1
|
Wang K, Shi X, Lin H, Xu T, Xu S. Selenium deficiency exacerbates ROS/ER stress mediated pyroptosis and ferroptosis induced by bisphenol A in chickens thymus. J Environ Sci (China) 2025; 148:13-26. [PMID: 39095152 DOI: 10.1016/j.jes.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 08/04/2024]
Abstract
Bisphenol A (BPA) is an industrial pollutant that can cause immune impairment. Selenium acts as an antioxidant, as selenium deficiency often accompanies oxidative stress, resulting in organ damage. This study is the first to demonstrate that BPA and/or selenium deficiency induce pyroptosis and ferroptosis-mediated thymic injury in chicken and chicken lymphoma cell (MDCC-MSB-1) via oxidative stress-induced endoplasmic reticulum (ER) stress. We established a broiler chicken model of BPA and/or selenium deficiency exposure and collected thymus samples as research subjects after 42 days. The results demonstrated that BPA or selenium deficiency led to a decrease in antioxidant enzyme activities (T-AOC, CAT, and GSH-Px), accumulation of peroxides (H2O2 and MDA), significant upregulation of ER stress-related markers (GRP78, IER 1, PERK, EIF-2α, ATF4, and CHOP), a significant increase in iron ion levels, significant upregulation of pyroptosis-related gene (NLRP3, ASC, Caspase1, GSDMD, IL-18 and IL-1β), significantly increase ferroptosis-related genes (TFRC, COX2) and downregulate GPX4, HO-1, FTH, NADPH. In vitro experiments conducted in MDCC-MSB-1 cells confirmed the results, demonstrating that the addition of antioxidant (NAC), ER stress inhibitor (TUDCA) and pyroptosis inhibitor (Vx765) alleviated oxidative stress, endoplasmic reticulum stress, pyroptosis, and ferroptosis. Overall, this study concludes that the combined effects of oxidative stress and ER stress mediate pyroptosis and ferroptosis in chicken thymus induced by BPA exposure and selenium deficiency.
Collapse
Affiliation(s)
- Kun Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xu Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Hongjin Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Tong Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, China.
| |
Collapse
|
2
|
Wang S, Tian B, Feng X, Hu Y, Zhang L, Zhang Z, Xu S, Hu Y, Cui X, Li T, Luo X. Selenium promotes broiler myoblast proliferation through the ROS/PTEN/PI3K/AKT signaling axis. Poult Sci 2024; 103:104364. [PMID: 39426224 PMCID: PMC11513461 DOI: 10.1016/j.psj.2024.104364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/21/2024] Open
Abstract
Selenium (Se), an indispensable trace element in broiler chickens, is closely associated with the growth and development of skeletal muscles. However, the role of Se in the proliferation of broiler myoblasts and its specific biological mechanisms have not been elucidated. In the present study, an in vitro growth model of broiler pectoral myoblasts cultured with Se (Na2SeO3) for 24 h was established. Using light microscopy, Cell Counting Kit-8 (CCK-8) assay, and flow cytometry, we found that compared to the control (Con) group, Se supplemental level obviously promoted myoblast proliferation and prevented cell cycle arrest from the G1 phase to the S + G2 phase. Through intracellular reactive oxygen species (ROS) generation detection, western blotting, and quantitative reverse transcription-polymerase chain reaction (qRT-PCR), the study showed that the reduced ROS production caused by Se supplementation significantly decreased PTEN expression and activated the PI3K/AKT signaling pathway in myoblasts, thereby promoting the P53/P21/CyclinD1-regulated cell cycle progression, as well as the expression of proliferation-related myogenic regulatory factors (MRF). Our findings support the potential of Se to maintain the proliferative capacity of chicken myoblasts and emphasize the importance of Se intake in regulating skeletal muscle growth and development in poultry.
Collapse
Affiliation(s)
- Shengchen Wang
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Bing Tian
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Xinyu Feng
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Yangyang Hu
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Liyang Zhang
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ziwei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yun Hu
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Xiaoyan Cui
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Tingting Li
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Xugang Luo
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China.
| |
Collapse
|
3
|
Odunsi A, Kapitonova MA, Woodward G, Rahmani E, Ghelichkhani F, Liu J, Rozovsky S. Selenoprotein K at the intersection of cellular pathways. Arch Biochem Biophys 2024; 764:110221. [PMID: 39571956 DOI: 10.1016/j.abb.2024.110221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 12/08/2024]
Abstract
Selenoprotein K (selenok) is linked to the integrated stress response, which helps cells combat stressors and regain normal function. The selenoprotein contains numerous protein interaction hubs and post-translational modification sites and is involved in protein palmitoylation, vesicle trafficking, and the resolution of ER stress. Anchored to the endoplasmic reticulum (ER) membrane, selenok interacts with protein partners to influence their stability, localization, and trafficking, impacting various cellular functions such as calcium homeostasis, cellular migration, phagocytosis, gene expression, and immune response. Consequently, selenok expression level is linked to cancer and neurodegenerative diseases. Because it contains the reactive amino acid selenocysteine, selenok is likely to function as an enzyme. However, highly unusual for enzymes, the protein segment containing the selenocysteine lacks a stable secondary or tertiary structure, yet it includes multiple interaction sites for protein partners and post-translational modifications. Currently, the reason(s) for the presence of the rare selenocysteine in selenok is not known. Furthermore, of selenok's numerous interaction sites, only some have been sufficiently characterized, leaving many of selenok's potential protein partners to be discovered. In this review, we explore selenok's role in various cellular pathways and its impact on human health, thereby highlighting the links between its diverse cellular functions.
Collapse
Affiliation(s)
- Atinuke Odunsi
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Mariia A Kapitonova
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - George Woodward
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Erfan Rahmani
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| | - Farid Ghelichkhani
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Jun Liu
- Asieris Pharmaceuticals, Palo Alto, CA, USA
| | - Sharon Rozovsky
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA.
| |
Collapse
|
4
|
Darwish AM, Almehiza AA, Khattab AEN, Sharaf HA, Naglah AM, Bhat MA, Zen AA, Kalmouch A. Using Selenium-enriched Mutated Probiotics as Enhancer for Fertility Parameters in Mice. Biol Trace Elem Res 2024; 202:5118-5125. [PMID: 38321304 DOI: 10.1007/s12011-024-04067-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 01/11/2024] [Indexed: 02/08/2024]
Abstract
Increasing fertility rates have become one of the factors that concern all people in the world. Therefore, the study aims to use two mutated strains of probiotics enriched with selenium (PSe40/60/1 and BSe50/20/1) to improve fertility. Thirty Swiss albino male mice were divided into three groups; control, LP + S was given Lactobacillus plantarum PSe40/60/1 plus selenium, and BL + S was given Bifidobacterium longum BSe50/20/1 plus selenium. Free testosterone, LH, and FSH were measured in serum by biochemical analysis. Testicular tissues were examined by histopathological analysis. The count and motility of sperm, and sperm abnormalities were determined by microscopic examination. The method of qRT-PCR was used to detect gene expression of Tspyl1, Hsd3b6, and Star genes. The biochemical results showed that serum content of free testosterone (FT) hormone had significantly increase in the BL + S and LP + S groups compared with control. Levels of LH and FSH hormones were the highest in the BL + S group. The treated groups showed all developmental stages of spermatogenesis, including spermatogenesis, spermatocytes, and seminiferous tubule spermatids, as well as intact Sertoli cells and Leydig cells without changes. When compared to the control group, sperm count and motility increased in the BL + S group, while sperm abnormalities decreased. The expression of Tspyl1 gene in testicular tissues decreased in the LP + S and BL + S groups, while the expression of Star and Hsd3b6 genes was higher in the BL + S group and lower in the LP + S group compared with the control group. Therefore, Bifidobacterium longum BSe50/20/1 enriched with selenium could be useful in enhancing male fertility.
Collapse
Affiliation(s)
- Ahmed Mohamed Darwish
- Cell Biology Department, Biotechnology Research Institute, National Research Centre, Dokki, Giza, Egypt
| | - Abdulrahman A Almehiza
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. BOX 2457, 11451, Riyadh, Saudi Arabia
| | - Abd El-Nasser Khattab
- Genetics and Cytology Department, Biotechnology Research Institute, National Research Centre, Dokki, Giza, Egypt.
| | - Hafiza A Sharaf
- Pathology Department, National Research Centre, Dokki, Giza, Egypt
| | - Ahmed M Naglah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. BOX 2457, 11451, Riyadh, Saudi Arabia
| | - Mashooq A Bhat
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. BOX 2457, 11451, Riyadh, Saudi Arabia
| | - Amer Alhaj Zen
- Chemistry & Forensics Department, Clifton Camus, Nottingham Trent University, Nottingham, Ng118NS, UK
| | - Atef Kalmouch
- Peptide Chemistry Department, Chemical Industries Institute, National Research Centre, Dokki, Giza, Egypt
| |
Collapse
|
5
|
Sun J, Wang X, Xu T, Ren M, Gao M, Lin H. Quercetin antagonizes apoptosis, autophagy and immune dysfunction induced by di(2-ethylhexyl) phthalate via ROS/ASK1/JNK pathway. Comp Biochem Physiol C Toxicol Pharmacol 2024; 285:109991. [PMID: 39103134 DOI: 10.1016/j.cbpc.2024.109991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/20/2024] [Accepted: 07/28/2024] [Indexed: 08/07/2024]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is a plasticizer that can damage various organizations and physiques through oxidative stress. Quercetin (Que) is a rich polyphenol flavonoid with good anti-inflammatory and antioxidant effects. However, the protection mechanism of Que against DEHP exposure-induced IPEC-J2 cell injury and the implication of autophagy, apoptosis and immunity are still unclear. In this experiment, we looked into the toxicity regime of DEHP exposure on IPEC-J2 cells and the antagonistic function of Que on DEHP. In the experiment, 135 μM DEHP and/or 80 μM Que were used to treat the IPEC-J2 cells for 24h. Experiments indicated that DEHP exposure can cause increased reactive oxygen species (ROS) levels leading to oxidative stress, decreased CAT, T-AOC and GSH-Px activities, increased MDA and H2O2 accumulation, activated the ASK1/JNK signalling pathway, and further increases in the levels of apoptosis markers Bax, Caspase3, Caspase9, and Cyt-c, while reduced the Bcl-2 expression. DEHP also increased the expression of genes linked to autophagy (ATG5, Beclin1, LC3), while decreasing the expression of P62. Additionally, DEHP exposure led to elevated levels of IL1-β, IL-6, MCP-1, and TNF expression. When exposed to Que alone, there were no significant changes in cellular oxidative stress level, ASK1/JNK signalling pathway expression level, apoptosis, autophagy and cellular immune function. The combination of DEHP and Que treatment remarkably decreased the proportion of autophagy and apoptosis, and recovered cellular immunity. In summary, Que can attenuate DEHP-induced apoptosis and autophagy in IPEC-J2 cells by regulating the ROS/ASK1/JNK signalling pathway and improving the immune dysfunction of IPEC-J2 cells.
