Iverson Health Innovation Institute, Swinburne University of Technology, Hawthorn, Victoria, Australia
| |
Collapse
|
3
|
Lautaoja-Kivipelto JH, Karvinen S, Korhonen TM, O'Connell TM, Tiirola M, Hulmi JJ, Pekkala S. Interaction of the C2C12 myotube contractions and glucose availability on transcriptome and extracellular vesicle microRNAs. Am J Physiol Cell Physiol 2024; 326:C348-C361. [PMID: 38047306 PMCID: PMC11192488 DOI: 10.1152/ajpcell.00401.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/26/2023] [Accepted: 11/26/2023] [Indexed: 12/05/2023]
Abstract
Exercise-like electrical pulse stimulation (EL-EPS) of myotubes mimics many key physiological changes induced by in vivo exercise. Besides enabling intracellular research, EL-EPS allows to study secreted factors, including muscle-specific microRNAs (myomiRs) carried in extracellular vesicles (EVs). These factors can participate in contraction-induced intercellular cross talk and may mediate the health benefits of exercise. However, the current knowledge of these responses, especially under variable nutritional conditions, is limited. We investigated the effects of EL-EPS on C2C12 myotube transcriptome in high- and low-glucose conditions by messenger RNA sequencing, while the expression of EV-carried miRNAs was analyzed by small RNA sequencing and RT-qPCR. We show that higher glucose availability augmented contraction-induced transcriptional changes and that the majority of the differentially expressed genes were upregulated. Furthermore, based on the pathway analyses, processes related to contractility and cytokine/inflammatory responses were upregulated. In addition, we report that EL-EPS increased packing of miR-1-3p into EVs independent of glucose availability. Together our findings suggest that in vitro EL-EPS is a usable tool not only to study contraction-induced intracellular mechanisms but also extracellular responses. The distinct transcriptional changes observed under variable nutritional conditions emphasize the importance of careful consideration of media composition in future exercise-mimicking studies.NEW & NOTEWORTHY The present study examined for the first time the effects of exercise-like electrical pulse stimulation administered under distinct nutritional conditions on 1) the transcriptome of the C2C12 myotubes and 2) their media containing extracellular vesicle-carried microRNAs. We report that higher glucose availability augmented transcriptional responses related especially to contractility and cytokine/inflammatory pathways. Agreeing with in vivo studies, we show that the packing of exercise-responsive miR-1-3p was increased in the extracellular vesicles in response to myotube contractions.
Collapse
Affiliation(s)
- Juulia H Lautaoja-Kivipelto
- Faculty of Sport and Sciences, Gerontology Research Center, University of Jyväskylä, Jyväskylä, Finland
- Faculty of Medicine, Research Unit of Biomedicine and Internal Medicine, University of Oulu, Oulu, Finland
| | - Sira Karvinen
- Faculty of Sport and Sciences, Gerontology Research Center, University of Jyväskylä, Jyväskylä, Finland
| | - Tia-Marje Korhonen
- Faculty of Sport and Sciences, Gerontology Research Center, University of Jyväskylä, Jyväskylä, Finland
| | - Thomas M O'Connell
- Department of Otolaryngology, Head & Neck Surgery, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Marja Tiirola
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Juha J Hulmi
- Faculty of Sport and Sciences, Gerontology Research Center, University of Jyväskylä, Jyväskylä, Finland
| | - Satu Pekkala
- Faculty of Sport and Sciences, Gerontology Research Center, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
4
|
Grange C, Dalmasso A, Cortez JJ, Spokeviciute B, Bussolati B. Exploring the role of urinary extracellular vesicles in kidney physiology, aging, and disease progression. Am J Physiol Cell Physiol 2023; 325:C1439-C1450. [PMID: 37842748 PMCID: PMC10861146 DOI: 10.1152/ajpcell.00349.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/17/2023]
Abstract
Extracellular vesicles (EVs), membranous vesicles present in all body fluids, are considered important messengers, carrying their information over long distance and modulating the gene expression profile of recipient cells. EVs collected in urine (uEVs) are mainly originated from the apical part of urogenital tract, following the urine flow. Moreover, bacterial-derived EVs are present within urine and may reflect the composition of microbiota. Consolidated evidence has established the involvement of uEVs in renal physiology, being responsible for glomerular and tubular cross talk and among different tubular segments. uEVs may also be involved in other physiological functions such as modulation of innate immunity, coagulation, or metabolic activities. Furthermore, it has been recently remonstrated that age, sex, endurance excise, and lifestyle may influence uEV composition and release, modifying their cargo. On the other hand, uEVs appear modulators of different urogenital pathological conditions, triggering disease progression. uEVs sustain fibrosis and inflammation processes, both involved in acute and chronic kidney diseases, aging, and stone formation. The molecular signature of uEVs collected from diseased patients can be of interest for understanding kidney physiopathology and for identifying diagnostic and prognostic biomarkers.
