1
|
Fan S, Liu Q, Du Q, Zeng X, Wu Z, Pan D, Tu M. Multiple roles of food-derived bioactive peptides in the management of T2DM and commercial solutions: A review. Int J Biol Macromol 2024; 279:134993. [PMID: 39181375 DOI: 10.1016/j.ijbiomac.2024.134993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/13/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Type 2 diabetes mellitus (T2DM), a disease that threatens public health worldwide and can cause a series of irreversible complications, has been a major concern. Although the treatment based on hypoglycemic drugs is effective, its side effects should not be ignored, which has led to an urgent need for developing new hypoglycemic drugs. Bioactive peptides with antidiabetic effects obtained from food proteins have become a research hotspot as they are safer and with higher specificity than traditional hypoglycemic drugs. Here, we reviewed antidiabetic peptides that have the ability to inhibit key enzymes (α-glucosidase, α-amylase, and DPP-IV) in T2DM, the hypoglycemic mechanisms and structure-activity relationships were summarized, some antidiabetic peptides that improve insulin resistance and reverse gut microbiota and their metabolites were overviewed, the bitterness of antidiabetic peptides was predicted in silico, proposed solutions to the current challenges encountered in the development of antidiabetic peptide drugs, and provided an outlook on the future focus of commercial production. It provides a reference for the application of food-derived antidiabetic peptides.
Collapse
Affiliation(s)
- Shuo Fan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; Zhejiang Key Laboratory of Food Microbiology and Nutritional Health, Hangzhou 310018, China
| | - Qirui Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; Zhejiang Key Laboratory of Food Microbiology and Nutritional Health, Hangzhou 310018, China
| | - Qiwei Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; Zhejiang Key Laboratory of Food Microbiology and Nutritional Health, Hangzhou 310018, China
| | - Xiaoqun Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; Zhejiang Key Laboratory of Food Microbiology and Nutritional Health, Hangzhou 310018, China
| | - Zhen Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; Zhejiang Key Laboratory of Food Microbiology and Nutritional Health, Hangzhou 310018, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; Zhejiang Key Laboratory of Food Microbiology and Nutritional Health, Hangzhou 310018, China
| | - Maolin Tu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; Zhejiang Key Laboratory of Food Microbiology and Nutritional Health, Hangzhou 310018, China.
| |
Collapse
|
2
|
Ponce-España E, Cruz-Chamorro I, Santos-Sánchez G, Álvarez-López AI, Fernández-Santos JM, Pedroche J, Millán-Linares MC, Bejarano I, Lardone PJ, Carrillo-Vico A. Anti-obesogenic effect of lupin-derived protein hydrolysate through modulation of adiposopathy, insulin resistance and gut dysbiosis in a diet-induced obese mouse. Biomed Pharmacother 2024; 178:117198. [PMID: 39059351 DOI: 10.1016/j.biopha.2024.117198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024] Open
Abstract
The prevalence of obesity is increasingly widespread, resembling a global epidemic. Lifestyle changes, such as consumption of high-energy-dense diets and physical inactivity, are major contributors to obesity. Common features of this metabolic pathology involve an imbalance in lipid and glucose homeostasis including dyslipidemia, insulin resistance and adipose tissue dysfunction. Moreover, the importance of the gut microbiota in the development and susceptibility to obesity has recently been highlighted. In recent years, new strategies based on the use of functional foods, in particular bioactive peptides, have been proposed to counteract obesity outcomes. In this context, the present study examines the effects of a lupin protein hydrolysate (LPH) on obesity, dyslipidemia and gut dysbiosis in mice fed a high-fat diet (HFD). After 12 weeks of LPH treatment, mice gained less weight and showed decreased adipose dysfunction compared to the HFD-fed group. HFD-induced dyslipidemia (increased triglycerides, cholesterol and LDL concentration) and insulin resistance were both counteracted by LPH consumption. Discriminant analysis differentially distributed LPH-treated mice compared to non-treated mice. HFD reduced gut ecological parameters, promoted the blooming of deleterious taxa and reduced the abundance of commensal members. Some of these changes were corrected in the LPH group. Finally, correlation analysis suggested that changes in this microbial population could be responsible for the improvement in obesity outcomes. In conclusion, this is the first study to show the effect of LPH on improving weight gain, adiposopathy and gut dysbiosis in the context of diet-induced obesity, pointing to the therapeutic potential of bioactive peptides in metabolic diseases.