Collapse
Affiliation(s)
- Jiatong Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiaodan Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Tong Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Mengyao Ren
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Meichen Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Hongjin Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Laboratory of Embryo Biotechnology, College of Life Science, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
6
|
Zheng QX, Liu QL, Sun WN, Jiang XY, Zeng T. Biphasic effects of ethanol consumption on N,N-dimethylformamide-induced liver injury in mice. Toxicology 2024; 506:153872. [PMID: 38924947 DOI: 10.1016/j.tox.2024.153872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/19/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
N,N-Dimethylformamide (DMF) is a well-documented occupational hazardous material, which can induce occupational liver injury. The current study was designed to investigate whether ethanol consumption can affect DMF-induced hepatotoxicity and the potential underlying mechanisms involved. We found that a single dose of ethanol (1.25, 2.5, or 5 g/kg bw by gavage) significantly repressed the increase in serum alanine transaminase (ALT) and aspartate transaminase (AST) activities and alleviated the liver histopathological changes in mice challenged with 3 g/kg DMF. In contrast, long-term moderate drinking (2.5 g/kg bw) significantly aggravated the repeated DMF (0.7 g/kg bw) exposure-induced increase in the serum ALT and AST activities. Mechanistically, acute ethanol consumption suppressed DMF-induced activation of the NLR family pyrin domain-containing protein 3 (NLRP3) inflammasome, while long-term moderate ethanol consumption promoted hepatocyte apoptosis in the mouse liver. Notably, cytochrome P4502E1 (CYP2E1) protein level and activity in mouse livers were not significantly affected by ethanol per se in the two models. These results confirm that regular drinking can increase the risk of DMF-induced hepatotoxicity, and suggest that DMF-handling workers should avoid consuming ethanol to reduce the risk of DMF-indued liver injury.
Collapse
Affiliation(s)
- Qing-Xiang Zheng
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Qing-Lin Liu
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Wen-Na Sun
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xin-Yu Jiang
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Tao Zeng
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
7
|
Xu A, Wang Y, Luo D, Xia Y, Xue H, Yao H, Li S. By regulating the IP3R/GRP75/VDAC1 complex to restore mitochondrial dynamic balance, selenomethionine reduces lipopolysaccharide-induced neuronal apoptosis. J Cell Physiol 2024; 239:e31190. [PMID: 38219075 DOI: 10.1002/jcp.31190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/09/2023] [Accepted: 12/23/2023] [Indexed: 01/15/2024]
Abstract
Selenium (Se), as one of the essential trace elements, plays an anti-inflammatory, antioxidation, and immune-enhancing effect in the body. In addition, Se can also improve nervous system damage induced by various factors. Earlier studies have described the important role of mitochondrial dynamic imbalance in lipopolysaccharide (LPS)-induced nerve injury. The inositol 1,4,5-triphosphate receptor (IP3R)/glucose-regulated protein 75 (GRP75)/voltage-dependent anion channel 1 (VDAC1) complex is considered to be the key to regulating mitochondrial dynamics. However, it is not clear whether Selenomethionine (SeMet) has any influence on the IP3R/GRP75/VDAC1 complex. Therefore, the aim of this investigation was to determine whether SeMet can alleviate LPS-induced brain damage and to elucidate the function of the IP3R/GRP75/VDAC1 complex in it. We established SeMet and/or LPS exposure models in vivo and in vitro using laying hens and primary chicken nerve cells. We noticed that SeMet reversed endoplasmic reticulum stress (ERS) and the imbalance in mitochondrial dynamics and significantly prevented the occurrence of neuronal apoptosis. We made this finding by morphological observation of the brain tissue of laying hens and the detection of related genes such as ERS, the IP3R/GRP75/VDAC1 complex, calcium signal (Ca2+), mitochondrial dynamics, and apoptosis. Other than that, we also discovered that the IP3R/GRP75/VDAC1 complex was crucial in controlling Ca2+ transport between the endoplasmic reticulum and the mitochondrion when SeMet functions as a neuroprotective agent. In summary, our results revealed the specific mechanism by which SeMet alleviated LPS-induced neuronal apoptosis for the first time. As a consequence, SeMet has great potential in the treatment and prevention of neurological illnesses (like neurodegenerative diseases).
Collapse
Affiliation(s)
- Anqi Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yixuan Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Dongliu Luo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yu Xia
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Hua Xue
- National Selenium-Rich Product Quality Supervision and Inspection Center, Enshi, People's Republic of China
| | - Haidong Yao
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
8
|
Guo M, Li Y, Niu S, Zhang R, Shen X, Ma Y, Wu L, Wu T, Zhang T, Tang M, Xue Y. Oxidative stress-activated Nrf2 remitted polystyrene nanoplastic-induced mitochondrial damage and inflammatory response in HepG2 cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 106:104385. [PMID: 38340909 DOI: 10.1016/j.etap.2024.104385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Generated from plastics, microplastics (MPs) and nanoplastics (NPs) are difficult to completely degrade in the natural environment, which can accumulate in almost all lives. Liver is one of the main target organs. In this study, HepG2 and L02 cells were exposed to 0-50 μg/mL polystyrene (PS)-NPs to investigate the mechanism of mitochondrial damage and inflammation. The results showed mitochondria damage and inflammatory caused by NPs, and it can be inhibited by N-acetyl-L-cysteine (NAC). In addition, reactive oxygen species (ROS) activated nuclear factor erythroid-derived factor 2-related factor (Nrf2) pathway. Nrf2 siRNA exacerbated the injury, suggesting Nrf2 plays a protective role. Moreover, p62 siRNA increased ROS and mitochondrial damage by inhibiting Nrf2, but didn't affect the inflammation. In conclusion, Nrf2 was activated by ROS and played a protective role in PS-NPs-mediated hepatotoxicity. This study supplemented the data of liver injury caused by PS-NPs, providing a basis for the safe disposal of plastics.
Collapse
Affiliation(s)
- Menghao Guo
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Yunjing Li
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China; Jinan Center For Disease Control and Prevention, People's Republic of China
| | - Shuyan Niu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Rui Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Xin Shen
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Yu Ma
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Liqing Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Tianshu Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Yuying Xue
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China.
| |
Collapse
|
9
|
Wang G, Jiang Z, Song Y, Xing Y, He S, Boomi P. Gut microbiota contribution to selenium deficiency-induced gut-liver inflammation. Biofactors 2024; 50:311-325. [PMID: 37676478 DOI: 10.1002/biof.2006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/05/2023] [Indexed: 09/08/2023]
Abstract
There is limited knowledge about the factors that drive gut-liver axis changes after selenium (Se) deficiency-induced gut or liver injuries. Thus, we tested Se deficiency in mice to determine its effects on intestinal bacterial balance and whether it induced liver injury. Serum Se concentration, lipopolysaccharide (LPS) level, and liver injury biomarkers were tested using a biochemical method, while pathological changes in the liver and jejunum were observed via hematoxylin and eosin stain, and a fluorescence spectrophotometer was used to evaluate intestinal permeability. Tight junction (TJ)-related and toll-like receptor (TLR) signaling-related pathway genes and proteins were tested using quantitative polymerase chain reaction, western blotting, immunohistochemistry, and 16S ribosomal ribonucleic acid gene-targeted sequencing of jejunum microorganisms. Se deficiency significantly decreased glutathione peroxidase activity and disrupted the intestinal flora, with the most significant effect being a decrease in Lactobacillus reuteri. The expression of TJ-related genes and proteins decreased significantly with increased treatment time, whereas supplementation with Se, fecal microbiota transplantation, or L. reuteri reversed these decreases. Signs of liver injury and LPS content were significantly increased after intestinal flora imbalance or jejunum injury, and the levels of TLR signaling-related genes were significantly increased. The results indicated that Se deficiency disrupted the microbiota balance, decreased the expression of intestinal TJ factors, and increased intestinal permeability. By contrast, LPS increased due to a bacterial imbalance, which may induce inflammatory liver injury via the TLR4 signaling pathway.
Collapse
Affiliation(s)
- Guodong Wang
- Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Anyang Institute of Technology, Anyang, Henan, China
| | - Zhihui Jiang
- Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Anyang Institute of Technology, Anyang, Henan, China
| | - Yuwei Song
- Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Anyang Institute of Technology, Anyang, Henan, China
| | - Yueteng Xing
- Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Anyang Institute of Technology, Anyang, Henan, China
| | - Simin He
- Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Anyang Institute of Technology, Anyang, Henan, China
| | - P Boomi
- Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu, India
| |
Collapse
|
10
|
Li S, Wang Y, Xu A, Zhao B, Xia Y, He Y, Xue H, Li S. Dietary selenomethionine reduced oxidative stress by resisting METTL3-mediated m 6A methylation level of Nrf2 to ameliorate LPS-induced liver necroptosis in laying hens. J Nutr Biochem 2024; 125:109563. [PMID: 38176622 DOI: 10.1016/j.jnutbio.2023.109563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/18/2023] [Accepted: 12/31/2023] [Indexed: 01/06/2024]
Abstract
Selenomethionine (SeMet) as the main form of daily dietary selenium, occupies essential roles in providing antioxidant and anti-inflammatory properties, which alleviates inflammatory liver damage. N6-methyladenosine (m6A) is one of the most prevalent and abundant internal transcriptional modifications that regulate gene expression. To investigate the protective mechanism of SeMet on liver injury and the regulatory effect of m6A methylation modification, we established the model by supplementing dietary SeMet, and LPS as stimulus in laying hens. LMH cells were intervened with SeMet (0.075 µM) and/or LPS (60 µg/mL). Subsequently, histopathology and ultrastructure of liver were observed. Western Blot, qRT-PCR, colorimetry, MeRIP-qPCR, fluorescent probe staining and AO/EB were used to detect total m6A methylation level, m6A methylation level of Nrf2, ROS, inflammatory and necroptosis factors. Studies showed that SeMet suppressed LPS-induced upregulation of total m6A methylation levels and METTL3 expression. Interestingly, SeMet reduced the m6A methylation level of Nrf2, activated antioxidant pathways and alleviated oxidative stress. LMH cells were transfected with 50 µm siMETTL3. SeMet/SiMETTL3 reversed the LPS-induced reduction in Nrf2 mRNA stability, slowed down its degradation rate. Moreover, LPS induced oxidative stress, led to necroptosis and activated NF-κB to promote the expression of inflammatory factors. SeMet/SiMETTL3 alleviated LPS-induced necroptosis and inflammation. Altogether, SeMet enhanced antioxidant and anti-inflammatory capacity by reducing METTL3-mediated m6A methylation levels of Nrf2, ultimately alleviating liver damage. Our findings provided new insights and therapeutic target for the practical application of dietary SeMet in the treatment and prevention of liver inflammation, and supplied a reference for comparative medicine.