Collapse
Affiliation(s)
- Cristina Grange
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Alessia Dalmasso
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Judiel John Cortez
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Beatrice Spokeviciute
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Benedetta Bussolati
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| |
Collapse
|
5
|
de Souza PB, de Araujo Borba L, Castro de Jesus L, Valverde AP, Gil-Mohapel J, Rodrigues ALS. Major Depressive Disorder and Gut Microbiota: Role of Physical Exercise. Int J Mol Sci 2023; 24:16870. [PMID: 38069198 PMCID: PMC10706777 DOI: 10.3390/ijms242316870] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
Major depressive disorder (MDD) has a high prevalence and is a major contributor to the global burden of disease. This psychiatric disorder results from a complex interaction between environmental and genetic factors. In recent years, the role of the gut microbiota in brain health has received particular attention, and compelling evidence has shown that patients suffering from depression have gut dysbiosis. Several studies have reported that gut dysbiosis-induced inflammation may cause and/or contribute to the development of depression through dysregulation of the gut-brain axis. Indeed, as a consequence of gut dysbiosis, neuroinflammatory alterations caused by microglial activation together with impairments in neuroplasticity may contribute to the development of depressive symptoms. The modulation of the gut microbiota has been recognized as a potential therapeutic strategy for the management of MMD. In this regard, physical exercise has been shown to positively change microbiota composition and diversity, and this can underlie, at least in part, its antidepressant effects. Given this, the present review will explore the relationship between physical exercise, gut microbiota and depression, with an emphasis on the potential of physical exercise as a non-invasive strategy for modulating the gut microbiota and, through this, regulating the gut-brain axis and alleviating MDD-related symptoms.
Collapse
Affiliation(s)
- Pedro Borges de Souza
- Center of Biological Sciences, Department of Biochemistry, Universidade Federal de Santa Catarina, Florianópolis 88037-000, SC, Brazil; (P.B.d.S.); (L.d.A.B.); (L.C.d.J.); (A.P.V.)
| | - Laura de Araujo Borba
- Center of Biological Sciences, Department of Biochemistry, Universidade Federal de Santa Catarina, Florianópolis 88037-000, SC, Brazil; (P.B.d.S.); (L.d.A.B.); (L.C.d.J.); (A.P.V.)
| | - Louise Castro de Jesus
- Center of Biological Sciences, Department of Biochemistry, Universidade Federal de Santa Catarina, Florianópolis 88037-000, SC, Brazil; (P.B.d.S.); (L.d.A.B.); (L.C.d.J.); (A.P.V.)
| | - Ana Paula Valverde
- Center of Biological Sciences, Department of Biochemistry, Universidade Federal de Santa Catarina, Florianópolis 88037-000, SC, Brazil; (P.B.d.S.); (L.d.A.B.); (L.C.d.J.); (A.P.V.)
| | - Joana Gil-Mohapel
- Island Medical Program, Faculty of Medicine, University of British Columbia, Victoria, BC V8P 5C2, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Ana Lúcia S. Rodrigues
- Center of Biological Sciences, Department of Biochemistry, Universidade Federal de Santa Catarina, Florianópolis 88037-000, SC, Brazil; (P.B.d.S.); (L.d.A.B.); (L.C.d.J.); (A.P.V.)
| |
Collapse
|
6
|
Vitucci D, Martone D, Alfieri A, Buono P. Muscle-derived exosomes and exercise in cancer prevention. FRONTIERS IN MOLECULAR MEDICINE 2023; 3:1202190. [PMID: 39086668 PMCID: PMC11285545 DOI: 10.3389/fmmed.2023.1202190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/09/2023] [Indexed: 08/02/2024]
Abstract
There are a lot of evidences on the beneficial effects mediated by exercise on the prevention of not communicable diseases (NCDs) including different type of cancer. The production of circulating exerkines transported in exosomes represents a novel pathway activated by exercise. However, the biological mechanisms that could explain the role of exosomes in cancer prevention have been not fully elucidated. The aim of this mini-review is to provide an update on the biological mechanisms bringing the release of muscle-derived exosomes during exercise and cancer prevention.
