1
|
Morakul B, Teeranachaideekul V, Wongrakpanich A, Leanpolchareanchai J. The evidence from in vitro primary fibroblasts and a randomized, double-blind, placebo-controlled clinical trial of tuna collagen peptides intake on skin health. J Cosmet Dermatol 2024. [PMID: 39075819 DOI: 10.1111/jocd.16500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/25/2024] [Accepted: 07/19/2024] [Indexed: 07/31/2024]
Abstract
BACKGROUND Collagen peptides from various sources demonstrate benefits in health and well-being both in vitro and in clinical trials. However, there is a scarce study of collagen peptides from Tuna on skin health. AIMS To investigate the impact of collagen peptides derived from Tuna (Katsuwonus pelamis and Thunnus albacares) on skin health, utilizing in vitro biological studies and a randomized controlled trial. METHODS In vitro biological studies on human dermal primary fibroblasts were evaluated in terms of collagen and elastin synthesis and senescent cell inhibition. A randomized, placebo-controlled, double-blind clinical trial was conducted on 72 women who were randomly assigned to receive either tuna collagen peptides (n = 36) or a placebo (n = 36) orally for 8 weeks and 2 weeks post-ingestion by measuring skin hydration, transepidermal water loss (TEWL), skin elasticity, and skin density. RESULTS In vitro biological effects demonstrated dose-dependent positive results in increasing collagen and elastin synthesis and reducing senescent cells. The effects on collagen and senescent cells plateaued at high concentrations. A clinical trial showed that the test group experienced a significant increase in skin hydration, elasticity, and density, along with a decrease in TEWL compared to the baseline. The test and placebo groups showed statistically significant differences at 8 weeks for all parameters except for the TEWL at the face. All positive effects were substantially retained even after 2 weeks of discontinuation. CONCLUSIONS These findings demonstrate the significant potential of tuna collagen peptides to promote human skin health, warranting further investigation as a potential nutraceutical.
Collapse
Affiliation(s)
- Boontida Morakul
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | | | | | | |
Collapse
|
2
|
Wen F, Chen R, Wang M, Zhang Y, Dong W, Zhang Y, Yang R. Ovotransferrin, an alternative and potential protein for diverse food and nutritional applications. Crit Rev Food Sci Nutr 2024:1-18. [PMID: 39023034 DOI: 10.1080/10408398.2024.2381094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Ovotransferrin(OVT)is a protein found in many types of egg white and has a wide range of functional properties. It has 50% homology with human/bovine lactoferrin, and is expected to be one of the most important alternative proteins for use in food and nutritional applications. This paper mainly reviews the structural characteristics and chemical properties of OVT, as well as its extraction and purification methods. It also systematically describes the various biological activities of OVT and its applications in food and medical industries. The challenges and limitations in the research of OVT were suggested. This review recommends some possible methods such as nanoparticle carriers and microencapsulation to improve the bioavailability and stability of OVT. In addition, this review highlights several strategies to overcome the limitations of OVT in terms of preparation and purification. This review systematically summarizes the recent advances in OVT and will provide guidance for the its development for food and nutritional applications.
Collapse
Affiliation(s)
- Fengge Wen
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Runxuan Chen
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Mengxue Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Yihua Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Wenjing Dong
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Yuyu Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
| | - Rui Yang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
3
|
Jayaprakash S, Mohamad Abdul Razeen Z, Naveen Kumar R, He J, Milky MG, Renuka R, Sanskrithi MV. Enriched characteristics of poultry collagen over other sources of collagen and its extraction methods: A review. Int J Biol Macromol 2024; 273:133004. [PMID: 38851608 DOI: 10.1016/j.ijbiomac.2024.133004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 05/16/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
Collagen is the most abundant protein in animals and is extensively studied for its structural and thermal stability, biocompatibility, and healing properties which enables them to be widely applied in various fields. Collagen extracted from poultry sources have shown improved structural stability and reduced risk of triggering allergic responses and transmitting animal diseases onto humans. Furthermore, poultry collagen is widely accepted by consumers of diverse beliefs in comparison to collagen extracted from bovine and porcine sources. The review aims to compare different sources of collagen, focusing on the various beneficial characteristics of poultry collagen over the other sources. Moreover, the review explains various pre-treatment and extraction methods of poultry collagen and its versatile applications in different industrial sectors.
Collapse
Affiliation(s)
- Sakthidasan Jayaprakash
- Department of Biotechnology, Hindustan Institute of Technology and Science, Chennai 603103, India.
| | - Z Mohamad Abdul Razeen
- Department of Biotechnology, Hindustan Institute of Technology and Science, Chennai 603103, India
| | - R Naveen Kumar
- Department of Biotechnology, Hindustan Institute of Technology and Science, Chennai 603103, India
| | - Jin He
- Department of Animal Science and Technology, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Mariamawit Girma Milky
- Department of Biotechnology, Hindustan Institute of Technology and Science, Chennai 603103, India
| | - R Renuka
- Department of Biotechnology, Hindustan Institute of Technology and Science, Chennai 603103, India
| | - M V Sanskrithi
- Department of Biotechnology, Hindustan Institute of Technology and Science, Chennai 603103, India
| |
Collapse
|
4
|
Soutelino MEM, Rocha RDS, de Oliveira BCR, Mársico ET, Silva ACDO. Technological aspects and health effects of hydrolyzed collagen and application in dairy products. Crit Rev Food Sci Nutr 2024; 64:6120-6128. [PMID: 36625363 DOI: 10.1080/10408398.2022.2163974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
With the rise of a consumer market increasingly concerned with food and healthy lifestyle habits, the search for functional products has increased in the last years. In this context, dairy products are relevant since they are already included in the consumer's diet. Furthermore, hydrolyzed collagen stands out among products with bioactive action, as it promotes the reduction of the incidence of arthritis, osteoporosis, hypertension, obesity, and premature aging and contains healing, antioxidant and antimicrobial properties. In addition to health benefits, the addition of these ingredients to dairy products can influence physical, chemical, rheological, microbiological, and sensory characteristics, such as: decreased syneresis and improved texture of fermented milks; viscosity increase in dairy beverage; increased proteolytic activity in cheeses; and increasing the viability of probiotics, without significantly altering the quality standards of the legislation. Despite the benefits described, more studies are needed to evaluate these effects in different dairy products.
Collapse
Affiliation(s)
| | - Ramon da Silva Rocha
- Department of Food Technology, Faculty of Veterinary, Federal Fluminense University (UFF), Niterói, RJ, Brazil
- Food Department, Federal Institute of Education, Science and Technology from Rio de Janeiro (IFRJ), Rio de Janeiro, Brazil
| | | | - Eliane Teixeira Mársico
- Department of Food Technology, Faculty of Veterinary, Federal Fluminense University (UFF), Niterói, RJ, Brazil
| | | |
Collapse
|
5
|
Schulze C, Schunck M, Zdzieblik D, Oesser S. Impact of Specific Bioactive Collagen Peptides on Joint Discomforts in the Lower Extremity during Daily Activities: A Randomized Controlled Trial. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:687. [PMID: 38928934 PMCID: PMC11203623 DOI: 10.3390/ijerph21060687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 06/28/2024]
Abstract
The intake of specific collagen peptides (SCPs) has been shown to decrease activity-related knee pain in young, physically active adults. This trial investigated the effect of a 12-week SCP supplementation in a wider age range of healthy men and women over 18 years with functional knee and hip pain during daily activities. A total of 182 participants were randomly assigned to receive either 5 g of specific collagen peptides (CP-G) or a placebo (P-G). Pain at rest and during various daily activities were assessed at baseline and after 12 weeks by a physician and participants using a 10-point numeric rating scale (NRS). The intake of 5 g SCP over 12 weeks significantly reduced pain at rest (p = 0.018) and during walking (p = 0.032) according to the physician's evaluation. Participants in the CP-G also reported significantly less pain when climbing stairs (p = 0.040) and when kneeling down (p < 0.001) compared to the P-G. Additionally, after 12 weeks, restrictions when squatting were significantly lower in the CP-G compared with the P-G (p = 0.014). The daily intake of 5 g of SCP seems to benefit healthy adults with hip and knee joint discomforts by reducing pain during daily activities.