Collapse
Affiliation(s)
- Shanshan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P.R. China
| | - Yixuan Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P.R. China
| | - Anqi Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P.R. China
| | - Bing Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P.R. China
| | - Yu Xia
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P.R. China
| | - Yujiao He
- Cocodala Animal Husbandry and Veterinary Workstation of the Fourth Division of Xinjiang Construction Corps, Cocodala, 831304, P.R. China
| | - Hua Xue
- National Selenium-rich Product Quality Supervision and Inspection Center, Enshi, 445099, P.R. China
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P.R. China.
| |
Collapse
|
11
|
Jana S, Ghosh A, Dey A, Perveen H, Maity PP, Maji S, Chattopadhyay S. n-Butanol fraction of moringa seed attenuates arsenic intoxication by regulating the uterine inflammatory and apoptotic pathways. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:18593-18613. [PMID: 38349492 DOI: 10.1007/s11356-024-32213-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 01/22/2024] [Indexed: 03/09/2024]
Abstract
The adverse effects of arsenic-chelating drugs make it essential to replace invasive chelating therapy with non-invasive oral therapy for arsenic poisoning. The goal of the current investigation was to determine whether the uterine damage caused by arsenization could be repaired by the n-butanol fraction of Moringa oleifera seed (NB). The rats were orally administered with arsenic (10 mg/kg BW) for the initial 8 days, followed by NB (50 mg/kg) for the next 8 days without arsenic. The probable existence of different components in NB was evaluated by HPLC-MS. Pro and anti-inflammatory indicators were assessed by RT-PCR and western blot. ESR-α was detected via immunostaining. Arsenic-exposed rats had significantly increased lipid peroxidation and decreased antioxidant enzyme activity, which were markedly reduced after NB treatment. Weaker ESR-α expression and distorted uterine histomorphology following arsenication were retrieved significantly by NB. Meaningful restoration by NB was also achieved for altered mRNA and protein expression of various inflammatory and apoptotic indicators. Molecular interaction predicted that glucomoringin and methyl glucosinolate of moringa interact with the catalytic site of caspase-3 in a way that limits its activity. However, NB was successful in restoring the arsenic-mediated uterine hypofunction. The glucomoringin and methyl glucosinolate present in n-butanol fraction may play a critical role in limiting apoptotic event in the arsenicated uterus.
Collapse
Affiliation(s)
- Suryashis Jana
- Department of Biomedical Laboratory Science and Management and Clinical Nutrition and Dietetics, Vidyasagar University, Midnapore, 721102, West Bengal, India
| | - Angshita Ghosh
- Department of Biomedical Laboratory Science and Management and Clinical Nutrition and Dietetics, Vidyasagar University, Midnapore, 721102, West Bengal, India
| | - Arindam Dey
- Department of Biomedical Laboratory Science and Management and Clinical Nutrition and Dietetics, Vidyasagar University, Midnapore, 721102, West Bengal, India
| | - Hasina Perveen
- Department of Biomedical Laboratory Science and Management and Clinical Nutrition and Dietetics, Vidyasagar University, Midnapore, 721102, West Bengal, India
| | - Pikash Pratim Maity
- Department of Medical Laboratory Technology (MLT), Haldia Institute of Health Sciences, ICARE Complex, Hatiberia, Purba Medinipur, 721657, West Bengal, India
| | - Shilpa Maji
- Department of Biomedical Laboratory Science and Management and Clinical Nutrition and Dietetics, Vidyasagar University, Midnapore, 721102, West Bengal, India
| | - Sandip Chattopadhyay
- Department of Biomedical Laboratory Science and Management and Clinical Nutrition and Dietetics, Vidyasagar University, Midnapore, 721102, West Bengal, India.
| |
Collapse
|
12
|
Ren M, Lv X, Xu T, Sun J, Gao M, Lin H. Effects of atrazine and curcumin exposure on TCMK-1 cells: Oxidative damage, pyroptosis and cell cycle arrest. Food Chem Toxicol 2024; 185:114483. [PMID: 38301994 DOI: 10.1016/j.fct.2024.114483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/29/2023] [Accepted: 01/22/2024] [Indexed: 02/03/2024]
Abstract
Atrazine (ATR), a commonly used herbicide, is highly bioaccumulative and toxic, posing a threat to a wide range of organisms. Curcumin has strong antioxidant properties. However, it is unclear whether curcumin counteracts cellular pyroptosis as well as cell cycle arrest induced by ATR exposure. Therefore, we conducted a study using TCMK-1 cells and established cell models by adding 139 μmol/L ATR and 20 μmol/L curcumin. The results showed that ATR exposure produced excessive reactive oxygen species (ROS), reduced activities of enzymes such as GSH-PX, SOD and Total Antioxidant Capacity, markedly increased the content of H2O2, disrupted the antioxidant system, activated Caspase-1, and the expression levels of the pyroptosis-related genes NLRP3, GSDMD, ASC, Caspase-1, IL-1β and IL-18 were increased. The simultaneous excess of ROS led to DNA damage, activation of P53 led to elevated expression levels of P53 and P21, as a consequence, the expression levels of cyclinE, CDK2 and CDK4 were reduced. These results suggest that Cur can modulate ATR exposure-induced pyroptosis as well as cell cycle arrest in TCMK-1 cells by governing oxidative stress.
Collapse
Affiliation(s)
- Mengyao Ren
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xiunan Lv
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Tong Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jiatong Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Meichen Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Hongjin Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Laboratory of Embryo Biotechnology, College of Life Science, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
13
|
Cui Y, Xiao Q, Wang Z, Zhang Q, Liu Y, Hao W, Jiang J, Meng Q, Wei X. 1,2-bis(2,4,6-tribromophenoxy) ethane, a novel brominated flame retardant, disrupts intestinal barrier function via the IRX3/NOS2 axis in rat small intestine. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132597. [PMID: 37804762 DOI: 10.1016/j.jhazmat.2023.132597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 10/09/2023]
Abstract
Novel brominated flame retardants are widely used in electronics, textiles, furniture, and other products; they can enter the human body through ingestion and respiration and cause harm to the human body, and have been proven to have potential biological toxicity and accumulation effects. 1,2-bis(2,4,6-tribromophenoxy) ethane (BTBPE) is a widely used novel brominated flame retardant; however, there is a lack of research on its mechanism of toxicity, particularly that of intestinal toxicity. Currently, studies on the functionality of iroquois homeobox 3 (IRX3) are extremely limited. In our study, BTBPE was administered to Sprague-Dawley (SD) rats and rat small intestinal crypt epithelial cells (IEC6 cells) in vivo and in vitro, respectively, and hematoxylin and eosin (HE), immunohistochemical, Alcian blue-periodic acid-Schiff (AB-PAS), CCK8, acridine orange/ethidium bromide (AO/EB), fluorescent probes, qPCR, western blotting, and immunofluorescence analyses were performed. To explore the damage mechanism of BTBPE, we used siRNA to silence IRX3 and iNOs-IN-1 (yeast extract-peptone-wheat; YPW) to inhibit nitric oxide synthase 2 (NOS2). The results showed that BTBPE exposure caused inflammation and necroptosis in the jejunum and ileum, as well as destruction of the tight junctions and mucus layer. Moreover, BTBPE activated the IRX3/NOS2 axis both in vivo and in vitro. Silencing IRX3 or inhibiting NOS2 inhibits necroptosis and restores tight junctions in IEC6 cells. In conclusion, our study found that in the jejunum, ileum, and IEC6 cells, BTBPE exposure caused necroptosis and tight junction destruction by activating the IRX3/NOS2 axis. Blocking the IRX3/NOS2 axis can effectively inhibit necroptosis and restore tight junction. In addition, BTBPE exposure caused inflammation and loss of the mucous layer in the jejunum and ileum. Our study is the first to explore the mechanism of intestinal damage caused by BTBPE exposure and to discover new biological functions regulated by the IRX3/NOS2 axis, providing new research directions for necroptosis and tight junctions.
Collapse
Affiliation(s)
- Yuan Cui
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Qianqian Xiao
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Zhenyu Wang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Qiong Zhang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Yuetong Liu
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Weidong Hao
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Jianjun Jiang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Qinghe Meng
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Xuetao Wei
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China.
| |
Collapse
|
14
|
Wu Y, Zhao J, Cui C, Zhang Y, Zhu Q, Han S, Yang C, Yin H. MiRNA-21-5p induces chicken hepatic lipogenesis by targeting NFIB and KLF3 to suppress the PI3K/AKT signaling pathway. J Anim Sci 2024; 102:skae055. [PMID: 38563227 PMCID: PMC11015050 DOI: 10.1093/jas/skae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/02/2024] [Indexed: 04/04/2024] Open
Abstract
The liver plays a critical role in metabolic activity and is the body's first immune barrier, and maintaining liver health is particularly important for poultry production. MicroRNAs (miRNAs) are involved in a wide range of biological activities due to their capacity as posttranscriptional regulatory elements. A growing body of research indicates that miR-21-5p plays a vital role as a modulator of liver metabolism in various species. However, the effect of miR-21-5p on the chicken liver is unclear. In the current study, we discovered that the fatty liver had high levels of miR-21-5p. Then the qPCR, Western blot, flow cytometry, enzyme-linked immunosorbent assay, dual-luciferase, and immunofluorescence assays were, respectively, used to determine the impact of miR-21-5p in the chicken liver, and it turned out that miR-21-5p enhanced lipogenesis, oxidative stress, and inflammatory responses, which ultimately induced hepatocyte apoptosis. Mechanically, we verified that miR-21-5p can directly target nuclear factor I B (NFIB) and kruppel-like factor 3 (KLF3). Furthermore, our experiments revealed that the suppression of NFIB promoted apoptosis and inflammation, and the KLF3 inhibitor accelerated lipogenesis and enhanced oxidative stress. Furthermore, the cotransfection results suggest that the PI3K/AKT pathway is also involved in the process of miRNA-21-5p-mediate liver metabolism regulation. In summary, our study demonstrated that miRNA-21-5p plays a role in hepatocyte lipogenesis, oxidative stress, inflammation, and apoptosis, via targeting NFIB and KLF3 to suppress the PI3K/AKT signal pathway in chicken.
