1
|
Pianese V, Alvarez-Torres D, Gemez-Mata J, Garcia-Rosado E, Moreno P, Fausto AM, Taddei AR, Picchietti S, Scapigliati G. T-cells and CD45-cells discovery in the central nervous system of healthy and nodavirus-infected teleost fish Dicentrarchus labrax. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109646. [PMID: 38810712 DOI: 10.1016/j.fsi.2024.109646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024]
Abstract
To achieve insights in antiviral immune defense of the central nervous system (CNS), we investigated T cells and CD45 cells in the marine fish model Dicentrarchus labrax infected with the CNS-tropic virus betanodavirus. By employing markers for pan-T cells (mAb DLT15) and CD45-cells (mAb DLT22) in immunofluorescence (IIF) of leukocytes from brain, we obtained 3,7 ± 2.3 % of T cells and 7.3 ± 3.2 % of CD45+ cells. Both IIF and immunoelectron microscopy confirmed a leukocyte/glial morphology for the immunoreactive cells. Quantitative immunohistochemistry (qIHC) of brain/eye sections showed 1.9 ± 0.8 % of T+ cells and 2 ± 0.9 % of CD45+ cells in the brain, and 3.6 ± 1.9 % and 4.1 ± 2.2 % in the eye, respectively. After in vivo RGNNV infection the number of T cells/CD45+ leukocytes in the brain increased to 8.3 ± 2.1 % and 11.6 ± 4.4 % (by IIF), and 26.1 ± 3.4 % and 45.6 ± 5.9 % (by qIHC), respectively. In the eye we counted after infection 8.5 ± 4.4 % of T cells and 10.2 ± 5.8 % of CD45 cells. Gene transcription analysis of brain mRNA revealed a strong increase of gene transcripts coding for: antiviral proteins Mx and ISG-12; T-cell related CD3ε/δ, TcRβ, CD4, CD8α, CD45; and for immuno-modulatory cytokines TNFα, IL-2, IL-10. A RAG-1 gene product was also present and upregulated, suggesting somatic recombination in the fish brain. Similar transcription data were obtained in the eye, albeit with differences. Our findings provide first evidence for a recruitment and involvement of T cells and CD45+ leukocytes in the fish eye-brain axis during antiviral responses and suggest similarities in the CNS immune defense across evolutionary distant vertebrates.
Collapse
Affiliation(s)
- Valeria Pianese
- University of Tuscia, Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), Largo dell'Università, 01100, Viterbo (I), Italy.
| | - Daniel Alvarez-Torres
- University of Málaga, Institute of Biotecnology and Blue Development (IBYDA), 29071, Málaga (E), Spain.
| | - Juan Gemez-Mata
- University of Málaga, Institute of Biotecnology and Blue Development (IBYDA), Dept. Microbiology, Faculty of Sciences, 29071, Málaga (E), Spain.
| | - Esther Garcia-Rosado
- University of Málaga, Institute of Biotecnology and Blue Development (IBYDA), Dept. Microbiology, Faculty of Sciences, 29071, Málaga (E), Spain.
| | - Patricia Moreno
- University of Málaga, Institute of Biotecnology and Blue Development (IBYDA), Dept. Microbiology, Faculty of Sciences, 29071, Málaga (E), Spain.
| | - Anna Maria Fausto
- University of Tuscia, Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), Largo dell'Università, 01100, Viterbo (I), Italy.
| | - Anna Rita Taddei
- University of Tuscia, Section Microscopy (CGA), Largo dell'Università, 01100, Viterbo (I), Italy.
| | - Simona Picchietti
- University of Tuscia, Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), Largo dell'Università, 01100, Viterbo (I), Italy.
| | - Giuseppe Scapigliati
- University of Tuscia, Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), Largo dell'Università, 01100, Viterbo (I), Italy.
| |
Collapse
|
2
|
González-Fernández C, García-Álvarez MA, Cuesta A. Identification and functional characterization of fish IL-17 receptors suggest important roles in the response to nodavirus infection. MARINE LIFE SCIENCE & TECHNOLOGY 2024; 6:252-265. [PMID: 38827125 PMCID: PMC11136934 DOI: 10.1007/s42995-024-00225-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 03/18/2024] [Indexed: 06/04/2024]
Abstract
Th17 is a lymphocyte T helper (Th) subpopulation relevant in the control and regulation of the immune response characterized by the production of interleukin (IL)-17. This crucial cytokine family acts through their binding to the IL-17 receptors (IL-17R), having up to six members. Although the biology of fish Th17 is well-recognized, the molecular and functional characterization of IL-17 and IL-17R has been limited. Thus, our aim was to identify and characterize the IL-17R repertory and regulation in the two main Mediterranean cultured fish species, the gilthead seabream (Sparus aurata) and the European sea bass (Dicentrarchus labrax). Our in silico results showed the clear identification of six members in each fish species, from IL-17RA to IL-17RE-like, with well-conserved gene structure and protein domains with their human orthologues. All of them showed wide and constitutive transcription in naïve tissues but with highest levels in mucosal tissues, namely skin, gill or intestine. In leucocytes, T mitogens showed the strongest up-regulation in most of the il17 receptors though il17ra resulted in inhibition by most stimulants. Interestingly, in vivo nodavirus infection resulted in alterations on the transcription of il17 receptors. While nodavirus infection led to some increments in the il17ra, il17rb, il17rc and il17rd transcripts in the susceptible European sea bass, many down-regulations were observed in the resistant gilthead seabream. Our data identify the presence and conservation of six coding IL-17R in gilthead seabream and European sea bass as well as their differential regulation in vitro and upon nodavirus infection. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-024-00225-1.
Collapse
Affiliation(s)
- Carmen González-Fernández
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100 Murcia, Spain
- Laboratoire d’écotoxicologie, Centre de Lyon-Villeurbanne, INRAE, UR RiverLy, 69625 Villeurbanne, France
| | - Miguel A. García-Álvarez
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100 Murcia, Spain
| | - Alberto Cuesta
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100 Murcia, Spain
| |
Collapse
|
3
|
Toubanaki DK, Efstathiou A, Tzortzatos OP, Valsamidis MA, Papaharisis L, Bakopoulos V, Karagouni E. Nervous Necrosis Virus Modulation of European Sea Bass ( Dicentrarchus labrax, L.) Immune Genes and Transcriptome towards Establishment of Virus Carrier State. Int J Mol Sci 2023; 24:16613. [PMID: 38068937 PMCID: PMC10706053 DOI: 10.3390/ijms242316613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Viral infections of teleost fish have great environmental and economic implications in aquaculture. Nervous necrosis virus (NNV) is a pathogen affecting more than 120 different species, causing high mortality and morbidity. Herein, we studied the course of NNV experimental infection of D. labrax, focusing on survivors which indicated viral carrier state. To determine the carrier state of D. labrax head kidney, we performed a gene expression analysis of selected immune-related genes and we profiled its transcriptome 14 days post infection (dpi). All tested genes showed clear differentiations in expression levels while most of them were up-regulated 14 dpi suggesting that their role is not limited in early antiviral responses, but they are also implicated in disease persistence. To gain a better understanding of the fish that survived the acute infection but still maintained a high viral load, we studied the differential expression of 124 up-regulated and 48 down-regulated genes in D. labrax head kidney, at 14 dpi. Concluding, the NNV virus persistent profile was assessed in D. labrax, where immune-related gene modification was intense (14 dpi) and the head kidney transcriptome profile at this time point offered a glimpse into host attempts to control the infection in asymptomatic carriers.