Collapse
Affiliation(s)
- Daniela Vitucci
- Department of Movement Sciences and Wellbeing, University Parthenope, Naples, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| | - Domenico Martone
- Department of Economics, Law, Cybersecurity and Sport Sciences—University Parthenope, Naples, Italy
| | - Andreina Alfieri
- Department of Movement Sciences and Wellbeing, University Parthenope, Naples, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| | - Pasqualina Buono
- Department of Movement Sciences and Wellbeing, University Parthenope, Naples, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| |
Collapse
|
7
|
Lisi V, Moulton C, Fantini C, Grazioli E, Guidotti F, Sgrò P, Dimauro I, Capranica L, Parisi A, Di Luigi L, Caporossi D. Steady-state redox status in circulating extracellular vesicles: A proof-of-principle study on the role of fitness level and short-term aerobic training in healthy young males. Free Radic Biol Med 2023; 204:266-275. [PMID: 37182793 DOI: 10.1016/j.freeradbiomed.2023.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/24/2023] [Accepted: 05/07/2023] [Indexed: 05/16/2023]
Abstract
Considering the role of redox homeostasis in exercise-induced signaling and adaptation, this study focuses on the exercise training-related intercellular communication of redox status mediated by circulating extracellular vesicles (EVs). 19 healthy young males were divided into trained (TG, 7) and untrained (UG, 12) subjects based on their VO2MAX. The UG subjects were further randomly distributed in experimental (UGEX, N = 7) and control (UGCTRL, N = 5) groups. The steady state of plasma EVs in TG and UGEX have been characterized for total number and size, as well as cargo redox status (antioxidants, transcription factors, HSPs) before, 3 and 24 h after a single bout of aerobic exercise (30', 70% HRM). Plasma EVs from UGEX and UGCTRL have been further characterized after 24 h from the last session of a 5-day consecutive aerobic training or no training, respectively. No differences were detected in the EVs' size and distribution at baseline in TG and UGEX (p>0.05), while the EVs cargo of UGEX showed a significantly higher concentration of protein carbonyl, Catalase, SOD2, and HSF1 compared to TG (p<0.05). 5 days of consecutive aerobic training in UGEX did not determine major changes in the steady-state number and size of EVs. The post-training levels of protein carbonyl, HSF1, Catalase, and SOD2 in EVs cargo of UGEX resulted significantly lower compared with UGEX before training and UGCTRL, resembling the steady-state levels in circulating EVs of TG subjects. Altogether, these preliminary data indicate that individual aerobic capacity influences the redox status of circulating EVs, and that short-term aerobic training impacts the steady-state redox status of EVs. Taking this pilot study as a paradigm for physio-pathological stimuli impacting redox homeostasis, our results offer new insights into the utilization of circulating EVs as biomarkers of exercise efficacy and of early impairment of oxidative-stress related diseases.
Collapse
Affiliation(s)
- Veronica Lisi
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Italy
| | - Chantalle Moulton
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Italy
| | - Cristina Fantini
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Italy
| | - Elisa Grazioli
- Physical Exercise and Sport Sciences Unit, Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Flavia Guidotti
- Sport Performance Laboratory, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Italy
| | - Paolo Sgrò
- Endocrinology Unit, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Italy
| | - Ivan Dimauro
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Italy
| | - Laura Capranica
- Sport Performance Laboratory, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Italy
| | - Attilio Parisi
- Physical Exercise and Sport Sciences Unit, Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Luigi Di Luigi
- Endocrinology Unit, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Italy
| | - Daniela Caporossi
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Italy.