Collapse
Affiliation(s)
- Yamei Wu
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Jing Zhao
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Can Cui
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yao Zhang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Qing Zhu
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Shunshun Han
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Chaowu Yang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, China
| | - Huadong Yin
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| |
Collapse
|
15
|
He Y, Guan P, Zeng Y, Huang L, Peng C, Kong X, Zhou X. Age-Dependent Developmental Changes of Selenium Content and Selenoprotein Expression and Content in Longissimus Dorsi Muscle and Liver of Duroc Pigs. Biol Trace Elem Res 2024; 202:182-189. [PMID: 37093510 DOI: 10.1007/s12011-023-03674-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/17/2023] [Indexed: 04/25/2023]
Abstract
The trace element selenium (Se) plays a key role in development and various physiological processes, mainly through its transformation into selenoproteins. To investigate the developmental patterns of Se content and expression of selenoproteins, the liver and longissimus dorsi (LD) muscle of Duroc pigs were collected at 1, 21, 80, and 185 days of age (7 pigs each age) for the determination of Se content, mRNA expression of selenoproteins, and concentrations of glutathione peroxidase (GPX), thioredoxin reductase (TrxR or TXNRD), and selenoprotein P (SELP). The results showed that age significantly affected the expression of GPX1, GPX2, GPX3, TXNRD1, TXNRD2, TXNRD3, iodothyronine deiodinases 2 (DIO2), DIO3, SELF, SELH, SELM, SELP, SELS, SELW, and selenophosphate synthetase2 (SPS2) in the liver, as well as GPX3, GPX4, TXNRD1, TXNRD2, DIO2, DIO3, SELF, SELN, SELP, SELR, SELS, and SELW in the LD muscle of Duroc pigs. The concentrations of GPX, TrxR, and SELP showed an increasing trend with age, and they were positively correlated with Se content at 1, 21, and 185 days of age and negatively correlated at 80 days of age, both in the liver and LD muscle. The Se content decreased at the age of 80 days, especially in the LD muscle. In summary, our study revealed developmental changes in Se content and expression of selenoproteins in the liver and LD muscle of Duroc pigs at different growth stages, which provided a theoretical basis for further study of Se nutrition and functions of selenoproteins.
Collapse
Affiliation(s)
- Yiwen He
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolism Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Peng Guan
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolism Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Yan Zeng
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolism Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Le Huang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolism Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Can Peng
- Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolism Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Xiangfeng Kong
- Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolism Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
| | - Xihong Zhou
- Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolism Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
| |
Collapse
|
16
|
Yang N, Guo J, Wu H, Gao M, Xu S. Eucalyptol ameliorates chlorpyrifos-induced necroptosis in grass carp liver cells by down-regulating ROS/NF-κB pathway. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 198:105726. [PMID: 38225081 DOI: 10.1016/j.pestbp.2023.105726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/18/2023] [Accepted: 12/04/2023] [Indexed: 01/17/2024]
Abstract
Chlorpyrifos (Diethoxy-sulfanylidene-(3,5,6-trichloropyridin-2-yl) oxy-λ5-phosphane, CPF) was extensively used organophosphorus pesticide, extensively deteriorating public problem with the enrichment in the water bodies. Eucalyptol (1,3,3-Trimethyl-2-oxabicyclo[2.2.2] octane, EUC), a colorless cyclic monoterpene oxide, has shown anti-inflammatory and anti-oxidation properties. To explore the effect of EUC on CPF-induced necroptosis in the grass carp liver cells (L8824 cells), we treated L8824 cells with 60 mM CPF and 5 μM EUC for 24 h. The results showed that CPF exposed lead to excessive accumulation of reactive oxygen species (ROS) and oxidative stress, activating the NF-κB and RIPK1 pathway, increasing the level of cell necroptosis. However, EUC treatment attenuated the toxic effects of CPF treatment on L8824 cells. In summary, the study demonstrated that CPF induced necroptosis and inflammation, and EUC treatment could decrease CPF-caused cell injury.
Collapse
Affiliation(s)
- Naixi Yang
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, PR China
| | - Jinming Guo
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, PR China
| | - Hao Wu
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, PR China
| | - Meichen Gao
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, PR China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
17
|
Chen Y, Zhang X, Yang J, Feng W, Deng G, Xu S, Guo M. Extracellular Vesicles Derived from Selenium-Deficient MAC-T Cells Aggravated Inflammation and Apoptosis by Triggering the Endoplasmic Reticulum (ER) Stress/PI3K-AKT-mTOR Pathway in Bovine Mammary Epithelial Cells. Antioxidants (Basel) 2023; 12:2077. [PMID: 38136197 PMCID: PMC10740620 DOI: 10.3390/antiox12122077] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/28/2023] [Accepted: 11/04/2023] [Indexed: 12/24/2023] Open
Abstract
Selenium (Se) deficiency disrupts intracellular REDOX homeostasis and severely deteriorates immune and anti-inflammatory function in high-yielding periparturient dairy cattle. To investigate the damage of extracellular vesicles derived from Se-deficient MAC-T cells (SeD-EV) on normal mammary epithelial cells, an in vitro model of Se deficiency was established. Se-deficient MAC-T cells produced many ROS, promoting apoptosis and the release of inflammatory factors. Extracellular vesicles were successfully isolated by ultrahigh-speed centrifugation and identified by transmission electron microscopy, particle size analysis, and surface markers (CD63, CD81, HSP70, and TSG101). RNA sequencing was performed on exosomal RNA. A total of 9393 lncRNAs and 63,155 mRNAs transcripts were identified in the SeC and SeD groups, respectively, of which 126 lncRNAs and 955 mRNAs were differentially expressed. Furthermore, SeD-EV promoted apoptosis of normal MAC-T cells by TUNEL analysis. SeD-EV significantly inhibited Bcl-2, while Bax and Cleaved Caspase3 were greatly increased. Antioxidant capacity (CAT, T-AOC, SOD, and GSH-Px) was inhibited in SeD-EV-treated MAC-T cells. Additionally, p-PERK, p-eIF2α, ATF4, CHOP, and XBP1 were all elevated in MAC-T cells supplemented with SeD-EV. In addition, p-PI3K, p-Akt, and p-mTOR were decreased strikingly by SeD-EV. In conclusion, SeD-EV caused oxidative stress, thus triggering apoptosis and inflammation through endoplasmic reticulum stress and the PI3K-Akt-mTOR signaling pathway, which contributed to explaining the mechanism of Se deficiency causing mastitis.
Collapse
Affiliation(s)
- Yu Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (Y.C.); (S.X.)
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Xiangqian Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.Z.); (J.Y.); (W.F.); (G.D.)
| | - Jing Yang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.Z.); (J.Y.); (W.F.); (G.D.)
| | - Wen Feng
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.Z.); (J.Y.); (W.F.); (G.D.)
| | - Ganzhen Deng
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.Z.); (J.Y.); (W.F.); (G.D.)
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (Y.C.); (S.X.)
| | - Mengyao Guo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (Y.C.); (S.X.)
| |
Collapse
|
18
|
Han D, Yang N, Liu H, Yao Y, Xu S. TBBPA causes apoptosis in grass carp hepatocytes involving destroyed ER-mitochondrial function. CHEMOSPHERE 2023; 341:139974. [PMID: 37648165 DOI: 10.1016/j.chemosphere.2023.139974] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/01/2023]
Abstract
Tetrabromobisphenol A (TBBPA) is the most-produced brominated flame retardant, which can be found in various industrial and household products. Studies have shown that TBBPA has hepatotoxicity, and could pose a risk to aquatic animals. The endoplasmic reticulum (ER) and mitochondria are two important organelles that are highly dynamic in cells, the homeostasis and orchestrated interactions of which are crucial to maintaining cellular function. The aim of this study was to explore the involvement of ER-mitochondria crosstalk in TBBPA-induced toxicity in aquatic animals' hepatocytes. Herein, we exposed grass carp hepatocytes (L8824 cells) to different concentrations of TBBPA. Our experimental results suggested that TBBPA exposure suppressed cell viability and caused apoptosis of L8824 cells. TBBPA treatment upregulated expressions of ER stress markers, increased reactive oxygen species (ROS) and mitochondrial Ca2+ levels, and reduced mitochondrial membrane potential (MMP) in L8824 cells. However, the pretreatment of 2-aminoethoxydiphenyl borate (2-APB) could alleviate TBBPA-induced cell apoptosis, ER stress, and mitochondrial dysfunction. Additionally, 2-APB pretreat relieved ER-mitochondrial contact and the expression of ER-mitochondrial function-related genes induced by high-dose TBBPA. Taken together, these results indicated that TBBPA caused grass carp hepatocyte apoptosis by destroying ER-mitochondrial crosstalk.
Collapse
Affiliation(s)
- Dongxu Han
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Naixi Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Huanyi Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yujie Yao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
19
|
Lv X, Ren M, Xu T, Gao M, Liu H, Lin H. Selenium alleviates lead-induced CIK cells pyroptosis and inflammation through IRAK1/TAK1/IKK pathway. FISH & SHELLFISH IMMUNOLOGY 2023; 142:109101. [PMID: 37758100 DOI: 10.1016/j.fsi.2023.109101] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 10/03/2023]
Abstract
The toxic heavy metal lead is widely found in rivers and soils as an environmental pollutant, posing a threat to the health of aquatic organisms. Selenium is an essential trace element and a powerful antioxidant that has been shown to have anti-inflammatory and antioxidant properties as well as alleviating heavy metal poisoning. Many studies have shown that lead poisoning produces inflammatory responses and damage to the kidneys of a wide range of animals, but the effects on cellular pyroptosis and immune function and selenium antagonism in CIK cells are not clear. In this study, 500 μM Pb and 20 nM Se were applied to grass carp kidney cells, and the results showed that Pb exposure to CIK cells resulted in oxidative stress, activation of the IRAK1/TAK1/IKK pathway, up-regulation of the expression of cellular pyroptosis markers GSDMD and NLRP3, and cellular pyroptosis of CIK cells, as well as up-regulation of IL-1β and IL-18, and the generation of cellular inflammatory response. In contrast, Se treatment significantly reduced the ROS level, the expression of cellular pyroptosis markers GSDMD, NLRP3 and inflammatory element IL-1β and IL-18. Taken together, Se alleviated cellular pyroptosis and immune dysfunction caused by Pb exposure through oxidative stress and activation of the IRAK1/TAK1/IKK pathway. This study complements the harmful effects of the heavy metal Pb on fish and the real-life application of selenium in the healthy culture of fish as a reference will be provided.