Collapse
Affiliation(s)
- Dimitra K. Toubanaki
- Immunology of Infection Group, Department of Microbiology, Hellenic Pasteur Institute, 11521 Athens, Greece; (D.K.T.); (A.E.); (O.-P.T.)
| | - Antonia Efstathiou
- Immunology of Infection Group, Department of Microbiology, Hellenic Pasteur Institute, 11521 Athens, Greece; (D.K.T.); (A.E.); (O.-P.T.)
| | - Odysseas-Panagiotis Tzortzatos
- Immunology of Infection Group, Department of Microbiology, Hellenic Pasteur Institute, 11521 Athens, Greece; (D.K.T.); (A.E.); (O.-P.T.)
| | - Michail-Aggelos Valsamidis
- Department of Marine Sciences, School of the Environment, University of the Aegean, University Hill, Lesvos, 81100 Mytilene, Greece; (M.-A.V.); (V.B.)
| | | | - Vasileios Bakopoulos
- Department of Marine Sciences, School of the Environment, University of the Aegean, University Hill, Lesvos, 81100 Mytilene, Greece; (M.-A.V.); (V.B.)
| | - Evdokia Karagouni
- Immunology of Infection Group, Department of Microbiology, Hellenic Pasteur Institute, 11521 Athens, Greece; (D.K.T.); (A.E.); (O.-P.T.)
| |
Collapse
|
4
|
Moreno P, Gemez-Mata J, Alvarez-Torres D, Garcia-Rosado E, Bejar J, Alonso MC. Genomic characterization and transcription analysis of European sea bass (Dicentrarchus labrax) rtp3 genes. Mol Immunol 2023; 163:243-248. [PMID: 37879238 DOI: 10.1016/j.molimm.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/03/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023]
Abstract
Fish RTP3, belonging to the receptor-transporting protein family, display several functions, including a putative antiviral role as virus-responsive gene. In this work, we have identified and characterized two different European sea bass rtp3 genes. In addition, an in vivo transcription analysis in response to LPS, poly I:C and betanodavirus infection (RGNNV genotype) has been performed. The sequence analysis showed that European sea bass displays two rtp3 genes, X1 and X2, composed of two exons and a single intron (1007-bp and 888-bp long, respectively), located within the ORF sequence. The full-length cDNA is 1969 bp for rtp3 X1, and 1491 bp for rtp3 X2. Several ATTTA motifs have been found in the intron sequence of both genes, whereas rtp3 X1 also contains this motif in both untranslated regions. The transcription analyses revealed significant level of rtp3 X2 mRNA in brain and head kidney after LPS and poly I:C inoculation; however, the induction elicited by RGNNV infection was much higher, suggesting an essential role for this protein in controlling NNV infections.
Collapse
Affiliation(s)
- Patricia Moreno
- Universidad de Málaga, Instituto de Biotecnología y Desarrollo Azul (IBYDA), Departamento de Microbiología, Facultad de Ciencias, 29071 Málaga, Spain
| | - Juan Gemez-Mata
- Universidad de Málaga, Instituto de Biotecnología y Desarrollo Azul (IBYDA), Departamento de Microbiología, Facultad de Ciencias, 29071 Málaga, Spain
| | - Daniel Alvarez-Torres
- Universidad de Málaga, Instituto de Biotecnología y Desarrollo Azul (IBYDA), 29071 Málaga, Spain
| | - Esther Garcia-Rosado
- Universidad de Málaga, Instituto de Biotecnología y Desarrollo Azul (IBYDA), Departamento de Microbiología, Facultad de Ciencias, 29071 Málaga, Spain
| | - Julia Bejar
- Universidad de Málaga, Instituto de Biotecnología y Desarrollo Azul (IBYDA), Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, 29071 Málaga, Spain
| | - M Carmen Alonso
- Universidad de Málaga, Instituto de Biotecnología y Desarrollo Azul (IBYDA), Departamento de Microbiología, Facultad de Ciencias, 29071 Málaga, Spain.
| |
Collapse
|
5
|
Immune Activation Following Vaccination of Streptococcus iniae Bacterin in Asian Seabass ( Lates calcarifer, Bloch 1790). Vaccines (Basel) 2023; 11:vaccines11020351. [PMID: 36851232 PMCID: PMC9963699 DOI: 10.3390/vaccines11020351] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
Juvenile Asian seabass (Lates calcarifer) (body weight 10 ± 0.7 g) were intraperitoneally injected with 1012 CFU fish-1 of formalin-killed Streptococcus iniae. The protective efficacy of the vaccine on survival and infection rate was assessed upon challenge at 4, 8, 12, 20, and 28 weeks post-vaccination. The results revealed that the challenged vaccinated fish showed no mortality at all time points, and the control fish presented 10-43.33% mortality. The infection rate at 2 weeks post-challenge was 0-13.33% in the vaccinated fish and 30-82.35% in the control group. At 8 weeks post-vaccination, the vaccinated fish showed comparable ELISA antibody levels with the control; however, the antibody levels of the vaccinated fish increased significantly after the challenge (p < 0.05), suggesting the presence of an adaptive response. Innate immune genes, including MHC I, MHC II, IL-1β, IL-4/13B, and IL-10, were significantly upregulated at 12 h post-challenge in the vaccinated fish but not in the control. In summary, vaccination with S. iniae bacterin provided substantial protection by stimulating the innate and specific immune responses of Asian seabass against S. iniae infection.