Collapse
Affiliation(s)
- Claas Schulze
- Practice of Surgery Bad Schwartau, Am Kurpark 1, 23611 Bad Schwartau, Germany
| | - Michael Schunck
- CRI, Collagen Research Institute, Schauenburgerstr 116, 24118 Kiel, Germany; (M.S.); (S.O.)
| | - Denise Zdzieblik
- CRI, Collagen Research Institute, Schauenburgerstr 116, 24118 Kiel, Germany; (M.S.); (S.O.)
| | - Steffen Oesser
- CRI, Collagen Research Institute, Schauenburgerstr 116, 24118 Kiel, Germany; (M.S.); (S.O.)
| |
Collapse
|
6
|
Inacio PAQ, Chaluppe FA, Aguiar GF, Coelho CDF, Vieira RP. Effects of Hydrolyzed Collagen as a Dietary Supplement on Fibroblast Activation: A Systematic Review. Nutrients 2024; 16:1543. [PMID: 38892477 PMCID: PMC11173906 DOI: 10.3390/nu16111543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/07/2024] [Accepted: 05/15/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Our objective was to conduct a systematic review of the effects of hydrolyzed collagen supplementation on the proliferation and activation of fibroblasts. METHODS The search was conducted for journals that published articles in the English language, peer-reviewed, meeting the following criteria: (a) randomized clinical trials, (b) randomized studies in animals or humans, (c) in vitro studies, (d) studies using hydrolyzed collagens or collagen peptides, and (e) studies assessing alterations on fibroblasts as the primary or secondary outcome. We utilized the main journal databases PubMed/Web of Science and ongoing reviews by PROSPERO. For bias risk and methodological quality, we used an adaptation of the Downs and Black checklist. Our review followed the PRISMA checklist, conducted from February 2024 to the first week of March 2024, by two independent researchers (P.A.Q.I. and R.P.V.). RESULTS Eleven studies were included in this review, where our findings reinforce the notion that hydrolyzed collagens or collagen peptides at concentrations of 50-500 μg/mL are sufficient to stimulate fibroblasts in human and animal tissues without inducing toxicity. Different enzymatic processes may confer distinct biological properties to collagens, allowing for scenarios favoring fibroblast promotion or antioxidant effects. Lastly, collagens with lower molecular weights exhibit greater bioavailability to adjacent tissues. CONCLUSIONS Hydrolyzed collagens or collagen peptides with molecular sizes ranging from <3 to 3000 KDa promote the stimulation of fibroblasts in human tissues.
Collapse
Affiliation(s)
- Pedro Augusto Querido Inacio
- Laboratory of Pulmonary and Exercise Immunology (LABPEI), Evangelical University of Goias (Unievangelica), Avenida Universitária Km 3.5, Anápolis 75083-515, GO, Brazil; (P.A.Q.I.); (G.F.A.); (C.d.F.C.)
| | - Felipe Augusto Chaluppe
- Peptech Colagen from Brazil, 1500 North Halsted Street—Floor 2, Chicago, IL 60642-2517, USA;
| | - Gerson Ferreira Aguiar
- Laboratory of Pulmonary and Exercise Immunology (LABPEI), Evangelical University of Goias (Unievangelica), Avenida Universitária Km 3.5, Anápolis 75083-515, GO, Brazil; (P.A.Q.I.); (G.F.A.); (C.d.F.C.)
| | - Carly de Faria Coelho
- Laboratory of Pulmonary and Exercise Immunology (LABPEI), Evangelical University of Goias (Unievangelica), Avenida Universitária Km 3.5, Anápolis 75083-515, GO, Brazil; (P.A.Q.I.); (G.F.A.); (C.d.F.C.)
| | - Rodolfo P. Vieira
- Laboratory of Pulmonary and Exercise Immunology (LABPEI), Evangelical University of Goias (Unievangelica), Avenida Universitária Km 3.5, Anápolis 75083-515, GO, Brazil; (P.A.Q.I.); (G.F.A.); (C.d.F.C.)
- Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (IBEPIPE), Rua Pedro Ernesto 240, São José dos Campos 12245-520, SP, Brazil
| |
Collapse
|
7
|
Dierckx S, Patrizi M, Merino M, González S, Mullor JL, Nergiz-Unal R. Collagen peptides affect collagen synthesis and the expression of collagen, elastin, and versican genes in cultured human dermal fibroblasts. Front Med (Lausanne) 2024; 11:1397517. [PMID: 38751975 PMCID: PMC11094247 DOI: 10.3389/fmed.2024.1397517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/17/2024] [Indexed: 05/18/2024] Open
Abstract
Background Collagen is one of the major proteins of the skin and it is particularly important for its strength and resilience. Skin aging is a natural process that is characterized by the decrease and fragmentation of collagen in the dermis. Oral supplementation with collagen peptides has been clinically shown to have a positive effect on the skin condition. However, the mechanisms of aging-related changes synthesized by cells exposed to collagen are currently not well understood. Therefore, in this in vitro study, the mechanisms associated with collagen, elastin, and versican in human dermal fibroblasts were investigated after exposure to collagen peptides. Methods The effects of different concentrations of collagen peptides on cell viability and metabolism were analyzed. For gene expression analysis, human dermal fibroblasts were treated with collagen peptides. This was then followed by RNA extraction and DNA synthesis. Gene expressions of collagen type 1 (COL1A1), elastin (ELN), and versican (VCAN) were quantified by quantitative reverse transcription polymerase chain reaction (RT-qPCR). In addition, collagen levels were analyzed by confocal scanning laser microscopy using immunostaining. Results Collagen peptides tested in the study increased the expression of the relevant COL1A1, ELN, and VCAN genes in human dermal fibroblasts (p < 0.005). Furthermore, confocal microscopy showed increased collagen expression in the dermal fibroblast culture after treatment with the collagen peptides (p < 0.005). Conclusion These data provide cell-based evidence for the beneficial effects of exposure to collagen peptides on the skin's collagen content and on the molecules that provide firmness and elasticity. This may support the hypothesis that collagen peptides are important for maintaining extracellular matrix (ECM) structure and skin regeneration.
Collapse
Affiliation(s)
- Stephan Dierckx
- Tessenderlo Innovation Center, Tessenderlo Group NV, Troonstraat, Brussels, Belgium
| | - Milagros Patrizi
- PB Leiner, Part of Tessenderlo Group, Troonstraat, Brussels, Belgium
| | - Marián Merino
- Bionos Biotech SL., Biopolo La Fe - Hospital La Fe (Torre A) Av. Fernando Abril Martorell, Valencia, Spain
| | - Sonia González
- Bionos Biotech SL., Biopolo La Fe - Hospital La Fe (Torre A) Av. Fernando Abril Martorell, Valencia, Spain
| | - José L. Mullor
- Bionos Biotech SL., Biopolo La Fe - Hospital La Fe (Torre A) Av. Fernando Abril Martorell, Valencia, Spain
| | - Reyhan Nergiz-Unal
- Tessenderlo Innovation Center, Tessenderlo Group NV, Troonstraat, Brussels, Belgium
- PB Leiner, Part of Tessenderlo Group, Troonstraat, Brussels, Belgium
| |
Collapse
|
8
|
Dini I, Mancusi A. Food Peptides for the Nutricosmetic Industry. Antioxidants (Basel) 2023; 12:antiox12040788. [PMID: 37107162 PMCID: PMC10135249 DOI: 10.3390/antiox12040788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
In recent years, numerous reports have described bioactive peptides (biopeptides)/hydrolysates produced from various food sources. Biopeptides are considered interesting for industrial application since they show numerous functional properties (e.g., anti-aging, antioxidant, anti-inflammatory, and antimicrobial properties) and technological properties (e.g., solubility, emulsifying, and foaming). Moreover, they have fewer side effects than synthetic drugs. Nevertheless, some challenges must be overcome before their administration via the oral route. The gastric, pancreatic, and small intestinal enzymes and acidic stomach conditions can affect their bioavailability and the levels that can reach the site of action. Some delivery systems have been studied to avoid these problems (e.g., microemulsions, liposomes, solid lipid particles). This paper summarizes the results of studies conducted on biopeptides isolated from plants, marine organisms, animals, and biowaste by-products, discusses their potential application in the nutricosmetic industry, and considers potential delivery systems that could maintain their bioactivity. Our results show that food peptides are environmentally sustainable products that can be used as antioxidant, antimicrobial, anti-aging, and anti-inflammatory agents in nutricosmetic formulations. Biopeptide production from biowaste requires expertise in analytical procedures and good manufacturing practice. It is hoped that new analytical procedures can be developed to simplify large-scale production and that the authorities adopt and regulate use of appropriate testing standards to guarantee the population's safety.