Collapse
Affiliation(s)
- Eduardo Ponce-España
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville 41013, Spain; Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, Seville 41009, Spain
| | - Ivan Cruz-Chamorro
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville 41013, Spain; Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, Seville 41009, Spain
| | - Guillermo Santos-Sánchez
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville 41013, Spain; Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, Seville 41009, Spain
| | - Ana Isabel Álvarez-López
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville 41013, Spain; Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, Seville 41009, Spain
| | - José María Fernández-Santos
- Departamento de Citología e Histología Normal y Patológica, Facultad de Medicina, Universidad de Sevilla, Seville 41009, Spain
| | - Justo Pedroche
- Department of Food & Health, Instituto de la Grasa, CSIC, Ctra Utrera Km 1, Seville 41013, Spain
| | | | - Ignacio Bejarano
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville 41013, Spain; Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, Seville 41009, Spain
| | - Patricia Judith Lardone
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville 41013, Spain; Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, Seville 41009, Spain
| | - Antonio Carrillo-Vico
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville 41013, Spain; Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, Seville 41009, Spain.
| |
Collapse
|
3
|
Yan Z, Gui Y, Liu C, Zhang X, Wen C, Olatunji OJ, Suttikhana I, Ashaolu TJ. Gastrointestinal digestion of food proteins: Anticancer, antihypertensive, anti-obesity, and immunomodulatory mechanisms of the derived peptides. Food Res Int 2024; 189:114573. [PMID: 38876600 DOI: 10.1016/j.foodres.2024.114573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/26/2024] [Accepted: 05/26/2024] [Indexed: 06/16/2024]
Abstract
Food proteins and their peptides play a significant role in the important biological processes and physiological functions of the body. The peptides show diverse biological benefits ranging from anticancer to antihypertensive, anti-obesity, and immunomodulatory, among others. In this review, an overview of food protein digestion in the gastrointestinal tract and the mechanisms involved was presented. As some proteins remain resistant and undigested, the multifarious factors (e.g. protein type and structure, microbial composition, pH levels and redox potential, host factors, etc.) affecting their colonic fermentation, the derived peptides, and amino acids that evade intestinal digestion are thus considered. The section that follows focuses on the mechanisms of the peptides with anticancer, antihypertensive, anti-obesity, and immunomodulatory effects. As further considerations were made, it is concluded that clinical studies targeting a clear understanding of the gastrointestinal stability, bioavailability, and safety of food-based peptides are still warranted.
Collapse
Affiliation(s)
- Zheng Yan
- Second People's Hospital of Wuhu City, Anhui Province, China.
| | - Yang Gui
- Second People's Hospital of Wuhu City, Anhui Province, China.
| | - Chunhong Liu
- Second People's Hospital of Wuhu City, Anhui Province, China.
| | - Xiaohai Zhang
- Second People's Hospital of Wuhu City, Anhui Province, China.
| | - Chaoling Wen
- Anhui College of Traditional Chinese Medicine, Wuhu City 241000, Anhui, China.
| | | | - Itthanan Suttikhana
- Department of Agroecosystems, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Branišovská 1645/31a, 370 05 České Budějovice 2, Czechia.
| | - Tolulope Joshua Ashaolu
- Institute for Global Health Innovations, Duy Tan University, Da Nang 550000, Viet Nam; Faculty of Medicine, Duy Tan University, Da Nang 550000, Viet Nam.
