1
|
Chen H, Liu L, Wang Y, Hong L, Pan J, Yu X, Dai H. Managing Cardiovascular Risk in Patients with Autoimmune Diseases: Insights from a Nutritional Perspective. Curr Nutr Rep 2024; 13:718-728. [PMID: 39078574 DOI: 10.1007/s13668-024-00563-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2024] [Indexed: 07/31/2024]
Abstract
PURPOSE OF REVIEW Autoimmune diseases manifest as an immune system response directed against endogenous antigens, exerting a significant influence on a substantial portion of the population. Notably, a leading contributor to morbidity and mortality in this context is cardiovascular disease (CVD). Intriguingly, individuals with autoimmune disorders exhibit a heightened prevalence of CVD compared to the general population. The meticulous management of CV risk factors assumes paramount importance, given the current absence of a standardized solution to this perplexity. This review endeavors to address this challenge from a nutritional perspective. RECENT FINDINGS Emerging evidence suggests that inflammation, a common thread in autoimmune diseases, also plays a pivotal role in the pathogenesis of CVD. Nutritional interventions aimed at reducing inflammation have shown promise in mitigating cardiovascular risk. The integration of nutritional strategies into the management plans for patients with autoimmune diseases offers a holistic approach to reducing cardiovascular risk. While conventional pharmacological treatments remain foundational, the addition of targeted dietary interventions can provide a complementary pathway to improve cardiovascular outcomes.
Collapse
Affiliation(s)
- Huimin Chen
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, China
| | - Lu Liu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, China
| | - Yi Wang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, China
| | - Liqiong Hong
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, China
| | - Jiahui Pan
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, China
| | - Xiongkai Yu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, China
| | - Haijiang Dai
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, China.
| |
Collapse
|
2
|
Kakarla R, Vinjavarapu LA, Krishnamurthy S. Diet and Nutraceuticals for treatment and prevention of primary and secondary stroke: Emphasis on nutritional antiplatelet and antithrombotic agents. Neurochem Int 2024; 179:105823. [PMID: 39084351 DOI: 10.1016/j.neuint.2024.105823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/02/2024]
Abstract
Ischemic stroke is a devastating disease that causes morbidity and mortality. Malnutrition following ischemic stroke is common in stroke patients. During the rehabilitation, the death rates of stroke patients are significantly increased due to malnutrition. Nutritional supplements such as protein, vitamins, fish, fish oils, moderate wine or alcohol consumption, nuts, minerals, herbal products, food colorants, marine products, fiber, probiotics and Mediterranean diets have improved neurological functions in stroke patients as well as their quality of life. Platelets and their mediators contribute to the development of clots leading to stroke. Ischemic stroke patients are treated with thrombolytics, antiplatelets, and antithrombotic agents. Several systematic reviews, meta-analyses, and clinical trials recommended that consumption of these nutrients and diets mitigated the vascular, peripheral, and central complications associated with ischemic stroke (Fig. 2). Particularly, these nutraceuticals mitigated the platelet adhesion, activation, and aggregation that intended to reduce the risks of primary and secondary stroke. Although these nutraceuticals mitigate platelet dysfunction, there is a greater risk of bleeding if consumed excessively. Moreover, malnutrition must be evaluated and adequate amounts of nutrients must be provided to stroke patients during intensive care units and rehabilitation periods. In this review, we have summarized the importance of diet and nutraceuticals in ameliorating neurological complications and platelet dysfunction with an emphasis on primary and secondary prevention of ischemic stroke.
Collapse
Affiliation(s)
- Ramakrishna Kakarla
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, 522302, India
| | | | - Sairam Krishnamurthy
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University (IIT BHU), Varanasi, Uttar Pradesh, India.
| |
Collapse
|
3
|
Han H, Jia H, Wang YF, Song JP. Cardiovascular adaptations and pathological changes induced by spaceflight: from cellular mechanisms to organ-level impacts. Mil Med Res 2024; 11:68. [PMID: 39334239 PMCID: PMC11429428 DOI: 10.1186/s40779-024-00570-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 09/01/2024] [Indexed: 09/30/2024] Open
Abstract
The advancement in extraterrestrial exploration has highlighted the crucial need for studying how the human cardiovascular system adapts to space conditions. Human development occurs under the influence of gravity, shielded from space radiation by Earth's magnetic field, and within an environment characterized by 24-hour day-night cycles resulting from Earth's rotation, thus deviating from these conditions necessitates adaptive responses for survival. With upcoming manned lunar and Martian missions approaching rapidly, it is essential to understand the impact of various stressors induced by outer-space environments on cardiovascular health. This comprehensive review integrates insights from both actual space missions and simulated experiments on Earth, to analyze how microgravity, space radiation, and disrupted circadian affect cardiovascular well-being. Prolonged exposure to microgravity induces myocardial atrophy and endothelial dysfunction, which may be exacerbated by space radiation. Mitochondrial dysfunction and oxidative stress emerge as key underlying mechanisms along with disturbances in ion channel perturbations, cytoskeletal damage, and myofibril changes. Disruptions in circadian rhythms caused by factors such as microgravity, light exposure, and irregular work schedules, could further exacerbate cardiovascular issues. However, current research tends to predominantly focus on disruptions in the core clock gene, overlooking the multifactorial nature of circadian rhythm disturbances in space. Future space missions should prioritize targeted prevention strategies and early detection methods for identifying cardiovascular risks, to preserve astronaut health and ensure mission success.
Collapse
Affiliation(s)
- Han Han
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease; Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Hao Jia
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease; Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Yi-Fan Wang
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease; Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Jiang-Ping Song
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease; Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| |
Collapse
|
4
|
Cuervo L, McAlpine PL, Olano C, Fernández J, Lombó F. Low-Molecular-Weight Compounds Produced by the Intestinal Microbiota and Cardiovascular Disease. Int J Mol Sci 2024; 25:10397. [PMID: 39408727 PMCID: PMC11477366 DOI: 10.3390/ijms251910397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Cardiovascular disease is the main cause of mortality in industrialized countries, with over 500 million people affected worldwide. In this work, the roles of low-molecular-weight metabolites originating from the gut microbiome, such as short-chain fatty acids, hydrogen sulfide, trimethylamine, phenylacetic acid, secondary bile acids, indoles, different gases, neurotransmitters, vitamins, and complex lipids, are discussed in relation to their CVD-promoting or preventing activities. Molecules of mixed microbial and human hepatic origin, such as trimethylamine N-oxide and phenylacetylglutamine, are also presented. Finally, dietary agents with cardioprotective effects, such as probiotics, prebiotics, mono- and poly-unsaturated fatty acids, carotenoids, and polyphenols, are also discussed. A special emphasis is given to their gut microbiota-modulating properties.