| |
Collapse
|
8
|
Ragland TJ, Heiston EM, Ballantyne A, Stewart NR, La Salvia S, Musante L, Luse MA, Isakson BE, Erdbrügger U, Malin SK. Extracellular vesicles and insulin-mediated vascular function in metabolic syndrome. Physiol Rep 2023; 11:e15530. [PMID: 36597186 PMCID: PMC9810789 DOI: 10.14814/phy2.15530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 11/02/2022] [Indexed: 01/05/2023] Open
Abstract
Metabolic Syndrome (MetS) raises cardiovascular disease risk. Extracellular vesicles (EVs) have emerged as important mediators of insulin sensitivity, although few studies on vascular function exist in humans. We determined the effect of insulin on EVs in relation to vascular function. Adults with MetS (n = 51, n = 9 M, 54.8 ± 1.0 years, 36.4 ± 0.7 kg/m2 , ATPIII: 3.5 ± 0.1 a.u., VO2 max: 22.1 ± 0.6 ml/kg/min) were enrolled in this cross-sectional study. Peripheral insulin sensitivity (M-value) was determined during a euglycemic clamp (40 mU/m2 /min, 90 mg/dl), and blood was collected for EVs (CD105+, CD45+, CD41+, TX+, and CD31+; spectral flow cytometry), inflammation, insulin, and substrates. Central hemodynamics (applanation tonometry) was determined at 0 and 120 min via aortic waveforms. Pressure myography was used to assess insulin-induced arterial vasodilation from mouse 3rd order mesenteric arteries (100-200 μm in diameter) at 0.2, 2 and 20 nM of insulin with EVs from healthy and MetS adults. Adults with MetS had low peripheral insulin sensitivity (2.6 ± 0.2 mg/kg/min) and high HOMA-IR (4.7 ± 0.4 a.u.) plus Adipose-IR (13.0 ± 1.3 a.u.). Insulin decreased total/particle counts (p < 0.001), CD45+ EVs (p = 0.002), AIx75 (p = 0.005) and Pb (p = 0.04), FFA (p < 0.001), total adiponectin (p = 0.006), ICAM (p = 0.002), and VCAM (p = 0.03). Higher M-value related to lower fasted total EVs (r = -0.40, p = 0.004) while higher Adipose-IR associated with higher fasted EVs (r = 0.42, p = 0.004) independent of VAT. Fasting CD105+ and CD45+ derived total EVs correlated with fasting AIx75 (r = 0.29, p < 0.05) and Pb (r = 0.30, p < 0.05). EVs from MetS participants blunted insulin-induced vasodilation in mesenteric arteries compared with increases from healthy controls across insulin doses (all p < 0.005). These data highlight EVs as potentially novel mediators of vascular insulin sensitivity and disease risk.
Collapse
Affiliation(s)
- Tristan J. Ragland
- Department of Kinesiology & HealthRutgers UniversityNew BrunswickNew JerseyUSA
| | - Emily M. Heiston
- Department of Internal Medicine, Pauley Heart CenterVirginia Commonwealth UniversityRichmondVirginiaUSA
- Department of KinesiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Anna Ballantyne
- Department of KinesiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Nathan R. Stewart
- Department of Kinesiology & HealthRutgers UniversityNew BrunswickNew JerseyUSA
- Department of KinesiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | | | - Luca Musante
- School of Veterinary MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Melissa A. Luse
- Robert M Berne Cardiovascular Research CenterUniversity of Virginia School of MedicineCharlottesvilleVirginiaUSA
| | - Brant E. Isakson
- Robert M Berne Cardiovascular Research CenterUniversity of Virginia School of MedicineCharlottesvilleVirginiaUSA
- Department of Molecular Physiology and BiophysicsUniversity of Virginia School of MedicineCharlottesvilleVirginiaUSA
| | - Uta Erdbrügger
- Division of Nephrology, Department of MedicineUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Steven K. Malin
- Department of Kinesiology & HealthRutgers UniversityNew BrunswickNew JerseyUSA
- Department of KinesiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
- Division of Endocrinology, Metabolism & NutritionDepartment of MedicineNew BrunswickNew JerseyUSA
- The New Jersey Institute for Food, Nutrition and HealthRutgers UniversityNew BrunswickNew JerseyUSA
- Institute of Translational Medicine and ScienceRutgers UniversityNew BrunswickNew JerseyUSA
| |
Collapse
|
9
|
Siqueira IR, Batabyal RA, Freishtat R, Cechinel LR. Potential involvement of circulating extracellular vesicles and particles on exercise effects in malignancies. Front Endocrinol (Lausanne) 2023; 14:1121390. [PMID: 36936170 PMCID: PMC10020195 DOI: 10.3389/fendo.2023.1121390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/07/2023] [Indexed: 03/06/2023] Open
Abstract