Collapse
|
6
|
Valsamidis MA, White DM, Kokkoris GD, Bakopoulos V. Immune response of European sea bass (Dicentrarchus labrax L.) against combination of antigens from three different pathogens. Vet Immunol Immunopathol 2023; 256:110535. [PMID: 36621058 DOI: 10.1016/j.vetimm.2022.110535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
Three of the most important diseases of Mediterranean intensive European sea bass farming are, viral nervous necrosis (VNN) caused by the red grouper nervous necrosis virus (RGNNV) genotype of b-nodavirus, photobacteriosis caused by Photobacterium damselae subsp. piscicida (Phdp) and vibriosis caused mainly by the O1 serotype of Vibrio anguillarum (VaO1). Prevention against these diseases is performed through vaccination with a monovalent vaccine against the viral disease and, usually, with bivalent vaccines against the bacterial diseases. However, it is very difficult to program two vaccinations during the same season for the same fish stock and producers are forced to either vaccinate for the viral or the bacterial diseases or to perform double vaccination with both vaccines, without any prior knowledge on any interactions that may occur due to the plethora of antigens (Ag) injected. Ideally, therefore, a trivalent vaccine should be developed against all three diseases. The objective of this work was to analyse the immune response of sea bass against combinations of Ags from all three pathogens, namely viral particles, Phdp whole cells (WC), lipopolysaccharide (LPS), capsular polysaccharide (CPS) and extracellular products (ECPs) and VaO1 WC and ECPs in respect to the identification of any phenomena of immunodominance/immunosuppression between Ags with a view to select candidate Ags for inclusion in a trivalent vaccine formulation. Eight triplicate groups of fish were immunized with different combinations of the aforementioned Ags and another triplicate group served as negative control. Blood serum was isolated at various time-points post-immunization for the measurement of specific antibodies against each Ag and, in addition, leucocytes were isolated at day 29 post-immunization for analysis of various cellular activities. Results indicated that best levels of specific a-NNV virus antibodies (Abs) were produced when VaO1 ECPs were not included in the Ag combinations, in contrast to the leucocytes proliferation assay where best stimulation against NNV Ags was measured when VaO1 ECPs were present in Ag combinations. VaO1 ECPs apparently is a strong immunogen for both humoral and cellular responses but suppresses immunological reactions against the other Ags.VaO1 WC, Phdp LPS and ECPs raised good humoral immune responses in the groups with best responses against VNN Ags, but only VaO1 WC and Phdp ECPs provided good stimulation of leucocytes, with Phdp WC and CPS effecting either similar stimulation with untrained leucocytes (control groups) or down-stimulation. Results are discussed with a view to select Ags from all three pathogens for inclusion in trivalent vaccine against all three pathogens.
Collapse
Affiliation(s)
- Michail-Aggelos Valsamidis
- Department of Marine Sciences, School of The Environment, University of The Aegean, University Hill, Mytilene 81100, Lesvos, Greece.
| | - Daniella-Mari White
- Department of Marine Sciences, School of The Environment, University of The Aegean, University Hill, Mytilene 81100, Lesvos, Greece
| | - Giorgos D Kokkoris
- Department of Marine Sciences, School of The Environment, University of The Aegean, University Hill, Mytilene 81100, Lesvos, Greece
| | - Vasileios Bakopoulos
- Department of Marine Sciences, School of The Environment, University of The Aegean, University Hill, Mytilene 81100, Lesvos, Greece
| |
Collapse
|
7
|
Carbonara P, Alfonso S, Zupa W, Manfrin A, Fiocchi E, Buratin A, Bertazzo V, Cammarata M, Spedicato MT, Lembo G. Investigating the physiological response and antibody concentration of gilthead sea bream (Sparus aurata) following Vibrio anguillarum vaccination depending on the stress coping style. FRONTIERS IN ANIMAL SCIENCE 2022. [DOI: 10.3389/fanim.2022.951179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Stress coping styles (SCSs) are defined as coherent sets of individual physiological and behavioral differences in stress response consistent across time and context and are described in a wide range of taxa, including fishes. These differences in behavior and physiology are of great interest because they may have direct implications on animal health, welfare, and performance in farming systems, including aquaculture. In this study, the physiological responses of sea bream (Sparus aurata) from different SCSs following Vibrio anguillarum vaccination were monitored. Fish were first screened either bold or shy (proxy of proactive and reactive SCSs, respectively) using group risk-taking tests and were then injected with a vaccine against V. anguillarum. Following vaccination, the fish were implanted with an accelerometer tag to monitor their swimming activity (proxy of energy expenditure), and blood sampling was carried out to measure health and welfare parameters (e.g., cortisol, glucose, hemoglobin) and aspecific immunity (e.g., protease, total proteins). In addition, blood was also collected at three different sampling times to screen antibody levels and, thus, to evaluate the efficiency of the vaccine. Following vaccination, bold fish displayed lower swimming activity values, indicative of lower energy expenditure, and also displayed higher levels of hematocrit, total proteins, and lysozyme in the plasma than the shy ones, which could be indicative of better health/welfare status and greater aspecific immunity. Finally, the V. anguillarum vaccination appeared to be more efficient in bold fish since the number of total antibodies was found higher than in shy fish 1 month after vaccination. Such results could help improve both health/welfare and productivity of farmed sea breams by selecting more robust fish, better adapted to farming conditions.
Collapse
|
8
|
Fish Innate Immune Response to Viral Infection-An Overview of Five Major Antiviral Genes. Viruses 2022; 14:v14071546. [PMID: 35891526 PMCID: PMC9317989 DOI: 10.3390/v14071546] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/29/2022] [Accepted: 07/11/2022] [Indexed: 12/11/2022] Open
Abstract
Fish viral diseases represent a constant threat to aquaculture production. Thus, a better understanding of the cellular mechanisms involved in establishing an antiviral state associated with protection against virus replication and pathogenesis is paramount for a sustainable aquaculture industry. This review summarizes the current state of knowledge on five selected host innate immune-related genes in response to the most relevant viral pathogens in fish farming. Viruses have been classified as ssRNA, dsRNA, and dsDNA according to their genomes, in order to shed light on what those viruses may share in common and what response may be virus-specific, both in vitro (cell culture) as well as in vivo. Special emphasis has been put on trying to identify markers of resistance to viral pathogenesis. That is, those genes more often associated with protection against viral disease, a key issue bearing in mind potential applications into the aquaculture industry.
Collapse
|
9
|
Lama R, Pereiro P, Figueras A, Novoa B. Zebrafish as a Vertebrate Model for Studying Nodavirus Infections. Front Immunol 2022; 13:863096. [PMID: 35401537 PMCID: PMC8987509 DOI: 10.3389/fimmu.2022.863096] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/02/2022] [Indexed: 11/13/2022] Open
Abstract
Nervous necrosis virus (NNV) is a neurotropic pathogenic virus affecting a multitude of marine and freshwater fish species that has a high economic impact on aquaculture farms worldwide. Therefore, the development of new tools and strategies aimed at reducing the mortality caused by this virus is a pivotal need. Although zebrafish is not considered a natural host for NNV, the numerous experimental advantages of this species make zebrafish an attractive model for studying different aspects of the disease caused by NNV, viral encephalopathy and retinopathy (VER). In this work, we established the best way and age to infect zebrafish larvae with NNV, obtaining significant mortalities in 3-day-postfertilization larvae when the virus was inoculated directly into the brain or by intramuscular microinjection. As occurs in naturally susceptible fish species, we confirmed that after intramuscular injection the virus was able to migrate to the central nervous system (CNS). As expected, due to the severe damage that this virus causes to the CNS, alterations in the swimming behavior of the zebrafish larvae were also observed. Taking advantage of the existence of transgenic fluorescent zebrafish lines, we were able to track the migration of different innate immune cells, mainly neutrophils, to the site of infection with NNV via the brain. However, we did not observe colocalization between the viral particles and neutrophils. RNA-Seq analysis of NNV-infected and uninfected larvae at 1, 3 and 5 days postinfection (dpi) revealed a powerful modulation of the antiviral immune response, especially at 5 dpi. We found that this response was dominated by, though not restricted to, the type I interferon system, the major defence mechanism in the innate immune response against viral pathogens. Therefore, as zebrafish larvae are able to develop the main characteristic of NNV infection and respond with an efficient immune arsenal, we confirmed the suitability of zebrafish larvae for modelling VER disease and studying different aspects of NNV pathogenesis, immune response and screening of antiviral drugs.