Collapse
Affiliation(s)
- Irene Dini
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| | - Andrea Mancusi
- Department of Food Microbiology, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, 80055 Portici, Italy
| |
Collapse
|
9
|
Ahmed S, Moni MIZ, Begum M, Sultana MR, Kabir A, Eqbal MJ, Das SK, Ullah W, Haque TS. Poultry farmers' knowledge, attitude, and practices toward poultry waste management in Bangladesh. Vet World 2023; 16:554-563. [PMID: 37041846 PMCID: PMC10082732 DOI: 10.14202/vetworld.2023.554-563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/05/2023] [Indexed: 04/13/2023] Open
Abstract
Background and Aim The improper handling of poultry litter and waste poses risks to humans and environment by introducing certain compounds, elements, and pathogenic microorganisms into the surrounding environment and food chain. However, understanding the farmers' knowledge, attitude, and practices (KAP) could provide insights into the constraints that hinder the appropriate adoption of waste management. Therefore, this study aimed to assess poultry farmers' KAP regarding waste management issues. Materials and Methods A cross-sectional KAP study was conducted with native poultry keepers and small-scale commercial poultry farmers in seven districts of Bangladesh. In the survey, 385 poultry producers were interviewed using validated structured questionnaires through face-to-face interviews to collect the quantitative data in their domiciles. Results The overall KAP of farmers regarding poultry waste management issues demonstrated a low level of KAP (p = 0.001). The analysis shows that roughly 5% of farmers have a high level of knowledge of poultry waste management issues, followed by around one-third of respondents having a moderate level of knowledge. Considering the attitude domain, more than one-fifth of native poultry keepers and nearly two-thirds of commercial producers demonstrated a low level of attitude toward poultry waste management. Considering the overall analysis, roughly half of the respondents found a high level of attitude, and over half of the farmers showed a moderate level of attitude toward poultry waste management issues. The analysis showed that the level of good practices for native and commercial poultry production systems is estimated at 77.3% versus 45.9%, respectively, despite the farmers' lesser knowledge and attitudes toward poultry waste management systems. Overall, analysis showed that nearly 60% and 40% of poultry producers had high and moderate levels, respectively, of good practices in poultry waste management issues. Conclusion Analysis of the KAP data shows that farmers had a low level of KAP toward poultry waste management. The result of this study will assist in formulating appropriate strategies and to adopt poultry waste management solutions by poultry farmers to reduce environmental degradation.
Collapse
Affiliation(s)
- Soshe Ahmed
- Department of Veterinary and Animal Sciences, University of Rajshahi, Rajshahi, Bangladesh
- Corresponding author: Soshe Ahmed, e-mail: Co-authors: MIZM: , MB: , MRS: , AK: , MJE: , SKD: , WU: , TSH:
| | - Mst. I. Z. Moni
- Department of Veterinary and Animal Sciences, University of Rajshahi, Rajshahi, Bangladesh
| | - Maksuda Begum
- Department of Poultry Science, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Mst. R. Sultana
- Department of Veterinary and Animal Sciences, University of Rajshahi, Rajshahi, Bangladesh
| | - Aurangazeb Kabir
- Department of Veterinary and Animal Sciences, University of Rajshahi, Rajshahi, Bangladesh
| | - Md. J. Eqbal
- Palli Karma Sahayak Foundation, Dhaka, Bangladesh
| | - Sunny K. Das
- Department of Veterinary and Animal Sciences, University of Rajshahi, Rajshahi, Bangladesh
| | - Woli Ullah
- Department of Veterinary and Animal Sciences, University of Rajshahi, Rajshahi, Bangladesh
| | - Tasmin S. Haque
- Department of Anthropology, University of Rajshahi, Rajshahi, Bangladesh
| |
Collapse
|
10
|
Costa EM, Oliveira AS, Silva S, Ribeiro AB, Pereira CF, Ferreira C, Casanova F, Pereira JO, Freixo R, Pintado ME, Carvalho AP, Ramos ÓL. Spent Yeast Waste Streams as a Sustainable Source of Bioactive Peptides for Skin Applications. Int J Mol Sci 2023; 24:ijms24032253. [PMID: 36768574 PMCID: PMC9916692 DOI: 10.3390/ijms24032253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Spent yeast waste streams are a byproduct obtained from fermentation process and have been shown to be a rich secondary source of bioactive compounds such as phenolic compounds and peptides. The latter are of particular interest for skin care and cosmetics as they have been shown to be safe and hypoallergenic while simultaneously being able to exert various effects upon the epidermis modulating immune response and targeting skin metabolites, such as collagen production. As the potential of spent yeast's peptides has been mainly explored for food-related applications, this work sought to understand if peptide fractions previously extracted from fermentation engineered spent yeast (Saccharomyces cerevisiae) waste streams possess biological potential for skin-related applications. To that end, cytotoxic effects on HaCat and HDFa cells and whether they were capable of exerting a positive effect upon the production of skin metabolites relevant for skin health, such as collagen, hyaluronic acid, fibronectin and elastin, were evaluated. The results showed that the peptide fractions assayed were not cytotoxic up to the highest concentration tested (500 µg/mL) for both cell lines tested. Furthermore, all peptide fractions showed a capacity to modulate the various target metabolites production with an overall positive effect being observed for the four fractions over the six selected targets (pro-collagen IαI, hyaluronic acid, fibronectin, cytokeratin-14, elastin, and aquaporin-9). Concerning the evaluated fractions, the overall best performance (Gpep > 1 kDa) was of an average promotion of 41.25% over the six metabolites and two cell lines assessed at a concentration of 100 µg/mL. These results showed that the peptide fractions assayed in this work have potential for future applications in skin-related products at relatively low concentrations, thus providing an alternative solution for one of the fermentation industry's waste streams and creating a novel and highly valuable bioactive ingredient with encompassing activity to be applied in future skin care formulations.