Physical activity and exercise have been widely related to prevention, treatment, and control for several non-communicable diseases. In this context, there are innumerous pre-clinical and clinical evidence indicating the potential role of exercise, beyond cancer prevention and survival, improved quality of life, including on psychological components, bone health and cachexia, from cancer survivors is described as well. This mini-review raises the potential role of circulating extracellular and particles vesicles (EVPs) cargo, as exerkines, conducting several positive effects on adjacent and/or distant tissues such as tumor, immune, bone and muscle cells. We highlighted new perspectives about microRNAs into EVPs changes induced by exercise and its benefits on malignancies, since microRNAs can be implicated with intricated physiopathological processes. Potential microRNAs into EVPs were pointed out here as players spreading beneficial effects of exercise, such as miR-150-5p, miR-124, miR-486, and miRNA-320a, which have previous findings on involvement with clinical outcomes and as well as tumor microenvironment, regulating intercellular communication and tumor growth. For example, high-intensity interval aerobic exercise program seems to increase miR-150 contents in circulating EVPs obtained from women with normal weight or overweight. In accordance circulating EVPs miR-150-5p content is correlated with prognosis colorectal cancer, and ectopic expression of miR-150 may reduce cell proliferation, invasion and metastasis. Beyond the involvement of bioactive miRNAs into circulating EVPs and their pathways related to clinical and preclinical findings, this mini review intends to support further studies on EVPs cargo and exercise effects in oncology.
Collapse
Affiliation(s)
- Ionara Rodrigues Siqueira
- Graduate Program in Biological Sciences: Pharmacology and Therapeutics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Graduate Program in Biological Sciences: Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- *Correspondence: Ionara Rodrigues Siqueira,
| | - Rachael A. Batabyal
- Center for Genetic Medicine Research, Children’s National Research Institute, Washington, DC, United States
- Division of Emergency Medicine, Children’s National Hospital, Washington, DC, United States
- Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Robert Freishtat
- Center for Genetic Medicine Research, Children’s National Research Institute, Washington, DC, United States
| | - Laura Reck Cechinel
- Center for Genetic Medicine Research, Children’s National Research Institute, Washington, DC, United States
| |
Collapse
|
10
|
Peruzzi B, Urciuoli E, Mariani M, Chioma L, Tomao L, Montano I, Algeri M, Luciano R, Fintini D, Manco M. Circulating Extracellular Vesicles Impair Mesenchymal Stromal Cell Differentiation Favoring Adipogenic Rather than Osteogenic Differentiation in Adolescents with Obesity. Int J Mol Sci 2022; 24:447. [PMID: 36613885 PMCID: PMC9820591 DOI: 10.3390/ijms24010447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
Excess body weight has been considered beneficial to bone health because of its anabolic effect on bone formation; however, this results in a poor quality bone structure. In this context, we evaluated the involvement of circulating extracellular vesicles in the impairment of the bone phenotype associated with obesity. Circulating extracellular vesicles were collected from the plasma of participants with normal weight, as well as overweight and obese participants, quantified by flow cytometry analysis and used to treat mesenchymal stromal cells and osteoblasts to assess their effect on cell differentiation and activity. Children with obesity had the highest amount of circulating extracellular vesicles compared to controls. The treatment of mesenchymal stromal cells with extracellular vesicles from obese participants led to an adipogenic differentiation in comparison to vesicles from controls. Mature osteoblasts treated with extracellular vesicles from obese participants showed a reduction in differentiation markers in comparison to controls. Children with obesity who regularly performed physical exercise had a lower circulating extracellular vesicle amount in comparison to those with a sedentary lifestyle. This pilot study demonstrates how the high amount of circulating extracellular vesicles in children with obesity affects the bone phenotype and that physical activity can partially rescue this phenotype.