Collapse
Affiliation(s)
- Lorena Cuervo
- Research Group BIOMIC (Biosynthesis of Antitumor Molecules), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain; (L.C.); (C.O.)
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), 33006 Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), 33006 Oviedo, Spain
| | - Patrick L. McAlpine
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), 33006 Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), 33006 Oviedo, Spain
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Carlos Olano
- Research Group BIOMIC (Biosynthesis of Antitumor Molecules), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain; (L.C.); (C.O.)
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), 33006 Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), 33006 Oviedo, Spain
| | - Javier Fernández
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), 33006 Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), 33006 Oviedo, Spain
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Felipe Lombó
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), 33006 Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), 33006 Oviedo, Spain
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain
| |
Collapse
|
5
|
Kim S. Protection of α-Tocopherol from UV-Induced Degradation by Encapsulation into Zein Nanoparticles. Molecules 2024; 29:3911. [PMID: 39202990 PMCID: PMC11356990 DOI: 10.3390/molecules29163911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/10/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Vitamin E is a fat-soluble vitamin with several forms. Among these, α-tocopherol (TOC) is preferentially absorbed and accumulated in humans. In the body, it acts as an antioxidant, helping to protect cells from the damage caused by free radicals. It is an organic chemical compound that undergoes degradation upon irradiation with UV light. To protect this bioactive chemical compound from UV light degradation, encapsulation was carried out using zein as a shell material. Due to the unique phase diagram of TOC in aqueous ethanol, the encapsulation efficiency was >99%. The size of encapsulated particles was ~300 nm or smaller, and the thickness of the shell wall was ~30 nm. The presented procedure offers the most simple and efficient encapsulation process that yields edible products. The investigation of the irradiation effect of UV on TOC revealed that the encapsulation effectively blocks UV light and prevents TOC from being degraded. The presented procedure offers an instantaneous and highly efficient encapsulation process, which yields edible products.
Collapse
Affiliation(s)
- Sanghoon Kim
- Plant Polymer Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, USDA, 1815 N. University Street, Peoria, IL 61604, USA
| |
Collapse
|
6
|
Raggi P, Milic J, Manicardi M, Cinque F, Swain MG, Sebastiani G, Guaraldi G. Metabolic dysfunction-associated steatotic liver disease: An opportunity for collaboration between cardiology and hepatology. Atherosclerosis 2024; 392:117523. [PMID: 38522165 DOI: 10.1016/j.atherosclerosis.2024.117523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/07/2024] [Accepted: 03/14/2024] [Indexed: 03/26/2024]
Abstract
Altered metabolic function has many detrimental effects on the body that can manifest as cardiovascular and liver diseases. Traditional approaches to understanding and treating metabolic dysfunction-associated disorders have been organ-centered, leading to silo-type disease care. However, given the broad impact that systemic metabolic dysfunction has on the human body, approaches that simultaneously involve multiple medical specialists need to be developed and encouraged to optimize patient outcomes. In this review, we highlight how several of the treatments developed for cardiac care may have a beneficial effect on the liver and vice versa, suggesting that there is a need to target the disease process, rather than specifically target the cardiovascular or liver specific sequelae of metabolic dysfunction.
Collapse
Affiliation(s)
- Paolo Raggi
- Department of Medicine and Division of Cardiology, University of Alberta, Edmonton, Alberta, Canada.
| | - Jovana Milic
- Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, Italy
| | - Marcella Manicardi
- Cardiology Department, University of Modena and Reggio Emilia, Policlinico di Modena, Modena, Italy
| | - Felice Cinque
- SC-Medicina Indirizzo Metabolico, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico of Milan, Department of Pathophysiology and Transplantation, University of Milan, Italy; Division of Gastroenterology and Hepatology and Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada
| | - Mark G Swain
- Department of Medicine, University of Calgary Liver Unit, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Giada Sebastiani
- Division of Gastroenterology and Hepatology and Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada; Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Giovanni Guaraldi
- Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, Italy; Department of Infectious Diseases, Azienda Ospedaliero-Universitaria, Policlinico of Modena, Modena, Italy
| |
Collapse
|
7
|
Fang W, Xie S, Deng W. Ferroptosis mechanisms and regulations in cardiovascular diseases in the past, present, and future. Cell Biol Toxicol 2024; 40:17. [PMID: 38509409 PMCID: PMC10955039 DOI: 10.1007/s10565-024-09853-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/27/2024] [Indexed: 03/22/2024]
Abstract
Cardiovascular diseases (CVDs) are the main diseases that endanger human health, and their risk factors contribute to high morbidity and a high rate of hospitalization. Cell death is the most important pathophysiology in CVDs. As one of the cell death mechanisms, ferroptosis is a new form of regulated cell death (RCD) that broadly participates in CVDs (such as myocardial infarction, heart transplantation, atherosclerosis, heart failure, ischaemia/reperfusion (I/R) injury, atrial fibrillation, cardiomyopathy (radiation-induced cardiomyopathy, diabetes cardiomyopathy, sepsis-induced cardiac injury, doxorubicin-induced cardiac injury, iron overload cardiomyopathy, and hypertrophic cardiomyopathy), and pulmonary arterial hypertension), involving in iron regulation, metabolic mechanism and lipid peroxidation. This article reviews recent research on the mechanism and regulation of ferroptosis and its relationship with the occurrence and treatment of CVDs, aiming to provide new ideas and treatment targets for the clinical diagnosis and treatment of CVDs by clarifying the latest progress in CVDs research.
Collapse
Affiliation(s)
- Wenxi Fang
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China
| | - Saiyang Xie
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China
| | - Wei Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China.