Collapse
Affiliation(s)
- Xiunan Lv
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Mengyao Ren
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Tong Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Meichen Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Huanyi Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Hongjin Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Laboratory of Embryo Biotechnology, College of Life Science, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
20
|
Sun X, Zhang W, Shi X, Wang Y, Zhang Y, Liu X, Xu S, Zhang J. Selenium deficiency caused hepatitis in chickens via the miR-138-5p/SelM/ROS/Ca 2+ overload pathway induced by hepatocyte necroptosis. Food Funct 2023; 14:9226-9242. [PMID: 37743830 DOI: 10.1039/d3fo00683b] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Selenoprotein M (SelM), a key thioredoxin like enzyme in the endoplasmic reticulum (ER), is closely related to hepatocyte degeneration. However, the role of miR-138-5p/SelM and necroptosis in chicken SelM-deficient hepatitis and the specific biological mechanism of liver inflammation caused by SelM deficiency have not been elucidated. We established an in vivo chicken liver Se deficiency model by feeding a low-Se diet. The miR-138-5p knockdown and overexpression models and SelM knockdown models were established in LMH cells for an in vitro study. Transmission electron microscopy, H&E staining, Fluo4-AM/ER staining, and flow cytometry were used to detect the morphological changes in chicken liver tissue and the expression changes of necroptosis and inflammation in chicken liver cells. We observed that Se deficiency resulted in liver inflammation, up-regulation of miR-138-5p expression and down-regulation of SelM expression in chickens. Oxidative stress, Ca2+ overload, energy metabolism disorder and necroptosis occurred in chicken liver tissue. Importantly, ROS and the Ca2+ inhibitor could effectively alleviate the energy metabolism disorder, necroptosis and inflammatory cytokine secretion caused by miR-138-5p overexpression and SelM knockdown in LMH cells. In conclusion, selenium deficiency causes hepatitis by upregulating miR-138-5p targeting SelM. Our research findings enrich our knowledge about the biological functions of SelM and provide a theoretical basis for the lack of SelM leading to liver inflammation in chickens.
Collapse
Affiliation(s)
- Xinyue Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China.
| | - Wenyue Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China.
| | - Xu Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China.
| | - Yuqi Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China.
| | - Yilei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China.
| | - Xiaojing Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China.
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China.
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Jiuli Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China.
- Heilongjiang Polytechnic, Harbin 150030, P. R. China.
| |
Collapse
|
21
|
Li A, Gu L, He C, Li Y, Peng M, Liao J, Xiao R, Xu L, Guo S. GATA6 promotes fibrotic repair of tracheal injury through NLRP3 inflammasome-mediated epithelial pyroptosis. Int Immunopharmacol 2023; 123:110657. [PMID: 37531826 DOI: 10.1016/j.intimp.2023.110657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/08/2023] [Accepted: 07/13/2023] [Indexed: 08/04/2023]
Abstract
Tracheal injury is a challenging emergency condition that is characterized by the abnormal repair of the trachea. GATA6, a well-established transcription factor, plays a crucial role in tissue injury and epithelial regenerative repair. This study aims to evaluate the role of GATA6 in NF-κB-mediated NLRP3 inflammasome activation and pyroptosis after tracheal injury. Tracheal tissues and serum samples were collected from clinical patients and a rat model of tracheal injury. Upon GATA6 knockdown or overexpression, BEAS-2B and rat tracheal epithelial (RTE) cells were treated with lipopolysaccharides and nigericin before being co-cultured with primary tracheal fibroblasts. The changes of NLRP3 inflammasome activation and pyroptosis and their underlying mechanisms were detected. Additionally, the role of GATA6 downregulation in tracheal injury was verified in rats. GATA6 expression and NLRP3 inflammasome activation were upregulated following tracheal injury in the epithelium of granulation tissues. GATA6 silencing inhibited NLRP3 priming, NLRP3 inflammasome activation, and pyroptosis in BEAS-2B and RTE cells. Mechanistically, GATA6 was determined to have bound to the promoter region of NLRP3 and synergistically upregulated NLRP3 promoter activity with NF-κB. Furthermore, GATA6 overexpression promoted epithelial-mesenchymal transition via modulating the NF-κB/NLRP3 pathway. Epithelial NLRP3 inflammasome activation triggered ECM production in fibroblasts, which was suppressed by GATA6 knockdown and induced by GATA6 overexpression. Finally, the downregulation of GATA6 alleviated NLRP3 inflammasome-mediated pyroptosis induced by tracheal injury in rats, thereby reducing tracheal stenosis, inflammation, and fibrosis. GATA6 promotes fibrotic repair in tracheal injury through NLRP3 inflammasome-mediated epithelial pyroptosis, making it a potential biological therapeutic target for tracheal injury.
Collapse
Affiliation(s)
- Anmao Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lei Gu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chunyan He
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yishi Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Mingyu Peng
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiaxin Liao
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Rui Xiao
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Xu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shuliang Guo
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
22
|
Akaras N, Ileriturk M, Gur C, Kucukler S, Oz M, Kandemir FM. The protective effects of chrysin on cadmium-induced pulmonary toxicity; a multi-biomarker approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:89479-89494. [PMID: 37453011 DOI: 10.1007/s11356-023-28747-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
This study aimed to determine the potential protective effects of chrysin (CHR) on experimental cadmium (Cd)-induced lung toxicity in rats. To this end, rats were divided into five groups; Control, CHR, Cd, Cd + CHR25, Cd + CHR50. In the study, rats were treated with CHR (oral gavage, 25 mg/kg and 50 mg/kg) 30 min after giving Cd (oral gavage, 25 mg/kg) for 7 consecutive days. The effects of Cd and CHR treatments on oxidative stress, inflammatory response, ER stress, apoptosis and tissue damage in rat lung tissues were determined by biochemical and histological methods. Our results revealed that CHR therapy for Cd-administered rats could significantly reduce MDA levels in lung tissue while significantly increasing the activity of antioxidant enzymes (SOD, CAT, GPx) and GSH levels. CHR agent exerted antiinflammatory effect by lowering elevated levels of NF-κB, IL-1β IL-6, TNF-α, RAGE and NRLP3 in Cd-induced lung tissue. Moreover CHR down-regulated Cd-induced ER stress markers (PERK, IRE1, ATF6, CHOP, and GRP78) and apoptosis markers (Caspase-3, Bax) lung tissue. CHR up-regulated the Bcl-2 gene, an anti-apoptotic marker. Besides, CHR attenuated the side effects caused by Cd by modulating histopathological changes such as hemorrhage, inflammatory cell infiltration, thickening of the alveolar wall and collagen increase. Immunohistochemically, NF-κB and Caspase-3 expressions were intense in the Cd group, while these expressions were decreased in the Cd + CHR groups. These results suggest that CHR exhibits protective effects against Cd-induced lung toxicity in rats by ameliorating oxidative stress, inflammation, apoptosis, endoplasmic reticulum stress and histological changes.
Collapse
Affiliation(s)
- Nurhan Akaras
- Department of Histology and Embryology, Faculty of Medicine, Aksaray University, Aksaray, Turkey.
| | - Mustafa Ileriturk
- Department of Animal Science, Horasan Vocational College, Atatürk University, Erzurum, Turkey
| | - Cihan Gur
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Sefa Kucukler
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Mehmet Oz
- Department of Physiology, Faculty of Medicine, Aksaray University, Aksaray, Turkey
| | - Fatih Mehmet Kandemir
- Department of Medical Biochemistry, Faculty of Medicine, Aksaray University, Aksaray, Turkey
| |
Collapse
|
23
|
Cui Y, Xiao Q, Yuan Y, Zhuang Y, Hao W, Jiang J, Meng Q, Wei X. Ozone-oxidized black carbon particles change macrophage fate: Crosstalk between necroptosis and macrophage extracellular traps. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 329:121655. [PMID: 37068650 DOI: 10.1016/j.envpol.2023.121655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/12/2023] [Accepted: 04/15/2023] [Indexed: 05/21/2023]
Abstract
The impacts of environmental PM 2.5 on public health have become a major concern all over the world. Many studies have shown that PM 2.5 still poses a threat to public health even at very low levels. Physical or chemical reactions occur between primary particles and other components in the environment, which changes the properties of primary particles. Such newly formed particles with changed properties are called secondary particles. Ozone-oxidized black carbon (oBC) is a key part of PM 2.5 and a representative secondary particle. Macrophages extracellular traps (METs) is a means for macrophages to capture and destroy invading pathogens, thereby exercising innate immunity. Necroptosis is a kind of programmed cell death, which is accompanied by the destruction of membrane integrity, thus inducing inflammatory reaction. However, there is no research on the crosstalk mechanism between necroptosis and MET after oBC exposure. In our study, AO/EB staining, SYTOX Green staining, fluorescent probe, qPCR, Western blot, and immunofluorescence were applied. This experiment found that under normal physiological conditions, when macrophages receive external stimuli (such as pathogens; in our experiment: phorbol 12-myristate 13-acetate (PMA)), they will form METs, capture and kill pathogens, thus exerting innate immune function. However, exposure to oBC can cause necroptosis in macrophages, accompanied by increased levels of reactive oxygen species (ROS) and cytosolic calcium ions, as well as the expression disorder of inflammatory factors and chemokines, and prevent the formation of METs, lose the function of capturing and killing pathogens, and weaken the innate immune function. Notably, inhibition of necroptosis restored the formation of METs, indicating that necroptosis inhibited the formation of METs. This study was the first to explore the crosstalk mechanism between necroptosis and METs after oBC exposure.