Collapse
|
10
|
Early Immune Modulation in European Seabass (Dicentrarchus labrax) Juveniles in Response to Betanodavirus Infection. FISHES 2022. [DOI: 10.3390/fishes7020063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The early host–pathogen interaction between European seabass (Dicentrarchus labrax) and Betanodavirus was examined by using juvenile fish infected intramuscularly with RGNNV (red-spotted grouper nervous necrosis virus). The time course selected for sampling (0–144 h post-infection (hpi)) covered the early stages of infection, with hematological, antioxidant and immunological responses examined. Early activation of the host’s immune system was seen in the first few hours post-infection (6 to 9 hpi), as evidenced by an increase in tnfα, cd28 and c3 expression in the head kidney of infected fish. Most hematological parameters that were examined showed significant differences between sampling times, including differences in the number of thrombocytes and various leukocyte populations. The plasma lysozyme concentration decreased significantly over the course of the trial, and most antioxidant parameters examined in the liver showed significant differences over the infection period. At 144 hpi, peak expression of tnfα and il-1β coincided with the appearance of disease symptoms, peak levels of virus in the brain and high levels of fish mortality. The results of the study show the importance of analyzing the early interactions between European seabass and Betanodavirus to establish early indicators of infection to prevent more severe outcomes of the infection from occurring.
Collapse
|
11
|
VNN disease and status of breeding for resistance to NNV in aquaculture. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2021.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
12
|
Genomic Predictions of Phenotypes and Pseudo-Phenotypes for Viral Nervous Necrosis Resistance, Cortisol Concentration, Antibody Titer and Body Weight in European Sea Bass. Animals (Basel) 2022; 12:ani12030367. [PMID: 35158690 PMCID: PMC8833701 DOI: 10.3390/ani12030367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/27/2022] [Accepted: 01/30/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Selective breeding programs based on genomic data are still not a common practice in aquaculture, although genomic selection has been widely demonstrated to be advantageous when trait phenotyping is a difficult task. In this study, we investigated the accuracy of predicting the phenotype and the estimated breeding value (EBV) of three Bayesian models and a Random Forest algorithm exploiting the information of a genome-wide SNP panel for European sea bass. The genomic predictions were developed for mortality caused by viral nervous necrosis, post-stress cortisol concentration, antibody titer against nervous necrosis virus and body weight. Selective breeding based on genomic data is a possible option for improving these traits while overcoming difficulties related to individual phenotyping of the investigated traits. Our results evidenced that the EBV used as a pseudo-phenotype enhances the predictive performances of genomic models, and that EBV can be predicted with satisfactory accuracy. The genomic prediction of the EBV for mortality might also be used to classify the phenotype for the same trait. Abstract In European sea bass (Dicentrarchus labrax L.), the viral nervous necrosis mortality (MORT), post-stress cortisol concentration (HC), antibody titer (AT) against nervous necrosis virus and body weight (BW) show significant heritability, which makes selective breeding a possible option for their improvement. An experimental population (N = 650) generated by a commercial broodstock was phenotyped for the aforementioned traits and genotyped with a genome-wide SNP panel (16,075 markers). We compared the predictive accuracies of three Bayesian models (Bayes B, Bayes C and Bayesian Ridge Regression) and a machine-learning method (Random Forest). The prediction accuracy of the EBV for MORT was approximately 0.90, whereas the prediction accuracies of the EBV and the phenotype were 0.86 and 0.21 for HC, 0.79 and 0.26 for AT and 0.71 and 0.38 for BW. The genomic prediction of the EBV for MORT used to classify the phenotype for the same trait showed moderate classification performance. Genome-wide association studies confirmed the polygenic nature of MORT and demonstrated a complex genetic structure for HC and AT. Genomic predictions of the EBV for MORT could potentially be used to classify the phenotype of the same trait, though further investigations on a larger experimental population are needed.
Collapse
|
13
|
Venkata Satyanarayana N, Makesh M, Sain A, Jayaprakash N, Kailasam M, Vijayan K. Non-lethal screening of Asian seabass (Lates calcarifer) by monoclonal antibody based indirect enzyme linked immunosorbent assay for viral nervous necrosis. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2021; 2:100011. [DOI: 10.1016/j.fsirep.2021.100011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 11/28/2022] Open
|
14
|
Chérif N, Amdouni F, Bessadok B, Tagorti G, Sadok S. Chitosan Treatment of E-11 Cells Modulates Transcription of Nonspecific Immune Genes and Reduces Nodavirus Capsid Protein Gene Expression. Animals (Basel) 2021; 11:3097. [PMID: 34827829 PMCID: PMC8614572 DOI: 10.3390/ani11113097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/09/2021] [Indexed: 11/16/2022] Open
Abstract
This study explores whether crustacean products inhibit viral infections in aquaculture. Chitosan (CHT) was extracted from waste products of Parapenaeus longirostris. Biochemical composition, viscosity measurement, molecular weight, structure and cytotoxicity tests were used to characterize the extracted chitosan. Cultures of E-11 cells derived from snakehead Ophicephalus striatus were inoculated with 106.74 TCID50 of an isolate of betanodavirus genotype RGNNV (redspotted grouper nervous necrosis virus) after being treated with solutions of 0.3% CHT for 1 h at room temperature. The antiviral effect of CHT was assessed by comparing the ability of RGNVV to replicate and produce cytopathic effects on CHT-treated cell cultures. The change in RNA expression levels of the nodavirus capsid protein gene and three mediator genes in infected cells with or without CHT treatment was evaluated by qPCR. Changes in gene expression compared to control groups were monitored at 6, 24, 48 and 71 h post treatment in all target gene transcripts. The CCR3 expression in CHT treated cells showed a significant increase (p < 0.05) until day 3. On the other hand, the expression of TNF-α decreased significantly (p < 0.05) in CHT treated cells throughout the experimental period. Likewise, the expression of the IL-10 gene showed a significant downregulation in CHT treated cells at all time points (p ≤ 0.05). As further evidence of an antiviral effect, CHT treatment of cells produced a reduction in virus load as measured by a reduced expression of the viral capsid gene and the increase in RQ values from 406 ± 1.9 at hour 1 to 695 ± 3.27 at 72 h post inoculation. Statistical analysis showed that the expression of the viral capsid gene was significantly lower in cells treated with chitosan (p ≤ 0.05). These results improve our knowledge about the antiviral activity of this bioactive molecule and highlight its potential use in fish feed industry.