| |
Collapse
|
4
|
Elhadad N, de Campos Zani SC, Chan CB, Wu J. Ovalbumin Hydrolysates Enhance Skeletal Muscle Insulin-Dependent Signaling Pathway in High-Fat Diet-Fed Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15248-15255. [PMID: 38940702 DOI: 10.1021/acs.jafc.4c01008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Egg white hydrolysates (EWH) and ovotransferrin-derived peptides have distinct beneficial effects on glucose metabolism. This research aims to investigate whether ovalbumin hydrolysates (OVAHs), without ovotransferrin can improve insulin signaling pathway in high-fat diet (HFD)-fed mice. Two types of ovalbumin hydrolysates were produced, either using thermoase (OVAT), or thermoase + pepsin (OVATP). Both OVAHs-supplemented groups exhibited lower body weight gain (P < 0.001) and enhanced oral glucose tolerance (P < 0.05) compared with HFD. Moreover, diet supplementation with either hydrolysate increased the insulin-stimulated activation of protein kinase B (AKT) and insulin receptor β (IRβ) (P < 0.0001) in skeletal muscle. In conclusion, OVAHs improved glucose tolerance and insulin-dependent signaling pathway in HFD-fed mice.
Collapse
Affiliation(s)
- Nesma Elhadad
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, T6G2P5 Alberta, Canada
| | - S C de Campos Zani
- Department of Physiology, University of Alberta, Edmonton, T6G2H7 Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, T6G2E1 Alberta, Canada
| | - C B Chan
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, T6G2P5 Alberta, Canada
- Department of Physiology, University of Alberta, Edmonton, T6G2H7 Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, T6G2E1 Alberta, Canada
| | - Jianping Wu
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, T6G2P5 Alberta, Canada
| |
Collapse
|
5
|
Ashok A, H S A. Identification of DPP-IV inhibitory peptides derived from buffalo colostrum: Mining through bioinformatics, in silico and in vitro approaches. J Mol Recognit 2024; 37:e3090. [PMID: 38803118 DOI: 10.1002/jmr.3090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 04/18/2024] [Accepted: 05/12/2024] [Indexed: 05/29/2024]
Abstract
Bioactive peptides derived from foods provide physiological health benefits beyond nutrition. This study focused on profiling small peptide inhibitors against two key serine proteases, dipeptidyl peptidase-IV (DPP-IV) and prolyl oligopeptidase (POP). DPP-IV is a well-known protein involved in diverse pathways regulating inflammation, renal, cardiovascular physiology, and glucose homeostasis. POP is yet another key target protein for neurodegenerative disorders. The study evaluated peptide libraries of buffalo colostrum whey and fat globule membrane proteins derived from pepsin and pepsin-pancreatin digestion through in silico web tools and structure-based analysis by molecular docking and binding free-energy estimation, followed by in vitro assay for DPP-IV inhibition for the lead peptides. The bioinformatic study indicated 49 peptides presented motifs with DPP-IV inhibition while 5 peptides with sequences for POP inhibition. In the molecular docking interactions study, 22 peptides interacted with active site residues of DPP-IV and 3 peptides with that of POP. The synthesized peptides, SFVSEVPEL and LTFQHNF inhibited DPP-IV in vitro with an IC50 of 193.5 μM and 1.782 mM, respectively. The study revealed the key residues for inhibition of DPP-IV and POP thus affirming the DPP-IV inhibitory potential of milk-derived peptides.
Collapse
Affiliation(s)
- Arpitha Ashok
- DOS in Biotechnology, University of Mysore, Mysuru, India
| | - Aparna H S
- DOS in Biotechnology, University of Mysore, Mysuru, India
| |
Collapse
|
6
|
Cao X, Chen L, Lu K, Yu T, Xia H, Wang S, Sun G, Liu P, Liao W. Egg white-derived peptides reduced blood glucose in high-fat-diet and low-dose streptozotocin-induced type 2 diabetic mice via regulating the hepatic gluconeogenic signaling and metabolic profile. Food Funct 2024; 15:7003-7016. [PMID: 38855929 DOI: 10.1039/d4fo00725e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Food proteins are considered an ideal source for the identification of bioactive peptides with the potential to intervene in nutrition-related chronic diseases such as cardiovascular disease, obesity, and diabetes. Egg white-derived peptides (EWPs) have been shown to improve glucose tolerance in insulin-resistant rats. However, underlying mechanisms are to be elucidated. Therefore, we hypothesized that EWP exerts a hypoglycemic effect by regulating hepatic glucose homeostasis. Our results showed that 7 weeks of EWP treatment reduced the fasting blood glucose in T2DM mice and the inhibition of the liver gluconeogenic pathway was involved in the mechanisms of actions. Using the untargeted metabolomics technique, we found that EWP treatment also altered the hepatic metabolic profile in T2DM mice, in which, the role of fatty acid esters of hydroxy fatty acids in mediating the hypoglycemic effect of EWPs might be pivotal.