Collapse
Affiliation(s)
- Barbara Peruzzi
- Research Area for Multifactorial Diseases and Complex Phenotypes, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
| | - Enrica Urciuoli
- Research Area for Multifactorial Diseases and Complex Phenotypes, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
| | - Michela Mariani
- Unit of Endocrinology, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
| | - Laura Chioma
- Unit of Endocrinology, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
| | - Luigi Tomao
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
| | - Ilaria Montano
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
| | - Mattia Algeri
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
| | - Rosa Luciano
- Department of Laboratory Medicine, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
| | - Danilo Fintini
- Unit of Endocrinology, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
| | - Melania Manco
- Unit of Endocrinology, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
| |
Collapse
|
11
|
Kolodziej F, McDonagh B, Burns N, Goljanek-Whysall K. MicroRNAs as the Sentinels of Redox and Hypertrophic Signalling. Int J Mol Sci 2022; 23:ijms232314716. [PMID: 36499053 PMCID: PMC9737617 DOI: 10.3390/ijms232314716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/26/2022] Open
Abstract
Oxidative stress and inflammation are associated with skeletal muscle function decline with ageing or disease or inadequate exercise and/or poor diet. Paradoxically, reactive oxygen species and inflammatory cytokines are key for mounting the muscular and systemic adaptive responses to endurance and resistance exercise. Both ageing and lifestyle-related metabolic dysfunction are strongly linked to exercise redox and hypertrophic insensitivity. The adaptive inability and consequent exercise intolerance may discourage people from physical training resulting in a vicious cycle of under-exercising, energy surplus, chronic mitochondrial stress, accelerated functional decline and increased susceptibility to serious diseases. Skeletal muscles are malleable and dynamic organs, rewiring their metabolism depending on the metabolic or mechanical stress resulting in a specific phenotype. Endogenous RNA silencing molecules, microRNAs, are regulators of these metabolic/phenotypic shifts in skeletal muscles. Skeletal muscle microRNA profiles at baseline and in response to exercise have been observed to differ between adult and older people, as well as trained vs. sedentary individuals. Likewise, the circulating microRNA blueprint varies based on age and training status. Therefore, microRNAs emerge as key regulators of metabolic health/capacity and hormetic adaptability. In this narrative review, we summarise the literature exploring the links between microRNAs and skeletal muscle, as well as systemic adaptation to exercise. We expand a mathematical model of microRNA burst during adaptation to exercise through supporting data from the literature. We describe a potential link between the microRNA-dependent regulation of redox-signalling sensitivity and the ability to mount a hypertrophic response to exercise or nutritional cues. We propose a hypothetical model of endurance exercise-induced microRNA "memory cloud" responsible for establishing a landscape conducive to aerobic as well as anabolic adaptation. We suggest that regular aerobic exercise, complimented by a healthy diet, in addition to promoting mitochondrial health and hypertrophic/insulin sensitivity, may also suppress the glycolytic phenotype and mTOR signalling through miRNAs which in turn promote systemic metabolic health.
Collapse
Affiliation(s)
- Filip Kolodziej
- Department of Physiology, School of Medicine, CMNHS, University of Galway, H91TK33 Galway, Ireland
| | - Brian McDonagh
- Department of Physiology, School of Medicine, CMNHS, University of Galway, H91TK33 Galway, Ireland
| | - Nicole Burns
- Department of Physiology, School of Medicine, CMNHS, University of Galway, H91TK33 Galway, Ireland
| | - Katarzyna Goljanek-Whysall
- Department of Physiology, School of Medicine, CMNHS, University of Galway, H91TK33 Galway, Ireland
- Institute of Life Course and Medical Science, University of Liverpool, Liverpool L69 3BX, UK
| |
Collapse
|
12
|
Malvandi AM, Rastegar-Moghaddam SH, Ebrahimzadeh-Bideskan S, Lombardi G, Ebrahimzadeh-Bideskan A, Mohammadipour A. Targeting miR-21 in spinal cord injuries: a game-changer? Mol Med 2022; 28:118. [PMID: 36138359 PMCID: PMC9502625 DOI: 10.1186/s10020-022-00546-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/12/2022] [Indexed: 12/03/2022] Open
Abstract
Spinal cord injury (SCI) is a devastating neurological state causing physical disability, psychological stress and financial burden. SCI global rate is estimated between 250,000 and 500,000 individuals every year, of which 60% of victims are young, healthy males between 15 and 35 years. A variety of pathological conditions such as neuroinflammation, mitochondrial dysfunction, apoptosis, glial scar formation, blood-spinal cord barrier disruption, and angiogenesis disruption occur after SCI leading to a limitation in recovery. MicroRNAs (miRs) are endogenous and non-coding RNAs consisting of 22 nucleotides that regulate 60% of all human genes and involve several normal physiological processes and pathological conditions. miR-21 is among the most highly expressed miRs and its expression has been shown to increase one day after SCI and this elevation is sustained up to 28 days after injury. Overexpression of miR-21 exerts many protective effects against SCI by inhibiting neuroinflammation, improving blood-spinal cord barrier function, regulating angiogenesis, and controlling glial scar formation. It also exhibits anti-apoptotic effects in SCI by down-regulating the expression of PTEN, Spry2, and PDCD4. This review provides a novel therapeutic perspective for miR-21 in SCI.