Collapse
Affiliation(s)
- Eduardo M. Costa
- Escola Superior de Biotecnologia, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
- Correspondence: (E.M.C.); (Ó.L.R.)
| | - Ana Sofia Oliveira
- Escola Superior de Biotecnologia, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Sara Silva
- Escola Superior de Biotecnologia, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Alessandra B. Ribeiro
- Escola Superior de Biotecnologia, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Carla F. Pereira
- Escola Superior de Biotecnologia, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Carlos Ferreira
- Escola Superior de Biotecnologia, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
- Amyris Bio Products Portugal Unipessoal Lda, 4169-005 Porto, Portugal
| | - Francisca Casanova
- Escola Superior de Biotecnologia, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Joana O. Pereira
- Escola Superior de Biotecnologia, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
- Amyris Bio Products Portugal Unipessoal Lda, 4169-005 Porto, Portugal
| | - Ricardo Freixo
- Escola Superior de Biotecnologia, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Manuela E. Pintado
- Escola Superior de Biotecnologia, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Ana Paula Carvalho
- Escola Superior de Biotecnologia, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Óscar L. Ramos
- Escola Superior de Biotecnologia, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
- Correspondence: (E.M.C.); (Ó.L.R.)
| |
Collapse
|
11
|
Cheng JH, Zhao WX, Cao HY, Wang Z, Wang Y, Sheng Q, Chen Y, Wang P, Chen XL, Zhang YZ. Mechanistic Insight Into the Production of Collagen Oligopeptides by the S8 Family Protease A4095. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:603-614. [PMID: 36577515 DOI: 10.1021/acs.jafc.2c05402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Collagen oligopeptides have wide applications in foods, pharmaceuticals, cosmetics, and others due to their high bioactivities and bioavailability. The S8 family is the second-largest family of serine proteases. Several collagenolytic proteases from this family have been reported to have good potential in the preparation of collagen oligopeptides, however, the underlying mechanism remains unknown. A4095 was the most abundant S8 protease secreted by the protease-producing bacterium Anoxybacillus caldiproteolyticus 1A02591. Here, we characterized A4095 as an S8 collagenolytic protease and illustrated its structural basis to produce collagen oligopeptides. Protease A4095 preferentially hydrolyzed the Y-Gly peptide bonds in denatured bovine bone collagen, leading to high production (62.48% <1000 Da) of collagen oligopeptides. Structural and mutational analyses indicated that A4095 has a unique S1' substrate-binding pocket to preferentially bind Gly, which is the structural determinant for the high production of collagen oligopeptides. This study provides mechanistic insight into the advantage of the S8 collagenolytic proteases in preparing collagen oligopeptides.
Collapse
Affiliation(s)
- Jun-Hui Cheng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao266237, China
| | - Wen-Xiao Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao266237, China
| | - Hai-Yan Cao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao266237, China
| | - Zhen Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao266237, China
| | - Yan Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao266237, China
| | - Qi Sheng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao266237, China
| | - Yin Chen
- School of Life Sciences, University of Warwick, CoventryCV4 7AL, United Kingdom
| | - Peng Wang
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao266003, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao266237, China
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao266237, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao266237, China
| | - Yu-Zhong Zhang
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao266003, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao266237, China
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao266237, China
| |
Collapse
|
12
|
Mahamud AU, Samonty I. Spent hen: Insights into pharmaceutical and commercial prospects. WORLD POULTRY SCI J 2023. [DOI: 10.1080/00439339.2023.2163954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
| | - Ismam Samonty
- Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh, Bangladesh
| |
Collapse
|
13
|
Advances in analytical techniques coupled to in vitro bioassays in the search for new peptides with functional activity in effect-directed analysis. Food Chem 2022; 397:133784. [DOI: 10.1016/j.foodchem.2022.133784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/17/2022] [Accepted: 07/23/2022] [Indexed: 11/20/2022]
|
14
|
Aguilar-Toalá JE, Vidal-Limon A, Liceaga AM. Nutricosmetics: A new frontier in bioactive peptides' research toward skin aging. ADVANCES IN FOOD AND NUTRITION RESEARCH 2022; 104:205-228. [PMID: 37236732 DOI: 10.1016/bs.afnr.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Food derived bioactive peptides are small protein fragments (2-20 amino acids long) that can exhibit health benefits, beyond basic nutrition. For example, food bioactive peptides can act as physiological modulators with hormone or drug-like activities including anti-inflammatory, antimicrobial, antioxidant, and the ability to inhibit enzymes related to chronic disease metabolism. Recently, bioactive peptides have been studied for their potential role as nutricosmetics. For example, bioactive peptides can impart skin-aging protection toward extrinsic (i.e., environmental and sun UV-ray damage) and intrinsic (i.e., natural cell or chronological aging) factors. Specifically, bioactive peptides have demonstrated antioxidant and antimicrobial activates toward reactive oxygen species (ROS) and pathogenic bacteria associated with skin diseases, respectively. The anti-inflammatory properties of bioactive peptides using in vivo models has also been reported, where peptides have shown to decreased the expression of IL-6, TNF-α, IL-1β, interferon-γ (INF-γ), and interleukin-17 (IL-17) in mice models. This chapter will discuss the main factors that trigger skin-aging processes, as well as provide examples of in vitro, in vivo, and in silico applications of bioactive peptides in relation to nutricosmetic applications.
Collapse
Affiliation(s)
- J E Aguilar-Toalá
- Departamento de Ciencias de la Alimentación, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana Unidad Lerma, Lerma, Mexico
| | - A Vidal-Limon
- Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic®, Instituto de Ecología A.C. (INECOL), Veracruz, Mexico
| | - Andrea M Liceaga
- Protein Chemistry and Bioactive Peptides Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, United States.
| |
Collapse
|
15
|
Food Protein-Derived Antioxidant Peptides: Molecular Mechanism, Stability and Bioavailability. Biomolecules 2022; 12:biom12111622. [PMID: 36358972 PMCID: PMC9687809 DOI: 10.3390/biom12111622] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/22/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022] Open
Abstract
The antioxidant activity of protein-derived peptides was one of the first to be revealed among the more than 50 known peptide bioactivities to date. The exploitation value associated with food-derived antioxidant peptides is mainly attributed to their natural properties and effectiveness as food preservatives and in disease prevention, management, and treatment. An increasing number of antioxidant active peptides have been identified from a variety of renewable sources, including terrestrial and aquatic organisms and their processing by-products. This has important implications for alleviating population pressure, avoiding environmental problems, and promoting a sustainable shift in consumption. To identify such opportunities, we conducted a systematic literature review of recent research advances in food-derived antioxidant peptides, with particular reference to their biological effects, mechanisms, digestive stability, and bioaccessibility. In this review, 515 potentially relevant papers were identified from a preliminary search of the academic databases PubMed, Google Scholar, and Scopus. After removing non-thematic articles, articles without full text, and other quality-related factors, 52 review articles and 122 full research papers remained for analysis and reference. The findings highlighted chemical and biological evidence for a wide range of edible species as a source of precursor proteins for antioxidant-active peptides. Food-derived antioxidant peptides reduce the production of reactive oxygen species, besides activating endogenous antioxidant defense systems in cellular and animal models. The intestinal absorption and metabolism of such peptides were elucidated by using cellular models. Protein hydrolysates (peptides) are promising ingredients with enhanced nutritional, functional, and organoleptic properties of foods, not only as a natural alternative to synthetic antioxidants.
Collapse
|
16
|
Kristoffersen KA, Afseth NK, Böcker U, Dankel KR, Rønningen MA, Lislelid A, Ofstad R, Lindberg D, Wubshet SG. Post-enzymatic hydrolysis heat treatment as an essential unit operation for collagen solubilization from poultry by-products. Food Chem 2022; 382:132201. [DOI: 10.1016/j.foodchem.2022.132201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/16/2021] [Accepted: 01/17/2022] [Indexed: 02/05/2023]
|
17
|
Himeno A, Tsujikami M, Koizumi S, Watanabe T, Igase M. Effect of Reducing Pigmentation by Collagen Peptide Intake: A Randomized, Double-Blind, Placebo-Controlled Study. Dermatol Ther (Heidelb) 2022; 12:1577-1587. [PMID: 35696023 PMCID: PMC9189804 DOI: 10.1007/s13555-022-00748-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/17/2022] [Indexed: 11/25/2022] Open
Abstract
Introduction We examined the effect of 5.0 g/day of collagen peptide (CP) or collagen peptide fermented with Aspergillus sojae (FCP) on skin pigmentation in healthy participants. Methods In this randomized, double-blind, placebo-controlled study, 44 men and women aged 25–63 years were placed into three groups by stratified random allocation and treated with CP, FCP, or placebo (PL) at 5.0 g/day for 3 months. Their skin condition was measured monthly from baseline to 3 months of intake. Results No adverse events were identified in any group. The CP group showed a significant reduction in pigmented patches and redness after 1 and 3 months of intake, respectively. In the FCP group, pigmented macules were significantly reduced after 1 month, and pigmented patches after 2 months. Both the all-ages analysis and the hierarchical analysis below 55 years old yielded similar results. Conclusion Intake of 5.0 g/day of FCP for 3 months is safe. CP and FCP intake is useful for suppressing pigmentation. In addition, CP intake may be useful for reducing redness. These results suggest a new beneficial effect on the skin of CP supplementation. Trial Registration UMIN clinical trials registry system, UMIN000040736. Supplementary Information The online version contains supplementary material available at 10.1007/s13555-022-00748-4.
