1
|
Zhang H, Wang J, Jing Y. Larimichthys crocea (large yellow croaker): A bibliometric study. Heliyon 2024; 10:e37393. [PMID: 39296167 PMCID: PMC11409083 DOI: 10.1016/j.heliyon.2024.e37393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/19/2024] [Accepted: 08/28/2024] [Indexed: 09/21/2024] Open
Abstract
Larimichthys crocea is an important economic fish of East Asia, and numerous studies have been conducted on its breeding, aquaculture, preservation and processing; however, there is no systematic review of the literature on the research of Larimichthys crocea. Derwent Data Analyzer (DDA) was used to analyze 1192 Larimichthys crocea research papers indexed by SCI-E, CSCD and KCI from 2001 to 2023. The number of research publications on Larimichthys crocea has rapidly increased, and institutions and scholars from China, the United States, South Korea, Japan, and Norway have conducted the majority of Larimichthys crocea research. The immune response, Pseudomonas plecoglossicida, gene expression, lipid immune response, transcriptomics and other areas have attracted the most attention. To increase the immunity and disease resistance of Larimichthys crocea and improve its survival, growth, storage and transport, researchers have carried out a large amount of research, which has promoted not only the culture of Larimichthys crocea but also the restoration of wild Larimichthys crocea and the rehabilitation of the ecological environment.
Collapse
Affiliation(s)
- Hongyan Zhang
- Library, Zhejiang Ocean University, Zhoushan, 316000, PR China
| | - Jiacan Wang
- School of Economics and Management, Zhejiang Ocean University, Zhoushan, 316000, PR China
| | - Yuan Jing
- Periodicals Agency, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| |
Collapse
|
2
|
Das BK, Panda SP, Pradhan SP, Raut SS, Kumari M, Meena DK. Molecular insights into STAT1a protein in rohu ( Labeo rohita): unveiling expression profiles, SRC homology domain recognition, and protein-protein interactions triggered by poly I: C. Front Immunol 2024; 15:1398955. [PMID: 38994355 PMCID: PMC11237311 DOI: 10.3389/fimmu.2024.1398955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/09/2024] [Indexed: 07/13/2024] Open
Abstract
Introduction STAT1a is an essential signal transduction protein involved in the interferon pathway, playing a vital role in IFN-alpha/beta and gamma signaling. Limited information is available about the STAT protein in fish, particularly in Indian major carps (IMC). This study aimed to identify and characterize the STAT1a protein in Labeo rohita (LrSTAT1a). Methods The full-length CDS of LrSTAT1a transcript was identified and sequenced. Phylogenetic analyses were performed based on the nucleotide sequences. The in-vivo immune stimulant poly I: C was used to treat various tissues, and the expression of LrSTAT1a was determined using quantitative real-time polymerase chain reaction (qRT-PCR). A 3D model of the STAT1a protein was generated using close structure homologs available in the database and checked using molecular dynamics (MD) simulations. Results The full-length CDS of Labeo rohita STAT1a (LrSTAT1a) transcript consisted of 3238 bp that encoded a polypeptide of 721 amino acids sequence was identified. Phylogenetic analyses were performed based on the nucleotide sequences. Based on our findings, other vertebrates share a high degree of conservation with STAT1a. Additionally, we report that the in vivo immune stimulant poly I: C treatment of various tissues resulted in the expression of LrSTAT1a as determined by quantitative real-time polymerase chain reaction (qRT-PCR). In the current investigation, treatment with poly I: C dramatically increased the expression of LrSTAT1a in nearly every organ and tissue, with the brain, muscle, kidney, and intestine showing the highest levels of expression compared to the control. We made a 3D model of the STAT1a protein by using close structure homologs that were already available in the database. The model was then checked using molecular dynamics (MD) simulations. Consistent with previous research, the MD study highlighted the significance of the STAT1a protein, which is responsible for Src homology 2 (SH2) recognition. An important H-bonding that successfully retains SH2 inside the STAT1a binding cavity was determined to be formed by the conserved residues SER107, GLN530, SER583, LYS584, MET103, and ALA106. Discussion This study provides molecular insights into the STAT1a protein in Rohu (Labeo rohita) and highlights the potential role of STAT1a in the innate immune response in fish. The high degree of conservation of STAT1a among other vertebrates suggests its crucial role in the immune response. The in-vivo immune stimulation results indicate that STAT1a is involved in the immune response in various tissues, with the brain, muscle, kidney, and intestine being the most responsive. The 3D model and MD study provide further evidence of the significance of STAT1a in the immune response, specifically in SH2 recognition. Further research is necessary to understand the specific mechanisms involved in the IFN pathway and the role of STAT1a in the immune response of IMC.
Collapse
Affiliation(s)
- Basanta Kumar Das
- Aquatic Environmental Biotechnology (AEB) Division, Indian Council of Agricultural Research (ICAR) - Central Inland Fisheries Research Institute, Kolkata, West Bengal, India
| | - Soumya Prasad Panda
- Aquatic Environmental Biotechnology (AEB) Division, Indian Council of Agricultural Research (ICAR) - Central Inland Fisheries Research Institute, Kolkata, West Bengal, India
| | - Smruti Priyambada Pradhan
- Aquatic Environmental Biotechnology (AEB) Division, Indian Council of Agricultural Research (ICAR) - Central Inland Fisheries Research Institute, Kolkata, West Bengal, India
| | - Subhashree Subhasmita Raut
- Aquatic Environmental Biotechnology (AEB) Division, Indian Council of Agricultural Research (ICAR) - Central Inland Fisheries Research Institute, Kolkata, West Bengal, India
| | - Mala Kumari
- Riverine & Estuaries Fisheries Division, Indian Council of Agricultural Research (ICAR) -Central Inland Fisheries Research Institute, Kolkata, West Bengal, India
| | - Dharmendra Kumar Meena
- Open Water Aquaculture Production and Management (OWAPM) Division, Indian Council of Agricultural Research (ICAR)-Central Inland Fisheries Research Institute, Kolkata, West Bengal, India
| |
Collapse
|
3
|
Lai Z, Afriyie G, Cui H, Chen L, Xu Z, Chen Z, Liang Q, Luo J, Dong Z, Shao C, Guo Y, Wang Z. The First High-Quality Chromosome-Level Genome of the Lutjanus erythropterus (Bloch, 1790) Using Single-Tube Long Fragment Reads and Hi-C Technologies. Genome Biol Evol 2023; 15:evad171. [PMID: 37768150 PMCID: PMC10558211 DOI: 10.1093/gbe/evad171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/10/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023] Open
Abstract
Lutjanus erythropterus (Bloch, 1790), a Perciformes from the Lutjanidae family, is a commercially important species because of its taste and abundance. Despite the increase in genome resources in recent years, few genome assemblies are available within this fish family for comparative and functional studies. In this study, we determined the chromosomal genome of Crimson snapper using high-throughput Single-Tube Long Fragment Reads sequencing technology and Hi-C data. The final assembly size was 973.04 Mb with contig and scaffold N50 values of 1.51 and 40.65 Mb, respectively. We successfully scaffolded 95.84% of the genome sequence onto 24 chromosomes ranging in length from 19.37 to 49.48 Mb. A total of 22,663 genes and 13,877 gene families were identified in the genome, with 29 gene families being L. erythropterus-specific. A phylogenetic analysis using single-copy gene families showed that L. erythropterus and Larimichthys crocea had the closest genetic relationship with a divergence time of ∼47.7 Ma. This new genomic resource will facilitate comparative genomic studies as well as genetic breeding programs for L. erythropterus.
Collapse
Affiliation(s)
- Zhuoxin Lai
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Gyamfua Afriyie
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Haitao Cui
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Lujun Chen
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Zhenmin Xu
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Zizhao Chen
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Quilu Liang
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Jie Luo
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Zhongdian Dong
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Changwei Shao
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Yusong Guo
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Zhongduo Wang
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong, China
| |
Collapse
|
4
|
Liu Q, Zhu S, Zhao Z, Hao T, Xu X, Han S, Li Y, Mai K, Ai Q. Transcription factor EB (TFEB) participates in antiviral immune responses independent of mTORC1 in macrophage of large yellow croaker (Larimichthys crocea). FISH & SHELLFISH IMMUNOLOGY 2023; 134:108609. [PMID: 36764631 DOI: 10.1016/j.fsi.2023.108609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/30/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Transcription factor EB (TFEB) plays an integral role in the production of proinflammatory cytokines and chemokines in response to pathogen stimulation in mammals. However, the role of TFEB in antiviral immune responses and the potential regulatory mechanisms in fish remain poorly understood. Here, we cloned and characterized Larimichthys crocea TFEB (LcTFEB) with 524 amino acids and a typical basic helix-loop-helix-leucine zipper domain. LcTFEB could translocate into the nucleus upon starvation and had a comparatively high expression in immune tissues. Similar to the expression of antiviral immune genes, the transcriptional expression and activity of LcTFEB showed a trend of increasing and then decreasing with the prolongation of stimulation. Inhibition of LcTFEB using siRNA dramatically increased the polyinosinic-polycytidylic acid (poly (I:C))-induced interferon response and pro-inflammatory cytokines mRNA expression levels, whereas pharmacological activation and overexpression of LcTFEB exhibited the reverse effects. Mechanically, LcTFEB might promote the expression of IFNh as negative feedback to limit the virus-induced inflammatory responses. Notably, although inhibition of mTORC1 exacerbated poly (I:C)-triggered inflammatory responses, the effects of LcTFEB were independent of mTORC1. Overall, this study revealed an unidentified critical role of LcTFEB in the regulation of antiviral immune responses and promoted the understanding of TFEB in the antiviral immunity of fish macrophages.
Collapse
Affiliation(s)
- Qiangde Liu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, PR China; Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, PR China
| | - Si Zhu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, PR China; Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, PR China
| | - Zengqi Zhao
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, PR China; Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, PR China
| | - Tingting Hao
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, PR China; Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, PR China
| | - Xiang Xu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, PR China; Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, PR China
| | - Shangzhe Han
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, PR China; Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, PR China
| | - Yueru Li
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, PR China; Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, PR China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, PR China; Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, 266237, Qingdao, Shandong, PR China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, PR China; Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, 266237, Qingdao, Shandong, PR China.
| |
Collapse
|
5
|
Shen B, Zhang S, Li F, Xu J, Zhang Y, Zhang J. Functional analyses of two interferon-stimulated gene 15 (ISG15) copies in large yellow croaker, Larimichthys crocea. FISH & SHELLFISH IMMUNOLOGY 2022; 130:530-537. [PMID: 36007829 DOI: 10.1016/j.fsi.2022.08.052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/05/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
In this study, we conducted functional analyses for two ISG15 homologues of Larimichthys crocea (LcISG15-1 and LcISG15-2). Our results of qRT-PCR showed that both LcISG15-1 and LcISG15-2 were significantly changed in head kidney and peripheral blood, after poly (I:C) stimulation. Western blot analyses with prepared polyclonal antibodies suggested that LcISG15-1 and LcISG15-2 both could be secreted by primary head kidney lymphocytes into the extracellular milieu. The purified recombinant LcISG15-1 (rLcISG15-1) and LcISG15-2 (rLcISG15-2) could both activate primary macrophages as extracellular cytokines and significantly enhance macrophage respiratory burst, NO production and bactericidal activity and induce the expression of proinflammatory cytokine genes of the cells. Moreover, rLcISG15-2 exhibited much stronger cytokine-like activities than those of rLcISG15-1, indicating the ISG15-2 gene copy evolved enhanced activity after gene duplication of ISG15 in sciaenid fishes. These results indicated important roles of LcISG15-1 and especially LcISG15-2 in immune regulation and host immune defense of large yellow croaker against viral and bacterial infection.
Collapse
Affiliation(s)
- Bin Shen
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316004, China
| | - Siyu Zhang
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316004, China
| | - Fengxin Li
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316004, China
| | - Jing Xu
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316004, China
| | - Yuqin Zhang
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316004, China
| | - Jianshe Zhang
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316004, China.
| |
Collapse
|
6
|
PLAC8 Overexpression Promotes Lung Cancer Cell Growth via Wnt/ β-Catenin Signaling. J Immunol Res 2022; 2022:8854196. [PMID: 35497881 PMCID: PMC9054485 DOI: 10.1155/2022/8854196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/26/2022] [Accepted: 04/02/2022] [Indexed: 11/24/2022] Open
Abstract
The PLAC8 expression in lung cancer tissues and in vitro grown lung cancer cells, as well as the involvement of the Wnt/β-Catenin signaling pathway, was investigated in this process. PLAC8 protein expression in human lung cancer tissues and lung tumor cells of different strains was discovered using immunohistochemistry staining and Western blot, respectively. Animal models of PLAC8 overexpression and knockdown were created using lentivirus. The development in tumor tissue was seen both in vitro and vivo. The Wnt/β-Catenin signaling pathway played an important part in this process, as shown by the dual luciferase reporter gene system. PLAC8 expression was elevated in lung cancer tissues and plasma and decreased in plasma after lung tumor resection. PLAC8 upregulation promotes cell proliferation in vivo and in vitro, while PLAC8 downregulation inhibits cell viability and proliferation. The results of the dual luciferase reporter gene system suggest that PLAC8 can significantly activate the Wnt/β-Catenin signaling pathway in cells and can conduct signaling through it. A potential treatment targeting the prognosis of lung cancer patients may be PLAC8 overexpression, which promotes the lung cancer cell proliferation through controlling the Wnt/β-Catenin signaling pathway.