Collapse
Affiliation(s)
- Xinyi Cao
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, P.R. China.
| | - Liang Chen
- Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Kun Lu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, P.R. China.
| | - Tingqing Yu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, P.R. China.
| | - Hui Xia
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, P.R. China.
| | - Shaokang Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, P.R. China.
| | - Guiju Sun
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, P.R. China.
| | - Ping Liu
- Department of Food Science and Technology, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, 225300, P.R. China
| | - Wang Liao
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, P.R. China.
| |
Collapse
|
7
|
Joshua Ashaolu T, Joshua Olatunji O, Can Karaca A, Lee CC, Mahdi Jafari S. Anti-obesity and anti-diabetic bioactive peptides: A comprehensive review of their sources, properties, and techno-functional challenges. Food Res Int 2024; 187:114427. [PMID: 38763677 DOI: 10.1016/j.foodres.2024.114427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/21/2024]
Abstract
The scourge of obesity arising from obesogens and poor dieting still ravages our planet as half of the global population may be overweight and obese by 2035. This metabolic disorder is intertwined with type 2 diabetes (T2D), both of which warrant alternative therapeutic options other than clinically approved drugs like orlistat with their tendency of abuse and side effects. In this review, we comprehensively describe the global obesity problem and its connection to T2D. Obesity, overconsumption of fats, the mechanism of fat digestion, obesogenic gut microbiota, inhibition of fat digestion, and natural anti-obesity compounds are discussed. Similar discussions are made for diabetes with regard to glucose regulation, the diabetic gut microbiota, and insulinotropic compounds. The sources and production of anti-obesity bioactive peptides (AOBPs) and anti-diabetic bioactive peptides (ADBPs) are also described while explaining their structure-function relationships, gastrointestinal behaviors, and action mechanisms. Finally, the techno-functional applications of AOBPs and ADBPs are highlighted.
Collapse
Affiliation(s)
- Tolulope Joshua Ashaolu
- Institute for Global Health Innovations, Duy Tan University, Da Nang 550000, Vietnam; Faculty of Medicine, Duy Tan University, Da Nang 550000, Vietnam.
| | | | - Asli Can Karaca
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Istanbul, Turkey.
| | - Chi-Ching Lee
- Istanbul Sabahattin Zaim University, Faculty of Engineering and Natural Sciences, Department of Food Engineering, Istanbul, Turkey.
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
8
|
Feng Y, Ren Y, Zhang X, Yang S, Jiao Q, Li Q, Jiang W. Metabolites of traditional Chinese medicine targeting PI3K/AKT signaling pathway for hypoglycemic effect in type 2 diabetes. Front Pharmacol 2024; 15:1373711. [PMID: 38799166 PMCID: PMC11116707 DOI: 10.3389/fphar.2024.1373711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/23/2024] [Indexed: 05/29/2024] Open
Abstract
Type 2 diabetes mellitus is a chronic metabolic disease characterized by insulin resistance, with high morbidity and mortality worldwide. Due to the tightly intertwined connection between the insulin resistance pathway and the PI3K/AKT signaling pathway, regulating the PI3K/AKT pathway and its associated targets is essential for hypoglycemia and the prevention of type 2 diabetes mellitus. In recent years, metabolites isolated from traditional Chinese medicine has received more attention and acceptance for its superior bioactivity, high safety, and fewer side effects. Meanwhile, numerous in vivo and in vitro studies have revealed that the metabolites present in traditional Chinese medicine possess better bioactivities in regulating the balance of glucose metabolism, ameliorating insulin resistance, and preventing type 2 diabetes mellitus via the PI3K/AKT signaling pathway. In this article, we reviewed the literature related to the metabolites of traditional Chinese medicine improving IR and possessing therapeutic potential for type 2 diabetes mellitus by targeting the PI3K/AKT signaling pathway, focusing on the hypoglycemic mechanism of the metabolites of traditional Chinese medicine in type 2 diabetes mellitus and elaborating on the significant role of the PI3K/AKT signaling pathway in type 2 diabetes mellitus. In order to provide reference for clinical prevention and treatment of type 2 diabetes mellitus.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wenwen Jiang
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China
| |
Collapse
|
9
|