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China.
| |
Collapse
|
8
|
Shi Z, Wan Y, Peng M, Zhang J, Gao Z, Wang X, Zhu F. Vitamin E: An assistant for black soldier fly to reduce cadmium accumulation and toxicity. ENVIRONMENT INTERNATIONAL 2024; 185:108547. [PMID: 38458120 DOI: 10.1016/j.envint.2024.108547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/10/2024]
Abstract
Cadmium (Cd) is a toxic heavy metal associated with osteoporosis, liver, and kidney disease. The black soldier fly (BSF) Hermetia illucens may be exposed to Cd during the transformation of livestock manure. The BSF has a high tolerance to Cd. In the previous work of the laboratory, we found that vitamin E (VE) may play a role in the tolerance of BSF to Cd exposure. The main findings are as follows: The BSF larvae pretreated with exogenous VE had heavier body weight, lower content and toxicity of Cd under similar Cd exposure. Even in high Cd exposure at the concentrations of 300 and 700 mg/kg, the BSF larvae pretreated with exogenous VE at a concentration of 100 mg/kg still reduced the Cd toxicity to 85.33 % and 84.43 %, respectively. The best-fitting models showed that metallothionein (MT) content, oxidative damage (8-hydroxydeoxyguanosine content, malondialdehyde content), antioxidant power (total antioxidant power, peroxidase activity) had a great influence on content and toxicity of Cd bioaccumulated in the larvae. The degree of oxidative damage was reduced in the larvae with exogenous VE pretreatments. This variation can be explained by their changed MT content and increased antioxidant power because of exogenous VE. These results reveal the roles of VE in insects defense against Cd exposure and provide a new option for the prevention and therapy of damage caused by Cd exposure.
Collapse
Affiliation(s)
- Zhihui Shi
- Hubei International Scientific and Technological Cooperation Base of Waste Conversion by Insects, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yujia Wan
- Hubei International Scientific and Technological Cooperation Base of Waste Conversion by Insects, Huazhong Agricultural University, Wuhan 430070, China.
| | - Miao Peng
- Hubei International Scientific and Technological Cooperation Base of Waste Conversion by Insects, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jie Zhang
- Hubei International Scientific and Technological Cooperation Base of Waste Conversion by Insects, Huazhong Agricultural University, Wuhan 430070, China.
| | - Zhenghui Gao
- School of Engineering, Cardiff University, Cardiff CF24 3AA, UK.
| | - Xiaoping Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan 430070, China.
| | - Fen Zhu
- Hubei International Scientific and Technological Cooperation Base of Waste Conversion by Insects, Huazhong Agricultural University, Wuhan 430070, China; Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
9
|
Reyes-Goya C, Santana-Garrido Á, Espinosa-Martín P, Vázquez CM, Mate A. Wild and cultivated olive trees: Nutraceutical insights of extra virgin olive oils in cardiovascular and ocular diseases. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166904. [PMID: 37793462 DOI: 10.1016/j.bbadis.2023.166904] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/06/2023]
Abstract
Extra virgin olive oil (EVOO) from Olea europaea (cultivated olive tree) and the oil obtained from the wild olive variety or acebuche (ACE oil from Olea oleaster) contain an extraordinary number of bioactive molecules. These include oleic acid, sterols, tocopherols, triterpene compounds, and polyphenols. Both oils are known for their healthy properties and are considered to be a nutraceutical tool against cardiovascular diseases, including arterial hypertension, preeclampsia, and ocular diseases such as glaucoma or diabetic retinopathy. The benefits of EVOO and ACE oil stem from their anti-inflammatory, antioxidant, and anti-cancer properties. They also have potential as prebiotic compounds. In this update, we synthesise and illustrate the various characteristics and beneficial effects of olive oils from different varieties of olive trees, with special emphasis on Olea oleaster, also known as Olea europaea, L. var. sylvestris.
Collapse
Affiliation(s)
- C Reyes-Goya
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; Epidemiología Clínica y Riesgo Cardiovascular, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, 41013 Sevilla, Spain.
| | - Á Santana-Garrido
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; Epidemiología Clínica y Riesgo Cardiovascular, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, 41013 Sevilla, Spain
| | - P Espinosa-Martín
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - C M Vázquez
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; Epidemiología Clínica y Riesgo Cardiovascular, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, 41013 Sevilla, Spain.
| | - A Mate
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; Epidemiología Clínica y Riesgo Cardiovascular, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, 41013 Sevilla, Spain
| |
Collapse
|
10
|
Kello N, Cho YM. Natural supplements in antiphospholipid syndrome: A case for further study. Clin Immunol 2024; 258:109848. [PMID: 38036277 DOI: 10.1016/j.clim.2023.109848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/27/2023] [Accepted: 11/07/2023] [Indexed: 12/02/2023]
Abstract
Antiphospholipid syndrome (APS) is an autoimmune disorder characterized by thrombotic events and/or pregnancy complications in the presence of persistently positive antiphospholipid antibodies (aPL). Although long-term anticoagulation with vitamin K antagonists is considered standard of care, there is an unmet need for safe therapeutics as primary thromboprophylaxis or adjuncts to standard of care in APS. APS is driven by oxidative stress, procoagulant, proinflammatory and angiogenic pathways. For these reasons there has been an increased interest into the investigation of antithrombotic, anti-inflammatory and anti-oxidant properties of natural supplements in APS. The objective of this review is to summarize the mechanistic, epidemiologic and clinical evidence behind the use of natural supplements in APS, with a specific focus on vitamin D, omega-3 fatty acids, coenzyme Q10, gingerol, and isoquercetin. This review should serve as a compelling argument for the future study of natural supplements in APS.
Collapse
Affiliation(s)
- Nina Kello
- Northwell Health, Division of Rheumatology, Donald and Barbara Zucker School of Medicine, Great Neck, NY, United States of America.
| | - Young Min Cho
- Northwell Health, Division of Rheumatology, Donald and Barbara Zucker School of Medicine, Great Neck, NY, United States of America
| |
Collapse
|
11
|
Li XY, Meng L, Shen L, Ji HF. Regulation of gut microbiota by vitamin C, vitamin E and β-carotene. Food Res Int 2023; 169:112749. [PMID: 37254375 DOI: 10.1016/j.foodres.2023.112749] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 01/04/2023] [Accepted: 03/19/2023] [Indexed: 06/01/2023]
Abstract
Vitamin C (VC), vitamin E (VE) and β-carotene (βC) are representative dietary antioxidants, which exist in daily diet and can increase the antioxidant capacity of body fluids, cells and tissues. The health benefits of vitamins like VC, VE and βC are widely demonstrated. Given that the strong associations between the gut microbiota and host health or a range of diseases has been extensively reported, it is important to explore the modulatory effects of known vitamins on the gut microbiota. Herein, this article reviews the effects of VC, VE and βC on the gut microbiota. Totally, 19 studies were included, of which eight were related to VC, nine to VE, and six to βC. Overall, VC, VE and βC can provide health benefits to the host by modulating the composition and metabolic activity of the gut microbiota, improving intestinal barrier function and maintaining the normal function of the immune system. Two perspectives are proposed for future studies: i) roles of known antioxidant activity of vitamins in regulating the gut microbiota and its molecular mechanism need to be further studied; ii) causal relationships between the regulatory effects of vitamins on gut microbiota and host health still remains to be further verified.