Collapse
|
7
|
Zhao Z, Peng H, Han T, Jiang Z, Yuan J, Liu X, Wang X, Zhang Y, Wang T. Pharmacological characterization and biological function of the interleukin-8 receptor, CXCR2, in largemouth bass (Micropterus salmoides). FISH & SHELLFISH IMMUNOLOGY 2022; 120:441-450. [PMID: 34933090 DOI: 10.1016/j.fsi.2021.12.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 11/16/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Interleukin-8 (IL-8 or C-X-C motif chemokine ligand 8, CXCL8) is a cytokine secreted by numerous cell types and is best known for its functional roles in inflammatory response by binding to specific receptors (the interleukin-8 receptors, IL-8Rs). From the transcriptomic data of largemouth bass (Micropterus salmoides), we identified an IL-8R that is highly homologous to the functionally validated teleost IL-8Rs. The M. salmoides IL-8 receptor (MsCXCR2) was further compared with the C-X-C motif chemokine receptor 2 subfamily by phylogenetic analysis. Briefly, the full-length CDS sequence of MsCXCR2 was cloned into the pEGFP-N1 plasmid, and the membrane localization of fusion expressing MsCXCR2-EGFP was revealed in HEK293 cells. To determine the functional interaction between IL-8 and MsCXCR2, secretory expressed Larimichthys crocea IL-8 (LcIL-8) was used to stimulate MsCXCR2 expressing cells. MsCXCR2 was demonstrated to be activated by LcIL-8, leading to receptor internalization, which was further revealed by the detection of extracellular regulated protein kinase (ERK) phosphorylation. Quantitative real-time PCR was used to evaluate the expressional distribution and variation of MsCXCR2 in healthy and Nocardia seriolae infected fish. Based on our findings, MsCXCR2 was constitutively expressed in all examined tissues, despite at different levels. Furthermore, gene expression was found to be significantly upregulated in the liver and head kidney of diseased fish. Collectively, our findings reveal the molecular activity of MsCXCR2 and indicate the functional involvement of this IL-8R in the immune response induced by N. seriolae in M. salmoides.
Collapse
Affiliation(s)
- Zihao Zhao
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, PR China
| | - Hao Peng
- Department of Life Science and Engineering, Jining University, Jining, Shandong, 273155, PR China
| | - Tao Han
- Department of Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, PR China
| | - Zhijing Jiang
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, PR China
| | - Jieyi Yuan
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, PR China
| | - Xue Liu
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, PR China
| | - Xiaoqian Wang
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, PR China
| | - Yuexing Zhang
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, PR China.
| | - Tianming Wang
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, PR China.
| |
Collapse
|
8
|
Transcriptome analysis revealed multiple immune processes and energy metabolism pathways involved in the defense response of the large yellow croaker Larimichthys crocea against Pseudomonas plecoglossicida. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2021; 40:100886. [PMID: 34418783 DOI: 10.1016/j.cbd.2021.100886] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 01/08/2023]
Abstract
The large yellow croaker (Larimichthys crocea) aquaculture industry is suffering substantial financial losses caused by visceral white nodules disease resulting from Pseudomonas plecoglossicida infection. However, how L. crocea responds to P. plecoglossicida infection remains largely unknown. Here, we characterized the changes in the mRNA profile in the spleen of L. crocea upon P. plecoglossicida infection and explored the related defensive strategies. Sample clustering analysis and qRT-PCR indicated that P. plecoglossicida induced profound and reproducible transcriptome remodeling in the L. crocea spleen. Many innate immune-related genes, such as IL-17 signaling molecules, chemokines and chemokine receptors, complement components, TLR5 signaling molecules, and antimicrobial peptide hepcidins (Hamps), were upregulated by P. plecoglossicida and may play important roles in the L. crocea defense against P. plecoglossicida. The antibacterial activity of Hamp2-5 against P. plecoglossicida was further confirmed by using synthetic mature peptide of Hamp2-5. Additionally, significant enrichment of "Glycolysis/Gluconeogenesis", "Citrate cycle" and "Oxidative phosphorylation" pathways and a significant upregulation of all 6 rate-limiting enzyme genes (HK1, PFK, PKM, CS, IDH2, DLST) in the Glycolysis and Citrate cycle pathways in P. plecoglossicida-infected fish suggested that ATP synthesis may be accelerated to ensure energy supply in response to pathogenic infection. Altogether, our results not only identified the key immune-related genes and immune pathways that participated in the defense response of L. crocea against P. plecoglossicida, but also revealed a novel defensive strategy involving ATP synthesis in this species.
Collapse
|
9
|
Bai H, Zhou T, Zhao J, Chen B, Pu F, Bai Y, Wu Y, Chen L, Shi Y, Ke Q, Yu X, Xu P. Transcriptome analysis reveals the temporal gene expression patterns in skin of large yellow croaker (Larimichthys crocea) in response to Cryptocaryon irritans infection. FISH & SHELLFISH IMMUNOLOGY 2020; 99:462-472. [PMID: 32070786 DOI: 10.1016/j.fsi.2020.02.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 02/10/2020] [Accepted: 02/14/2020] [Indexed: 06/10/2023]
Abstract
Large yellow croaker (Larimichthys crocea) is one of the most important mariculture fish in China. In the past decades, cryptocaryonosis caused by Cryptocryon irritans has led to huge economic losses, posing great threat to the healthy and sustainable development of L. crocea mariculture industry. As the largest immunologically active mucosal organ in fish, skin provides the first defense line against external pathogens. To better understand the gene expression dynamics, the large yellow croakers were artificially infected with C. irritans and their skin tissues were collected at 0 h, 24 h, 48 h, 72 h and 96 h post infection. The total RNA in the skin tissues were extracted and the transcriptome were sequenced. After sequencing, a total of 1,131, 311, 140 million high quality RNA-seq reads were collected. A set of 215, 473, 968, 1055 differentially expressed genes were identified at 24 h, 48 h, 72 h and 96 h post infection respectively. Further analysis clustered these DEGs into six profiles and 75 hub genes for six profiles were identified. Among these hub genes, 18 immune related genes including TLR5, TOPK, NFKBIZ, MAPK14A were identified post C. irritans infection. Cytokine-cytokine receptor interaction was the only pathway that significantly enriched at four timepoints post infection. This study provides an in-depth understanding of skin transcriptome variance of large yellow croaker after C. irritans infection, which would be helpful for further understanding of the molecular mechanism of L. crocea in response to C. irritans infection.
Collapse
Affiliation(s)
- Huaqiang Bai
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Tao Zhou
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Ji Zhao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Baohua Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Fei Pu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Yulin Bai
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Yidi Wu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Lin Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Yue Shi
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Qiaozhen Ke
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China; State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, 352130, China
| | - Xunkai Yu
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, 352130, China
| | - Peng Xu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China; State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, 352130, China; Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
10
|
Banerjee R, Kanak K, Patel B, Samanta M, Das S. Cloning and identification of antimicrobial peptide, hepcidin from freshwater carp, Catla catla on pathogen challenge and PAMPs stimulation. 3 Biotech 2019; 9:341. [PMID: 31497459 PMCID: PMC6707987 DOI: 10.1007/s13205-019-1874-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 08/13/2019] [Indexed: 12/19/2022] Open
Abstract
Hepcidin, a cationic cysteine-rich antimicrobial peptide (AMP) acts in hormone regulation and iron homeostasis in the host body. However, the biological property of hepcidin in immune reaction remains unexplored. In aquatic milieu, environmental and pathogenic stressors cause detrimental infections, which are defended by various immunological cells and antimicrobial peptides. In this study, hepcidin gene has been cloned from freshwater carp, Catla catla. The partially cloned hepcidin consists of 200 bp nucleotide sequence encoding 66 amino acids. Nucleotide sequence showed 97% and 91% similarity with Labeo rohita and Cyprinus carpio, respectively. Expression profile revealed significant up-regulation (P ≤ 0.0001) in liver as compared to other tissues in different conditions. In Aeromonas hydrophila challenged C. catla, liver showed higher expression level of hepcidin at 72 h as compared to other tissues. In skin, hepcidin expression showed significant upraise during 24 h in Streptococcus uberis infection. In Argulus sp. infected fishes, up-regulation of hepcidin expression was noted in liver, intestine and skin. The inactivated viral antigen-stimulated fishes, a substantial rise in liver was observed implying hepcidin as an important molecule in combating the pathogenic infections in freshwater carp, C. catla. Fishes stimulated with pathogen-associated molecular patterns (PAMPs) triggered the increased expression of hepcidin mRNA in liver, kidney and skin. This study indicates the presence of hepcidin as antimicrobial peptide in neutralizing the pathogenic infection in fishes.
Collapse
Affiliation(s)
- Rajanya Banerjee
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008 India
| | - Komal Kanak
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008 India
- Department of Life Sciences, Central University of South Bihar, Patna, India
| | - Bhakti Patel
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008 India
| | - Mrinal Samanta
- Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, Odisha 751002 India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008 India
| |
Collapse
|
11
|
Han F, Li W, Liu X, Zhang D, Liu L, Wang Z. Rac1 GTPase is a critical factor in phagocytosis in the large yellow croaker Larimichthys crocea by interacting with tropomyosin. FISH & SHELLFISH IMMUNOLOGY 2019; 91:148-158. [PMID: 31082520 DOI: 10.1016/j.fsi.2019.04.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 04/03/2019] [Accepted: 04/22/2019] [Indexed: 06/09/2023]
Abstract
The Rho family GTPase Rac1 acts as a molecular switch for signal transduction to regulate various cellular functions. Here, a Rac1 homolog (LcRac1) was identified in large yellow croaker (Larimichthys crocea), one of the most economically important marine fishes. The LcRac1 protein was expressed in Escherichia coli and purified. Subsequently the specific antibody was raised using the purified fusion protein (GST-LcRac1). LcRac1 was ubiquitously expressed in all 12 tissues we examined, with the highest expression in heart and blood and the weakest expression in head-kidney and spleen. Moreover, time course analysis revealed that LcRac1 expression was obviously up-regulated in liver, spleen and head-kidney after immunization with Poly I:C, LPS and Vibrio parahemolyticus. On the other hand, on the basis of protein interaction, it was found that the LcRac1 interacted with Tropomyosin, a crucial protein in the process of phagocytosis. Furthermore, RNAi assays indicated that the phagocytic percentage and phagocytic index were significantly decreased when the LcRac1 gene was silenced by sequence-specific siRNA. Fluorescence microscopy assays revealed FITC-labeled V. parahemolyticus were remarkably decreased after LcRac1 was silenced by sequence-specific siRNA at 24 h. These findings implicate the vital role of LcRac1 in innate immunity in the large yellow croaker.
Collapse
Affiliation(s)
- Fang Han
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Yindou Road 43, Xiamen, 361021, China
| | - Wanbo Li
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Yindou Road 43, Xiamen, 361021, China
| | - Xiande Liu
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Yindou Road 43, Xiamen, 361021, China
| | - Dongling Zhang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Yindou Road 43, Xiamen, 361021, China
| | - Lanping Liu
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Yindou Road 43, Xiamen, 361021, China
| | - Zhiyong Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Yindou Road 43, Xiamen, 361021, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China.
| |
Collapse
|
12
|
Wang T, Liang J, Xiang X, Yuan J, Chen X, Xiang X, Yang J. Functional identification and expressional responses of large yellow croaker (Larimichthys crocea) interleukin-8 and its receptor. FISH & SHELLFISH IMMUNOLOGY 2019; 87:470-477. [PMID: 30708055 DOI: 10.1016/j.fsi.2019.01.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 01/19/2019] [Accepted: 01/25/2019] [Indexed: 06/09/2023]
Abstract
Interleukin-8 (IL-8 or chemokine (C-X-C motif) ligand 8, CXCL8) is a chemokine produced by multiple cell types. It promotes chemotaxis and phagocytosis via interaction with chemokine receptors CXCR1 and CXCR2. Using published data, IL-8 gene (LcIL-8) of the large yellow croaker (Larimichthys crocea) was cloned into the pcDNA3.1 plasmid, and an interleukin-8 receptor (LcCXCR2) was cloned into the pEGFP-N1 plasmid. Secratory expression of LcIL-8 in HEK293T cells was carried out, and product in culture medium was collected for LcCXCR2 stimulation in HEK293 cells. Following receptor internalization observation and intracellular signaling detection, the functional interaction of LcIL-8 and LcCXCR2 was further determined and the ERK phosphorylation signal activation mediated by LcCXCR2 was demonstrated. Quantitative real-time PCR analysis was used to analyze transcription level regulation of LcIL-8 and LcCXCR2 in various tissues of large yellow croaker. Expression of LcIL-8 and LcCXCR2 was elevated in the spleen, head kidney, and liver after Vibrio parahemolyticus challenge. Results illustrated the functional interaction between LcIL-8 and LcCXCR2 in mediating intracellular ERK1/2 phosphorylation signaling and suggested that the LcIL-8 and LcCXCR2 system is part of the immune response induced by V. Parahemolyticus in L. crocea.