Fang W, Jin M, Qi W, Kong C, Song G, Peng W, Wang Y. Caffeic acid combined with arabinoxylan or β-glucan attenuates diet-induced obesity in mice via modulation of gut microbiota and metabolites. Int J Biol Macromol 2024; 268:131683. [PMID: 38649076 DOI: 10.1016/j.ijbiomac.2024.131683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/14/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
Polyphenols and dietary fibers in whole grains are important bioactive compounds to reduce risks for obesity. However, whether the combination of the two components exhibits a stronger anti-obesity effect remains unclear. Caffeic acid is a major phenolic acid in cereals, and arabinoxylan and β-glucan are biological macromolecules with numerous health benefits. Here, we investigated the effect of caffeic acid combined with arabinoxylan or β-glucan on glucose and lipid metabolism, gut microbiota, and metabolites in mice fed a high-fat diet (HFD). Caffeic acid combined with arabinoxylan or β-glucan significantly reduced the body weight, blood glucose, and serum free fatty acid concentrations. Caffeic acid combined with β-glucan effectively decreased serum total cholesterol levels and hepatic lipid accumulation, modulated oxidative and inflammatory stress, and improved gut barrier function. Compared with arabinoxylan, β-glucan, and caffeic acid alone, caffeic acid combined with arabinoxylan or β-glucan exhibited a better capacity to modulate gut microbiota, including increased microbial diversity, reduced Firmicutes/Bacteroidetes ratio, and increased abundance of beneficial bacteria such as Bifidobacterium. Furthermore, caffeic acid combined with β-glucan reversed HFD-induced changes in microbiota-derived metabolites involving tryptophan, purine, and bile acid metabolism. Thus, caffeic acid and β-glucan had a synergistic anti-obesity effect by regulating specific gut microbiota and metabolites.
Collapse
Affiliation(s)
- Wei Fang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Mingyu Jin
- School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Wentao Qi
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Chunli Kong
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Ge Song
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Wenting Peng
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Yong Wang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China.
| |
Collapse
|
10
|
da Silva Bomfim N, de Souza Ferreira R, Silva E Oliveira J, de Cássia Gonçalves Alfenas R. Green banana biomass anti-obesogenic, anti-hyperlipidemic, antidiabetic, and intestinal function potential effects: a systematic review. Nutr Rev 2024:nuae040. [PMID: 38630587 DOI: 10.1093/nutrit/nuae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
CONTEXT Apparently, the consumption of resistant-starch food sources, such as green banana biomass, stimulates the proliferation of short-chain fatty acid intestinal bacteria producers, which can contribute to intestinal health and reduce the risk of chronic diseases. However, the available scientific evidence is scarce and no study has systematically evaluated such evidence. OBJECTIVE The aim of this study was to analyze the potential effects of green banana biomass on anthropometry, body composition, and biochemical and intestinal variables in humans and animals. DATA SOURCES The Cochrane Library, Embase, Medline/PubMed, Scopus, and Web of Science electronic databases were searched in January 2024 for eligible articles. Studies that tested the effects of cooked peeled or unpeeled green banana on anthropometric, biochemical, and/or intestinal variables were included. DATA EXTRACTION This systematic review was conducted according to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. The classification and assessment of the quality of studies were based on the relevant criteria related to the design of these studies and the quality criteria checklist of the Academy of Nutrition and Dietetics manual. Twelve studies published between 2001 and 2021 were included in the review. DATA ANALYSIS The results of human studies indicate that the ingestion of green banana biomass controlled intestinal dysfunction (50-300 g/day for 5-14 days or 30 g/day for 8 wk) in children, and showed potential anti-obesogenic, anti-hyperlipidemic, and antidiabetic (40 g/day for 24 wk) effects in adults. In rats, biomass consumption led to potential anti-obesogenic (25 g/day for 8 wk), anti-hyperlipidemic, and antidiabetic (∼8-30 g/day for 12 wk) effects. CONCLUSION Consumption of green banana biomass seems to exert beneficial effects on intestinal function and potential effects on obesity, dyslipidemia, and diabetes. These effects may be related to increased fecal short-chain fatty acid concentrations as a result of type 3 resistant starch present in biomass. SYSTEMATIC REVIEW REGISTRATION Open Science Framework (OSF) (https://doi.org/10.17605/OSF.IO/TKCWV).