Collapse
Affiliation(s)
- Amir Mohammad Malvandi
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Via Cristina Belgioioso 173, 20157, Milan, Italy.
| | - Seyed Hamidreza Rastegar-Moghaddam
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Anatomy and Cell Biology, Faculty of Medicine, School of Medicine, Mashhad University of Medical Sciences, Azadi Sq, Vakilabad Blvd, Mashhad, Iran
| | | | - Giovanni Lombardi
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Via Cristina Belgioioso 173, 20157, Milan, Italy.,Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, Poznań, Poland
| | - Alireza Ebrahimzadeh-Bideskan
- Department of Anatomy and Cell Biology, Faculty of Medicine, School of Medicine, Mashhad University of Medical Sciences, Azadi Sq, Vakilabad Blvd, Mashhad, Iran.,Applied Biomedical Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abbas Mohammadipour
- Department of Anatomy and Cell Biology, Faculty of Medicine, School of Medicine, Mashhad University of Medical Sciences, Azadi Sq, Vakilabad Blvd, Mashhad, Iran.,Applied Biomedical Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
13
|
Park S, Moon HY. Urinary extracellular vesicle as a potential biomarker of exercise-induced fatigue in young adult males. Eur J Appl Physiol 2022; 122:2175-2188. [PMID: 35781843 PMCID: PMC9463341 DOI: 10.1007/s00421-022-04995-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/18/2022] [Indexed: 11/30/2022]
Abstract
Purpose Previous studies have suggested that circulating extracellular vesicles (EVs) arise after high intensity exercise and urine could reflect the plasma proteome. Herein, we investigated the characteristic of urinary EVs from healthy young adult males who had completed a maximal effort exercise test. Methods Thirteen healthy men completed a 20 m shuttle run test (20 m SRT). Fresh urine samples were collected at first morning, right after, and 1 h rest after 20 m SRT. Also, blood lactate, heart rate, rating of perceived exertion, and blood pressure were measured before, right after, and 1 h rest after 20 m SRT. Urinary EVs were analyzed using Exoview instrument and microRNAs (miRNAs) sequencing on urinary EVs were performed. Results Urinary EVs increased significantly after exercise and returned to baseline value after 1 h of rest. miRNA sequencing on urinary EV revealed alterations in four miRNAs (1 up and 3 down) and nine miRNAs (2 up and 7 down) in pre- vs. post- and post- vs. post-1 h samples, respectively. Lastly, bioinformatic analysis of urinary EV miRNA suggests that predicted target genes could affect PI3K-Akt, mitogen-activated protein kinase, and insulin pathways by exercise. Conclusions Exercise to voluntary exhaustion increased the number of EVs in urine. Also, miRNAs in urinary EVs were altered after exercise. These findings could indicate the possibility of using the urinary EVs as a novel biomarker of acute exercise-induced fatigue.
Collapse
Affiliation(s)
- Suhong Park
- Department of Physical Education, Seoul National University, Seoul, Republic of Korea
| | - Hyo Youl Moon
- Department of Physical Education, Seoul National University, Seoul, Republic of Korea. .,Institute of Sport Science, Seoul National University, 71-1, 407, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
14
|
Zucker IH, Mann GE, Ghezzi P. Special issue "Extracellular Vesicles and Exosomes". Free Radic Biol Med 2022; 184:12-13. [PMID: 35358619 DOI: 10.1016/j.freeradbiomed.2022.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Irving H Zucker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Giovanni E Mann
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, Kings College London 150 Stamford Street, London, SE1 9NH, UK.
| | - Pietro Ghezzi
- Department of Clinical Experimental Medicine, Brighton and Sussex Medical School, Brighton, UK.
| |
Collapse
|