Collapse
Affiliation(s)
- Yuan Cui
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Qianqian Xiao
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Yuese Yuan
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Yimeng Zhuang
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Weidong Hao
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Jianjun Jiang
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Qinghe Meng
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Xuetao Wei
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China.
| |
Collapse
|
24
|
Yin K, Wang D, Zhang Y, Lu H, Hou L, Guo T, Zhao H, Xing M. Polystyrene microplastics promote liver inflammation by inducing the formation of macrophages extracellular traps. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131236. [PMID: 36958159 DOI: 10.1016/j.jhazmat.2023.131236] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 05/03/2023]
Abstract
Microplastics (MPs), a new and increasing environmental pollutant, can cause ongoing damage to organisms. Although recent studies have revealed mechanisms of action for some of the hepatotoxicity caused by MPs, the role-played by cellular interactions, particularly immune cells, in the process of liver injury has not been elucidated. In the present study, 5-μm polystyrene microplastics (PS-MPs) induced liver inflammation as well as the formation of Macrophage extracellular traps (METs). Macrophage and LMH cell co-culture systems confirmed that PS-MPs-induced METs promote inflammation in hepatocytes. Mechanistically, macrophages actively phagocytose particles after 4 h of exposure to PS-MPs. Subsequently PS-MPs elevated ROS levels and disrupt mitochondrial kinetic homeostasis. Further activation of mitochondrial autophagy and lysosomes. After phagocytosis of PS-MPs by macrophages for 12 h, continued autophagy and lysosome activation eventually lead to lysosome rupture and release of calcium ions to induce the formation of METs. Blocking ROS (NAC) and autophagy (3MA) partially alleviated mitochondrial and lysosomal damage and thus inhibited the formation of METs induced by PS-MPs. NAC also delayed the onset of respiratory burst to alleviate METs formation. In conclusion, our study reveals the mechanism of METs formation in liver inflammation induced by PS-MPs exposure and suggests that lysosomal damage may be one of the key players in the formation of METs induced by PS-MPs.
Collapse
Affiliation(s)
- Kai Yin
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Dongxu Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Yue Zhang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Hongmin Lu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Lulu Hou
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Tiantian Guo
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Hongjing Zhao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China.
| | - Mingwei Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China.
| |
Collapse
|
25
|
Cui Y, Xiao Q, Zhang Q, Liu Y, Hao W, Jiang J, Meng Q, Wei X. Black carbon nanoparticles activate the crosstalk mechanism between necroptosis and macrophage extracellular traps to change macrophages fate. ENVIRONMENTAL RESEARCH 2023:116321. [PMID: 37271434 DOI: 10.1016/j.envres.2023.116321] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/12/2023] [Accepted: 06/01/2023] [Indexed: 06/06/2023]
Abstract
PM2.5 still poses a threat to public health even at very low levels. Black carbon (BC) is a key component of PM2.5. Macrophage extracellular traps (METs) are a means by which macrophages capture and destroy invading pathogens. Necroptosis is an inflammatory programmed cell death. However, there is no research on the crosstalk mechanism between necroptosis and METs after BC exposure. In our study, fluorescence labeling, fluorescent probes, qPCR, and immunofluorescence were applied. Our research found that under normal physiological conditions, when macrophages receive external stimuli (in our experiment, phorbol 12-myristate 13-acetate (PMA)), they will form METs, thus exhibiting innate immune function. However, exposure to BC can cause necroptosis in macrophages accompanied by increased levels of ROS and cytosolic calcium ions as well as altered expression of inflammatory factors and chemokines that prevent the formation of METs, and weakening innate immune function. Notably, inhibition of necroptosis restored the formation of METs, indicating that necroptosis inhibits the formation of METs. Our experiment will enrich the understanding of the mechanism of macrophage injury caused by BC exposure, provide a new direction for studying harmful atmospheric particle toxicity, and propose new therapeutic insights for diseases caused by atmospheric particulate matter. This study is the first to explore the crosstalk mechanism between necroptosis and METs after BC exposure.
Collapse
Affiliation(s)
- Yuan Cui
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Qianqian Xiao
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Qiong Zhang
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Yuetong Liu
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Weidong Hao
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Jianjun Jiang
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Qinghe Meng
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Xuetao Wei
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China.
| |
Collapse
|
26
|
Li Z, Xu T, Fan X, Chen K, Wan C, Li X, Yin H, Li S. Bisphenol A aggravate selenium deficiency-induced apoptosis via miR-215-3p/Dio1 to activate ROS/PI3K/AKT pathway in chicken arterial. J Cell Physiol 2023; 238:1256-1274. [PMID: 37012668 DOI: 10.1002/jcp.31007] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/13/2023] [Accepted: 03/08/2023] [Indexed: 04/05/2023]
Abstract
Both bisphenol A (BPA) and selenium (Se) deficiency can affect the expression of microRNAs (miRNAs), which can specifically regulate its target mRNA and induce apoptosis, and play a significant role in cardiovascular injury diseases. To explore the mechanism of apoptosis induced by BPA and Se deficiency in chicken arterial endothelial tissue and the role of miRNAs in this process, the model of BPA exposure/Se deficiency in chicken and PAEC cells have been employed. The targeting relationship between miR-215-3p and iodothyronine deiodinase 1 (Dio1) in PAEC was verified by double luciferase gene report. The level of miR-215-3p was detected by qRT-PCR. The oxidative stress level of arterial endothelial cells was detected by oxidative stress kit and DCFH-DA probe method. The PI3K/AKT pathway, mitochondrial dynamics, and apoptosis-related genes were detected by qRT-PCR and western blot. The mitochondrial ATP level and nitric oxide synthases (NOSs) level were detected with the kit. TUNEL, acridine orange/ethidium bromide, and flow cytometry were used to detect the level of apoptosis. The results showed that BPA exposure and Se deficiency led to overexpression of miR-215-3p, aggravated oxidative stress, inhibited activation of PI3K/AKT pathway, promoted mitochondrial division, increased expression of apoptosis related genes, and finally led to apoptosis of chicken arterial endothelial cells. We also established knockdown/overexpression models of miR-215-3p and Dio1 in vitro, and found that overexpression of miR-215-3p and knockout of Dio1 can induce apoptosis. Interestingly, miR-215-3p-Inhibitor and N-acetyl- l-cysteine (NAC) partially prevented apoptosis caused by BPA exposure and Se deficiency, and LY294002 aggravated apoptosis. These results suggest that BPA exposure aggravates the apoptosis of Se deficient arterial endothelial cells in chickens by regulating the ROS/PI3K/AKT pathway activated by miR-215-3p/Dio1. The miR-215-3p/Dio1 axis provides a new way to understand the toxic mechanism of BPA exposure and Se deficiency, and reveals a new regulatory model of apoptosis damage in vascular diseases.
Collapse
Affiliation(s)
- Zhe Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Tong Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Xue Fan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Kai Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Chunyan Wan
- National Selenium-rich Product Quality Supervision and Inspection Center, Enshi, People's Republic of China
| | - Xiang Li
- National Selenium-rich Product Quality Supervision and Inspection Center, Enshi, People's Republic of China
| | - Hang Yin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| |
Collapse
|
27
|
Cui Y, Xiao Q, Yuan Y, Zhuang Y, Hao W, Jiang J, Meng Q, Wei X. 1,4-Naphthoquinone-Coated Black Carbon, a Kind of Atmospheric Fine Particulate Matter, Affects Macrophage Fate: New Insights into Crosstalk between Necroptosis and Macrophage Extracellular Traps. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6095-6107. [PMID: 37018376 DOI: 10.1021/acs.est.2c08791] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
1,4-Naphthoquinone-coated BC (1,4 NQ-BC) is an important component of PM2.5 and a representative secondary particle. However, there is no research on the crosstalk mechanism between necroptosis and macrophage extracellular traps (METs) after 1,4 NQ-BC exposure. In this study, we treated RAW264.7 cells with 50, 100, and 200 mg/L 1,4 NQ-BC for 24 h, with 10 μM necrostatin-1 for 24 h, and with 2.5 μM phorbol 12-myristate 13-acetate (PMA) for 3 h. Our experiment revealed that under normal physiological conditions, when macrophages receive external stimuli (such as pathogens; in this experiment, PMA), they will form METs and capture and kill pathogens, thus exerting innate immune function. However, exposure to 1,4 NQ-BC can cause necroptosis in macrophages, accompanied by increased levels of reactive oxygen species (ROS) and cytosolic calcium ions, as well as the expression disorder of inflammatory factors and chemokines, prevent the formation of METs, lead to loss of the function of capturing and killing pathogens, and weaken the innate immune function. Notably, inhibition of necroptosis restored the formation of METs, indicating that necroptosis inhibited the formation of METs. Our study was the first to explore the crosstalk mechanism between necroptosis and METs. This experiment will enrich the mechanism of macrophage injury caused by 1,4 NQ-BC exposure.
Collapse
Affiliation(s)
- Yuan Cui
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, P. R. China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, P. R. China
| | - Qianqian Xiao
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, P. R. China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, P. R. China
| | - Yuese Yuan
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, P. R. China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, P. R. China
| | - Yimeng Zhuang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, P. R. China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, P. R. China
| | - Weidong Hao
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, P. R. China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, P. R. China
| | - Jianjun Jiang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, P. R. China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, P. R. China
| | - Qinghe Meng
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, P. R. China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, P. R. China
| | - Xuetao Wei
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, P. R. China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, P. R. China
| |
Collapse
|
28
|
Gao PC, Wang AQ, Chen XW, Cui H, Li Y, Fan RF. Selenium alleviates endoplasmic reticulum calcium depletion-induced endoplasmic reticulum stress and apoptosis in chicken myocardium after mercuric chloride exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:51531-51541. [PMID: 36810819 DOI: 10.1007/s11356-023-25970-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
Mercury is a highly toxic heavy metal with definite cardiotoxic properties and can affect the health of humans and animals through diet. Selenium (Se) is a heart-healthy trace element and dietary Se has the potential to attenuate heavy metal-induced myocardial damage in humans and animals. This study was designed to explore antagonistic effect of Se on the cardiotoxicity of mercuric chloride (HgCl2) in chickens. Hyline brown hens received a normal diet, a diet containing 250 mg/L HgCl2, or a diet containing 250 mg/L HgCl2 and 10 mg/kg Na2SeO3 for 7 weeks, respectively. Histopathological observations demonstrated that Se attenuated HgCl2-induced myocardial injury, which was further confirmed by the results of serum creatine kinase and lactate dehydrogenase levels assay and myocardial tissues oxidative stress indexes assessment. The results showed that Se prevented HgCl2-induced cytoplasmic calcium ion (Ca2+) overload and endoplasmic reticulum (ER) Ca2+ depletion mediated by Ca2+-regulatory dysfunction of ER. Importantly, ER Ca2+ depletion led to unfolded protein response and endoplasmic reticulum stress (ERS), resulting in apoptosis of cardiomyocytes via PERK/ATF4/CHOP pathway. In addition, heat shock protein expression was activated by HgCl2 through these stress responses, which was reversed by Se. Moreover, Se supplementation partially eliminated the effects of HgCl2 on the expression of several ER-settled selenoproteins, including selenoprotein K (SELENOK), SELENOM, SELENON, and SELENOS. In conclusion, these results suggested that Se alleviated ER Ca2+ depletion and oxidative stress-induced ERS-dependent apoptosis in chicken myocardium after HgCl2 exposure.