Collapse
Affiliation(s)
- Xin-Yu Li
- Institute of Biomedical Research, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, People's Republic of China
| | - Lei Meng
- Institute of Biomedical Research, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, People's Republic of China
| | - Liang Shen
- Institute of Biomedical Research, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, People's Republic of China.
| | - Hong-Fang Ji
- Institute of Biomedical Research, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, People's Republic of China; School of Life Sciences, Ludong University, Yantai, People's Republic of China.
| |
Collapse
|
12
|
Le X, Zhang W, Sun G, Fan J, Zhu M. Research on the Differences in Phenotypic Traits and Nutritional Composition of Acer Truncatum Bunge Seeds from Various Regions. Foods 2023; 12:2444. [PMID: 37444182 DOI: 10.3390/foods12132444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Acer truncatum Bunge (ATB) is an excellent edible woody oil tree species since it bears a huge amount of fruit and has strong adaptability to be widely cultivated. Selecting an optimal cultivation region for ATB is crucial to improving China's woody oil industrialization. Chemical analysis, correlation analysis, and affiliation function values were used in the present research to systematically analyze the phenotypic traits, organic compound content, and seed oil chemical composition of the seeds of ATB from nine regions. The average contents of oil, protein, and soluble sugar in ATB seeds were 43.30%, 17.40%, and 4.57%, respectively. Thirteen fatty acids were identified from ATB seed oil, the highest content of which was linoleic acid (37.95%) and nervonic acid content was 5-7%. The maximum content of unsaturated fatty acids in ATB seed oil was 90.09%. Alpha-tocopherol content was up to 80.75 mg/100 g. The degree of variation in seed quality traits (25.96%) was stronger than in morphological traits (14.55%). Compared to environmental factors, the phenotypic traits of seeds contribute more to organic compounds and fatty acids. Combining the values of the indicator affiliation functions, Gilgarang, Tongliao, Inner Mongolia was selected as the optimal source of ATB for fruit applications from nine regions.
Collapse
Affiliation(s)
- Xiaona Le
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100, China
- Northwest Research Center of Rural Renewable Energy Exploitation and Utilization of M.O.A, Northwest A&F University, Yangling 712100, China
| | - Wen Zhang
- Northwest Research Center of Rural Renewable Energy Exploitation and Utilization of M.O.A, Northwest A&F University, Yangling 712100, China
| | - Guotao Sun
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100, China
- Northwest Research Center of Rural Renewable Energy Exploitation and Utilization of M.O.A, Northwest A&F University, Yangling 712100, China
| | - Jinshuan Fan
- College of Forestry, Northwest A&F University, Yangling 712100, China
| | - Mingqiang Zhu
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100, China
- Northwest Research Center of Rural Renewable Energy Exploitation and Utilization of M.O.A, Northwest A&F University, Yangling 712100, China
- College of Forestry, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
13
|
Shao C, Xu L, Lei P, Wang W, Feng S, Ye J, Zhong B. Metabolomics to identify fingerprints of carotid atherosclerosis in nonobese metabolic dysfunction-associated fatty liver disease. J Transl Med 2023; 21:12. [PMID: 36624524 PMCID: PMC9830861 DOI: 10.1186/s12967-022-03760-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/06/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND/AIMS Nonobese metabolic dysfunction-associated fatty liver disease (MAFLD) is paradoxically associated with improved metabolic and pathological features at diagnosis but similar cardiovascular diseases (CVD) prognosis to obese MAFLD. We aimed to utilize the metabolomics to identify the potential metabolite profiles accounting for this phenomenon. METHODS This prospective multicenter cross-sectional study was conducted in China enrolling derivation and validation cohorts. Liquid chromatography coupled with mass spectrometry and gas chromatography-mass spectrometry were applied to perform a metabolomics measurement. RESULTS The study involved 120 MAFLD patients and 60 non-MAFLD controls in the derivation cohort. Controls were divided into two groups according to the presence of carotid atherosclerosis (CAS). The MAFLD group was further divided into nonobese MAFLD with/without CAS groups and obese MAFLD with/without CAS groups. Fifty-six metabolites were statistically significant for discriminating the six groups. Among the top 10 metabolites related to CAS in nonobese MAFLD, only phosphatidylethanolamine (PE 20:2/16:0), phosphatidylglycerol (PG 18:0/20:4) and de novo lipogenesis (16:0/18:2n-6) achieved significant areas under the ROC curve (AUCs, 0.67, p = 0.03; 0.79, p = 0.02; 0.63, p = 0.03, respectively). The combination of these three metabolites and liver stiffness achieved a significantly higher AUC (0.92, p < 0.01). In obese MAFLD patients, cystine was found to be significant with an AUC of 0.69 (p = 0.015), followed by sphingomyelin (SM 16:1/18:1) (0.71, p = 0.004) and de novo lipogenesis (16:0/18:2n-6) (0.73, p = 0.004). The combination of these three metabolites, liver fat content and age attained a significantly higher AUC of 0.91 (p < 0.001). The AUCs of these metabolites remained highly significant in the independent validation cohorts involving 200 MAFLD patients and 90 controls. CONCLUSIONS Diagnostic models combining different metabolites according to BMI categories could raise the accuracy of identifying subclinical CAS. Trial registration The study protocol was approved by the local ethics committee and all the participants have provided written informed consent (Approval number: [2014] No. 112, registered at the Chinese Clinical Trial Registry, ChiCTR-ChiCTR2000034197).