Collapse
Affiliation(s)
- Nadia Chérif
- Aquaculture Laboratory, National Institute of Sea Sciences and Technologies, 28 Rue de 2 Mars 1934, Salamboo 2025, Tunisia; (F.A.); (G.T.)
| | - Fatma Amdouni
- Aquaculture Laboratory, National Institute of Sea Sciences and Technologies, 28 Rue de 2 Mars 1934, Salamboo 2025, Tunisia; (F.A.); (G.T.)
| | - Boutheina Bessadok
- B3Aqua Laboratory, National Institute of Sea Sciences and Technologies, 28 Rue de 2 Mars 1934, Salamboo 2025, Tunisia; (B.B.); (S.S.)
| | - Ghada Tagorti
- Aquaculture Laboratory, National Institute of Sea Sciences and Technologies, 28 Rue de 2 Mars 1934, Salamboo 2025, Tunisia; (F.A.); (G.T.)
| | - Saloua Sadok
- B3Aqua Laboratory, National Institute of Sea Sciences and Technologies, 28 Rue de 2 Mars 1934, Salamboo 2025, Tunisia; (B.B.); (S.S.)
| |
Collapse
|
15
|
The sea bass Dicentrarchus labrax as a marine model species in immunology: Insights from basic and applied research. AQUACULTURE AND FISHERIES 2021. [DOI: 10.1016/j.aaf.2021.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Valero Y, González-Fernández C, Cárdenas C, Guzmán F, León R, Cuesta A. NK-lysin peptides ameliorate viral encephalopathy and retinopathy disease signs and provide partial protection against nodavirus infection in European sea bass. Antiviral Res 2021; 192:105104. [PMID: 34087253 DOI: 10.1016/j.antiviral.2021.105104] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/22/2021] [Accepted: 05/27/2021] [Indexed: 02/09/2023]
Abstract
Antimicrobial peptides (AMP) comprise a wide range of small molecules with direct antibacterial activity and immunostimulatory role and are proposed as promising substitutes of the antibiotics. Additionally, they also exert a role against other pathogens such as viruses and fungi less evaluated. NK-lysin, a human granulysin orthologue, possess a double function, taking part in the innate immunity as AMP and also as direct effector in the cell-mediated cytotoxic (CMC) response. This molecule is suggested as a pivotal molecule involved in the defence upon nervous necrosis virus (NNV), an epizootic virus provoking serious problems in welfare and health status in Asian and Mediterranean fish destined to human consumption. Having proved that NK-lysin derived peptides (NKLPs) have a direct antiviral activity against NNV in vitro, we aimed to evaluate their potential use as a prophylactic treatment for European sea bass (Dicentrarchus labrax), one of the most susceptible cultured-fish species. Thus, intramuscular injection of synthetic NKLPs resulted in a very low transcriptional response of some innate and adaptive immune markers. However, the injection of NKLPs ameliorated disease signs and increased fish survival upon challenge with pathogenic NNV. Although NKLPs showed promising results in treatments against NNV, more efforts are needed to understand their mechanisms of action and their applicability to the aquaculture industry.
Collapse
Affiliation(s)
- Yulema Valero
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain; Departamento de Microbiología y Parasitología, Instituto de Acuicultura, Universidade de Santiago de Compostela, Campus Vida, Santiago de Compostela, Spain
| | - Carmen González-Fernández
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Constanza Cárdenas
- Núcleo Biotecnología Curauma (NBC), Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Fanny Guzmán
- Núcleo Biotecnología Curauma (NBC), Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Rosa León
- Laboratorio de Bioquímica, Facultad de Ciencias Experimentales, Campus de Excelencia Internacional Del Mar (CEIMAR), Universidad de Huelva, 2110, Huelva, Spain
| | - Alberto Cuesta
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain.
| |
Collapse
|
17
|
Faggion S, Bertotto D, Babbucci M, Dalla Rovere G, Franch R, Bovolenta M, Laureau S, Pascoli F, Toffan A, Bargelloni L, Carnier P. Resistance to viral nervous necrosis in European sea bass (Dicentrarchus labrax L.): heritability and relationships with body weight, cortisol concentration, and antibody titer. Genet Sel Evol 2021; 53:32. [PMID: 33794770 PMCID: PMC8017662 DOI: 10.1186/s12711-021-00625-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/23/2021] [Indexed: 11/25/2022] Open
Abstract
Background Susceptibility of European sea bass (Dicentrarchus labrax L.) to viral nervous necrosis (VNN) is well-known. Interest towards selective breeding as a tool to enhance genetic resistance in this species has increased sharply due to the major threat represented by VNN for farmed sea bass and limitations concerning specific therapeutical measures. A sea bass experimental population (N = 650) was challenged with nervous necrosis virus (NNV) to investigate genetic variation in VNN mortality. In addition, relationships of this trait with serum cortisol concentration after stress exposure, antibody titer against NNV antigens, and body weight at a fixed age were studied to identify potential indicator traits of VNN resistance. Results The estimate of heritability for VNN mortality was moderate and ranged from 0.15 (HPD95%, 95% highest posterior density interval: 0.02, 0.31) to 0.23 (HPD95%: 0.06, 0.47). Heritability estimates for cortisol concentration, antibody titer, and body weight were 0.19 (HPD95%: 0.07, 0.34), 0.36 (HPD95%: 0.16, 0.59) and 0.57 (HPD95%: 0.33, 0.84), respectively. Phenotypic relationships between traits were trivial and not statistically significant, except for the estimated correlation between antibody titer and body weight (0.24). Genetic correlations of mortality with body weight or antibody titer (− 0.39) exhibited a 0.89 probability of being negative. A negligible genetic correlation between mortality and cortisol concentration was detected. Antibody titer was estimated to be positively correlated with body weight (0.49). Conclusions Antibody titer against NNV offers the opportunity to use indirect selection to enhance resistance, while the use of cortisol concentration as an indicator trait in breeding programs for VNN resistance is questionable. The estimate of heritability for VNN mortality indicates the feasibility of selective breeding to enhance resistance to NNV and raises attention to the development of genomic prediction tools to simplify testing procedures for selection candidates.
Collapse
Affiliation(s)
- Sara Faggion
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Legnaro, PD, Italy
| | - Daniela Bertotto
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Legnaro, PD, Italy.
| | - Massimiliano Babbucci
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Legnaro, PD, Italy
| | - Giulia Dalla Rovere
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Legnaro, PD, Italy
| | - Rafaella Franch
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Legnaro, PD, Italy
| | | | | | - Francesco Pascoli
- Istituto Zooprofilattico Sperimentale Delle Venezie, National Reference Laboratory (NRL) for Diseases of Fish, Mollusk and Crustacean, Legnaro, PD, Italy
| | - Anna Toffan
- Istituto Zooprofilattico Sperimentale Delle Venezie, National Reference Laboratory (NRL) for Diseases of Fish, Mollusk and Crustacean, Legnaro, PD, Italy
| | - Luca Bargelloni
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Legnaro, PD, Italy
| | - Paolo Carnier
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Legnaro, PD, Italy
| |
Collapse
|
18
|
Seibel H, Baßmann B, Rebl A. Blood Will Tell: What Hematological Analyses Can Reveal About Fish Welfare. Front Vet Sci 2021; 8:616955. [PMID: 33860003 PMCID: PMC8042153 DOI: 10.3389/fvets.2021.616955] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/10/2021] [Indexed: 01/11/2023] Open
Abstract
Blood analyses provide substantial information about the physiological aspects of animal welfare assessment, including the activation status of the neuroendocrine and immune system, acute and long-term impacts due to adverse husbandry conditions, potential diseases, and genetic predispositions. However, fish blood is still not routinely analyzed in research or aquaculture for the assessment of health and/or welfare. Over the years, the investigative techniques have evolved from antibody-based or PCR-based single-parameter analyses to now include transcriptomic, metabolomic, and proteomic approaches and from hematological observations to fluorescence-activated blood cell sorting in high-throughput modes. The range of testing techniques established for blood is now broader than for any other biogenic test material. Evaluation of the particular characteristics of fish blood, such as its cell composition, the nucleation of distinct blood cells, or the multiple isoforms of certain immune factors, requires adapted protocols and careful attention to the experimental designs and interpretation of the data. Analyses of fish blood can provide an integrated picture of the endocrine, immunological, reproductive, and genetic functions under defined environmental conditions and treatments. Therefore, the scarcity of high-throughput approaches using fish blood as a test material for fish physiology studies is surprising. This review summarizes the wide range of techniques that allow monitoring of informative fish blood parameters that are modulated by different stressors, conditions, and/or treatments. We provide a compact overview of several simple plasma tests and of multiparametric analyses of fish blood, and we discuss their potential use in the assessment of fish welfare and pathologies.