Collapse
Affiliation(s)
- Ai Himeno
- Nitta Gelatin Inc., R&D Center, 2-22 Futamata, Yao-City, Osaka, Japan.
| | - Masaya Tsujikami
- Nitta Gelatin Inc., R&D Center, 2-22 Futamata, Yao-City, Osaka, Japan
| | - Seiko Koizumi
- Nitta Gelatin Inc., R&D Center, 2-22 Futamata, Yao-City, Osaka, Japan
| | | | - Michiya Igase
- Department of Anti-Aging Medicine, Ehime University Graduate School of Medicine, Ehime, Japan
| |
Collapse
|
18
|
Fan H, Wu J. Conventional use and sustainable valorization of spent egg-laying hens as functional foods and biomaterials: A review. BIORESOUR BIOPROCESS 2022; 9:43. [PMID: 35463462 PMCID: PMC9015908 DOI: 10.1186/s40643-022-00529-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/20/2022] [Indexed: 11/29/2022] Open
Abstract
Spent hen are egg-laying hens reaching the end of their laying cycles; billions of spent hens are produced globally each year. Differences in people's attitudes towards spent hen as foods lead to their different fates among countries. While spent hens are consumed as raw or processed meat products in Asian countries such as China, India, Korea, and Thailand, they are treated as a byproduct or waste, not a food product, in the western society; they are instead disposed by burial, incineration, composting (as fertilizers), or rendering into animal feed and pet food, which either create little market value or cause animal welfare and environmental concerns. Despite being a waste, spent hen is a rich source of animal proteins and lipids, which are suitable starting materials for developing valorized products. This review discussed the conventional uses of spent hens, including food, animal feed, pet food, and compost, and the emerging uses, including biomaterials and functional food ingredients. These recent advances enable more sustainable utilization of spent hen, contributing to alternative solutions to its disposal while yielding residual value to the egg industry. Future research will continue to focus on the conversion of spent hen biomass into value-added products. Graphical abstract
Collapse
Affiliation(s)
- Hongbing Fan
- Department of Agricultural, Food and Nutritional Science, 4-10 Ag/For Building, University of Alberta, Edmonton, AB T6G 2P5 Canada
| | - Jianping Wu
- Department of Agricultural, Food and Nutritional Science, 4-10 Ag/For Building, University of Alberta, Edmonton, AB T6G 2P5 Canada
| |
Collapse
|
19
|
Tang C, Zhou K, Zhu Y, Zhang W, Xie Y, Wang Z, Zhou H, Yang T, Zhang Q, Xu B. Collagen and its derivatives: From structure and properties to their applications in food industry. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107748] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
20
|
The Anti-Inflammatory Effect of Bovine Bone-Gelatin-Derived Peptides in LPS-Induced RAW264.7 Macrophages Cells and Dextran Sulfate Sodium-Induced C57BL/6 Mice. Nutrients 2022; 14:nu14071479. [PMID: 35406093 PMCID: PMC9003490 DOI: 10.3390/nu14071479] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/27/2022] [Accepted: 03/29/2022] [Indexed: 01/14/2023] Open
Abstract
The bioactive peptides hydrolyzed from bone collagen have been found to possess health-promoting effects by regulating chronic diseases such as arthritis and hypertension. In the current study, the anti-inflammatory effect of bovine bone gelatin peptides (GP) was evaluated in 264.7 macrophages cells and followed by animal trials to investigate their interference on inflammatory cytokines and gut microbiota compositions in dextran sodium sulfate (DSS)-induced C57BL/6 mice. The GP was demonstrated to alleviate the extra secretion of interleukin-6 (IL-6), nitric oxide (NO) and tumor necrosis factor-α(TNF-α) in lipopolysaccharide (LPS)-induced RAW264.7 cells. In DSS-induced colitis mice, the gavage of GP was demonstrated to ameliorate the IBD symptoms of weight loss, hematochezia and inflammatory infiltration in intestinal tissues. In serum, the proinflammatory cytokines (TNF-α,IL-6, MCP-1, IL-1β) were suppressed along with the decreasing effect on toll-like receptor 4 and cyclooxygenase-2 by GP treatment. In the analysis of gut microbiota, the GP was checked to modulate the abundance of Akkermansia, Parasutterella, Peptococcus, Bifidobacterium and Saccharibacteria. The above results imply that GP could attenuate DSS-induced colitis by suppressing the inflammatory cytokines and regulating the gut microbiota.
Collapse
|
21
|
Recent progress in preventive effect of collagen peptides on photoaging skin and action mechanism. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
22
|
Collagen peptides and the related synthetic peptides: A review on improving skin health. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104680] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
23
|
Lindberg D, Kristoffersen KA, Wubshet SG, Hunnes LMG, Dalsnes M, Dankel KR, Høst V, Afseth NK. Exploring Effects of Protease Choice and Protease Combinations in Enzymatic Protein Hydrolysis of Poultry By-Products. Molecules 2021; 26:molecules26175280. [PMID: 34500712 PMCID: PMC8434180 DOI: 10.3390/molecules26175280] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/13/2021] [Accepted: 08/25/2021] [Indexed: 11/23/2022] Open
Abstract
A study of the effects of single and combined protease hydrolysis on myofibrillar versus collagenous proteins of poultry by-products has been conducted. The aim was to contribute with knowledge for increased value creation of all constituents of these complex by-products. A rational approach was implemented for selecting proteases exhibiting the most different activity towards the major protein-rich constituents of mechanically deboned chicken residue (MDCR). An initial activity screening of 18 proteases on chicken meat, turkey tendons and MDCR was conducted. Based on weight yield, size exclusion chromatography (SEC) and SDS-PAGE, stem Bromelain and Endocut-02 were selected. Studies on hydrolysis of four different poultry by-products at 40 °C, evaluated by protein yield, SEC, and SDS-PAGE, indicate that the proteases’ selectivity difference can be utilized in tailor-making hydrolysates, enriched in either meat- and collagen-derived peptides or gelatin. Three modes of stem Bromelain and Endocut-02 combinations during hydrolysis of MDCR were performed and compared with single protease hydrolysis. All modes of the protease combinations resulted in a similar approximately 15% increase in product yield, with products exhibiting similar SEC and SDS-PAGE profiles. This shows that irrespective of the modes of combination, the use of more than one enzyme in hydrolysis of collagen-rich material can provide means to increase the total protein yield and ultimately contribute to increased value creation of poultry by-products.