Collapse
Affiliation(s)
- Pei-Chao Gao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China
| | - An-Qi Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China
| | - Xue-Wei Chen
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China
| | - Han Cui
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China
| | - Yue Li
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China
| | - Rui-Feng Fan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China.
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China.
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China.
| |
Collapse
|
29
|
Chu X, Dai X, Pu W, Guo H, Huang G, Huang B, Cui T, Zhang C. Co-exposure to molybdenum and cadmium triggers pyroptosis and autophagy by PI3K/AKT axis in duck spleens. ENVIRONMENTAL TOXICOLOGY 2023; 38:635-644. [PMID: 36399440 DOI: 10.1002/tox.23712] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/30/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Excessive amounts of molybdenum (Mo) and cadmium (Cd) are toxicant, but their combined immunotoxicity are not clearly understood. To estimate united impacts of Mo and Cd on pyroptosis and autophagy by PI3K/AKT axis in duck spleens, Mo or/and Cd subchronic toxicity models of ducks were established by feeding diets with different dosages of Mo or/and Cd. Data show that Mo or/and Cd cause oxidative stress by increasing MDA concentration, and decreasing T-AOC, CAT, GSH-Px and T-SOD activities, restrain PI3K/AKT axis by decreasing PI3K, AKT, p-AKT expression levels, which evokes pyroptosis and autophagy by elevating IL-1β, IL-18 concentrations and NLRP3, Caspase-1, ASC, GSDME, GSDMA, NEK7, IL-1β, IL-18 expression levels, promoting autophagosomes, LC3 puncta, Atg5, LC3A, LC3B, LC3II/LC3I and Beclin-1 expression levels, and reducing expression levels of P62 and Dynein. Furthermore, the variations of abovementioned indexes are most pronounced in co-treated group. Overall, results reveal that Mo or/and Cd may evoke pyroptosis and autophagy by PI3K/AKT axis in duck spleens. The association of Mo and Cd exacerbates the changes.
Collapse
Affiliation(s)
- Xuesheng Chu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, People's Republic of China
| | - Xueyan Dai
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, People's Republic of China
| | - Wenjing Pu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, People's Republic of China
| | - Huiling Guo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, People's Republic of China
| | - Gang Huang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, People's Republic of China
| | - Bingyan Huang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, People's Republic of China
| | - Ting Cui
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, People's Republic of China
| | - Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, People's Republic of China
| |
Collapse
|
30
|
Zhang W, Sun X, Lei Y, Liu X, Zhang Y, Wang Y, Lin H. Roles of selenoprotein K in oxidative stress and endoplasmic reticulum stress under selenium deficiency in chicken liver. Comp Biochem Physiol C Toxicol Pharmacol 2023; 264:109504. [PMID: 36375805 DOI: 10.1016/j.cbpc.2022.109504] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/13/2022]
Abstract
Selenoprotein K (SELENOK) is a major part of selenoprotein family. Selenoproteins have been proven playing vital roles in a variety of physiological processes. However, as a necessary supplement to the body of trace elements, how SELENOK regulates necroptosis in chicken liver has none clear claim. The purpose of this study was to cover the mechanism of SELENOK act in necroptosis of chicken liver. By feeding Se-deficiency diet for 1-day-old hyline chickens, we successfully built SELENOK-deficiency and discussed the regulation SELENOK have done. The test of liver function showed there has dysfunction appeared in the -Se groups. Results of TEM showed necroptosis occurred in the 35-Se group. After that western blot and qRT-PCR results prompted us SELENOK-deficiency caused large accumulation of ROS, enhanced endoplasmic reticulum stress, abnormally elevated HSPs family expression, and activated RIPK1-RIPK3 complex. In order to show the regulation of SELENOK in chicken liver, we artificially knocked off SELENOK gene in LMH cells. Through AO/EB staining we also found necroptosis in the siRNA-Se group. Furthermore, the results in LMH cells were coincided with those in chicken (Gallus gallus) liver. Our experiment clarified the molecular mechanism of SELENOK in the regulation and liver necroptosis, and provided reference for the healthy feeding mode of broilers.
Collapse
Affiliation(s)
- Wenyue Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xinyue Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yutian Lei
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiaojing Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yilei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yuqi Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Hongjin Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
31
|
Yin K, Sun X, Zheng Y, Zhang W, Lin H. Bisphenol A exacerbates selenium deficiency-induced pyroptosis via the NF-κB/NLRP3/Caspase-1 pathway in chicken trachea. Comp Biochem Physiol C Toxicol Pharmacol 2023; 263:109488. [PMID: 36257570 DOI: 10.1016/j.cbpc.2022.109488] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/04/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022]
Abstract
Selenium deficiency can lead to multiple tissue and organ damage in the body and could coexist with chronic toxic exposures. Contamination from Bisphenol A (BPA) exposure can induce the occurrence of various injuries including pyroptosis. However, it is not clear whether selenium deficiency and BPA exposure affect tracheal tissue pyroptosis in chickens. To investigate whether selenium deficiency and BPA exposure induce chicken tracheal tissue pyroptosis via the NF-κB/NLRP3/Caspase-1 pathway and the effect of their combined exposure on tissue injury, we developed a model of relevant chicken tracheal injury. Sixty broilers were divided into four groups: the control group (C group), selenium-deficient group (SeD group), BPA-exposed group (BPA group) and combined exposure group (SeD + BPA group). The study examined the expression indicators of markers of pyroptosis (NLRP3&GSDMD), NF-κB pathway-related inflammatory factors (NF-κB, iNOS, TNF-α, COX-2), pyroptosis-related factors (ASC, Caspase-1, IL-1β, IL-18), and some heat shock proteins and interleukins (HSP60, HSP90, IL-6, IL-17) in the samples. The results showed that the expression of the above indicators was significantly upregulated in the different treatment groups (P < 0.05). In addition, the expression levels of the above related indicators were more significantly up-regulated in the combined selenium-deficient and BPA-exposed group compared to the group in which they were individually exposed. It was concluded that selenium deficiency and BPA exposure induced tracheal tissue pyroptosis in chickens through NF-κB/NLRP3/Caspase-1 pathway, and BPA exposure exacerbated selenium deficiency-induced tracheal pyroptosis. The present study provides new ideas into studies related to the co-exposure of organismal micronutrient deficiency and chronic toxicants.
Collapse
Affiliation(s)
- Kexin Yin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xinyue Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yaxin Zheng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Wenyue Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Hongjin Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
32
|
Lei Y, Zhang W, Gao M, Lin H. Mechanism of evodiamine blocking Nrf2/MAPK pathway to inhibit apoptosis of grass carp hepatocytes induced by DEHP. Comp Biochem Physiol C Toxicol Pharmacol 2023; 263:109506. [PMID: 36368504 DOI: 10.1016/j.cbpc.2022.109506] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/24/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
Abstract
Di (2-ethylhexyl) phthalate (DEHP) is often used as a plasticizer for plastic products, and its excessive use can cause irreversible damage to aquatic animals and humans. Evodiamine (EVO) is an alkaloid component in the fruit of Evodia rutaecarpa, which has antioxidant and detoxification functions. To investigate the toxic mechanism of DEHP on grass carp (Ctenopharyngodon idellus) hepatocyte cell line (L8824) and the therapeutic effect of evodiamine, an experimental model of L8824 cells exposed to 800 μM DEHP and/or 10 μM EVO for 24 h was established. Flow cytometry, AO/EB fluorescence staining, real-time quantitative PCR, and western blot were used to detect the degree of cell injury, oxidative stress level, MAPK signaling pathway relative genes, and the expression of apoptosis-related molecules. The results showed that DEHP exposure could significantly increase the level of reactive oxygen species (ROS), inhibit the activities of antioxidant enzymes (CAT, SOD, GSH-Px), and cause the accumulation of MDA. DEHP also activated MAPK signaling pathway-related molecules (JNK, ERK, P38 MAPK), and then up-regulated the expression of pro-apoptotic factors Bcl-2-Associated X (Bax) and caspase 3, while inhibiting the anti-apoptotic factor B-cell lymphoma-2 (Bcl-2). In addition, EVO can also promote the dissociation of nuclear factor-E2-related factor 2 (Nrf2) into the nucleus, reduce the level of ROS and the occurrence of oxidative stress in grass carp hepatocytes, down-regulate the MAPK pathway, alleviate DEHP-induced apoptosis, and restore the expression of antioxidant genes. These results indicated that evodiamine could block Nrf2/MAPK pathway to inhibit DEHP-induced apoptosis of grass carp hepatocytes.
Collapse
Affiliation(s)
- Yutian Lei
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Wenyue Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Meichen Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Hongjin Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
33
|
Lu H, Yin K, Su H, Wang D, Zhang Y, Hou L, Li JB, Wang Y, Xing M. Polystyrene microplastics induce autophagy and apoptosis in birds lungs via PTEN/PI3K/AKT/mTOR. ENVIRONMENTAL TOXICOLOGY 2023; 38:78-89. [PMID: 36205374 DOI: 10.1002/tox.23663] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
Microplastics (MPs) seriously pollute and potentially threaten human health. Birds are sentinels of environmental pollutants, which respond quickly to contamination events and reveal current environmental exposure. Therefore, birds are good bioindicators for monitoring environmental pollutants. However, the mechanism of lung injury in birds and the role of the PTEN/PI3K/AKT axis are unknown. In this study, broilers treated with different polystyrene microplastics (PS-MPs) (0, 1, 10, and 100 mg/L) were exposed to drinking water for 6 weeks to analyze the effect of PS-MPs on lung injury of broilers. The results showed that with the increase of PS-MPs concentration, malonaldehyde (MDA) content increased, and catalase (CAT) and glutathione (GSH) activity decreased, further leading to oxidative stress. PS-MPs caused the PI3K/Akt/mTOR pathway to be inhibited by phosphorylation, and autophagy accelerated formation (LC3) and degradation (p62), causing autophagy. In PS-MPs exposed lung tissues, the expression of Bax/Bcl-2 and Caspase family increased, and MAPK signaling pathways (p38, ERK, and JNK) showed an increase in phosphorylation level, thus leading to cell apoptosis. Our research showed that PS-MPs could activate the antioxidant system. The antioxidant system unbalance-regulated Caspase family, and PTEN/PI3K/AKT pathways initiated apoptosis and autophagy, which in turn led to lung tissue damage in chickens. These results are of great significance to the toxicological study of PS-MPs and the protection of the ecosystem.