Collapse
Affiliation(s)
- Tianming Wang
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Sciences, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China
| | - Jing Liang
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Sciences, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China
| | - Xiaowei Xiang
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Sciences, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China
| | - Jiajie Yuan
- Shaoxing Entry-exit Inspection and Quarantine Bureau Comprehensive Technology Service Center, Shaoxing, Zhejiang, 312000, China
| | - Xu Chen
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Sciences, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China
| | - Xingwei Xiang
- Zhejiang Marine Development Research Institute, Tiyu Road 10, New Town, Zhoushan, Zhejiang Province 316000, China.
| | - Jingwen Yang
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Sciences, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China.
| |
Collapse
|
13
|
Shen B, Wei K, Guo S, Liu C, Zhang J. Molecular characterization and expression analyses of two homologues of interferon-stimulated gene ISG15 in Larimichthys crocea (Family: Sciaenidae). FISH & SHELLFISH IMMUNOLOGY 2019; 86:846-857. [PMID: 30576775 DOI: 10.1016/j.fsi.2018.12.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 06/09/2023]
Abstract
In this study, we sequenced and characterized two homologues of interferon-stimulated gene ISG15, termed as LcISG15-1 and LcISG15-2, from the large yellow croaker (Larimichthys crocea). The LcISG15-1 encodes 159 amino acids and the LcISG15-2 encodes 155 amino acids, both of which contain two tandem ubiquitin-like domains and the conserved C-terminal LRGG conjugation motif. The sequence analyses showed that both the LcISG15-1 and LcISG15-2 exhibit high similarity with ISG15 from other fishes. A putative IFN-stimulatory response element (ISRE) was detected in promoter regions of both the LcISG15-1 and LcISG15-2. Phylogenetic analyses revealed a close evolutionary relationship of both the LcISG15-1 and LcISG15-2 with other teleostean ISG15. Molecular evolutionary analyses suggested a gene duplication event of ISG15 in the ancestor of the Sciaenidae, with a signature of positive selection was found in the ISG15-2 gene copy of sciaenid fishes. The Real-time PCR analyses showed that the LcISG15-1 and LcISG15-2 were both found to be ubiquitously expressed in ten examined organs in large yellow croaker, with predominant expressions both in peripheral blood. Expression analyses showed that both the LcISG15-1 and LcISG15-2 were rapidly and significantly upregulated in vivo after poly (I:C) challenge in liver and spleen organs. However, the LcISG15-1 and LcISG15-2 were both significantly induced after pathogen Vibrio parahemolyticus infection only in the liver but not in the spleen. These results indicated that there are two ISG15 homologues in the large yellow croaker, both of which are likely to be involved in host immune defense against viral and bacterial infection.
Collapse
Affiliation(s)
- Bin Shen
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316004, China.
| | - Ke Wei
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316004, China
| | - Shaoyu Guo
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316004, China
| | - Cheng Liu
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316004, China
| | - Jianshe Zhang
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316004, China.
| |
Collapse
|
14
|
Zhou Z, Wei K, Zhang J. The two TRIM25 isoforms were differentially induced in Larimichthys crocea post poly (I:C) stimulation. FISH & SHELLFISH IMMUNOLOGY 2019; 86:672-679. [PMID: 30529437 DOI: 10.1016/j.fsi.2018.12.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/30/2018] [Accepted: 12/07/2018] [Indexed: 06/09/2023]
Abstract
In this study, we identified and characterized a tripartite motif containing 25 (TRIM25) gene homologue, LcTRIM25, from large yellow croaker (Larimichthys crocea). Two isoforms of LcTRIM25, which were generated via alternative splicing, were identified via a molecular analysis of cDNA clones. The long isoform of LcTRIM25 (termed as LcTRIM25-L) contained the full open reading frame of the gene, encoded a protein of 698 amino acid residues, and possessed 11 exons. The short isoform of LcTRIM25 (termed as LcTRIM25-S) contained 9 exons and encoded a protein of 665 amino acid residues. The two LcTRIM25 isoforms contained a conserved Really Interesting New Gene (RING) domain, a B-box2 domain, a Coiled-coil domain (CCD), and variable C-terminal PRY/SPRY domains. Phylogenetic analysis showed that the two LcTRIM25 isoforms of the large yellow croaker was clustered together with their counterparts from other teleost fish. The Real-time PCR analysis showed that the LcTRIM25-L and LcTRIM25-S isoforms were both ubiquitously expressed in nine examined tissues in the large yellow croaker, with predominant expressions in the liver. The expression levels of the two isoforms of LcTRIM25 were rapidly and significantly upregulated in vivo after poly (I:C) stimulation in peripheral blood, head kidney, spleen and liver. Moreover, LcTRIM25-L and LcTRIM25-S showed differential expression post poly(I:C) stimulation. LcTRIM25 may have a dual role in innate immunity via alternative gene splicing. These results indicated that LcTRIM25 is likely to be involved in antiviral immune responses.
Collapse
Affiliation(s)
- Zhenzhen Zhou
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine science, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Ke Wei
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine science, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Jianshe Zhang
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine science, Zhejiang Ocean University, Zhoushan, 316022, China.
| |
Collapse
|
15
|
An improved genome assembly for Larimichthys crocea reveals hepcidin gene expansion with diversified regulation and function. Commun Biol 2018; 1:195. [PMID: 30480097 PMCID: PMC6240063 DOI: 10.1038/s42003-018-0207-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/25/2018] [Indexed: 12/11/2022] Open
Abstract
Larimichthys crocea (large yellow croaker) is a type of perciform fish well known for its peculiar physiological properties and economic value. Here, we constructed an improved version of the L. crocea genome assembly, which contained 26,100 protein-coding genes. Twenty-four pseudo-chromosomes of L. crocea were also reconstructed, comprising 90% of the genome assembly. This improved assembly revealed several expansions in gene families associated with olfactory detection, detoxification, and innate immunity. Specifically, six hepcidin genes (LcHamps) were identified in L. crocea, possibly resulting from lineage-specific gene duplication. All LcHamps possessed similar genomic structures and functional domains, but varied substantially with respect to expression pattern, transcriptional regulation, and biological function. LcHamp1 was associated specifically with iron metabolism, while LcHamp2s were functionally diverse, involving in antibacterial activity, antiviral activity, and regulation of intracellular iron metabolism. This functional diversity among gene copies may have allowed L. crocea to adapt to diverse environmental conditions.
Collapse
|
16
|
Zhang J, Liu C, Zhao S, Guo S, Shen B. Molecular characterization and expression analyses of the Viperin gene in Larimichthys crocea (Family: Sciaenidae). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 79:59-66. [PMID: 29066399 DOI: 10.1016/j.dci.2017.10.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/20/2017] [Accepted: 10/20/2017] [Indexed: 06/07/2023]
Abstract
In this study, we sequenced and characterized an interferon-stimulated gene Viperin homologue, LcViperin, from large yellow croaker (Larimichthys crocea). The LcViperin encodes 354 amino acids and contains an N-terminal amphipathic α-helix domain, a radical S-adenosyl-l-methionine (SAM) domain and a highly conserved C-terminal domain. The analyses of LcViperin promoter region revealed nine kinds of putative transcriptional factor binding sites, including five putative ICSBP (IRF-8) binding sites and one putative IRF-1 binding site, indicating that the expression of LcViperin might be induced by the type I IFN response. Phylogenetic analyses based on amino acid sequences showed that the Viperin of large yellow croaker is clustered together with its counterparts from other teleost fishes. The Real-time PCR analyses showed that the LcViperin was found to be ubiquitously expressed in ten examined tissues in large yellow croaker, with predominant expression in peripheral blood, followed by heart and gill. Expression analyses showed that the LcViperin was rapidly and significantly upregulated in vivo after poly (I:C) challenge in peripheral blood, head kidney, spleen and liver tissues. The results indicate that the LcViperin might play a pivotal role in antiviral immune responses.
Collapse
Affiliation(s)
- Jianshe Zhang
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science, Zhejiang Ocean University, Zhoushan 316004, China
| | - Cheng Liu
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science, Zhejiang Ocean University, Zhoushan 316004, China
| | - Shujiang Zhao
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science, Zhejiang Ocean University, Zhoushan 316004, China
| | - Shaoyu Guo
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science, Zhejiang Ocean University, Zhoushan 316004, China
| | - Bin Shen
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science, Zhejiang Ocean University, Zhoushan 316004, China.
| |
Collapse
|
17
|
Yue X, Huan P, Hu Y, Liu B. Integrated transcriptomic and proteomic analyses reveal potential mechanisms linking thermal stress and depressed disease resistance in the turbot Scophthalmus maximus. Sci Rep 2018; 8:1896. [PMID: 29382883 PMCID: PMC5790011 DOI: 10.1038/s41598-018-20065-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 01/12/2018] [Indexed: 02/07/2023] Open
Abstract
A worldwide increase in the reports of diseases affecting marine organisms has paralleled the climate warming over the past few decades. In this study, we applied omics to explore the mechanisms underlying thermo-linked epizootics, by comparing both the transcriptome- and proteome-wide response of turbots to a mimic pathogen (poly I:C) between high temperature and low temperature using a time-course approach. Our results showed that myeloperoxidase (MPO) and insulin were differentially expressed transcripts shared by all five time-points post poly I:C-injection between high and low temperature and also had a consistent expression trend as differentially expressed proteins at 24 h post injection. Combined with other data, it was suggested that the elevated temperature enhanced neutrophil-mediated immunity and the resultant MPO-mediated oxidative stress, which lasted for at least 5 days. The contents of malondialdehyde and protein carbonyls, markers of oxidative damage for lipids and proteins, respectively, were compared between different temperature groups, and the results further implied the emergence of oxidative damage under high temperature. It was also suggested that metabolism disorder likely occur considering the sustained expression changes of insulin. Hence, prolonged MPO-mediated oxidative stress and metabolic disorder might be involved in the thermo-linked epizootic.
Collapse
Affiliation(s)
- Xin Yue
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
| | - Pin Huan
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
| | - Yonghua Hu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
| | - Baozhong Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China. .,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, 266000, China.
| |
Collapse
|
18
|
Di G, Li H, Zhang C, Zhao Y, Zhou C, Naeem S, Li L, Kong X. Label-free proteomic analysis of intestinal mucosa proteins in common carp (Cyprinus carpio) infected with Aeromonas hydrophila. FISH & SHELLFISH IMMUNOLOGY 2017; 66:11-25. [PMID: 28476666 DOI: 10.1016/j.fsi.2017.04.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 04/27/2017] [Accepted: 04/30/2017] [Indexed: 06/07/2023]
Abstract
Outbreaks of infectious diseases in common carp Cyprinus carpio, a major cultured fish in northern regions of China, constantly result in significant economic losses. Until now, information proteomic on immune defence remains limited. In the present study, a profile of intestinal mucosa immune response in Cyprinus carpio was investigated after 0, 12, 36 and 84 h after challenging tissues with Aeromonas hydrophila at a concentration of 1.4 × 108 CFU/mL. Proteomic profiles in different samples were compared using label-free quantitative proteomic approach. Based on MASCOT database search, 1149 proteins were identified in samples after normalisation of proteins. Treated groups 1 (T1) and 2 (T2) were first clustered together and then clustered with control (C group). The distance between C and treated group 3 (T3) represented the maxima according to hierarchical cluster analysis. Therefore, comparative analysis between C and T3 was selected in the following analysis. A total of 115 proteins with differential abundance were detected to show conspicuous expressing variances. A total of 52 up-regulated proteins and 63 down-regulated proteins were detected in T3. Gene ontology analysis showed that identified up-regulated differentially expressed proteins in T3 were mainly localised in the hemoglobin complex, and down-regulated proteins in T3 were mainly localised in the major histocompatibility complex II protein complex. Forty-six proteins of differential abundance (40% of 115) were involved in immune response, with 17 up-regulated and 29 down-regulated proteins detected in T3. This study is the first to report proteome response of carp intestinal mucosa against A. hydrophila infection; information obtained contribute to understanding defence mechanisms of carp intestinal mucosa.