Collapse
|
24
|
Hydroxyproline in animal metabolism, nutrition, and cell signaling. Amino Acids 2021; 54:513-528. [PMID: 34342708 DOI: 10.1007/s00726-021-03056-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 07/26/2021] [Indexed: 12/11/2022]
Abstract
trans-4-Hydroxy-L-proline is highly abundant in collagen (accounting for about one-third of body proteins in humans and other animals). This imino acid (loosely called amino acid) and its minor analogue trans-3-hydroxy-L-proline in their ratio of approximately 100:1 are formed from the post-translational hydroxylation of proteins (primarily collagen and, to a much lesser extent, non-collagen proteins). Besides their structural and physiological significance in the connective tissue, both trans-4-hydroxy-L-proline and trans-3-hydroxy-L-proline can scavenge reactive oxygen species and have both structural and physiological significance in animals. The formation of trans-4-hydroxy-L-proline residues in protein kinases B and DYRK1A, eukaryotic elongation factor 2 activity, and hypoxia-inducible transcription factor plays an important role in regulating their phosphorylation and catalytic activation as well as cell signaling in animal cells. These biochemical events contribute to the modulation of cell metabolism, growth, development, responses to nutritional and physiological changes (e.g., dietary protein intake and hypoxia), and survival. Milk, meat, skin hydrolysates, and blood, as well as whole-body collagen degradation provide a large amount of trans-4-hydroxy-L-proline. In animals, most (nearly 90%) of the collagen-derived trans-4-hydroxy-L-proline is catabolized to glycine via the trans-4-hydroxy-L-proline oxidase pathway, and trans-3-hydroxy-L-proline is degraded via the trans-3-hydroxy-L-proline dehydratase pathway to ornithine and glutamate, thereby conserving dietary and endogenously synthesized proline and arginine. Supplementing trans-4-hydroxy-L-proline or its small peptides to plant-based diets can alleviate oxidative stress, while increasing collagen synthesis and accretion in the body. New knowledge of hydroxyproline biochemistry and nutrition aids in improving the growth, health and well-being of humans and other animals.
Collapse
|
25
|
Yang M, Zhang Z, He Y, Li C, Wang J, Ma X. Study on the structure characterization and moisturizing effect of Tremella polysaccharide fermented from GCMCC5.39. FOOD SCIENCE AND HUMAN WELLNESS 2021. [DOI: 10.1016/j.fshw.2021.04.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
26
|
Sharkawy A, Barreiro MF, Rodrigues AE. New Pickering emulsions stabilized with chitosan/collagen peptides nanoparticles: Synthesis, characterization and tracking of the nanoparticles after skin application. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126327] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
27
|
Oral administration of hydrolysates of cartilage extract in the prevention of osteoarthritis. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104376] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
28
|
Hong H, Fan H, Roy BC, Wu J. Amylase enhances production of low molecular weight collagen peptides from the skin of spent hen, bovine, porcine, and tilapia. Food Chem 2021; 352:129355. [PMID: 33667924 DOI: 10.1016/j.foodchem.2021.129355] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 01/03/2023]
Abstract
Low molecular weight (LMW) collagen peptides show skin and bone health benefits for human. However, the production of LMW collagen peptides from land vertebrate sources remains challenging due to the presence of advanced glycation end products (AGEs) cross-links. In this study, the effect of α-amylase pre-treatment on proteolytic production of LMW collagen peptides by papain was investigated; spent hen, bovine, porcine, and tilapia skin collagens (HSC, BSC, PSC, and TSC, respectively) were chosen. Results showed that pre-treatment with α-amylase considerably improved the production of LMW peptides (<2 kDa) from HSC (33.79-67.66%), PSC (86.03-90.85%), BSC (6.60-28.78%), and TSC (89.92-90.27%). The HSC presented the highest carbohydrate content and was increased the most in LMW peptides after amylase pretreatment. These results suggested that α-amylase could cleave glycosidic bonds of AGEs between collagen and thus enhance the production of LMW collagen peptides.
Collapse
Affiliation(s)
- Hui Hong
- Beijing Higher Institution Engineering Research Center of Animal Product, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China; Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, Alberta T6G 2P5, Canada.
| | - Hongbing Fan
- Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, Alberta T6G 2P5, Canada.
| | - Bimol C Roy
- Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, Alberta T6G 2P5, Canada.
| | - Jianping Wu
- Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, Alberta T6G 2P5, Canada.
| |
Collapse
|
29
|
de Oliveira Costa B, Franco OL. Cryptic Host Defense Peptides: Multifaceted Activity and Prospects for Medicinal Chemistry. Curr Top Med Chem 2021; 20:1274-1290. [PMID: 32209042 DOI: 10.2174/1568026620666200325112425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/03/2020] [Accepted: 02/24/2020] [Indexed: 01/22/2023]
Abstract
Host defense peptides (HDPs) comprise a heterogeneous group of evolutionarily conserved and biologically active small molecules that are produced by different organisms. HDPs are widely researched because they often have multiple biological activities, for example antimicrobial, immunomodulatory and anticancer activity. In this context, in this review we focus on cryptic HDPs, molecules derived specifically from proteolytic processing of endogenous precursor proteins. Here, we explore the biological activity of such molecules and we further discuss the development of optimized sequences based on these natural cryptic HDPs. In addition, we present clinical-phase studies of cryptic HDPs (natural or optimized), and point out the possible applicability of these molecules in medicinal chemistry.
Collapse
Affiliation(s)
- Bruna de Oliveira Costa
- S-inova Biotech, Graduate Program in Biotechnology, Universidade Catolica Dom Bosco, Campo Grande, MS, Brazil
| | - Octávio Luiz Franco
- S-inova Biotech, Graduate Program in Biotechnology, Universidade Catolica Dom Bosco, Campo Grande, MS, Brazil.,Department of Genomic Sciences and Biotechnology, Center for Analysis of Proteomics and Biochemistry, Catholic University of Brasília, Brasília, DF, Brazil.,Department of Molecular Pathology, Faculty of Medicine, University of Brasília, Brasília-DF, Brazil
| |
Collapse
|
30
|
Gao R, Shu W, Shen Y, Sun Q, Jin W, Li D, Li Y, Yuan L. Peptide fraction from sturgeon muscle by pepsin hydrolysis exerts anti-inflammatory effects in LPS-stimulated RAW264.7 macrophages via MAPK and NF-κB pathways. FOOD SCIENCE AND HUMAN WELLNESS 2021. [DOI: 10.1016/j.fshw.2020.04.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
31
|
Enhancement of nutritional soy protein and peptide supplementation on skin repair in rats. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104231] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
32
|
Spent Hen Protein Hydrolysate with Good Gastrointestinal Stability and Permeability in Caco-2 Cells Shows Antihypertensive Activity in SHR. Foods 2020; 9:foods9101384. [PMID: 33019511 PMCID: PMC7601532 DOI: 10.3390/foods9101384] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/19/2020] [Accepted: 09/22/2020] [Indexed: 12/17/2022] Open
Abstract
Spent hens are a major byproduct of the egg industry but are rich in muscle proteins that can be enzymatically transformed into bioactive peptides. The present study aimed to develop a spent hen muscle protein hydrolysate (SPH) with antihypertensive activity. Spent hen muscle proteins were hydrolyzed by nine enzymes, either individually or in combination; 18 SPHs were assessed initially for their in vitro angiotensin-converting enzyme (ACE) inhibitory activity, and three SPHs, prepared by Protex 26L (SPH-26L), pepsin (SPH-P), and thermoase (SPH-T), showed promising activity and peptide yield. These three hydrolysates were further assessed for their angiotensin-converting enzyme 2 (ACE2) upregulating, antioxidant, and anti-inflammatory activities; only SPH-T upregulated ACE2 expression, while all three SPHs showed antioxidant and anti-inflammatory activities. During simulated gastrointestinal digestion, ACE2 upregulating, ACE inhibitory and antioxidant activities of SPH-T were not affected, but those of SPH-26L and SPH-P were reduced. ACE inhibitory activity of gastrointestinal-digested SPH-T was not affected after the permeability study in Caco-2 cells, while ACE2 upregulating, antioxidant and anti-inflammatory activities were improved; nine novel peptides with five–eight amino acid residues were identified from the Caco-2 permeate. Among these three hydrolysates, only SPH-T reduced blood pressure significantly when given orally at a daily dose of 1000 mg/kg body weight to spontaneously hypertensive rats. SPH-T can be developed into a promising functional food ingredient against hypertension, contributing to a more sustainable utilization for spent hens while generating extra revenue for the egg industry.