Collapse
Affiliation(s)
- Hongmin Lu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, People's Republic of China
| | - Kai Yin
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, People's Republic of China
| | - Heng Su
- College of Resources and Environment, Northeast Agricultural University, Harbin, People's Republic of China
| | - Dongxu Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, People's Republic of China
| | - Yue Zhang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, People's Republic of China
| | - Lulu Hou
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, People's Republic of China
| | - Jun Bo Li
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, People's Republic of China
| | - Yu Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, People's Republic of China
| | - Mingwei Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, People's Republic of China
| |
Collapse
|
34
|
Hou L, Wang D, Yin K, Zhang Y, Lu H, Guo T, Li J, Zhao H, Xing M. Polystyrene microplastics induce apoptosis in chicken testis via crosstalk between NF-κB and Nrf2 pathways. Comp Biochem Physiol C Toxicol Pharmacol 2022; 262:109444. [PMID: 36007826 DOI: 10.1016/j.cbpc.2022.109444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/11/2022] [Accepted: 08/18/2022] [Indexed: 11/03/2022]
Abstract
Microplastics (MPs) are a new type of pollutants that are widespread in nature, and their toxic effects on humans or animals are receiving attention. Birds are in a higher ecological niche in nature, and MPs may have potential bioaccumulation and biomagnification risks to birds. The mechanisms underlying the reproductive toxicity of MPs to birds are mainly unknown. To study the reproductive toxicity of MPs to birds, we randomly divided chickens into six groups and exposed polystyrene microplastics (PS-MPs) through drinking water (0, 1, and 100 mg/L) for 28 and 42 days. We found that PS-MPs caused testicular inflammatory infiltration and interstitial hemorrhage, resulting in testicular tissue damage; the expression of Claudin3 and Occludin in the blood-testis barrier (BTB) decreased and may damage the integrity of the BTB. PS-MPs exposure inhibited the expression of the Nrf2-Keap1 pathway, which in turn reduced HO-1 and NQO1, simultaneous GSH and T-AOC were also reduced, resulting in an imbalance of the redox system; in addition, the NF-κB signaling pathway was activated, increasing the expression of TNF-α, COX-2 and iNOS. Under redox system imbalance and inflammatory stress, exposure to PS-MPs led to decreased expression of Bcl-2 and increased Bax, cytc, caspase-8, and caspase-3, etc., activating apoptosis, and ultimately causing testicular damage. These results suggested that PS-MPs exposure led to an imbalance of the redox system and an inflammatory response, inducing both endogenous and exogenous apoptosis, resulting in testicular tissue damage. Our study provides a theoretical basis for reproductive injury mechanisms in chicken.
Collapse
Affiliation(s)
- Lulu Hou
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, PR China
| | - Dongxu Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, PR China
| | - Kai Yin
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, PR China
| | - Yue Zhang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, PR China
| | - Hongmin Lu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, PR China
| | - Tiantian Guo
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, PR China
| | - Junbo Li
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, PR China
| | - Hongjing Zhao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, PR China.
| | - Mingwei Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, PR China.
| |
Collapse
|
35
|
Gao M, Zhu H, Guo J, Lei Y, Sun W, Lin H. Tannic acid through ROS/TNF-α/TNFR 1 antagonizes atrazine induced apoptosis, programmed necrosis and immune dysfunction of grass carp hepatocytes. FISH & SHELLFISH IMMUNOLOGY 2022; 131:312-322. [PMID: 36220537 DOI: 10.1016/j.fsi.2022.09.062] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/18/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Atrazine (ATR) is a commonly used triazine herbicide, which will remain in the water source, soil and biological muscle tissue for a long time, threatening the survival of related organisms and future generations. Tannic acid (TAN), a glucosyl compound found in gallnuts, has previously been shown to antagonize heavy metal toxicity, antioxidant activity, and inflammation. However, it is unclear whether TAN can antagonize ATR-induced Grass carp hepatocytes (L8824 cells) cytotoxicity. Therefore, we treated L8824 cells with 3 μg mL-1 ATR for 24 h to establish a toxic group model. The experimental data of flow cytometry and AO/EB staining together showed that the ratio of apoptosis and necrosis in L8824 cells after ATR exposure was significantly higher than that in the control group. Furthermore, RT-qPCR showed that inflammatory factors (TNF-α, IL-1β, IL-6, INF-γ) were up-regulated and antimicrobial peptides (hepcidin, β-defensin and LEAP2) were induced down-regulated in L8824 cells, leading to immune dysfunction. The measurement results of oxidative stress-related indicators showed that the levels of ROS and MDA increased after ATR exposure, the overall anti-oxidative system was down-regulated. Western blotting confirmed that TNF-α/TNFR 1-related genes were also up-regulated. This indicates that ATR stimulates oxidative stress in L8824 cells, which in turn promotes the binding of TNF-α to TNFR 1. In addition, TRADD, FADD, Caspase-3, P53, RIP1, RIP3 and MLKL were found to be significantly up-regulated by Western blotting and RT-qPCR. Conditioned after ATR exposure compared to controls. It indicates that ATR activates apoptosis and necrosis of TNF-α/TNFR 1 pathway by inducing oxidative stress in L8824 cells. Furthermore, the use of TAN (5 μM) significantly alleviated the toxic effects of ATR on L8824 cells mentioned above. In conclusion, TAN restrains ATR-induced apoptosis, programmed necrosis and immune dysfunction through the ROS/TNF-α/TNFR 1 pathway.
Collapse
Affiliation(s)
- Meichen Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Huijun Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jinming Guo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yutian Lei
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Wenying Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Hongjin Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongiiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
36
|
Shi X, Zhu W, Chen T, Cui W, Li X, Xu S. Paraquat induces apoptosis, programmed necrosis, and immune dysfunction in CIK cells via the PTEN/PI3K/AKT axis. FISH & SHELLFISH IMMUNOLOGY 2022; 130:309-316. [PMID: 36126840 DOI: 10.1016/j.fsi.2022.09.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/17/2022] [Accepted: 09/13/2022] [Indexed: 06/15/2023]
Abstract
Paraquat (PQ) is a highly water-soluble, non-selective herbicide. Due to water pollution and lack of specific medicines, it is extremely harmful to humans and aquatic animals. Oxidative stress and apoptosis can affect the immune function of the body. However, the effects and mechanisms of PQ on the immune function, apoptosis and programmed necrosis on CIK cells are still unclear. Therefore, we constructed low (L, 50 μmol/L), medium (M, 100 μmol/L), and high (H, 150 μmol/L) dose models of PQ exposure on CIK cells. The expression of oxidative stress-related indexes (MDA, CAT, GSH-Px and SOD) and interrelated genes were examined by flow cytometry, qRT-PCR, and western blotting methods. Our data demonstrated that PQ treatment caused an increase in MDA content and the decreases in the activities of antioxidase and antioxidants (SOD, GSH-Px and CAT) on CIK cells (p < 0.05). We also discovered the PTEN/PI3K/AKT pathway was significantly activated in a dose dependent manner (p < 0.05). Furthermore, the proportion of programmed necrosis cells increased dramatically at PQ doses from 0 μmol/L to 150 μmol/L. Apoptosis and necrosis-related genes also showed dose-dependent changes (p < 0.05). Briefly, PQ exposure leads to apoptosis and programmed necrosis via the oxidative stress and PTEN/PI3K/AKT pathway, thereby causing immune dysfunction of CIK cells. This study enriches the toxic influences of PQ on the cells of aquatic organisms and provides a reference for comparative medicine.
Collapse
Affiliation(s)
- Xu Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Wenjing Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Ting Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Wei Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xiaojing Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Laboratory of Embryo Biotechnology, College of Life Science, Northeast Agricultural University, Harbin, China.
| |
Collapse
|
37
|
Zhang W, Sun X, Qi X, Liu X, Zhang Y, Qiao S, Lin H. Di-(2-Ethylhexyl) Phthalate and Microplastics Induced Neuronal Apoptosis through the PI3K/AKT Pathway and Mitochondrial Dysfunction. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10771-10781. [PMID: 36006862 DOI: 10.1021/acs.jafc.2c05474] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Di-(2-Ethylhexyl) phthalate (DEHP) and microplastics (MPs) have released widespread residues to the environment and possess the ability to cause damage to humans and animals. However, there are still gaps in the study of damage to neurons caused by DEHP and MPs in mice cerebra and whether they have combined toxic effects. To investigate the underlying mechanism of action, mice were fed 200 mg/kg DEHP and 10 mg/L MPs in vivo. In vitro, NS20Y (CBNumber: CB15474825) cells were treated with 25 μM DEHP and 775 mg/L MPs. Next, qRT-PCR and western blot analysis were performed to evaluate PI3K/AKT pathway genes, mitochondrial dynamics-related genes, apoptosis-related genes, and GSK-3β and its associated genes, mRNA, and protein expression. To determine pathological changes in the mice cerebra, hematoxylin and eosin (H&E) staining, transmission electron microscopy, and TUNEL staining were employed. To determine the levels of reactive oxygen species (ROS) and apoptosis cells in vitro, ROS staining, acridine orange/ethidium bromide (AO/EB) staining, and flow cytometry were performed. Our results demonstrated that DEHP and MPs caused changes in mitochondrial function, and GSK-3β and its associated gene expression in mice through the PI3K/AKT pathway, which eventually led to apoptosis of neurons. Moreover, our findings showed that DEHP and MPs have a combined toxic effect on mice cerebra. Our findings facilitate the understanding of the neurotoxic effects of DEHP and MPs on neurons in the cerebra of mice and help identify the important role of maintaining normal mitochondrial function in protecting cerebrum health.
Collapse
Affiliation(s)
- Wenyue Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Xinyue Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Xue Qi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Xiaojing Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Yilei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Senqiu Qiao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Hongjin Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| |
Collapse
|