Collapse
Affiliation(s)
- Guilan Di
- College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Hui Li
- College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Chao Zhang
- College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Yanjing Zhao
- College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Chuanjiang Zhou
- College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Sajid Naeem
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Li Li
- College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Xianghui Kong
- College of Fisheries, Henan Normal University, Xinxiang, 453007, China.
| |
Collapse
|
19
|
Han F, Song Q, Zhang Y, Wang X, Wang Z. Molecular characterization and immune responses of Rab5 in large yellow croaker ( Larimichthys crocea ). AQUACULTURE AND FISHERIES 2017. [DOI: 10.1016/j.aaf.2017.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
20
|
Chen FF, Lin HB, Li JC, Wang Y, Li J, Zhang DG, Yu WY. Grass carp (Ctenopharyngodon idellus) invariant chain of the MHC class II chaperone protein associates with the class I molecule. FISH & SHELLFISH IMMUNOLOGY 2017; 63:1-8. [PMID: 28119143 DOI: 10.1016/j.fsi.2017.01.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/22/2016] [Accepted: 01/20/2017] [Indexed: 06/06/2023]
Abstract
The invariant chain (Ii) is an important immune molecule, as it assists major histocompatibility complex (MHC) class II molecules to present antigenic peptides. The relationship between the Ii and MHC molecules in teleosts remains poorly understood. This study focused on the molecular structure of grass carp Ii (gIi), its organ distribution, correlations with gene transcription, and the association with MHC. gIi cDNA was cloned using designed degenerate primers and the rapid amplification of cDNA ends method (RACE). The gIi sequence was 92%-96% similar to that of other teleosts, but only 52%-67% similar to that of mammals, respectively. The gIi gene was distributed in all 12 organs examined by PCR. The gIi gene transcription levels were markedly higher in organs enriched with immune cells than in other organs (P < 0.01). Moreover, positive correlations were detected between transcription levels of the gIi and gMhcI or II genes in different organs (r = 8.415-8.523, P = 0.001). The gIi co-localized on endomembrane systems with either class I or II molecules in co-transfected cells observed by a laser confocal. Further testing confirmed that the gIi bound gMHCI and II molecules. Taken together, these results indicate that the gIi is associated with MHC class I and II molecules, suggesting homology of both MHC molecules.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigens, Differentiation, B-Lymphocyte/chemistry
- Antigens, Differentiation, B-Lymphocyte/genetics
- Antigens, Differentiation, B-Lymphocyte/metabolism
- Base Sequence
- Carps/genetics
- Carps/metabolism
- Cloning, Molecular
- DNA, Complementary/genetics
- DNA, Complementary/metabolism
- Female
- Fish Proteins/chemistry
- Fish Proteins/genetics
- Fish Proteins/metabolism
- Histocompatibility Antigens Class II/chemistry
- Histocompatibility Antigens Class II/genetics
- Histocompatibility Antigens Class II/metabolism
- Male
- Molecular Chaperones/chemistry
- Molecular Chaperones/genetics
- Molecular Chaperones/metabolism
- Organ Specificity
- Phylogeny
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sequence Alignment/veterinary
Collapse
Affiliation(s)
- Fang-Fang Chen
- Key Laboratory of Zoonoses of Anhui Province, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Hai-Bin Lin
- Key Laboratory of Zoonoses of Anhui Province, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Jin-Chun Li
- Key Laboratory of Zoonoses of Anhui Province, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Yong Wang
- Key Laboratory of Zoonoses of Anhui Province, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Juan Li
- Key Laboratory of Zoonoses of Anhui Province, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Da-Gan Zhang
- Key Laboratory of Zoonoses of Anhui Province, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Wei-Yi Yu
- Key Laboratory of Zoonoses of Anhui Province, Anhui Agricultural University, Hefei, Anhui, 230036, China.
| |
Collapse
|
21
|
Shen B, Hu Y, Zhang S, Zheng J, Zeng L, Zhang J, Zhu A, Wu C. Molecular characterization and expression analyses of three RIG-I-like receptor signaling pathway genes (MDA5, LGP2 and MAVS) in Larimichthys crocea. FISH & SHELLFISH IMMUNOLOGY 2016; 55:535-549. [PMID: 27346150 DOI: 10.1016/j.fsi.2016.06.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 06/12/2016] [Accepted: 06/22/2016] [Indexed: 06/06/2023]
Abstract
In this study, we sequenced and characterized melanoma differentiation-associated antigen 5 (LcMDA5), laboratory of genetics and physiology 2 (LcLGP2) and mitochondrial antiviral signaling protein (LcMAVS) from large yellow croaker (Larimichthys crocea). The LcMDA5 encodes 969 amino acids and contains two caspase-associated and recruitment domains (CARDs), a DExDc (DExD/H box-containing domain), a HELICc (helicase superfamily C-terminal domain) and a C-terminal regulatory domain (RD). The LcLGP2 encodes 679 amino acids and contains a DExDc, a HELICc and a RD. The LcMAVS encodes 512 amino acids and contains a CARD, a proline-rich domain, a transmembrane helix domain and a putative TRAF2-binding motif ((269)PVQDT(273)). Phylogenetic analyses showed that all the three genes of large yellow croaker are clustered together with their counterparts from other teleost fishes. The Real-time PCR analyses showed that all the three genes were found to be constitutively expressed in all examined tissues in large yellow croaker, but all with relatively low expression levels. Expression analyses showed that the three genes were all rapidly and significantly upregulated in vivo after poly (I:C) challenge in peripheral blood, liver, spleen and head kidney tissues. The results indicate that the LcMDA5, LcLGP2 and LcMAVS might play important roles in antiviral immune responses.
Collapse
Affiliation(s)
- Bin Shen
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science, Zhejiang Ocean University, Zhoushan 316004, China
| | - Yiwen Hu
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science, Zhejiang Ocean University, Zhoushan 316004, China
| | - Shuyi Zhang
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science, Zhejiang Ocean University, Zhoushan 316004, China
| | - Jialang Zheng
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science, Zhejiang Ocean University, Zhoushan 316004, China
| | - Lin Zeng
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science, Zhejiang Ocean University, Zhoushan 316004, China
| | - Jianshe Zhang
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science, Zhejiang Ocean University, Zhoushan 316004, China
| | - Aiyi Zhu
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science, Zhejiang Ocean University, Zhoushan 316004, China
| | - Changwen Wu
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science, Zhejiang Ocean University, Zhoushan 316004, China.
| |
Collapse
|
22
|
Han F, Zhang Y, Zhang D, Liu L, Tsai HJ, Wang Z. The Rab5A gene of marine fish, large yellow croaker (Larimichthys crocea), and its response to the infection of Cryptocaryon irritans. FISH & SHELLFISH IMMUNOLOGY 2016; 54:364-373. [PMID: 27108380 DOI: 10.1016/j.fsi.2016.04.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 04/12/2016] [Accepted: 04/19/2016] [Indexed: 06/05/2023]
Abstract
Rab GTPases, members of the Ras superfamily, encode monomeric G-proteins. Rab proteins regulate key steps in membrane traffic transport and endocytic pathway of host immune responses. Rab5A is involved in immune regulation, particularly in T cell migration and macrophage endocytosis in higher vertebrates. However, little is known of the molecular structure of Rab5A gene in marine teleost fish species and its expression profile during the parasite infection. In this study, the full-length cDNA sequence and genomic structure of Rab5A gene of the large yellow croaker (Larimichthys crocea) (LycRab5A), one of the most economical marine fishes, were identified and characterized. The LycRab5A protein, containing the ATPase/GTPase binding motifs and the effector molecules binding motifs, was highly homologous to that of other animals. The expression plasmid containing LycRab5A cDNA fused with GST was engineered and transformed into Escherichia coli to produce recombinant protein GST-LycRab5A, which was purified to prepare a polyclonal antibody specifically against LycRab5A. Subcellular localization revealed that LycRab5A expressed in the membrane and cytoplasm. Based on real-time PCR and Western blot analysis, we found that both mRNA and protein of LycRab5A were expressed in all tissues we examined; especially it was highly expressed in blood and gill. Interestingly, both mRNA and protein of LycRab5A were substantially up-regulated when parasitic ciliate protozoan (Cryptocaryon irritans) was infected. The expression of LycRab5A was reached to the maximal level at 24 h after infection. The line of evidence suggested that LycRab5A might play an important role in large yellow croaker defense against parasite infection. Moreover, on the basis of protein interaction, it was found that the LycRab5A interacted with myosin light chain (designated as LycMLC), a crucial protein in the process of phagocytosis. This discovery might contribute better understanding to the molecular events involved in fish immune responses.
Collapse
Affiliation(s)
- Fang Han
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, PR China
| | - Yu Zhang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, PR China
| | - Dongling Zhang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, PR China
| | - Lanping Liu
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, PR China
| | - Huai Jen Tsai
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan; Graduate Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan
| | - Zhiyong Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, PR China.
| |
Collapse
|
23
|
Jiang L, Liu W, Zhu A, Zhang J, Zhou J, Wu C. Transcriptome analysis demonstrate widespread differential expression of long noncoding RNAs involve in Larimichthys crocea immune response. FISH & SHELLFISH IMMUNOLOGY 2016; 51:1-8. [PMID: 26892794 DOI: 10.1016/j.fsi.2016.02.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 01/19/2016] [Accepted: 02/03/2016] [Indexed: 06/05/2023]
Abstract
Long noncoding RNAs (lncRNAs) are a class of transcripts that longer than 200 bp and do not encode proteins. Recent genome-wide studies of vertebrate transcriptomes have annotated lncRNAs that are expressed in various tissues and development stages. The draft genome and several transcriptome sequencing data sets have been collected for the study of protein-coding genes in large yellow croaker (Larimichthys crocea), but little is known about the expression and functional roles of lncRNAs in this species. In order to obtain a catalog of lncRNAs for large yellow croaker, several RNA-seq datasets were integrated from various tissues including egg, muscle, liver, and spleen. A total of 48,953 high-confidence transcripts were reconstructed in 38,017 loci, recovering the most of expressed reference transcripts while thousands of novel expressed loci have been identified. The tissue expression profile revealed that most lncRNAs were specifically enriched in different tissues. A stringent set of 210 lncRNAs were identified as being specifically expressed in spleen and potentially involved in immune response. Our study first systematically identify lncRNAs in large yellow croaker, benefiting the future genomic study of this species.
Collapse
Affiliation(s)
- Lihua Jiang
- National Engineering Research Center of Maricultural Facilities of China, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, China
| | - Wei Liu
- National Engineering Research Center of Maricultural Facilities of China, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, China
| | - Aiyi Zhu
- National Engineering Research Center of Maricultural Facilities of China, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, China
| | - Jianshe Zhang
- National Engineering Research Center of Maricultural Facilities of China, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, China
| | | | - Changwen Wu
- National Engineering Research Center of Maricultural Facilities of China, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, China.
| |
Collapse
|
24
|
Wang P, Wang J, Su YQ, Mao Y, Zhang JS, Wu CW, Ke QZ, Han KH, Zheng WQ, Xu ND. Transcriptome analysis of the Larimichthys crocea liver in response to Cryptocaryon irritans. FISH & SHELLFISH IMMUNOLOGY 2016; 48:1-11. [PMID: 26578248 DOI: 10.1016/j.fsi.2015.11.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 11/02/2015] [Accepted: 11/05/2015] [Indexed: 05/28/2023]
Abstract
The large yellow croaker (Larimichthys crocea) is an economically important marine fish cultured in China and East Asian countries and is facing a serious threat from Cryptocaryon irritans, which is a protozoan ectoparasite that infects most reared marine fish species. To understand the molecular immune mechanisms underlying the response to C. irritans, we first performed a comparative gene transcription analysis using livers from C. irritans-immunized L. croceas and from a control group through RNA-Seq technology. After the removal of low-quality sequences and assembly, 51360 contigs were obtained, with an average length of 1066.93 bp. Further, a blast analysis indicates that 30747 contigs can be annotated based on homology with matches in the NT, NR, gene, and string databases. A gene ontology analysis was used to classify 21598 genes according to three major functional categories: molecular function, cellular component, and biological process. Moreover, 14470 genes were found in 303 KEGG pathways. We used RSEM and EdgeR to determine that 3841 genes were significantly differentially expressed (FDR < 0.001), including 2129 up-regulated genes and 1712 down-regulated genes. A significant enrichment analysis of these differentially expressed genes and isogenes revealed major immune-related pathways, including the toll-like receptor, complement and coagulation cascades, and chemokine signaling pathways. In addition, 28748 potential simple sequence repeats (SSRs) were detected from 12776 transcripts, and 62992 candidate single nucleotide polymorphisms (SNPs) were identified in the L. croceas liver transcriptome. This study characterized a gene expression pattern for normal and C. irritans-immunized L. croceas for the first time and not only sheds new light on the molecular mechanisms underlying the host-C. irritans interaction but also facilitates future studies on L. croceas gene expression and functional genomics.