Collapse
Affiliation(s)
- Natália da Silva Bomfim
- Departamento de Nutrição e Saúde, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Renata de Souza Ferreira
- Instituto Federal de Educação, Ciência e Tecnologia do Sudeste de Minas Gerais-Campus Barbacena, Barbacena, Minas Gerais, Brazil
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Julia Silva E Oliveira
- Departamento de Nutrição e Saúde, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | |
Collapse
|
11
|
Bjerknes C, Wubshet SG, Rønning SB, Afseth NK, Currie C, Framroze B, Hermansen E. Glucoregulatory Properties of a Protein Hydrolysate from Atlantic Salmon ( Salmo salar): Preliminary Characterization and Evaluation of DPP-IV Inhibition and Direct Glucose Uptake In Vitro. Mar Drugs 2024; 22:151. [PMID: 38667768 PMCID: PMC11050766 DOI: 10.3390/md22040151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Metabolic disorders are increasingly prevalent conditions that manifest pathophysiologically along a continuum. Among reported metabolic risk factors, elevated fasting serum glucose (FSG) levels have shown the most substantial increase in risk exposure. Ultimately leading to insulin resistance (IR), this condition is associated with notable deteriorations in the prognostic outlook for major diseases, including neurodegenerative diseases, cancer risk, and mortality related to cardiovascular disease. Tackling metabolic dysfunction, with a focus on prevention, is a critically important aspect for human health. In this study, an investigation into the potential antidiabetic properties of a salmon protein hydrolysate (SPH) was conducted, focusing on its potential dipeptidyl peptidase-IV (DPP-IV) inhibition and direct glucose uptake in vitro. Characterization of the SPH utilized a bioassay-guided fractionation approach to identify potent glucoregulatory peptide fractions. Low-molecular-weight (MW) fractions prepared by membrane filtration (MWCO = 3 kDa) showed significant DPP-IV inhibition (IC50 = 1.01 ± 0.12 mg/mL) and glucose uptake in vitro (p ≤ 0.0001 at 1 mg/mL). Further fractionation of the lowest MW fractions (<3 kDa) derived from the permeate resulted in three peptide subfractions. The subfraction with the lowest molecular weight demonstrated the most significant glucose uptake activity (p ≤ 0.0001), maintaining its potency even at a dilution of 1:500 (p ≤ 0.01).
Collapse
Affiliation(s)
- Christian Bjerknes
- Hofseth Biocare ASA, Keiser Wilhelms Gate 24, 6003 Ålesund, Norway; (C.C.); (B.F.); (E.H.)
| | | | | | | | - Crawford Currie
- Hofseth Biocare ASA, Keiser Wilhelms Gate 24, 6003 Ålesund, Norway; (C.C.); (B.F.); (E.H.)
| | - Bomi Framroze
- Hofseth Biocare ASA, Keiser Wilhelms Gate 24, 6003 Ålesund, Norway; (C.C.); (B.F.); (E.H.)
| | - Erland Hermansen
- Hofseth Biocare ASA, Keiser Wilhelms Gate 24, 6003 Ålesund, Norway; (C.C.); (B.F.); (E.H.)
- Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Larsgårdsvegen 2, 6009 Ålesund, Norway
| |
Collapse
|
12
|
Elbira A, Hafiz M, Hernández-Álvarez AJ, Zulyniak MA, Boesch C. Protein Hydrolysates and Bioactive Peptides as Mediators of Blood Glucose-A Systematic Review and Meta-Analysis of Acute and Long-Term Studies. Nutrients 2024; 16:323. [PMID: 38276562 PMCID: PMC10818427 DOI: 10.3390/nu16020323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a major public health concern associated with high mortality and reduced life expectancy. Since diabetes is closely linked with lifestyle, not surprisingly, nutritional intervention and increased physical activity could play a vital role in attenuating the problems related to diabetes. Protein hydrolysates (PHs) and their bioactive peptides (BP) have been shown to exert a wide range of biological effects, including antioxidative, antihypertensive, and in particular, hypoglycaemic activities. To better understand the efficacy of such interventions, a systematic review and meta-analysis of randomised controlled trials (RCTs) were performed concerning the influence of protein hydrolysates on glycaemic biomarkers in subjects with and without hyperglycaemia. Five different databases were used to search for RCTs. In total, 37 RCTs were included in the systematic review and 29 RCTs in the meta-analysis. The meta-analysis revealed a significant reduction in postprandial blood glucose response (PPGR) in normoglycaemic (-0.22 mmol/L; 95% CI -0.43, -0.01; p ≤ 0.05) and in hyperglycaemic adults (-0.88 mmol/L; 95% CI -1.37, -0.39; p ≤ 0.001) compared with the respective control groups. A meta-regression analysis revealed a dose-dependent response for PPGR following PH consumption in normoglycaemic adults, specifically for doses ≤ 30 g. The postprandial blood insulin responses (PPIR) were significantly higher after the ingestion of PHs in both the group with and the group without hyperglycaemia, respectively (23.05 mIU/L; 95% CI 7.53, 38.57; p ≤ 0.01 and 12.57 mIU/L; 95% CI 2.72, 22.41; p ≤ 0.01), compared with controls. In terms of long-term responses, there was a small but significant reduction in both fasting blood glucose (FBG) and fasting glycated haemoglobin (HbA1c) in response to PH compared with the control group (p < 0.05). The PHs significantly improved the parameters of glycaemia in adults and, hence, it may contribute to the management and regulation of the future risk of developing T2DM.
Collapse
Affiliation(s)
- Arig Elbira
- School of Food Science and Nutrition, Faculty of Environment, University of Leeds, Leeds LS2 9JT, UK; (A.E.); (M.H.); (A.J.H.-Á.); (M.A.Z.)
| | - Maryam Hafiz
- School of Food Science and Nutrition, Faculty of Environment, University of Leeds, Leeds LS2 9JT, UK; (A.E.); (M.H.); (A.J.H.-Á.); (M.A.Z.)
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, King Abdul-Aziz University, P.O. Box 80215, Jeddah 21589, Saudi Arabia
| | - Alan Javier Hernández-Álvarez
- School of Food Science and Nutrition, Faculty of Environment, University of Leeds, Leeds LS2 9JT, UK; (A.E.); (M.H.); (A.J.H.-Á.); (M.A.Z.)
| | - Michael A. Zulyniak
- School of Food Science and Nutrition, Faculty of Environment, University of Leeds, Leeds LS2 9JT, UK; (A.E.); (M.H.); (A.J.H.-Á.); (M.A.Z.)
| | - Christine Boesch
- School of Food Science and Nutrition, Faculty of Environment, University of Leeds, Leeds LS2 9JT, UK; (A.E.); (M.H.); (A.J.H.-Á.); (M.A.Z.)
| |
Collapse
|
13
|
Sun Y, Mehmood A, Giampieri F, Battino MA, Chen X. Insights into the cellular, molecular, and epigenetic targets of gamma-aminobutyric acid against diabetes: a comprehensive review on its mechanisms. Crit Rev Food Sci Nutr 2023; 64:12620-12637. [PMID: 37694998 DOI: 10.1080/10408398.2023.2255666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Diabetes is a metabolic disease due to impaired or defective insulin secretion and is considered one of the most serious chronic diseases worldwide. Gamma-aminobutyric acid (GABA) is a naturally occurring non-protein amino acid commonly present in a wide range of foods. A number of studies documented that GABA has good anti-diabetic potential. This review summarized the available dietary sources of GABA as well as animal and human studies on the anti-diabetic properties of GABA, while also discussing the underlying mechanisms. GABA may modulate diabetes through various pathways such as inhibiting the activities of α-amylase and α-glucosidase, promoting β-cell proliferation, stimulating insulin secretion from β-cells, inhibiting glucagon secretion from α-cells, improving insulin resistance and glucose tolerance, and increasing antioxidant and anti-inflammatory activities. However, further mechanistic studies on animals and human are needed to confirm the therapeutic effects of GABA against diabetes.