Collapse
Affiliation(s)
- Henrike Seibel
- Institute of Animal Breeding and Husbandry, Christian-Albrechts-University, Kiel, Germany
- Gesellschaft für Marine Aquakultur mbH (GMA), Büsum, Germany
| | - Björn Baßmann
- Department of Aquaculture and Sea-Ranching, Faculty of Agricultural and Environmental Science, University of Rostock, Rostock, Germany
| | - Alexander Rebl
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| |
Collapse
|
19
|
Picchietti S, Miccoli A, Fausto AM. Gut immunity in European sea bass (Dicentrarchus labrax): a review. FISH & SHELLFISH IMMUNOLOGY 2021; 108:94-108. [PMID: 33285171 DOI: 10.1016/j.fsi.2020.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
In this review, we summarize and discuss the trends and supporting findings in scientific literature on the gut mucosa immune role in European sea bass (Dicentrarchus labrax L.). Overall, the purpose is to provide an updated overview of the gastrointestinal tract functional regionalization and defence barriers. A description of the available information regarding immune cells found in two immunologically-relevant intestinal compartments, namely epithelium and lamina propria, is provided. Attention has been also paid to mucosal immunoglobulins and to the latest research investigating gut microbiota and dietary manipulation impacts. Finally, we review oral vaccination strategies, as a safe method for sea bass vaccine delivery.
Collapse
Affiliation(s)
- S Picchietti
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy.
| | - A Miccoli
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy
| | - A M Fausto
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy
| |
Collapse
|
20
|
Moreno P, Gemez-Mata J, Garcia-Rosado E, Bejar J, Labella AM, Souto S, Alonso MC. Differential immunogene expression profile of European sea bass (Dicentrarchus labrax, L.) in response to highly and low virulent NNV. FISH & SHELLFISH IMMUNOLOGY 2020; 106:56-70. [PMID: 32702480 DOI: 10.1016/j.fsi.2020.06.052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 06/11/2023]
Abstract
European sea bass is highly susceptible to the nervous necrosis virus, RGNNV genotype, whereas natural outbreaks caused by the SJNNV genotype have not been recorded. The onset and severity of an infectious disease depend on pathogen virulence factors and the host immune response. The importance of RGNNV capsid protein amino acids 247 and 270 as virulence factors has been previously demonstrated in European sea bass; however, sea bass immune response against nodaviruses with different levels of virulence has been poorly characterized. Knowing the differences between the immune response against both kinds of isolates may be key to get more insight into the host mechanisms responsible for NNV virulence. For this reason, this study analyses the transcription of immunogenes differentially expressed in European sea bass inoculated with nodaviruses with different virulence: a RGNNV virus obtained by reverse genetics (rDl956), highly virulent to sea bass, and a mutated virus (Mut247+270Dl956, RGNNV virus displaying SJNNV-type amino acids at positions 247 and 270 of the capsid protein), presenting lower virulence. This study has been performed in brain and head kidney, and the main differences between the immunogene responses triggered by both viruses have been observed in brain. The immunogene response in this organ is stronger after inoculation with the most virulent virus, and the main differences involved genes related with IFN I system, inflammatory response, cell-mediated response, and apoptosis. The lower virulence of Mut247+270Dl956 to European sea bass can be associated with a delayed IFN I response, as well as an early and transitory inflammation and cell-mediated responses, suggesting that those can be pivotal elements in controlling the viral infection, and therefore, their functional activity could be analysed in future studies. In addition, this study supports the role of capsid amino acids at positions 247 and 270 as important determinants of RGNNV virulence to European sea bass.
Collapse
Affiliation(s)
- Patricia Moreno
- Universidad de Málaga, Instituto de Biotecnología y Desarrollo Azul, IBYDA, Departamento de Microbiología, Facultad de Ciencias, 29071, Málaga, Spain
| | - Juan Gemez-Mata
- Universidad de Málaga, Instituto de Biotecnología y Desarrollo Azul, IBYDA, Departamento de Microbiología, Facultad de Ciencias, 29071, Málaga, Spain
| | - Esther Garcia-Rosado
- Universidad de Málaga, Instituto de Biotecnología y Desarrollo Azul, IBYDA, Departamento de Microbiología, Facultad de Ciencias, 29071, Málaga, Spain
| | - Julia Bejar
- Universidad de Málaga, Instituto de Biotecnología y Desarrollo Azul, IBYDA, Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, 29071, Málaga, Spain
| | - Alejandro M Labella
- Universidad de Málaga, Instituto de Biotecnología y Desarrollo Azul, IBYDA, Departamento de Microbiología, Facultad de Ciencias, 29071, Málaga, Spain
| | - Sandra Souto
- Departamento de Microbiología y Parasitología, Instituto de Acuicultura, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - M Carmen Alonso
- Universidad de Málaga, Instituto de Biotecnología y Desarrollo Azul, IBYDA, Departamento de Microbiología, Facultad de Ciencias, 29071, Málaga, Spain.
| |
Collapse
|
21
|
Chen YM, Tan CS, Wang TY, Hwong CL, Chen TY. Characterization of betanodavirus quasispecies influences on the subcellular localization and expression of tumor necrosis factor (TNF). FISH & SHELLFISH IMMUNOLOGY 2020; 103:332-341. [PMID: 32446969 DOI: 10.1016/j.fsi.2020.05.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/06/2020] [Accepted: 05/12/2020] [Indexed: 06/11/2023]
Abstract
The aim of this study was to investigate the influence of variant coat proteins (CPs) from different quasispecies of betanodavirus on diverse aspects of nodavirus-induced pathogenesis. It is known that variant CPs can acquire either nuclear or cytoplasmic localization, depending on the nodavirus CP genotype, and this variation may arise during viral replication and influence the regulation of host and viral gene transcription. To investigate the role of these variant CPs in pathogenesis, six variant CP expression plasmids were constructed, each containing different quasispecies CP variants from nodavirus genotype red spotted grouper nervous necrosis virus (RGNNV). The CP expression plasmids were transiently transfected into grouper GF-1 cells. At different times, the cell cycle and cell proliferation were assayed using flow cytometry and methyl thiazolyl tetrazolium (MTT) assays, respectively. The proportion of G2/M-phase GF-1 cells transfected with CP expression plasmids was higher than that of cells transfected with the blank plasmid, especially in regards to quasispecies 2 (QS2). The proliferation ratio of cells transfected with the CP expression plasmids was significantly higher than that of cells transfected with the blank plasmid, with the exception of QS6. We also found that the different quasispecies CPs downregulated the promoter activity of the tumor necrosis factor (TNF) gene to different degrees. In addition, this is the first report showing the betanodavirus CP derived from different quasispecies of RGNNV provide evidence of a chronically nodavirus-infected grouper. Overall, this study represents the first comprehensive analysis of variant CPs from grouper with persistent nodavirus infections and their effects on different aspects of pathogenesis.