Collapse
Affiliation(s)
- Congxiang Shao
- grid.12981.330000 0001 2360 039XDepartment of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan II Road, Yuexiu District, Guangzhou, 510080 China
| | - Lishu Xu
- grid.410643.4Department of Gastroenterology and Hepatology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, and Guangdong Provincial Geriatrics Institute, No. 106 Zhongshan II Road, Yuexiu District, Guangzhou, China
| | - Pingguang Lei
- Department of Gastroenterology, Shenzhen Baoan District Songgang People’s Hospital, No. 2, Shajiang Road, Songgang Street, Bao’an District, Shenzhen, China
| | - Wei Wang
- grid.12981.330000 0001 2360 039XDepartment of Medical Ultrasonics, The First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan II Road, Yuexiu District, Guangzhou, China
| | - Shiting Feng
- grid.12981.330000 0001 2360 039XDepartment of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan II Road, Yuexiu District, Guangzhou, China
| | - Junzhao Ye
- grid.12981.330000 0001 2360 039XDepartment of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan II Road, Yuexiu District, Guangzhou, 510080 China
| | - Bihui Zhong
- grid.12981.330000 0001 2360 039XDepartment of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan II Road, Yuexiu District, Guangzhou, 510080 China
| |
Collapse
|
14
|
Yousuf S, Shabir S, Kauts S, Minocha T, Obaid AA, Khan AA, Mujalli A, Jamous YF, Almaghrabi S, Baothman BK, Hjazi A, Singh SK, Vamanu E, Singh MP. Appraisal of the Antioxidant Activity, Polyphenolic Content, and Characterization of Selected Himalayan Herbs: Anti-Proliferative Potential in HepG2 Cells. Molecules 2022; 27:molecules27238629. [PMID: 36500720 PMCID: PMC9735473 DOI: 10.3390/molecules27238629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Natural antioxidants derived from plants have played a vital role in preventing a wide range of human chronic conditions and provide novel bioactive leads for investigators in pharmacotherapy discovery. This work was designed to examine the ethnopharmacological role of Urtica dioica (UD), Capsella bursa-pastoris (CBP), and Inula racemosa (IR). The total phenolic and flavonoid contents (TPC and TFC) were illustrated through colorimetric assays, while the antioxidant activity was investigated through DPPH and ABTS assays. The evaluation of phytochemicals by FT-IR of UD and CBP revealed high contents of aliphatic amines, while IR showed a major peak for ketones. The antioxidant activity, TPC and TFC were highest in the ethanol extract of UD, followed by CBP, and IR showed the lowest activity. All of the extracts revealed significant antioxidant capacities along a dosage gradient. Through a HPLC analysis at a wavelength of 280 nm, UD leaves demonstrated an intense peak of quercetin, and the peak for rutin was less intense. CBP (whole plant), instead, demonstrated a major yield of rutin, and a peak for quercetin was not observed in CBP. IR (rhizomes) showed both quercetin and rutin. All of the extracts were significantly cytotoxic to HepG2 cells after 48 h with the trend IR > UD > CBP. The outcomes of this study may be effective in the selection of specific plants as realistic sources of the bioactive components that might be useful in the nutraceutical progression and other biomedical efficacies.
Collapse
Affiliation(s)
- Sumaira Yousuf
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India
| | - Shabnam Shabir
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India
| | - Simran Kauts
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India
| | - Tarun Minocha
- Department of Zoology, Institute of Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Ahmad A. Obaid
- Department of Laboratory Medicine, College of Applied Medical Sciences, Umm Al-Qura University, Makkah 24382, Saudi Arabia
| | - Anmar A. Khan
- Department of Laboratory Medicine, College of Applied Medical Sciences, Umm Al-Qura University, Makkah 24382, Saudi Arabia
| | - Abdulrahman Mujalli
- Department of Laboratory Medicine, College of Applied Medical Sciences, Umm Al-Qura University, Makkah 24382, Saudi Arabia
| | - Yahya F. Jamous
- National Center of Vaccines and Bio Processing, King Abdulaziz City for Science and Technology (KACST), Riyadh 12354, Saudi Arabia
| | - Sarah Almaghrabi
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Innovations in Personalized Medicine (CIPM), King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - Bandar K. Baothman
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences in Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Ab dulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Sandeep K. Singh
- Indian Scientific Education and Technology Foundation, Lucknow 226002, India
- Correspondence: (S.K.S.); (E.V.); (M.P.S.)
| | - Emanuel Vamanu
- Faculty of Biotechnology, University of Agricultural Sciences and Veterinary Medicine, 011464 Bucharest, Romania
- Correspondence: (S.K.S.); (E.V.); (M.P.S.)
| | - Mahendra P. Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India
- Department of Zoology, DDU Gorakhpur University, Gorakhpur 273009, India
- Correspondence: (S.K.S.); (E.V.); (M.P.S.)
| |
Collapse
|
15
|
Regulation of Cholesterol Metabolism by Phytochemicals Derived from Algae and Edible Mushrooms in Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2022; 23:ijms232213667. [PMID: 36430146 PMCID: PMC9697193 DOI: 10.3390/ijms232213667] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
Cholesterol synthesis occurs in almost all cells, but mainly in hepatocytes in the liver. Cholesterol is garnering increasing attention for its central role in various metabolic diseases. In addition, cholesterol is one of the most essential elements for cells as both a structural source and a player participating in various metabolic pathways. Accurate regulation of cholesterol is necessary for the proper metabolism of fats in the body. Disturbances in cholesterol homeostasis have been linked to various metabolic diseases, such as hyperlipidemia and non-alcoholic fatty liver disease (NAFLD). For many years, the use of synthetic chemical drugs has been effective against many health conditions. Furthermore, from ancient to modern times, various plant-based drugs have been considered local medicines, playing important roles in human health. Phytochemicals are bioactive natural compounds that are derived from medicinal plants, fruit, vegetables, roots, leaves, and flowers and are used to treat a variety of diseases. They include flavonoids, carotenoids, polyphenols, polysaccharides, vitamins, and more. Many of these compounds have been proven to have antioxidant, anti-inflammatory, antiobesity and antihypercholesteremic activity. The multifaceted role of phytochemicals may provide health benefits to humans with regard to the treatment and control of cholesterol metabolism and the diseases associated with this disorder, such as NAFLD. In recent years, global environmental climate change, the COVID-19 pandemic, the current war in Europe, and other conflicts have threatened food security and human nutrition worldwide. This further emphasizes the urgent need for sustainable sources of functional phytochemicals to be included in the food industry and dietary habits. This review summarizes the latest findings on selected phytochemicals from sustainable sources-algae and edible mushrooms-that affect the synthesis and metabolism of cholesterol and improve or prevent NAFLD.
Collapse
|
16
|
Abstract
Thrombosis is a common disorder with a relevant burden of morbidity and mortality worldwide, particularly among elderly patients. Growing evidence demonstrated a direct role of oxidative stress in thrombosis, with various cell types contributing to this process. Among them, erythrocytes produce high quantities of intracellular reactive oxygen species (ROS) by NADPH oxidase activation and haemoglobin autoxidation. Concomitantly, extracellular ROS released by other cells in the blood flow can be uptaken and accumulate within erythrocytes. This oxidative milieu can alter erythrocyte membrane structure, leading to an impaired erythrocyte function, and promoting erythrocytes lysis, binding to endothelial cells, activation of platelet and of coagulation factors, phosphatidylserine exposure and release of microvesicles. Moreover, these abnormal erythrocytes are able to adhere to the vessel wall, contributing to thrombin generation within the thrombus. This process results in accelerated haemolysis and in a hypercoagulable state, in which structurally impaired erythrocytes contribute to increase thrombus size, to reduce its permeability and susceptibility to lysis. However, the wide plethora of mechanisms by which oxidised erythrocytes contribute to thrombosis is not completely elucidated. This review discusses the main biochemical aspects linking erythrocytes, oxidative stress and thrombosis, addressing their potential implication for clinical and therapeutic management.