Collapse
Affiliation(s)
- Yu Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Arshad Mehmood
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Francesca Giampieri
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
| | - Maurizio Antonio Battino
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
- Department of Clinical Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Xiumin Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| |
Collapse
|
14
|
Ashkar F, Bhullar KS, Jiang X, Wu J. Tripeptide IRW Improves AMPK/eNOS Signaling Pathway via Activating ACE2 in the Aorta of High-Fat-Diet-Fed C57BL/6 Mice. BIOLOGY 2023; 12:biology12040556. [PMID: 37106756 PMCID: PMC10135585 DOI: 10.3390/biology12040556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 04/08/2023]
Abstract
This study aims to investigate the effect of tripeptide IRW on the local renin–angiotensin system (RAS), particularly angiotensin-converting enzyme 2 (ACE2), and their association with signaling pathways in the aorta of a high-fat-diet (HFD)-induced insulin-resistant mouse model. C57BL/6 mice were fed HFD (45% of the total calories) for six weeks, and then IRW was added to the diet (45 mg/kg body weight (BW)) for another eight weeks. ACE2 mRNA expression and protein level(s) were increased (p < 0.05), while angiotensin II receptor (AT1R) and angiotensin-converting enzyme (ACE) protein abundance was significantly reduced (p < 0.05) in the aorta of HFD mice treated by IRW. IRW supplementation also improved glucose transporter 4 (GLUT4) abundance (p < 0.05) alongside AMP-activated protein kinase (AMPK) (p < 0.05), Sirtuin 1 (SIRT1) (p < 0.05), and endothelial nitric oxide synthase (eNOS) (p < 0.05) expression. IRW downregulated the levels of endothelin 1 (ET-1) and p38 mitogen-activated protein kinases (p38 MAPK, p < 0.05). Furthermore, the levels of AMPK and eNOS in vascular smooth muscle cells (VSMCs) were significantly reduced in ACE2 knockdown cells treated with or without IRW (p < 0.01). In conclusion, this study provided new evidence of the regulatory role of IRW on the aortic ACE2 against metabolic syndrome (MetS) in an HFD-induced insulin-resistant model.
Collapse
Affiliation(s)
- Fatemeh Ashkar
- Department of Agricultural Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Khushwant S. Bhullar
- Department of Agricultural Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Xu Jiang
- Department of Agricultural Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Jianping Wu
- Department of Agricultural Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada
| |
Collapse
|
15
|
Kiersnowska K, Jakubczyk A. Bioactive Peptides Obtained from Legume Seeds as New Compounds in Metabolic Syndrome Prevention and Diet Therapy. Foods 2022; 11:3300. [PMCID: PMC9602117 DOI: 10.3390/foods11203300] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Currently, food is regarded not only as a source of nutrients, vitamins, and minerals but also as a source of bioactive compounds that can play a significant role in the prevention and diet therapy of many diseases. Metabolic syndrome (MS) is a complex disorder defined as a set of interrelated factors that increase the risk of cardiovascular disease, atherosclerosis, type 2 diabetes, or dyslipidemia. MS affects not only adults but also children. Peptides are one of the compounds that exhibit a variety of bioactive properties. They are derived from food proteins, which are usually obtained through enzymatic hydrolysis or digestion in the digestive system. Legume seeds are a good source of bioactive peptides. In addition to their high protein content, they contain high levels of dietary fiber, vitamins, and minerals. The aim of this review is to present new bioactive peptides derived from legume seeds and showing inhibitory properties against MS. These compounds may find application in MS diet therapy or functional food production.
Collapse
|