Collapse
|
33
|
Iwaniak A, Minkiewicz P, Pliszka M, Mogut D, Darewicz M. Characteristics of Biopeptides Released In Silico from Collagens Using Quantitative Parameters. Foods 2020; 9:E965. [PMID: 32708318 PMCID: PMC7404701 DOI: 10.3390/foods9070965] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023] Open
Abstract
The potential of collagens to release biopeptides was evaluated using the BIOPEP-UWM-implemented quantitative criteria including the frequency of the release of fragments with a given activity by selected enzyme(s) (AE), relative frequency of release of fragments with a given activity by selected enzyme(s) (W), and the theoretical degree of hydrolysis (DHt). Cow, pig, sheep, chicken, duck, horse, salmon, rainbow trout, goat, rabbit, and turkey collagens were theoretically hydrolyzed using: stem bromelain, ficin, papain, pepsin, trypsin, chymotrypsin, pepsin+trypsin, and pepsin+trypsin+chymotrypsin. Peptides released from the collagens having comparable AE and W were estimated for their likelihood to be bioactive using PeptideRanker Score. The collagens tested were the best sources of angiotensin I-converting enzyme (ACE) and dipeptidyl peptidase IV (DPP-IV) inhibitors. AE and W values revealed that pepsin and/or trypsin were effective producers of such peptides from the majority of the collagens examined. Then, the SwissTargetPrediction program was used to estimate the possible interactions of such peptides with enzymes and proteins, whereas ADMETlab was applied to evaluate their safety and drug-likeness properties. Target prediction revealed that the collagen-derived peptides might interact with several human proteins, especially proteinases, but with relatively low probability. In turn, their bioactivity may be limited by their short half-life in the body.
Collapse
Affiliation(s)
- Anna Iwaniak
- University of Warmia and Mazury in Olsztyn, Faculty of Food Science, Chair of Food Biochemistry, Pl. Cieszyński 1, 10-719 Olsztyn-Kortowo, Poland
| | - Piotr Minkiewicz
- University of Warmia and Mazury in Olsztyn, Faculty of Food Science, Chair of Food Biochemistry, Pl. Cieszyński 1, 10-719 Olsztyn-Kortowo, Poland
| | - Monika Pliszka
- University of Warmia and Mazury in Olsztyn, Faculty of Food Science, Chair of Food Biochemistry, Pl. Cieszyński 1, 10-719 Olsztyn-Kortowo, Poland
| | - Damir Mogut
- University of Warmia and Mazury in Olsztyn, Faculty of Food Science, Chair of Food Biochemistry, Pl. Cieszyński 1, 10-719 Olsztyn-Kortowo, Poland
| | - Małgorzata Darewicz
- University of Warmia and Mazury in Olsztyn, Faculty of Food Science, Chair of Food Biochemistry, Pl. Cieszyński 1, 10-719 Olsztyn-Kortowo, Poland
| |
Collapse
|
34
|
Bone Regeneration Using Duck's Feet-Derived Collagen Scaffold as an Alternative Collagen Source. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020. [PMID: 32601934 DOI: 10.1007/978-981-15-3262-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Collagen is an important component that makes 25-35% of our body proteins. Over the past decades, tissue engineers have been designing collagen-based biocompatible materials and studying their applications in different fields. Collagen obtained from cattle and pigs has been mainly used until now, but collagen derived from fish and other livestock has attracted more attention since the outbreak of mad cow disease, and they are also used as a raw material for cosmetics and foods. Due to the zoonotic infection using collagen derived from pigs and cattle, their application in developing biomaterials is limited; hence, the development of new animal-derived collagen is required. In addition, there is a religion (Islam, Hinduism, and Judaism) limited to export raw materials and products derived from cattle and pig. Hence, high-value collagen that is universally accessible in the world market is required. Therefore, in this review, we have dealt with the use of duck's feet-derived collagen (DC) as an emerging alternative to solve this problem and also presenting few original investigated bone regeneration results performed using DC.
Collapse
|
35
|
Cao C, Xiao Z, Wu Y, Ge C. Diet and Skin Aging-From the Perspective of Food Nutrition. Nutrients 2020; 12:E870. [PMID: 32213934 PMCID: PMC7146365 DOI: 10.3390/nu12030870] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 02/07/2023] Open
Abstract
We regularly face primary challenges in deciding what to eat to maintain young and healthy skin, defining a healthy diet and the role of diet in aging. The topic that currently attracts maximum attention is ways to maintain healthy skin and delay skin aging. Skin is the primary barrier that protects the body from external aggressions. Skin aging is a complex biological process, categorized as chronological aging and photo-aging, and is affected by internal factors and external factors. With the rapid breakthrough of medicine in prolonging human life and the rapid deterioration of environmental conditions, it has become urgent to find safe and effective methods to treat skin aging. For diet, as the main way for the body to obtain energy and nutrients, people have gradually realized its importance to the skin. Therefore, in this review, we discuss the skin structure, aging manifestations, and possible mechanisms, summarize the research progress, challenges, possible directions of diet management, and effects of foodborne antioxidants on skin aging from the perspective of food and nutrition.
Collapse
Affiliation(s)
- Changwei Cao
- Livestock Product Processing Engineering and Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China; (C.C.); (Z.X.)
- College of Food Science, Sichuan Agricultural University, Ya’ an, Sichuan 625014, China;
| | - Zhichao Xiao
- Livestock Product Processing Engineering and Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China; (C.C.); (Z.X.)
- College of Food Science and technology, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Yinglong Wu
- College of Food Science, Sichuan Agricultural University, Ya’ an, Sichuan 625014, China;
| | - Changrong Ge
- Livestock Product Processing Engineering and Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China; (C.C.); (Z.X.)
| |
Collapse
|
36
|
Wu G. Important roles of dietary taurine, creatine, carnosine, anserine and 4-hydroxyproline in human nutrition and health. Amino Acids 2020; 52:329-360. [PMID: 32072297 PMCID: PMC7088015 DOI: 10.1007/s00726-020-02823-6] [Citation(s) in RCA: 228] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/29/2020] [Indexed: 12/24/2022]
Abstract
Taurine (a sulfur-containing β-amino acid), creatine (a metabolite of arginine, glycine and methionine), carnosine (a dipeptide; β-alanyl-L-histidine), and 4-hydroxyproline (an imino acid; also often referred to as an amino acid) were discovered in cattle, and the discovery of anserine (a methylated product of carnosine; β-alanyl-1-methyl-L-histidine) also originated with cattle. These five nutrients are highly abundant in beef, and have important physiological roles in anti-oxidative and anti-inflammatory reactions, as well as neurological, muscular, retinal, immunological and cardiovascular function. Of particular note, taurine, carnosine, anserine, and creatine are absent from plants, and hydroxyproline is negligible in many plant-source foods. Consumption of 30 g dry beef can fully meet daily physiological needs of the healthy 70-kg adult human for taurine and carnosine, and can also provide large amounts of creatine, anserine and 4-hydroxyproline to improve human nutrition and health, including metabolic, retinal, immunological, muscular, cartilage, neurological, and cardiovascular health. The present review provides the public with the much-needed knowledge of nutritionally and physiologically significant amino acids, dipeptides and creatine in animal-source foods (including beef). Dietary taurine, creatine, carnosine, anserine and 4-hydroxyproline are beneficial for preventing and treating obesity, cardiovascular dysfunction, and ageing-related disorders, as well as inhibiting tumorigenesis, improving skin and bone health, ameliorating neurological abnormalities, and promoting well being in infants, children and adults. Furthermore, these nutrients may promote the immunological defense of humans against infections by bacteria, fungi, parasites, and viruses (including coronavirus) through enhancing the metabolism and functions of monocytes, macrophages, and other cells of the immune system. Red meat (including beef) is a functional food for optimizing human growth, development and health.