Collapse
|
17
|
Szczepańska E, Białek-Dratwa A, Janota B, Kowalski O. Dietary Therapy in Prevention of Cardiovascular Disease (CVD)—Tradition or Modernity? A Review of the Latest Approaches to Nutrition in CVD. Nutrients 2022; 14:nu14132649. [PMID: 35807830 PMCID: PMC9268367 DOI: 10.3390/nu14132649] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/19/2022] [Accepted: 06/22/2022] [Indexed: 02/06/2023] Open
Abstract
The development of cardiovascular diseases is undoubtedly influenced by improper dietary behavior. The most common mistakes include irregularity of meal consumption, high dietary atherogenicity: snacking on sweets between meals, low supply of dietary fiber, unsaturated fatty acids, legume seeds, and high supply of meat and meat products. Among many food components, some are characterized by a specific cardioprotective effect, which means that their supply of food may prevent the occurrence of cardiovascular disease or improve the health of the sick. Coenzyme Q10 (CoQ10) is one of the ingredients showing cardioprotective effects on the heart and blood vessels. Antioxidant and lipid profile-enhancing effects are also attributed to sitosterol which is one of the plant-derived sterols. A very important argument indicating the necessity of a varied diet rich in a variety of plant products is the beneficial effect of polyphenols, which are most abundant in multicolored vegetables and fruits. Numerous studies show their effectiveness in lowering blood pressure, improving lipid profile, and regeneration of vascular endothelium. The collected publications from the field of lifestyle medicine can be a source of knowledge for dieticians, physicians, and people associated with physical culture and human mental health to prevent the development of cardiovascular diseases and reduce the risk of death from this cause.
Collapse
Affiliation(s)
- Elżbieta Szczepańska
- Department of Human Nutrition, Department of Dietetics, Faculty of Health Sciences in Bytom, Medical University of Silesia in Katowice, ul. Jordana 19, 41-808 Zabrze, Poland; (E.S.); (O.K.)
| | - Agnieszka Białek-Dratwa
- Department of Human Nutrition, Department of Dietetics, Faculty of Health Sciences in Bytom, Medical University of Silesia in Katowice, ul. Jordana 19, 41-808 Zabrze, Poland; (E.S.); (O.K.)
- Correspondence: ; Tel.: +48-(0-32)-275-51-95
| | - Barbara Janota
- Doctoral School of the Medical University of Silesia in Katowice, Faculty of Health Sciences in Bytom, Medical University of Silesia in Katowice, ul. Piekarska 18, 41-902 Bytom, Poland;
| | - Oskar Kowalski
- Department of Human Nutrition, Department of Dietetics, Faculty of Health Sciences in Bytom, Medical University of Silesia in Katowice, ul. Jordana 19, 41-808 Zabrze, Poland; (E.S.); (O.K.)
- Department of Cardiology, Congenital Heart Diseases and Electrotherapy, Silesian Center for Heart Diseases, ul. Marii Curie-Skłodowskiej 9, 41-800 Zabrze, Poland
| |
Collapse
|
18
|
Di Sano C, Lazzara V, Durante M, D’Anna C, Bonura A, Dino P, Uasuf CG, Pace E, Lenucci MS, Bruno A. The Protective Anticancer Effect of Natural Lycopene Supercritical CO 2 Watermelon Extracts in Adenocarcinoma Lung Cancer Cells. Antioxidants (Basel) 2022; 11:antiox11061150. [PMID: 35740047 PMCID: PMC9219748 DOI: 10.3390/antiox11061150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 11/16/2022] Open
Abstract
Carotenoids may have different effects on cancer and its progression. The safety of carotenoid supplements was evaluated in vitro on human non-small cell lung cancer (NSCLC) adenocarcinoma A549 cells by the administration of three different oleoresins containing lycopene and other lipophilic phytochemicals, such as tocochromanols. The oleoresins, obtained by the supercritical CO2 green extraction technology from watermelon (Lyc W), gấc(Lyc G) and tomato (Lyc T) and chlatrated in α-cyclodextrins, were tested in comparison to synthetic lycopene (Lyc S), by cell cycle, Annexin V-FITC/PI, clonogenic test, Mytosox, intracellular ROS, Western Blot for NF-kB and RT-PCR and ELISA for IL-8. The extracts administered at the same lycopene concentration (10 µM) showed conflicting behaviors: Lyc W, with the highest lycopene/tocochromanols ratio, significantly increased cell apoptosis, mitochondrial stress, intracellular ROS, NF-kB and IL-8 expression and significantly decreased cell proliferation, whereas Lyc G and Lyc T significantly increased only cell proliferation. Lyc S treatment was ineffective. The highest amount of lycopene in Lyc W was able to counteract and revert the cell survival effect of tocochromanols supporting the importance of evaluating the lycopene bio-availability and the real effect of antioxidant tocochromanols' supplementation which may not only have no anticancer benefits but may even increase cancer aggressivity.
Collapse
Affiliation(s)
- Caterina Di Sano
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), 90146 Palermo, Italy; (C.D.S.); (V.L.); (C.D.); (A.B.); (P.D.); (C.G.U.); (E.P.)
| | - Valentina Lazzara
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), 90146 Palermo, Italy; (C.D.S.); (V.L.); (C.D.); (A.B.); (P.D.); (C.G.U.); (E.P.)
| | - Miriana Durante
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), 73100 Lecce, Italy;
| | - Claudia D’Anna
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), 90146 Palermo, Italy; (C.D.S.); (V.L.); (C.D.); (A.B.); (P.D.); (C.G.U.); (E.P.)
| | - Angela Bonura
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), 90146 Palermo, Italy; (C.D.S.); (V.L.); (C.D.); (A.B.); (P.D.); (C.G.U.); (E.P.)
| | - Paola Dino
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), 90146 Palermo, Italy; (C.D.S.); (V.L.); (C.D.); (A.B.); (P.D.); (C.G.U.); (E.P.)
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (B.N.D.), University of Palermo, 90127 Palermo, Italy
| | - Carina Gabriela Uasuf
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), 90146 Palermo, Italy; (C.D.S.); (V.L.); (C.D.); (A.B.); (P.D.); (C.G.U.); (E.P.)
| | - Elisabetta Pace
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), 90146 Palermo, Italy; (C.D.S.); (V.L.); (C.D.); (A.B.); (P.D.); (C.G.U.); (E.P.)
| | - Marcello Salvatore Lenucci
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy
- Correspondence: (M.S.L.); (A.B.)
| | - Andreina Bruno
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), 90146 Palermo, Italy; (C.D.S.); (V.L.); (C.D.); (A.B.); (P.D.); (C.G.U.); (E.P.)