Collapse
Affiliation(s)
- Panpan Wang
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China
| | - Jun Wang
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China
| | - Yong-Quan Su
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China
| | - Yong Mao
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China.
| | | | - Chang-Wen Wu
- Zhejiang Ocean University, Zhoushan, 316022, China
| | - Qiao-Zhen Ke
- Ningde Fufa Fisheries Co., LTD, Ningde, 352002, China
| | - Kun-Huang Han
- Ningde Fufa Fisheries Co., LTD, Ningde, 352002, China
| | | | - Nen-di Xu
- Ningde Fufa Fisheries Co., LTD, Ningde, 352002, China
| |
Collapse
|
25
|
Molecular Characterization and Biological Effects of a C-Type Lectin-Like Receptor in Large Yellow Croaker (Larimichthys crocea). Int J Mol Sci 2015; 16:29631-42. [PMID: 26690423 PMCID: PMC4691118 DOI: 10.3390/ijms161226175] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 11/28/2015] [Accepted: 12/01/2015] [Indexed: 01/10/2023] Open
Abstract
The C-type lectin-like receptors (CTLRs) play important roles in innate immunity as one type of pattern recognition receptors. Here, we cloned and characterized a C-type lectin-like receptor (LycCTLR) from large yellow croaker Larimichthys crocea. The full-length cDNA of LycCTLR is 880 nucleotides long, encoding a protein of 215 amino acids. The deduced LycCTLR contains a C-terminal C-type lectin-like domain (CTLD), an N-terminal cytoplasmic tail, and a transmembrane region. The CTLD of LycCTLR possesses six highly conserved cysteine residues (C1–C6), a conserved WI/MGL motif, and two sugar binding motifs, EPD (Glu-Pro-Asp) and WYD (Trp-Tyr-Asp). Ca2+ binding site 1 and 2 were also found in the CTLD. The LycCTLR gene consists of five exons and four introns, showing the same genomic organization as tilapia (Oreochromis niloticus) and guppy (Poecilia retitculata) CTLRs. LycCTLR was constitutively expressed in various tissues tested, and its transcripts significantly increased in the head kidney and spleen after stimulation with inactivated trivalent bacterial vaccine. Recombinant LycCTLR (rLycCTLR) protein produced in Escherichia coli BL21 exhibited not only the hemagglutinating activity and a preference for galactose, but also the agglutinating activity against two food-borne pathogenic bacteria E. coli and Bacillus cereus in a Ca2+-dependent manner. These results indicate that LycCTLR is a potential galactose-binding C-type lectin that may play a role in the antibacterial immunity in fish.
Collapse
|
26
|
Construction of the High-Density Genetic Linkage Map and Chromosome Map of Large Yellow Croaker (Larimichthys crocea). Int J Mol Sci 2015; 16:26237-48. [PMID: 26540048 PMCID: PMC4661810 DOI: 10.3390/ijms161125951] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 10/24/2015] [Accepted: 10/26/2015] [Indexed: 01/13/2023] Open
Abstract
High-density genetic maps are essential for genome assembly, comparative genomic analysis and fine mapping of complex traits. In this study, 31,191 single nucleotide polymorphisms (SNPs) evenly distributed across the large yellow croaker (Larimichthys crocea) genome were identified using restriction-site associated DNA sequencing (RAD-seq). Among them, 10,150 high-confidence SNPs were assigned to 24 consensus linkage groups (LGs). The total length of the genetic linkage map was 5451.3 cM with an average distance of 0.54 cM between loci. This represents the densest genetic map currently reported for large yellow croaker. Using 2889 SNPs to target specific scaffolds, we assigned 533 scaffolds, comprising 421.44 Mb (62.04%) of the large yellow croaker assembled sequence, to the 24 linkage groups. The mapped assembly scaffolds in large yellow croaker were used for genome synteny analyses against the stickleback (Gasterosteus aculeatus) and medaka (Oryzias latipes). Greater synteny was observed between large yellow croaker and stickleback. This supports the hypothesis that large yellow croaker is more closely related to stickleback than to medaka. Moreover, 1274 immunity-related genes and 195 hypoxia-related genes were mapped to the 24 chromosomes of large yellow croaker. The integration of the high-resolution genetic map and the assembled sequence provides a valuable resource for fine mapping and positional cloning of quantitative trait loci associated with economically important traits in large yellow croaker.
Collapse
|
27
|
Yin F, Gong H, Ke Q, Li A. Stress, antioxidant defence and mucosal immune responses of the large yellow croaker Pseudosciaena crocea challenged with Cryptocaryon irritans. FISH & SHELLFISH IMMUNOLOGY 2015; 47:344-351. [PMID: 26370540 DOI: 10.1016/j.fsi.2015.09.013] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 09/02/2015] [Accepted: 09/05/2015] [Indexed: 06/05/2023]
Abstract
To clarify the effects of a Cryptocaryon irritans infection on the stress, antioxidant and mucosal immune response of the large yellow croaker Pseudosciaena crocea, this study utilized C. irritans at dose of 12,000 (group I); 24,000 (group II); and 36,000 (group III) theronts/fish to infect large yellow croaker weighing 100 ± 10 g. The food intake, survival and relative infection intensity (RII); levels of reactive oxygen species (ROS), malondialdehyde (MDA) and vitamin C (VC), activities of super oxide dismutase (SOD) and catalase (CAT) in liver; variation patterns of lysozyme (LZM), alkaline phosphatase (AKP), complement component 3 (C3) and immunoglobulin M (IgM) levels in the body surface mucus at different time points after infection were compared. These results showed that with the increase of the infection dose and the passage of time, the food intake and survival of the fish gradually decreased. The final survival of the control group (0 theronts/fish), group I, group II, and group III was 100, 100, 96.67 ± 5.77, and 48.33 ± 7.64. Group I, II, and III stopped feeding respectively on the third, third and second days after infection. RII increased significantly with increased infection dose. The RII of the control group, group I, group II, and group III was 0, 0.73 ± 0.06, 1.30 ± 0.26, and 1.84 ± 0.02. With the infection dose increased, ROS contents showed an overall upward trend; MDA contents of the group I, group II and group III did not show significant changes at any timepoint compared with the control group; Activities of SOD and CAT and the overall VC levels in the liver of P. crocea dropped; LZM activity showed an overall upward trend; AKP activity increased first then dropped at each timepoint with its highest level appearing at group II; Complement C3 and IgM levels in body surface mucus were significantly increased. In conclusion, P. crocea has a strong ability to resist oxidative stress caused by the infection of C. irritans. The body surface mucus of P. crocea contains high levels of immune factors, which presented a rapid and significant response to the infection of C. irritans.
Collapse
Affiliation(s)
- Fei Yin
- Key Laboratory of East China Sea and Oceanic Fishery Resources Exploitation, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, PR China.
| | - Hui Gong
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian Province 350003, PR China
| | - Qiaozhen Ke
- Key Laboratory of Large Yellow Croaker in Fujian Province, Ningde Fufa Fisheries Co., Ltd., Ningde, Fujian Province 352000, PR China
| | - Anxing Li
- Key Laboratory for Aquatic Products Safety of Ministry of Education, State Key Laboratory of Biocontrol, The School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong Province 510275, PR China.
| |
Collapse
|
28
|
Katzenback BA. Antimicrobial Peptides as Mediators of Innate Immunity in Teleosts. BIOLOGY 2015; 4:607-39. [PMID: 26426065 PMCID: PMC4690011 DOI: 10.3390/biology4040607] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 09/16/2015] [Accepted: 09/17/2015] [Indexed: 12/16/2022]
Abstract
Antimicrobial peptides (AMPs) have been identified throughout the metazoa suggesting their evolutionarily conserved nature and their presence in teleosts is no exception. AMPs are short (18–46 amino acids), usually cationic, amphipathic peptides. While AMPs are diverse in amino acid sequence, with no two AMPs being identical, they collectively appear to have conserved functions in the innate immunity of animals towards the pathogens they encounter in their environment. Fish AMPs are upregulated in response to pathogens and appear to have direct broad-spectrum antimicrobial activity towards both human and fish pathogens. However, an emerging role for AMPs as immunomodulatory molecules has become apparent—the ability of AMPs to activate the innate immune system sheds light onto the multifaceted capacity of these small peptides to combat pathogens through direct and indirect means. Herein, this review focuses on the role of teleost AMPs as modulators of the innate immune system and their regulation in response to pathogens or other exogenous molecules. The capacity to regulate AMP expression by exogenous factors may prove useful in modulating AMP expression in fish to prevent disease, particularly in aquaculture settings where crowded conditions and environmental stress pre-dispose these fish to infection.
Collapse
Affiliation(s)
- Barbara A Katzenback
- Department of Biology, University of Waterloo, 200 University Ave West, Waterloo, ON N2L 3G1, Canada.
| |
Collapse
|
29
|
Jiang Y, Han K, Chen S, Hong W, Wang Y, Zhang Z. Molecular cloning, characterization and expression of Lc-Sox11a in large yellow croaker Larimichthys crocea. Gene 2015; 574:287-301. [PMID: 26275936 DOI: 10.1016/j.gene.2015.08.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 08/08/2015] [Accepted: 08/09/2015] [Indexed: 12/30/2022]
Abstract
Sox genes play important roles in various developmental processes such as sex determination, embryogenesis, oogenesis, neurogenesis, and larval development. In order to clarify the roles of Sox genes in the developmental process of large yellow croaker, the full-length cDNA of the Sox11a gene (Lc-Sox11a) was cloned for the first time. Bioinformatics analysis indicated that Lc-Sox11a contains a protein of 366 amino acids with a Ser-rich region, a C-terminal conserved region, and a high mobility group box. The expression of Lc-Sox11a in different tissues of both sexes and in different developmental embryonic stages revealed that Lc-Sox11a were expressed with tissue and gender specificity, of which the expression level in female was ovary>brain>eye>gill; in male was brain>testis>gill. The gender differences occurred in the brain and eye with the male brain>female brain, female eye>male eye. Moreover, the expression of Lc-Sox11a in the gonad and brain at different growth stages was detected. Significant up-regulated expression of Lc-Sox11a was found in the ovary and the male brain at 1000dph (days post hatching) compared with 270dph and 635dph. However, significant down-regulated expression of Lc-Sox11a occurred in the testis with growth. Besides, the expression of Lc-Sox11a in the female brain showed a trend of first rising then falling, with the highest peak in 635dph. The results of in situ hybridization displayed that Lc-Sox11a was widely distributed only in cytoplasm of oocytes at each stage in oogenesis. In early stage of oocytes, Lc-Sox11a was expressed weakly and evenly. As the appearance of vacuoles and synthesis of yolks, positive signals of Lc-Sox11a distributed intensively in the residual cytoplasm. In spermatogenesis, Lc-Sox11a was distributed in cytoplasm of all male germ cells except spermatozoon with spermatogonium>spermatocyte>spermatid. During embryogenesis, Lc-Sox11a was expressed in most embryonic stages, the highest expression occurred in the formation-of-eye-lens stage, closely followed by the closure-of-blastopore stage, then the beginning-of-heart-pulsation stage. The results of whole mount in situ hybridization showed that the expression of Lc-Sox11a began to increase beginning with the multiple-cell stage, with the major distribution of Lc-Sox11a in the brain and eye areas in the pre-hatching stage.
Collapse
Affiliation(s)
- Yonghua Jiang
- College of Ocean & Earth Science, Xiamen University, Xiamen 361005, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, China
| | - Kunhuang Han
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Large Yellow Croaker, Ningde Fufa Fisheries Company Limited, Ningde 352103, China
| | - Shihai Chen
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, China
| | - Wanshu Hong
- College of Ocean & Earth Science, Xiamen University, Xiamen 361005, China
| | - Yilei Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, China.
| | - Ziping Zhang
- Department of Natural Sciences and Mathematics, State University of New York at Cobleskill, NY 12043, United States
| |
Collapse
|
30
|
Thanasaksiri K, Hirono I, Kondo H. Temperature-dependent regulation of gene expression in poly (I:C)-treated Japanese flounder, Paralichthys olivaceus. FISH & SHELLFISH IMMUNOLOGY 2015; 45:835-840. [PMID: 26052011 DOI: 10.1016/j.fsi.2015.05.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 05/21/2015] [Accepted: 05/28/2015] [Indexed: 06/04/2023]
Abstract
Gene expression profiling of poly (I:C)-treated Japanese flounder, Paralichthys olivaceus, under different temperatures was investigated using microarray analysis. The response was analyzed in spleen tissue at 3 and 24 h post injection (hpi) at 15 °C and 25 °C. A large number of genes in fish treated with poly (I:C) at 25 °C were expressed at 3 hpi, whereas the expression profiles at 24 hpi appeared to be similar to those of the controls. Cluster analysis of the different expression profiles showed three distinct groups of up-regulated genes in fish reared at 15 °C. These were early (3 hpi), early-to-late (3 and 24 hpi), and late (24 hpi) up-regulated genes. These genes included type I IFN-related genes and inflammatory genes. Among the up-regulated genes, most of the type I IFN-related genes played early-to-late- and late-responding genes at 15 °C but early-responding genes at 25 °C. Thus, several up-regulated genes in these groups from the microarray result were further verified by qPCR. These results indicate that the type I IFN gene expressions of P. olivaceus treated with poly (I:C) can be regulated in a temperature-dependent manner.