Collapse
Affiliation(s)
- Guoyao Wu
- Department of Animal Science and Faculty of Nutrition, Texas A&M University, College Station, TX, 77843-2471, USA.
| |
Collapse
|
37
|
Wang X, Hong H, Wu J. Hen collagen hydrolysate alleviates UVA-induced damage in human dermal fibroblasts. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103574] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
38
|
Aguilar-Toalá JE, Hernández-Mendoza A, González-Córdova AF, Vallejo-Cordoba B, Liceaga AM. Potential role of natural bioactive peptides for development of cosmeceutical skin products. Peptides 2019; 122:170170. [PMID: 31574281 DOI: 10.1016/j.peptides.2019.170170] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/23/2019] [Accepted: 09/25/2019] [Indexed: 12/11/2022]
Abstract
In recent years, consumers' demand for cosmeceutical products with protective and therapeutic functions derived from natural sources have caused this industry to search for alternative active ingredients. Bioactive peptides have a wide spectrum of bioactivities, which make them ideal candidates for development of these cosmeceutical products. In vitro studies have demonstrated that bioactive peptides (obtained as extracts, hydrolysates, and/or individual peptides) exhibit biological properties including antioxidant, antimicrobial, and anti-inflammatory activities, in addition to their properties of inhibiting aging-related enzymes such as elastase, collagenase, tyrosinase and hyaluronidase. Some studies report multifunctional bioactive peptides that can simultaneously affect, beneficially, multiple physiological pathways in the skin. Moreover, in vivo studies have revealed that topical application or consumption of bioactive peptides possess remarkable skin protection. These properties suggest that bioactive peptides may contribute in the improvement of skin health by providing specific physiological functions, even though the mechanisms underlying the protective effect have not been completely elucidated. This review provides an overview of in vitro, in silico and in vivo properties of bioactive peptides with potential use as functional ingredients in the cosmeceutical field. It also describes the possible mechanisms involved as well as opportunities and challenges associated with their application.
Collapse
Affiliation(s)
- J E Aguilar-Toalá
- Protein Chemistry and Bioactive Peptides Laboratory, Department of Food Science, Purdue University, 745 Agriculture Mall Dr., West Lafayette, IN 47907, United States
| | - A Hernández-Mendoza
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas, 46, Hermosillo, Sonora 83304, Mexico
| | - A F González-Córdova
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas, 46, Hermosillo, Sonora 83304, Mexico
| | - B Vallejo-Cordoba
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas, 46, Hermosillo, Sonora 83304, Mexico
| | - A M Liceaga
- Protein Chemistry and Bioactive Peptides Laboratory, Department of Food Science, Purdue University, 745 Agriculture Mall Dr., West Lafayette, IN 47907, United States.
| |
Collapse
|
39
|
León-López A, Morales-Peñaloza A, Martínez-Juárez VM, Vargas-Torres A, Zeugolis DI, Aguirre-Álvarez G. Hydrolyzed Collagen-Sources and Applications. Molecules 2019; 24:E4031. [PMID: 31703345 PMCID: PMC6891674 DOI: 10.3390/molecules24224031] [Citation(s) in RCA: 205] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/02/2019] [Accepted: 11/05/2019] [Indexed: 02/07/2023] Open
Abstract
Hydrolyzed collagen (HC) is a group of peptides with low molecular weight (3-6 KDa) that can be obtained by enzymatic action in acid or alkaline media at a specific incubation temperature. HC can be extracted from different sources such as bovine or porcine. These sources have presented health limitations in the last years. Recently research has shown good properties of the HC found in skin, scale, and bones from marine sources. Type and source of extraction are the main factors that affect HC properties, such as molecular weight of the peptide chain, solubility, and functional activity. HC is widely used in several industries including food, pharmaceutical, cosmetic, biomedical, and leather industries. The present review presents the different types of HC, sources of extraction, and their applications as a biomaterial.
Collapse
Affiliation(s)
- Arely León-López
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad km 1. Ex Hacienda de Aquetzalpa. Tulancingo, Hidalgo 43600, Mexico; (A.L.-L.); (V.M.M.-J.); (A.V.-T.)
| | - Alejandro Morales-Peñaloza
- Universidad Autónoma del Estado de Hidalgo, Escuela Superior de Apan, Carretera Apan-Calpulalpan s/n, Colonia, Chimalpa Tlalayote, Apan, Hidalgo 43920 Mexico;
| | - Víctor Manuel Martínez-Juárez
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad km 1. Ex Hacienda de Aquetzalpa. Tulancingo, Hidalgo 43600, Mexico; (A.L.-L.); (V.M.M.-J.); (A.V.-T.)
| | - Apolonio Vargas-Torres
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad km 1. Ex Hacienda de Aquetzalpa. Tulancingo, Hidalgo 43600, Mexico; (A.L.-L.); (V.M.M.-J.); (A.V.-T.)
| | - Dimitrios I. Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), National University of Ireland Galway (NUI Galway), H91 TK33 Galway, Ireland;
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM) National University of Ireland Galway (NUI Galway), H91 TK33 Galway, Ireland
| | - Gabriel Aguirre-Álvarez
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad km 1. Ex Hacienda de Aquetzalpa. Tulancingo, Hidalgo 43600, Mexico; (A.L.-L.); (V.M.M.-J.); (A.V.-T.)
| |
Collapse
|
40
|
Hydrolysed Collagen from Sheepskins as a Source of Functional Peptides with Antioxidant Activity. Int J Mol Sci 2019; 20:ijms20163931. [PMID: 31412541 PMCID: PMC6719941 DOI: 10.3390/ijms20163931] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/23/2019] [Accepted: 07/29/2019] [Indexed: 12/12/2022] Open
Abstract
The extraction and enzymatic hydrolysis of collagen from sheepskins at different times of hydrolysis (0, 10, 15, 20, 30 min, 1, 2, 3 and 4 h) were investigated in terms of amino acid content (hydroxyproline), isoelectric point, molecular weight (Mw) by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) method, viscosity, Fourier-transform infrared (FTIR) spectroscopy, antioxidant capacity by 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays, thermal properties (Differential Scanning Calorimetry) and morphology by scanning electron microscopy (SEM) technique. The kinetics of hydrolysis showed an increase in the protein and hydroxyproline concentration as the hydrolysis time increased to 4 h. FTIR spectra allowed us to identify the functional groups of hydrolysed collagen (HC) in the amide I region for collagen. The isoelectric point shifted to lower values compared to the native collagen precursor. The change in molecular weight and viscosity from time 0 min to 4 h promoted important antioxidant activity in the resulting HC. The lower the Mw, the greater the ability to donate an electron or hydrogen to stabilize radicals. From the SEM images it was evident that HC after 2 h had a porous and spongy structure. These results suggest that HC could be a good alternative to replace HC from typical sources like pigs, cows and fish.
Collapse
|
41
|
Chakrabarti S, Guha S, Majumder K. Food-Derived Bioactive Peptides in Human Health: Challenges and Opportunities. Nutrients 2018; 10:E1738. [PMID: 30424533 PMCID: PMC6265732 DOI: 10.3390/nu10111738] [Citation(s) in RCA: 363] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/06/2018] [Accepted: 11/09/2018] [Indexed: 02/06/2023] Open
Abstract
Recent scientific evidence suggests that food proteins not only serve as nutrients, but can also modulate the body's physiological functions. These physiological functions are primarily regulated by some peptides that are encrypted in the native protein sequences. These bioactive peptides can exert health beneficial properties and thus are considered as a lead compound for the development of nutraceuticals or functional foods. In the past few decades, a wide range of food-derived bioactive peptide sequences have been identified, with multiple health beneficial activities. However, the commercial application of these bioactive peptides has been delayed because of the absence of appropriate and scalable production methods, proper exploration of the mechanisms of action, high gastro-intestinal digestibility, variable absorption rate, and the lack of well-designed clinical trials to provide the substantial evidence for potential health claims. This review article discusses the current techniques, challenges of the current bioactive peptide production techniques, the oral use and gastrointestinal bioavailability of these food-derived bioactive peptides, and the overall regulatory environment.
Collapse
Affiliation(s)
- Subhadeep Chakrabarti
- Bureau of Nutritional Sciences, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON K1A 0K9, Canada.
| | - Snigdha Guha
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588-6205, USA.
| | - Kaustav Majumder
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588-6205, USA.
| |
Collapse
|