- Correspondence: (M.S.L.); (A.B.)
| |
Collapse
|
19
|
Zhang Q, Fu H, Gong W, Cao F, Wu T, Hu F. Plumbagin protects H9c2 cardiomyocytes against TBHP‑induced cytotoxicity by alleviating ROS‑induced apoptosis and modulating autophagy. Exp Ther Med 2022; 24:501. [PMID: 35837065 DOI: 10.3892/etm.2022.11428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/24/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Qianrui Zhang
- Department of Pharmacy, General Hospital of the Yangtze River Shipping, Wuhan Brain Hospital, Wuhan, Hubei 430014, P.R. China
| | - Haitan Fu
- Department of Pharmacy, General Hospital of the Yangtze River Shipping, Wuhan Brain Hospital, Wuhan, Hubei 430014, P.R. China
| | - Wenjuan Gong
- Department of Pharmacy, General Hospital of the Yangtze River Shipping, Wuhan Brain Hospital, Wuhan, Hubei 430014, P.R. China
| | - Feng Cao
- Department of Pharmacy, General Hospital of the Yangtze River Shipping, Wuhan Brain Hospital, Wuhan, Hubei 430014, P.R. China
| | - Tao Wu
- Department of Pharmacy, Wuhan Fourth Hospital, Wuhan, Hubei 430000, P.R. China
| | - Fei Hu
- Department of Neurosurgery, General Hospital of the Yangtze River Shipping, Wuhan Brain Hospital, Wuhan, Hubei 430014, P.R. China
| |
Collapse
|
20
|
Deng R, Gao J, Yi J, Liu P. Could peony seeds oil become a high-quality edible vegetable oil? The nutritional and phytochemistry profiles, extraction, health benefits, safety and value-added-products. Food Res Int 2022; 156:111200. [DOI: 10.1016/j.foodres.2022.111200] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/25/2022] [Accepted: 03/27/2022] [Indexed: 01/12/2023]
|
21
|
Vitamin Supplementation Protects against Nanomaterial-Induced Oxidative Stress and Inflammation Damages: A Meta-Analysis of In Vitro and In Vivo Studies. Nutrients 2022; 14:nu14112214. [PMID: 35684016 PMCID: PMC9182933 DOI: 10.3390/nu14112214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/19/2022] [Accepted: 05/25/2022] [Indexed: 12/21/2022] Open
Abstract
The extensive applications of nanomaterials have increased their toxicities to human health. As a commonly recommended health care product, vitamins have been reported to exert protective roles against nanomaterial-induced oxidative stress and inflammatory responses. However, there have been some controversial conclusions in regards to this field of research. This meta-analysis aimed to comprehensively evaluate the roles and mechanisms of vitamins for cells and animals exposed to nanomaterials. Nineteen studies (seven in vitro, eleven in vivo and one in both) were enrolled by searching PubMed, EMBASE, and Cochrane Library databases. STATA 15.0 software analysis showed vitamin E treatment could significantly decrease the levels of oxidants [reactive oxygen species (ROS), total oxidant status (TOS), malondialdehyde (MDA)], increase anti-oxidant glutathione peroxidase (GPx), suppress inflammatory mediators (tumor necrosis factor-α, interleukin-6, C-reactive protein, IgE), improve cytotoxicity (manifested by an increase in cell viability and a decrease in pro-apoptotic caspase-3 activity), and genotoxicity (represented by a reduction in the tail length). These results were less changed after subgroup analyses. Pooled analysis of in vitro studies indicated vitamin C increased cell viability and decreased ROS levels, but its anti-oxidant potential was not observed in the meta-analysis of in vivo studies. Vitamin A could decrease MDA, TOS and increase GPx, but its effects on these indicators were weaker than vitamin E. Also, the combination of vitamin A with vitamin E did not provide greater anti-oxidant effects than vitamin E alone. In summary, we suggest vitamin E alone supplementation may be a cost-effective option to prevent nanomaterial-induced injuries.
Collapse
|
22
|
The Effect of the Addition of Hemp Seeds, Amaranth, and Golden Flaxseed on the Nutritional Value, Physical, Sensory Characteristics, and Safety of Poultry Pâté. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12105289] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Food producers’ interest in improving the nutritional and pro-health values of meat products has grown. The study aims to assess the effect of replacing poultry pâté products wheat roll (24% group I) in recipes with a mixture of hemp seeds (8% each in groups II, III, IV), amaranth (10% group II, 6% group III, 8% group IV) and golden flaxseed (6% group II, 10% group III, 8% group IV). The quality assessment covered nutritional value, physical properties, the total number of bacteria and assessment of sensory characteristics. The findings indicate that replacing wheat roll with seed mixtures increased the nutritional value (protein, ash, fat, proportion of polyunsaturated and polyene acids) of pâtés in all groups while decreasing the proportion of saturated fatty acids and the ratio of omega-6/omega-3 acids (3:1). This resulted in enhanced brightness and hardness pâtés, as well as greater microbiological safety. Although the spread and firmness of pâtés with seed addition were rated lower than the control, their taste desirability and bonding were rated highest for pâté with 8% plant additives. Pâtés with 24% hemp, amaranth and flaxseed mixture fulfil the requirements to be referred to as functional meat products.
Collapse
|
23
|
Bartimoccia S, Cammisotto V, Nocella C, Del Ben M, D’Amico A, Castellani V, Baratta F, Pignatelli P, Loffredo L, Violi F, Carnevale R. Extra Virgin Olive Oil Reduces Gut Permeability and Metabolic Endotoxemia in Diabetic Patients. Nutrients 2022; 14:2153. [PMID: 35631294 PMCID: PMC9145083 DOI: 10.3390/nu14102153] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Extra virgin olive oil (EVOO) improves post-prandial glycemia, but the underlying mechanism has not been fully elucidated. We tested the hypothesis that EVOO improves post-prandial glycemia by reducing gut permeability-derived low-grade endotoxemia. METHODS Serum levels of lipopolysaccharides (LPS), zonulin, a marker of gut permeability, glucose, insulin and glucagon-like peptide 1 (GLP1) were measured in 20 patients with impaired fasting glucose (IFG) and 20 healthy subjects (HS) matched for sex and age. The same variables were measured in IFG patients (n = 20) and HS (n = 20) before and after a Mediterranean diet with 10 g EVOO added or not (n = 20) or in IFG patients (n = 20) before and after intake of 40 g chocolate with EVOO added or not. RESULTS Compared to HS, IFG had higher levels of LPS and zonulin. In HS, meal intake was associated with a significant increase of blood glucose, insulin, and GLP1 with no changes of blood LPS and zonulin. Two hours after a meal intake containing EVOO, IFG patients showed a less significant increase of blood glucose, a more marked increase of blood insulin and GLP1 and a significant reduction of LPS and zonulin compared to IFG patients not given EVOO. Correlation analysis showed that LPS directly correlated with blood glucose and zonulin and inversely with blood insulin. Similar findings were detected in IFG patients given a chocolate added or without EVOO. CONCLUSION Addition of EVOO to a Mediterranean diet or chocolate improves gut permeability and low-grade endotoxemia.