Collapse
Affiliation(s)
- Kittipong Thanasaksiri
- Laboratory of Genome Science, Graduate School of Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo 108-8477, Japan
| | - Ikuo Hirono
- Laboratory of Genome Science, Graduate School of Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo 108-8477, Japan
| | - Hidehiro Kondo
- Laboratory of Genome Science, Graduate School of Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo 108-8477, Japan.
| |
Collapse
|
31
|
Xu WJ, Qin ZD, Shi H, Jiang N, Zhou Y, Liu XL, Xie JJ, Wang GS, Wang WM, Asim M, Zeng LB, Lin L. Mass mortality associated with a viral-induced anaemia in cage-reared large yellow croaker, Larimichthys crocea (Richardson). JOURNAL OF FISH DISEASES 2015; 38:499-502. [PMID: 24910090 DOI: 10.1111/jfd.12270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 05/05/2014] [Accepted: 05/07/2014] [Indexed: 06/03/2023]
Affiliation(s)
- W J Xu
- Marine Fisheries Research Institute of Zhejiang Province, Zhoushan, Zhejiang, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Wang H, Qi P, Guo B, Li J, He J, Wu C, Gul Y. Molecular characterization and expression analysis of a complement component C3 in large yellow croaker (Larimichthys crocea). FISH & SHELLFISH IMMUNOLOGY 2015; 42:272-279. [PMID: 25463300 DOI: 10.1016/j.fsi.2014.11.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 11/04/2014] [Accepted: 11/07/2014] [Indexed: 06/04/2023]
Abstract
The complement system has been discovered in invertebrates and vertebrates, and plays a crucial role in the innate defense against common pathogens. Complement component 3 is a key molecule in the complement system, whose activation is essential for all the important functions performed by this system. In this study, the complete C3 cDNA sequence was isolated from the large yellow croaker (Larimichthys crocea), which was high similarity to other complement C3. We reported the primary sequence, tissue expression profile, polypeptide domain architecture and phylogenetic analysis of L. crocea complement component C3 (L.c-C3) gene. Its open reading frame (ORF) is 4962 bp and encodes for 1653 amino acids with a putative signal peptide of 23 amino acid residues. The deduced amino acid sequence showed that L.c-C3 has conserved residues and domains known to be crucial for C3 function. Phylogenetic analysis showed that L. crocea was closely related to Miichthys miiuy. The mRNA expressions of L.c-C3 was detectable at different tissues. L.c-C3 was expressed in a wide range of adult tissues, it showed highest expression in the liver. But the different developmental stages from fertilized egg to newborn larvae of the large yellow croaker the highest expression levels of L.c-C3 gene were not found. Bacterial challenge experiments showed that the levels of L.c-C3 mRNA expression were up-regulated in the liver, spleen and brain of adult large yellow croaker respectively. The results showed that L.c-C3 mRNA expression in the large yellow croaker is influenced by bacterial stress and L.c-C3 might play an important role in immunity mechanisms. This study will further increase our understanding of the function of L.c-C3 and molecular mechanism of innate immunity in teleosts.
Collapse
Affiliation(s)
- Hailing Wang
- National Engineering Research Center of Maricultural Facilities of China, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316004, PR China
| | - Pengzhi Qi
- National Engineering Research Center of Maricultural Facilities of China, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316004, PR China
| | - Baoying Guo
- National Engineering Research Center of Maricultural Facilities of China, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316004, PR China.
| | - Jiji Li
- National Engineering Research Center of Maricultural Facilities of China, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316004, PR China
| | - Jianyu He
- National Engineering Research Center of Maricultural Facilities of China, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316004, PR China
| | - Changwen Wu
- National Engineering Research Center of Maricultural Facilities of China, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316004, PR China.
| | - Yasmeen Gul
- Department of Zoology and Fisheries, University of Agriculture Faisalabad, 38040, Pakistan
| |
Collapse
|
33
|
Wu C, Zhang D, Kan M, Lv Z, Zhu A, Su Y, Zhou D, Zhang J, Zhang Z, Xu M, Jiang L, Guo B, Wang T, Chi C, Mao Y, Zhou J, Yu X, Wang H, Weng X, Jin JG, Ye J, He L, Liu Y. The draft genome of the large yellow croaker reveals well-developed innate immunity. Nat Commun 2014; 5:5227. [PMID: 25407894 PMCID: PMC4263168 DOI: 10.1038/ncomms6227] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 09/10/2014] [Indexed: 12/19/2022] Open
Abstract
The large yellow croaker, Larimichthys crocea, is one of the most economically important marine fish species endemic to China. Its wild stocks have severely suffered from overfishing, and the aquacultured species are vulnerable to various marine pathogens. Here we report the creation of a draft genome of a wild large yellow croaker using a whole-genome sequencing strategy. We estimate the genome size to be 728 Mb with 19,362 protein-coding genes. Phylogenetic analysis shows that the stickleback is most closely related to the large yellow croaker. Rapidly evolving genes under positive selection are significantly enriched in pathways related to innate immunity. We also confirm the existence of several genes and identify the expansion of gene families that are important for innate immunity. Our results may reflect a well-developed innate immune system in the large yellow croaker, which could aid in the development of wild resource preservation and mariculture strategies.
Collapse
Affiliation(s)
- Changwen Wu
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China
| | - Di Zhang
- Bio-X Center, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
| | - Mengyuan Kan
- Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhengmin Lv
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China
| | - Aiyi Zhu
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yongquan Su
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
| | - Daizhan Zhou
- Bio-X Center, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jianshe Zhang
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China
| | - Zhou Zhang
- Bio-X Center, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
| | - Meiying Xu
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China
| | - Lihua Jiang
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China
| | - Baoying Guo
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China
| | - Ting Wang
- Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai 200031, China
| | - Changfeng Chi
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yong Mao
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
| | - Jiajian Zhou
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China
| | - Xinxiu Yu
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China
| | - Hailing Wang
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China
| | - Xiaoling Weng
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Jason Gang Jin
- ShanghaiBio Corporation, 675 US Highway One, North Brunswick, New Jersey 08902, USA
| | - Junyi Ye
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Lin He
- Bio-X Center, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yun Liu
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
34
|
Pionnier N, Falco A, Miest JJ, Shrive AK, Hoole D. Feeding common carp Cyprinus carpio with β-glucan supplemented diet stimulates C-reactive protein and complement immune acute phase responses following PAMPs injection. FISH & SHELLFISH IMMUNOLOGY 2014; 39:285-295. [PMID: 24830773 DOI: 10.1016/j.fsi.2014.05.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 05/02/2014] [Accepted: 05/03/2014] [Indexed: 06/03/2023]
Abstract
The effect of β-glucan as a feed additive on the serum and gene profile of C-reactive protein (CRP) and complement acute phase responses was ascertained in common carp Cyprinus carpio. In addition effects of subsequent intraperitoneal injections of pathogen-associated molecular patterns (PAMPs), i.e. LPS or poly(I:C), to mimic bacterial or viral infection respectively, were studied. Carp were first orally fed with β-glucan (MacroGard®) with a daily β-glucan intake of 6 mg per kg body weight or with control food for 25 days and then injected with PBS containing either LPS (4 mg/kg) or poly(I:C) (5 mg/kg) or PBS alone. Fish were sampled during the 25 days of the feeding period and up to 7 days post-PAMPs injections for serum and liver, head kidney and mid-gut tissues. Oral administration of β-glucan for 25 days significantly increased serum CRP levels and alternative complement activity (ACP). In addition, the subsequent LPS and poly(I:C) challenges significantly affected CRP and complement related gene expression profiles (crp1, crp2, c1r/s, bf/c2, c3 and masp2), with the greatest effects observed in the β-glucan fed fish. However, in fish fed β-glucan the PAMPs injections had less effects on CRP levels and complement activity in the serum than in control fed fish, suggesting that the 25 days of β-glucan immunostimulation was sufficient enough to reduce the effects of LPS and poly(I:C) injections. Results suggest that MacroGard® stimulated CRP and complement responses to PAMPs immunological challenges in common carp thus highlighting the beneficial β-glucan immunostimulant properties.
Collapse
Affiliation(s)
- Nicolas Pionnier
- Institute of Science and Technology in Medicine, School of Life Sciences, Keele University, ST5 5BG Keele, United Kingdom.
| | - Alberto Falco
- Institute of Science and Technology in Medicine, School of Life Sciences, Keele University, ST5 5BG Keele, United Kingdom.
| | - Joanna J Miest
- Institute of Science and Technology in Medicine, School of Life Sciences, Keele University, ST5 5BG Keele, United Kingdom.
| | - Annette K Shrive
- Institute of Science and Technology in Medicine, School of Life Sciences, Keele University, ST5 5BG Keele, United Kingdom.
| | - Dave Hoole
- Institute of Science and Technology in Medicine, School of Life Sciences, Keele University, ST5 5BG Keele, United Kingdom.
| |
Collapse
|
35
|
Qi P, Guo B, Zhu A, Wu C, Liu C. Identification and comparative analysis of the Pseudosciaena crocea microRNA transcriptome response to poly(I:C) infection using a deep sequencing approach. FISH & SHELLFISH IMMUNOLOGY 2014; 39:483-491. [PMID: 24945573 DOI: 10.1016/j.fsi.2014.06.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 06/06/2014] [Accepted: 06/09/2014] [Indexed: 06/03/2023]
Abstract
Two sRNA libraries with or without poly(I:C) infection of large yellow croaker Pseudosciaena crocea were constructed and sequenced using the high-throughput Illumina/Solexa deep sequencing technology. The high-throughput sequencing pipeline yielded 163,79,272 and 217,07,070 raw reads corresponding to 132,27,594 and 206,86,409 clean reads for the normal and infected libraries, respectively. Bioinfromatic analysis identified 534 miRNAs, of which, 158 miRNAs were known in miRBase 20.0 and the remaining 376 were not found homology to any known metazoan miRNAs, suggesting a possible species-specificity. We analyzed the significance of differently expressed miRNAs between two libraries using pairwise comparison. There was significant differential expression of 112 miRNAs (p < 0.001) between two libraries. Thereinto, a number of known miRNAs were identified immune-related. Real-time quantitative PCR experiments (RT-qPCR) were preformed for 6 miRNAs of the two samples, and agreement was found between the sequencing and RT-qPCR data. To our knowledge, this is the first comprehensive study of miRNAs in P. crocea and of expression analysis of P. crocea miRNAs in response to poly(I:C) infection, and many miRNAs were differentially regulated under normal and infection conditions. These findings deepened our understanding of the role of miRNAs in the intricate host's immune system, and should be useful to develop new control strategies for host immune defense against various foreign infection in P. crocea.
Collapse
Affiliation(s)
- Pengzhi Qi
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316004, China
| | - Baoying Guo
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316004, China
| | - Aiyi Zhu
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316004, China
| | - Changwen Wu
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316004, China.
| | - Changlin Liu
- Yellow Sea Fisheries Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| |
Collapse
|
36
|
Mu Y, Li M, Ding F, Ding Y, Ao J, Hu S, Chen X. De novo characterization of the spleen transcriptome of the large yellow croaker (Pseudosciaena crocea) and analysis of the immune relevant genes and pathways involved in the antiviral response. PLoS One 2014; 9:e97471. [PMID: 24820969 PMCID: PMC4018400 DOI: 10.1371/journal.pone.0097471] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 04/20/2014] [Indexed: 12/31/2022] Open
Abstract
The large yellow croaker (Pseudosciaena crocea) is an economically important marine fish in China. To understand the molecular basis for antiviral defense in this species, we used Illumia paired-end sequencing to characterize the spleen transcriptome of polyriboinosinic:polyribocytidylic acid [poly(I:C)]-induced large yellow croakers. The library produced 56,355,728 reads and assembled into 108,237 contigs. As a result, 15,192 unigenes were found from this transcriptome. Gene ontology analysis showed that 4,759 genes were involved in three major functional categories: biological process, cellular component, and molecular function. We further ascertained that numerous consensus sequences were homologous to known immune-relevant genes. Kyoto Encyclopedia of Genes and Genomes orthology mapping annotated 5,389 unigenes and identified numerous immune-relevant pathways. These immune-relevant genes and pathways revealed major antiviral immunity effectors, including but not limited to: pattern recognition receptors, adaptors and signal transducers, the interferons and interferon-stimulated genes, inflammatory cytokines and receptors, complement components, and B-cell and T-cell antigen activation molecules. Moreover, the partial genes of Toll-like receptor signaling pathway, RIG-I-like receptors signaling pathway, Janus kinase-Signal Transducer and Activator of Transcription (JAK-STAT) signaling pathway, and T-cell receptor (TCR) signaling pathway were found to be changed after poly(I:C) induction by real-time polymerase chain reaction (PCR) analysis, suggesting that these signaling pathways may be regulated by poly(I:C), a viral mimic. Overall, the antivirus-related genes and signaling pathways that were identified in response to poly(I:C) challenge provide valuable leads for further investigation of the antiviral defense mechanism in the large yellow croaker.