Collapse
Affiliation(s)
- Young-Mao Chen
- Laboratory of Molecular Genetics, Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan; Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan; Agriculture Biotechnology Research Center, National Cheng Kung University, Tainan, Taiwan; Bachelor Degree Program in Marine Biotechnology, College of Life Sciences, National Taiwan Ocean University, Keelung, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| | - Chor Siong Tan
- Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Ting-Yu Wang
- Laboratory of Molecular Genetics, Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan; Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan; Agriculture Biotechnology Research Center, National Cheng Kung University, Tainan, Taiwan; Translational Center for Marine Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Ching-Long Hwong
- Department of Marine Biotechnology, National Kaohsiung University of Science and Technology, Kaohsung, Taiwan.
| | - Tzong-Yueh Chen
- Laboratory of Molecular Genetics, Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan; Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan; Agriculture Biotechnology Research Center, National Cheng Kung University, Tainan, Taiwan; Translational Center for Marine Biotechnology, National Cheng Kung University, Tainan, Taiwan; University Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
22
|
Potential Involvement of lncRNAs in the Modulation of the Transcriptome Response to Nodavirus Challenge in European Sea Bass ( Dicentrarchus labrax L.). BIOLOGY 2020; 9:biology9070165. [PMID: 32679770 PMCID: PMC7407339 DOI: 10.3390/biology9070165] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 12/14/2022]
Abstract
Long noncoding RNAs (lncRNAs) are being increasingly recognised as key modulators of various biological mechanisms, including the immune response. Although investigations in teleosts are still lagging behind those conducted in mammals, current research indicates that lncRNAs play a pivotal role in the response of fish to a variety of pathogens. During the last several years, interest in lncRNAs has increased considerably, and a small but notable number of publications have reported the modulation of the lncRNA profile in some fish species after pathogen challenge. This study was the first to identify lncRNAs in the commercial species European sea bass. A total of 12,158 potential lncRNAs were detected in the head kidney and brain. We found that some lncRNAs were not common for both tissues, and these lncRNAs were located near coding genes that are primarily involved in tissue-specific processes, reflecting a degree of cellular specialisation in the synthesis of lncRNAs. Moreover, lncRNA modulation was analysed in both tissues at 24 and 72 h after infection with nodavirus. Enrichment analysis of the neighbouring coding genes of the modulated lncRNAs revealed many terms related to the immune response and viral infectivity but also related to the stress response. An integrated analysis of the lncRNAs and coding genes showed a strong correlation between the expression of the lncRNAs and their flanking coding genes. Our study represents the first systematic identification of lncRNAs in European sea bass and provides evidence regarding the involvement of these lncRNAs in the response to nodavirus.
Collapse
|
23
|
Lama R, Pereiro P, Valenzuela-Muñoz V, Gallardo-Escárate C, Tort L, Figueras A, Novoa B. RNA-Seq analysis of European sea bass (Dicentrarchus labrax L.) infected with nodavirus reveals powerful modulation of the stress response. Vet Res 2020; 51:64. [PMID: 32398117 PMCID: PMC7218500 DOI: 10.1186/s13567-020-00784-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/16/2020] [Indexed: 12/15/2022] Open
Abstract
Nodavirus, or nervous necrosis virus (NNV), is the causative agent of viral encephalopathy and retinopathy (VER), a severe disease affecting numerous fish species worldwide. European sea bass, a cultured species of great economic importance, is highly susceptible to the disease. To better understand the response of this organism to NNV, we conducted RNA-Seq analysis of the brain and head kidney from experimentally infected and uninfected sea bass juveniles at 24 and 72 hours post-infection (hpi). Contrary to what was expected, we observed modest modulation of immune-related genes in the brain, the target organ of this virus, and some of these genes were even downregulated. However, genes involved in the stress response showed extremely high modulation. Accordingly, the genes encoding the enzymes implicated in the synthesis of cortisol were almost the only overexpressed genes in the head kidney at 24 hpi. This stress response was attenuated after 72 h in both tissues, and a progressive immune response against the virus was mounted. Moreover, experiments were conducted to determine how stress activation could impact NNV replication. Our results show the complex interplay between viral activity, the stress reaction and the immune response.
Collapse
Affiliation(s)
- Raquel Lama
- Institute of Marine Research (IIM), National Research Council (CSIC), Eduardo Cabello, 6, 36208, Vigo, Spain
| | - Patricia Pereiro
- Institute of Marine Research (IIM), National Research Council (CSIC), Eduardo Cabello, 6, 36208, Vigo, Spain.,Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, P.O. Box 160, Concepción, Chile
| | - Valentina Valenzuela-Muñoz
- Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, P.O. Box 160, Concepción, Chile
| | - Cristian Gallardo-Escárate
- Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, P.O. Box 160, Concepción, Chile
| | - Lluis Tort
- Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona, 08193, Barcelona, Spain
| | - Antonio Figueras
- Institute of Marine Research (IIM), National Research Council (CSIC), Eduardo Cabello, 6, 36208, Vigo, Spain
| | - Beatriz Novoa
- Institute of Marine Research (IIM), National Research Council (CSIC), Eduardo Cabello, 6, 36208, Vigo, Spain.
| |
Collapse
|
24
|
Betanodavirus and VER Disease: A 30-year Research Review. Pathogens 2020; 9:pathogens9020106. [PMID: 32050492 PMCID: PMC7168202 DOI: 10.3390/pathogens9020106] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/22/2020] [Accepted: 02/04/2020] [Indexed: 12/18/2022] Open
Abstract
The outbreaks of viral encephalopathy and retinopathy (VER), caused by nervous necrosis virus (NNV), represent one of the main infectious threats for marine aquaculture worldwide. Since the first description of the disease at the end of the 1980s, a considerable amount of research has gone into understanding the mechanisms involved in fish infection, developing reliable diagnostic methods, and control measures, and several comprehensive reviews have been published to date. This review focuses on host–virus interaction and epidemiological aspects, comprising viral distribution and transmission as well as the continuously increasing host range (177 susceptible marine species and epizootic outbreaks reported in 62 of them), with special emphasis on genotypes and the effect of global warming on NNV infection, but also including the latest findings in the NNV life cycle and virulence as well as diagnostic methods and VER disease control.