Collapse
Affiliation(s)
- Simona Bartimoccia
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 40100 Latina, Italy; (S.B.); (R.C.)
| | - Vittoria Cammisotto
- Department of Clinical Internal, Anaesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy; (V.C.); (C.N.); (M.D.B.); (F.B.); (P.P.); (L.L.)
| | - Cristina Nocella
- Department of Clinical Internal, Anaesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy; (V.C.); (C.N.); (M.D.B.); (F.B.); (P.P.); (L.L.)
| | - Maria Del Ben
- Department of Clinical Internal, Anaesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy; (V.C.); (C.N.); (M.D.B.); (F.B.); (P.P.); (L.L.)
| | - Alessandra D’Amico
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy;
| | - Valentina Castellani
- Department of General Surgery and Surgical Speciality Paride Stefanini, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy;
| | - Francesco Baratta
- Department of Clinical Internal, Anaesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy; (V.C.); (C.N.); (M.D.B.); (F.B.); (P.P.); (L.L.)
| | - Pasquale Pignatelli
- Department of Clinical Internal, Anaesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy; (V.C.); (C.N.); (M.D.B.); (F.B.); (P.P.); (L.L.)
- Mediterranea Cardiocentro-Napoli, Via Orazio, 2, 80122 Naples, Italy
| | - Lorenzo Loffredo
- Department of Clinical Internal, Anaesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy; (V.C.); (C.N.); (M.D.B.); (F.B.); (P.P.); (L.L.)
| | - Francesco Violi
- Mediterranea Cardiocentro-Napoli, Via Orazio, 2, 80122 Naples, Italy
| | - Roberto Carnevale
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 40100 Latina, Italy; (S.B.); (R.C.)
- Mediterranea Cardiocentro-Napoli, Via Orazio, 2, 80122 Naples, Italy
| |
Collapse
|
24
|
Toyokuni S, Noguchi N, Niki E. Editorial: Centennial anniversary of vitamin E discovery. Free Radic Biol Med 2022; 183:125-126. [PMID: 35339609 DOI: 10.1016/j.freeradbiomed.2022.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Noriko Noguchi
- Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto, 610-0394, Japan.
| | - Etsuo Niki
- Research Center for Advanced Science and Technology, University of Tokyo, Tokyo, Japan.
| |
Collapse
|
25
|
Multi-Functional Development and Utilization of Rapeseed: Comprehensive Analysis of the Nutritional Value of Rapeseed Sprouts. Foods 2022; 11:foods11060778. [PMID: 35327200 PMCID: PMC8953081 DOI: 10.3390/foods11060778] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 02/04/2023] Open
Abstract
Rapeseed is the third largest oil crop in the world and the largest oil crop in China. The multi-functional development and utilization of rapeseed is an effective measure for the high-quality development of rapeseed industry in China. In this study, several basic nutrients of eight rapeseed sprouts and five bean sprouts (3–5 varieties each) were determined, including sugar, crude protein, crude fiber, vitamin E, minerals, fatty acids, amino acids, and glucosinolates. Data analysis revealed that compared with bean sprouts, rapeseed sprouts were nutritionally balanced and were richer in active nutrients such as glucose, magnesium, selenium, vitamin E, and glucosinolate. Moreover, rapeseed sprouts exhibited reasonable amino acid composition and abundant unsaturated fatty acids (accounting for 90.32% of the total fatty acids). All these results indicated the potential of rapeseed sprout as a functional vegetable. Subsequently, three dominant nutrients including vitamin E, glucosinolate, and selenium were investigated in seeds and sprouts of 44 B. napus L. varieties. The results showed that germination raised the ratio of α-tocopherol/γ-tocopherol from 0.53 in seeds to 9.65 in sprouts, greatly increasing the content of α-tocopherol with the strongest antioxidant activity among the eight isomers of vitamin E. Furthermore, germination promoted the conversion and accumulation of glucosinolate components, especially, glucoraphanin with strong anti-cancer activity with its proportion increased from 1.06% in seeds to 1.62% in sprouts. In addition, the contents of selenium, vitamin E, and glucosinolate in rapeseed sprouts were highly correlated with those in seeds. Furthermore, these three dominant nutrients varied greatly within B. napus varieties, indicating the great potential of rapeseed sprouts to be further bio-enhanced. Our findings provide reference for the multi-purpose development and utilization of rapeseed, lay a theoretical foundation for the development of rapeseed sprout into a functional vegetable, and provide a novel breeding direction.
Collapse
|
26
|
Garg A, Lee JCY. Vitamin E: Where Are We Now in Vascular Diseases? Life (Basel) 2022; 12:life12020310. [PMID: 35207597 PMCID: PMC8874674 DOI: 10.3390/life12020310] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/07/2022] [Accepted: 02/14/2022] [Indexed: 12/19/2022] Open
Abstract
Vitamin E is one of the most popular fat-soluble vitamins in pathological research and has been under scrutiny since the 1980s as a vital dietary component of food. The antioxidant effect of vitamin E has been widely studied due to its benefits in the prevention of various cardiovascular diseases. In recent years, alternative effects of vitamin E, in terms of anti-inflammatory pathways and gene regulation, have also been of interest to researchers. This review examines the role of dietary vitamin E (α-tocopherol) as an antioxidant and bioactive molecule in promoting vascular health. While the antioxidant effect of vitamin E is well established, knowledge about its capacity as a promising regulatory molecule in the control of the vascular system is limited. The aim of this review is to discuss some of these mechanisms and summarize their role in the prevention of cardiovascular diseases (CVD). Here, we also briefly discuss foods rich in vitamin E, and deliberate some potential toxicological effects of excessive supplemental vitamin E in the body.
Collapse
|