Collapse
Affiliation(s)
- Yinnan Mu
- Key Laboratory of Marine Biogenetics and Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, China
| | - Mingyu Li
- Key Laboratory of Marine Biogenetics and Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, China
| | - Feng Ding
- The CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Yang Ding
- Key Laboratory of Marine Biogenetics and Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, China
| | - Jingqun Ao
- Key Laboratory of Marine Biogenetics and Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, China
- Collaborative Innovation Center of Deep Sea Biology, Third Institute of Oceanography, State Oceanic Administration, Xiamen, China
| | - Songnian Hu
- The CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- * E-mail: (SNH); (XHC)
| | - Xinhua Chen
- Key Laboratory of Marine Biogenetics and Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, China
- Collaborative Innovation Center of Deep Sea Biology, Third Institute of Oceanography, State Oceanic Administration, Xiamen, China
- * E-mail: (SNH); (XHC)
| |
Collapse
|
37
|
Ding N, Han Q, Li Q, Zhao X, Li J, Su J, Wang Q. Comprehensive analysis of Sichuan white geese (Anser cygnoides) transcriptome. Anim Sci J 2014; 85:650-9. [PMID: 24725216 DOI: 10.1111/asj.12197] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 12/20/2013] [Indexed: 12/17/2022]
Abstract
High-throughput RNA sequencing was performed for comprehensively analyzing the transcriptome of geese. A total of 28,803,759 bp of raw sequence data was generated by 454 GS Flx+. After removal of adaptor sequences, 28,730,361 bp remained and 117,279 reads were obtained, with an average length of 244 bases. Simultaneously, complementary DNA samples from two different reproductive stages of goose ovarian, hypothalamus and pituitary tissue were sequenced separately using Illumina MiSeq platform. A total of 12 688 673 148 bp of raw sequence data were generated by Illumina MiSeq. After removal of adaptor sequences, 8 198 126 562 bp remained and 60 382 786 clean reads were obtained, with an average length of 135 bases. Assembly of all the reads from both 454 Flx+ and Illumina platforms formed 56,839 contigs. The sequence size ranges from 38 to 28,206 bp in size, with an average size of 2584 bp and an N50 of 4624. The assembly produced a substantial number of large contigs: 35,545 (62.5%) were longer than 1 kb, of which 8850 (15.6%) were longer than 5 kb. The sequencing depth was 85 X on average. We performed comprehensive function annotations on unigenes including protein sequence similarity, gene ontology (GO) term classification, and Kyoto Encylcopedia of Genes and Genomes (KEGG) pathway enrichment. GO analysis showed that approximately 63% of the contigs had annotation information, among the 35,953 annotated isotigs in Nr database, 24,783 (68.9%) sequences were assigned with one or more GO terms. There were 14,634 (40.7%) isotigs for biological processes, 10,557(29.3%) isotigs for cellular component, 22,607 (62.9%) isotigs for molecular function. The result of KEGG pathway mapping 8926 sequences had the pathway annotation, and took part in 477 pathways. Additionally, 10,685 simple sequence repeat (SSR) markers were identified from the assembled sequences. The most frequent repeat motifs were trinucleotides, which accounted for 53.03% of all SSRs, followed by dinucleotides (39.9%), tetranucleotides (5.08%), pentanucleotides (1.68%) and hexanucleotides (0.32%). Transcriptome sequencing on mixture issue of the geese yielded substantial transcriptional sequences and potentially useful SSR markers which provide an important data source for geese research.
Collapse
Affiliation(s)
- Ning Ding
- Chongqing Academy of Animal Science, Chongqing, China
| | | | | | | | | | | | | |
Collapse
|
38
|
Xia JH, Lin G, Fu GH, Wan ZY, Lee M, Wang L, Liu XJ, Yue GH. The intestinal microbiome of fish under starvation. BMC Genomics 2014; 15:266. [PMID: 24708260 PMCID: PMC4234480 DOI: 10.1186/1471-2164-15-266] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Accepted: 03/31/2014] [Indexed: 02/08/2023] Open
Abstract
Background Starvation not only affects the nutritional and health status of the animals, but also the microbial composition in the host’s intestine. Next-generation sequencing provides a unique opportunity to explore gut microbial communities and their interactions with hosts. However, studies on gut microbiomes have been conducted predominantly in humans and land animals. Not much is known on gut microbiomes of aquatic animals and their changes under changing environmental conditions. To address this shortcoming, we determined the microbial gene catalogue, and investigated changes in the microbial composition and host-microbe interactions in the intestine of Asian seabass in response to starvation. Results We found 33 phyla, 66 classes, 130 orders and 278 families in the intestinal microbiome. Proteobacteria (48.8%), Firmicutes (15.3%) and Bacteroidetes (8.2%) were the three most abundant bacteria taxa. Comparative analyses of the microbiome revealed shifts in bacteria communities, with dramatic enrichment of Bacteroidetes, but significant depletion of Betaproteobacteria in starved intestines. In addition, significant differences in clusters of orthologous groups (COG) functional categories and orthologous groups were observed. Genes related to antibiotic activity in the microbiome were significantly enriched in response to starvation, and host genes related to the immune response were generally up-regulated. Conclusions This study provides the first insights into the fish intestinal microbiome and its changes under starvation. Further detailed study on interactions between intestinal microbiomes and hosts under dynamic conditions will shed new light on how the hosts and microbes respond to the changing environment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Gen Hua Yue
- Molecular Population Genetics Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Republic of Singapore.
| |
Collapse
|
39
|
Tso CH, Hung YF, Tan SP, Lu MW. Identification of the STAT1 gene and the characterisation of its immune response to immunostimulants, including nervous necrosis virus (NNV) infection, in Malabar grouper (Epinephelus malabaricus). FISH & SHELLFISH IMMUNOLOGY 2013; 35:1339-1348. [PMID: 23954694 DOI: 10.1016/j.fsi.2013.07.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 07/19/2013] [Accepted: 07/20/2013] [Indexed: 06/02/2023]
Abstract
Signal Transducer and Activator of Transcription (STAT)-1 is an indispensable signal transduction protein that is involved in the interferon pathway. STAT-1 plays an important role in the innate immune response. The full-length cDNA of Malabar grouper (Epinephelus malabaricus) STAT-1, MgSTAT1, was cloned. Phylogenetic analysis was performed based on the amino acid sequence. Our results indicate that STAT1 is highly conserved with other vertebrates. We also report the expression of MgSTAT1 in different tissues treated with immune stimulants, including LPS, CpG ODN, and poly (I:C), in vivo. The expression of MgSTAT1 was significantly induced in the head kidney upon treatment with poly (I:C) compared to the control. Moreover, the results indicate that MgSTAT1 is up-regulated during nervous necrosis virus (NNV) infection. This study reveals that similar to the mammalian antiviral response, MgSTAT1 mediates the immune response in Malabar grouper.
Collapse
Affiliation(s)
- Chun-Hsi Tso
- Department of Aquaculture, National Taiwan Ocean University, No. 2, Beining Rd., Keelung 20224, Taiwan
| | | | | | | |
Collapse
|
40
|
Li Y, Han Z, Song N, Gao TX. New evidence to genetic analysis of small yellow croaker (Larimichthys polyactis) with continuous distribution in China. BIOCHEM SYST ECOL 2013. [DOI: 10.1016/j.bse.2013.05.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
41
|
Mu Y, Wan X, Lin K, Ao J, Chen X. Liver proteomic analysis of the large yellow croaker (Pseudosciaena crocea) following polyriboinosinic:polyribocytidylic acid induction. FISH PHYSIOLOGY AND BIOCHEMISTRY 2013; 39:1267-1276. [PMID: 23479204 DOI: 10.1007/s10695-013-9781-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Accepted: 03/02/2013] [Indexed: 06/01/2023]
Abstract
In the present study, we examined the liver protein profiles of the large yellow croaker (Pseudosciaena crocea) exposed to polyriboinosinic:polyribocytidylic acid [poly(I:C)], a viral mimic, using the differential proteomic approach. Sixteen altered protein spots were identified by matrix-assisted laser desorption ionization time of flight mass spectrometry or matrix-assisted laser desorption ionization time of flight/time of flight mass spectrometry, including eight upregulated proteins and eight downregulated proteins. These altered host proteins were classified into six categories based on their biological function: cellular process, metabolic process, biological regulation, binding, and catabolic process, highlighting the fact that response to poly(I:C) induction in fish seems to be complex and diverse. Moreover, four corresponding genes of the differentially expressed proteins were validated by relative quantitative real-time PCR. Western blot analysis further demonstrated the changes in protein abundance of natural killer enhancing factor and peroxiredoxin 6. These results will be helpful in furthering our understanding of the changes of physiological processes in liver of fish during virus infection.
Collapse
Affiliation(s)
- Yinnan Mu
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, 361005, People's Republic of China
| | | | | | | | | |
Collapse
|
42
|
Han F, Wang X, Wang Z. Characterization of myosin light chain gene up-regulated in the large yellow croaker immunity by interaction with RanGTPase. Gene 2012; 514:54-61. [PMID: 23159872 DOI: 10.1016/j.gene.2012.09.135] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Revised: 09/19/2012] [Accepted: 09/28/2012] [Indexed: 10/27/2022]
Abstract
RanGTPases are highly conserved in eukaryotes from yeast to human and have been implicated in many aspects of nuclear structure and function. In our previous study, it was revealed that the RanGTPase was up-regulated in large yellow croaker challenged by pathogen. However, the mechanism of RanGTPase in immunity remains unclear. In this investigation, on the basis of protein interaction, it was found that RanGTPase interacted with myosin light chain (designated as LycMLC), a crucial protein in the process of phagocytosis. Furthermore, it was found and characterized in this marine fish for the first time. The full-length cDNA of LycMLC was 771bp, including a 5'-terminal untranslated region (UTR) of 36bp, 3'-terminal UTR of 279bp and an open reading frame (ORF) of 456bp encoding a polypeptide of 151 amino acids. RT-PCR analysis indicated that LycMLC gene was constitutively expressed in the 9 tissues examined, including kidney, liver, gill, muscle, spleen, skin, heart, intestine and blood. The result of quantitative real-time PCR analysis revealed the highest expression in muscle and the weakest expression in skin. Time course analysis showed that LycMLC expression was obviously up-regulated in blood after immunization with either poly I:C or formalin-inactive Gram-negative bacteria Vibrio parahaemolyticus. It indicated that the highest expression was 4.5 times (at 24h) as much as that in the control (P<0.05) challenged by poly I:C and 5.0 times (at 24h) challenged by bacteria. These results suggested that LycMLC might play an important role in large yellow croaker defense against the pathogen infection. Therefore our study revealed a novel pathway concerning immunity of RanGTPase by the direct interaction with the cytoskeleton protein, which would help to better understand the molecular events in immune response against pathogen infection in fish.
Collapse
Affiliation(s)
- Fang Han
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | | | | |
Collapse
|
43
|
Holopainen R, Tapiovaara H, Honkanen J. Expression analysis of immune response genes in fish epithelial cells following ranavirus infection. FISH & SHELLFISH IMMUNOLOGY 2012; 32:1095-1105. [PMID: 22452879 DOI: 10.1016/j.fsi.2012.03.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Revised: 02/24/2012] [Accepted: 03/06/2012] [Indexed: 05/31/2023]
Abstract
Ranaviruses (family Iridoviridae) are a growing threat to fish and amphibian populations worldwide. The immune response to ranavirus infection has been studied in amphibians, but little is known about the responses elicited in piscine hosts. In this study, the immune response and apoptosis induced by ranaviruses were investigated in fish epithelial cells. Epithelioma papulosum cyprini (EPC) cells were infected with four different viral isolates: epizootic haematopoietic necrosis virus (EHNV), frog virus 3 (FV3), European catfish virus (ECV) and doctor fish virus (DFV). Quantitative real-time PCR (qPCR) assays were developed to measure the mRNA expression of immune response genes during ranavirus infection. The target genes included tumour necrosis factor α (TNF-α), interleukin-1β (IL-1β), β2-microglobulin (β2M), interleukin-10 (IL-10) and transforming growth factor β (TGF-β). All ranaviruses elicited changes in immune gene expression. EHNV and FV3 caused a strong pro-inflammatory response with an increase in the expression of both IL-1β and TNF-α, whereas ECV and DFV evoked transient up-regulation of regulatory cytokine TGF-β. Additionally, all viral isolates induced increased β2M expression as well as apoptosis in the EPC cells. Our results indicate that epithelial cells can serve as an in vitro model for studying the mechanisms of immune response in the piscine host in the first stages of ranavirus infection.
Collapse
Affiliation(s)
- Riikka Holopainen
- Finnish Food Safety Authority Evira, Veterinary Virology Research Unit, Helsinki, Finland.
| | | | | |
Collapse
|
44
|
Li T, Hu W, Li J, Zhang X, Zhu J, Li X. Coating effects of tea polyphenol and rosemary extract combined with chitosan on the storage quality of large yellow croaker (Pseudosciaena crocea). Food Control 2012. [DOI: 10.1016/j.foodcont.2011.10.029] [Citation(s) in RCA: 188] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
45
|
Nakao M, Tsujikura M, Ichiki S, Vo TK, Somamoto T. The complement system in teleost fish: progress of post-homolog-hunting researches. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:1296-1308. [PMID: 21414344 DOI: 10.1016/j.dci.2011.03.003] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 01/05/2011] [Accepted: 03/06/2011] [Indexed: 05/30/2023]
Abstract
Studies on the complement system of bony fish are now finishing a stage of homologue-hunting identification of the components, unveiling existence of almost all the orthologues of mammalian complement components in teleost. Genomic and transcriptomic data for several teleost species have contributed much for the homologue-hunting research progress. Only an exception is identification of orthologues of mammalian complement regulatory proteins and complement receptors. It is of particular interest that teleost complement components often exist as multiple isoforms with possible functional divergence. This review summarizes research progress of teleost complement system following the molecular identification and sequence analysis of the components. The findings of extensive expression analyses of the complement components with special emphasis of their prominent extrahepatic expression, acute-phase response to immunostimulation and various microbial infections, and ontogenic development including maternal transfer are discussed to infer teleost-specific functions of the complement system. Importance of the protein level characterization of the complement components is also emphasized, especially for understanding of the isotypic diversity of the components, a unique feature of teleost complement system.
Collapse
Affiliation(s)
- Miki Nakao
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 812-8581, Japan.
| | | | | | | | | |
Collapse
|
46
|
Tian C, Ding Y, Ao J, Chen X. Three isotypes of immunoglobulin light chains in large yellow croaker, Pseudosciaena crocea: Molecular cloning, characterization, and expression analysis. FISH & SHELLFISH IMMUNOLOGY 2011; 30:1249-1256. [PMID: 21496488 DOI: 10.1016/j.fsi.2011.03.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 02/25/2011] [Accepted: 03/30/2011] [Indexed: 05/30/2023]
Abstract
Both cDNA library mining and transcriptome analysis were used to obtain 21 immunoglobulin light chain (IgL) sequences for the large yellow croaker, Pseudosciaena crocea. Full-length cDNA sequences are available for 10 of these, and they were identified as belonging to the three IgL isotypes of LycIgL1, LycIgL2, and LycIgL3. The LycIgL1 isotype is most abundant in the large yellow croaker IgL repertoire, as in the other teleosts. Tissue expression profile analysis revealed that the three LycIgL isotypes were constitutively expressed at different abundances in the kidney, spleen, liver, gill, heart, intestine, and muscle, although the heart did not express LycIgL3. Real-time polymerase chain reaction revealed that expression of the three LycIgL isotypes in the kidney and spleen tissues was up-regulated during 72 h of inductions with poly(I:C) or bacterial vaccine at different intensities and in different manners. The LycIgL1 isotype responded to stimulations most intensely in the spleen, while the LycIgL3 isotype responded most quickly in the kidney. Compared to the LycIgL1 and LycIgL3 isotypes, the LycIgL2 isotype responded more slowly and weakly in both tissues. These results indicate different isotypes of LycIgL respond to immune stimuli in the spleen and kidney in an isotypic-specific manner.
Collapse
Affiliation(s)
- Chen Tian
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, PR China
| | | | | | | |
Collapse
|
47
|
Xiao X, Li M, Wang K, Qin Q, Chen X. Characterization of large yellow croaker (Pseudosciaena crocea) β-actin promoter supports β-actin gene as an internal control for gene expression modulation and its potential application in transgenic studies in fish. FISH & SHELLFISH IMMUNOLOGY 2011; 30:1072-1079. [PMID: 21316460 DOI: 10.1016/j.fsi.2011.02.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 01/31/2011] [Accepted: 02/06/2011] [Indexed: 05/30/2023]
Abstract
As a housekeeping gene, β-actin is one of the most commonly used reference gene and its promoter is widely used in transgenic studies in mammals and fish. In this study, we used genomic walker technology to clone the β-actin gene (Lycβ-actin) promoter sequence from large yellow croaker, an economically important marine fish in China. The Lycβ-actin promoter region spans 3350 nucleotides (nt) and contains several transcription factor binding sites and a conserved enhancer motif (ATGGTAATAA) in the first intron. A promoter activity assay showed that this promoter region can drive enhanced green fluorescent protein (EGFP) gene expression in the fish cell line, EPC. Luciferase activity analysis demonstrated that the activity of the Lycβ-actin promoter is not affected by poly(I:C) or lipopolysaccharide (LPS) stimulation. Absolute real-time PCR analysis of various tissues revealed that Lycβ-actin expression levels are not significantly altered by poly(I:C) or inactivated trivalent bacterial vaccine (P > 0.05). These results suggest that β-actin can be used as a suitable internal control for gene expression modulation in response to immune stimulations in large yellow croaker. In vivo transgenic experiments showed that the Lycβ-actin promoter region can drive efficient EGFP expression in large yellow croaker fries or fertilized zebrafish eggs, supporting its potential application in transgenic studies in fish.
Collapse
Affiliation(s)
- Xiaoqiang Xiao
- School of Life Sciences, Zhongshan University, Guangzhou 510275, PR China
| | | | | | | | | |
Collapse
|
48
|
Whang I, Lee Y, Lee S, Oh MJ, Jung SJ, Choi CY, Lee WS, Kim HS, Kim SJ, Lee J. Characterization and expression analysis of a goose-type lysozyme from the rock bream Oplegnathus fasciatus, and antimicrobial activity of its recombinant protein. FISH & SHELLFISH IMMUNOLOGY 2011; 30:532-542. [PMID: 21167286 DOI: 10.1016/j.fsi.2010.11.025] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 11/10/2010] [Accepted: 11/28/2010] [Indexed: 05/30/2023]
Abstract
Lysozyme (muramidase) represents an important defense molecule of the fish innate immune system. Known for its bactericidal properties, lysozyme catalyzes the hydrolysis of β-(1,4)-glycosidic bonds between the N-acetyl glucosamine and N-acetyl muramic acid in the peptidoglycan layer of bacterial cell walls. In this study, the complete coding sequence of a g-type lysozyme (RBgLyz) was identified in the Oplegnathus fasciatus rock bream fish genome by means of multi-tissue normalized cDNA pyrosequencing using Roche 454 GS-FLX™ technology. RBgLyz is composed of 669 bp, with a 567 bp open reading frame that encodes 188 amino acids. Protein motif searches indicated that RBgLyz contains the soluble lytic transglycosylase domain involved in maintaining cell wall integrity. Furthermore, RBgLyz shares significant identity (81.4%) with Chinese perch Siniperca chuatsi. Quantitative real-time RT-PCR analysis results showed that RBgLyz transcripts are constitutively expressed in various tissues from healthy rock breams. In order to determine RBgLyz function in immunity, its expression was analyzed in head kidney following exposure to known immune stimulants or pathogens. RBgLyz transcripts were significantly up-regulated in response to challenge with lipopolysaccharide (LPS) and Edwardsiella tarda, as compared to non-injected control fish. Polyinosinic:polycytidylic acid (poly I:C) dsRNA stimulated a moderate expression of RBgLyz, as did Streptococcus iniae but to a lesser extent. There were no specific time-dependent effects on RBgLyz mRNA expression observed in response to rock bream iridovirus (RBIV) infection. Taken together, the gene expression results indicated that g-type lysozyme plays a role in the innate immune response to LPS, poly I:C, E. tarda and S. iniae in rock bream. Thus, we generated recombinant RBgLyz in an Escherichia coli expression system and characterized its antimicrobial activity. Our results indicated that recombinant RBgLyz had lytic activity against Gram-negative Vibrio salmonicida, Gram-positive Listeria monocytogenes, S. iniae and Micrococcus lysodeikticus. In addition, observations by scanning electron microscope (SEM) confirmed that the cell morphology of M. lysodeikticus was altered in the presence of recombinant RBgLyz.
Collapse
Affiliation(s)
- Ilson Whang
- Department of Life Sciences, College of Natural Sciences, Jeju National University, Jeju Special Self-Governing Province 690-756, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Xu SW, Wu JY, Hu KS, Ping HL, Duan ZG, Zhang HF. Molecular cloning and expression of orange-spotted grouper (Epinephelus coioides) CD8α and CD8β genes. FISH & SHELLFISH IMMUNOLOGY 2011; 30:600-608. [PMID: 21193050 DOI: 10.1016/j.fsi.2010.12.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2010] [Revised: 10/24/2010] [Accepted: 12/12/2010] [Indexed: 05/30/2023]
Abstract
T-cell surface glycoprotein CD8 consists of two distinguished chains, termed α and β chains, and functions as a co-receptor for the T-cell receptor by binding to MHC class I proteins. In this study we report the cloning and identification of both CD8α and CD8β genes from orange-spotted grouper (Epinephelus coioides). The predicted grouper CD8α and CD8β proteins were structurally similar to other fish especially to those of Pleuronectiformes. Real-time RT-PCR revealed that the CD8 mRNA was much higher in the thymus than in other immune organs, and the expression level were very low in stomach, liver, and brain. During embryonic development of the grouper, the highest CD8 transcripts were detected in the multi-cell stage, followed by muscle burl stage, which suggested that the multi-cell stage may be critical in CD8 transcript synthesis. Moreover, CD8 mRNA levels were examined in lymphocytes at different time treated with lipopolysaccharide (LPS), polyriboinosinic polyribocytidylic acid (PolyI:C), phytohemagglutinin (PHA), and concanavalin A (ConA). The result showed that the CD8 mRNA levels were significantly affected in time-dependent manner by PolyI:C, PHA, and ConA, but not by LPS.
Collapse
Affiliation(s)
- Sheng-wei Xu
- Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou 510275, PR China
| | | | | | | | | | | |
Collapse
|
50
|
Han F, Wang X, Yang Q, Cai M, Wang ZY. Characterization of a RacGTPase up-regulated in the large yellow croaker Pseudosciaena crocea immunity. FISH & SHELLFISH IMMUNOLOGY 2011; 30:501-508. [PMID: 21130170 DOI: 10.1016/j.fsi.2010.11.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2010] [Revised: 11/26/2010] [Accepted: 11/26/2010] [Indexed: 05/30/2023]
Abstract
The Rac proteins are members of the Rho family of small G proteins and are implicated in the regulation of several pathways, including those leading to cytoskeleton reorganization, gene expression, cell proliferation, cell adhesion and cell migration and survival. In this investigation, a Rac gene (named as LycRac gene) was obtained from the large yellow croaker and it was expressed in Escherichia coli and purified. Subsequently the specific antibody was raised using the purified fusion protein (GST-LycRac). Moreover, the GTP-binding assay showed that the LycRac protein had GTP-binding activity. The LycRac gene was ubiquitously transcribed and expressed in 9 tissues. Quantitative real-time RT-PCR and Western blot analysis revealed the highest expression in gill and the weakest expression in spleen. Time-course analysis revealed that LycRac expression was obviously up-regulated in blood, spleen and liver after immunization with polyinosinic polycytidynic acid (poly I:C), formalin-inactive Gram-negative bacterium Vibrio parahemolyticus and bacterial lipopolysaccharides (LPS). These results suggested that LycRac protein might play an important role in the immune response against microorganisms in large yellow croaker.
Collapse
Affiliation(s)
- Fang Han
- Key Laboratory of Science and Technology for Aquaculture and Food Safety, Fisheries College, Jimei University, Xiamen 361021, China
| | | | | | | | | |
Collapse
|