Collapse
|
25
|
Miccoli A, Saraceni PR, Scapigliati G. Vaccines and immune protection of principal Mediterranean marine fish species. FISH & SHELLFISH IMMUNOLOGY 2019; 94:800-809. [PMID: 31580938 DOI: 10.1016/j.fsi.2019.09.065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/25/2019] [Accepted: 09/28/2019] [Indexed: 06/10/2023]
Abstract
This review describes and summarizes the knowledge on established and experimental vaccines developed against viral and bacterial pathologies affecting the most important farmed marine finfish species present in the Mediterranean area, namely European seabass Dicentrarchus labrax, sea bream Sparus aurata, turbot Psetta maxima and meagre Argyrosomus regius. The diseases that have been recorded in seabass, sea bream and meagre are caused by bacteria Vibrio anguillarum, Photobacterium damselae, Tenacibaculum maritimum as well as by viruses such as Viral Encephalopathy and Retinopathy/Viral Nervous Necrosis and Lymphocystic disease. The main pathologies of turbot are instead bacteriosis provoked by Tenacibaculum maritimum, Aeromonas sp. and Vibrio anguillarum, and virosis by viral hemorrhagic septicaemia virus. Some vaccines have been optimized and are now regularly available for the majority of the above-mentioned pathogens. A measurable immune protection has been conferred principally against Vibrio anguillarum, Photobacterium damselae sub. piscicida and VER/VNN.
Collapse
Affiliation(s)
- A Miccoli
- Department for Innovative Biology, Agro-industry and Forestry, University of Tuscia. Largo Dell'Università, 01100, Viterbo, Italy
| | - P R Saraceni
- Department for Innovative Biology, Agro-industry and Forestry, University of Tuscia. Largo Dell'Università, 01100, Viterbo, Italy
| | - G Scapigliati
- Department for Innovative Biology, Agro-industry and Forestry, University of Tuscia. Largo Dell'Università, 01100, Viterbo, Italy.
| |
Collapse
|
26
|
Buonocore F, Nuñez-Ortiz N, Picchietti S, Randelli E, Stocchi V, Guerra L, Toffan A, Pascoli F, Fausto AM, Mazzini M, Scapigliati G. Vaccination and immune responses of European sea bass (Dicentrarchus labrax L.) against betanodavirus. FISH & SHELLFISH IMMUNOLOGY 2019; 85:78-84. [PMID: 29175472 DOI: 10.1016/j.fsi.2017.11.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 10/18/2017] [Accepted: 11/22/2017] [Indexed: 05/22/2023]
Abstract
This review summarizes the available knowledge on the immune defences of European sea bass against antigenic preparations derived from the viral encephalopathy and retinopathy virus (betanodavirus), which represents a major threat to the health of this fish species. The nodavirus is widely present and differentiates into several strains that infect invertebrates (in insects, alphanodavirus) and teleost fish, and thus may represent a great problem for farmed fish species. Many efforts have been directed to discovering new immunizations to induce protection in sea bass, especially at young stages, and these efforts have included employing diverse betanodavirus strains, antigen preparation, vaccination routes, and the addition of adjuvants and/or immunostimulants. The obtained results showed that inactivated preparations of betanodavirus that were administered intraperitoneally may induce both immune recognition and protection. Attempts at performing mucosal immunization by immersion and/or oral administration, which is a vaccination route that is highly preferred for sea bass, have shown intriguing results, and more studies are necessary for its improvement. Overall, the objective of identifying a reliable vaccine that also cross-protects against different genotypes or reassortant viruses for use in European sea bass against betanodavirus appears to be an attainable goal in the near future.
Collapse
Affiliation(s)
- Francesco Buonocore
- Department for Innovation in Biological, Agrofood and Forest Systems, University of Tuscia, Viterbo, Italy.
| | - Noelia Nuñez-Ortiz
- Department for Innovation in Biological, Agrofood and Forest Systems, University of Tuscia, Viterbo, Italy
| | - Simona Picchietti
- Department for Innovation in Biological, Agrofood and Forest Systems, University of Tuscia, Viterbo, Italy
| | - Elisa Randelli
- Department for Innovation in Biological, Agrofood and Forest Systems, University of Tuscia, Viterbo, Italy
| | - Valentina Stocchi
- Department for Innovation in Biological, Agrofood and Forest Systems, University of Tuscia, Viterbo, Italy
| | - Laura Guerra
- Department for Innovation in Biological, Agrofood and Forest Systems, University of Tuscia, Viterbo, Italy
| | - Anna Toffan
- Department for Innovation in Biological, Agrofood and Forest Systems, University of Tuscia, Viterbo, Italy
| | - Francesco Pascoli
- Department for Innovation in Biological, Agrofood and Forest Systems, University of Tuscia, Viterbo, Italy
| | - Anna Maria Fausto
- Department for Innovation in Biological, Agrofood and Forest Systems, University of Tuscia, Viterbo, Italy
| | - Massimo Mazzini
- Department for Innovation in Biological, Agrofood and Forest Systems, University of Tuscia, Viterbo, Italy
| | - Giuseppe Scapigliati
- Department for Innovation in Biological, Agrofood and Forest Systems, University of Tuscia, Viterbo, Italy
| |
Collapse
|
27
|
Pascoli F, Guazzo A, Buratin A, Toson M, Buonocore F, Scapigliati G, Toffan A. Lack of in vivo cross-protection of two different betanodavirus species RGNNV and SJNNV in European sea bass Dicentrachus labrax. FISH & SHELLFISH IMMUNOLOGY 2019; 85:85-89. [PMID: 29056488 DOI: 10.1016/j.fsi.2017.10.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/20/2017] [Accepted: 10/18/2017] [Indexed: 05/19/2023]
Abstract
Viral encephalopathy and retinopathy (VER) is a severe infective disease characterized by neuropathological changes in several fish species associated with high mortality. The etiological agent is a virus belonging to the Nodaviridae family, genus Betanodavirus. To date, four different betanodavirus species have been officially recognized by International Committee on Taxonomy of Viruses (ICTV), namely the red-spotted grouper- (RGNNV), the striped jack- (SJNNV), the barfin flounder- (BFNNV) and the tiger puffer nervous necrosis virus (TPNNV). Moreover, two reassortants RGNNV/SJNNV and SJNNV/RGNNV have been described. Betanodaviruses can be classified into three different serotypes (A, B and C) that are antigenically different, so none (between serotype A and C) or partial (between serotype B and C) cross-immunoreactivity has been detected in vitro. In this study we investigated the in vivo cross-protection of the two main betanodavirus species (RGNNV and SJNNV), which belong to distinct serotype, by immunizing intraperitoneally (IP) juvenile sea bass with formalin inactivated RGNNV and SJNNV vaccines, followed by a challenge with RGNNV. Fish IP vaccinated with inactivated RGNNV showed a high protection value (85%). Serological analyses highlighted a great specific anti-NNV immunoglobulin M (IgM) production against the homologous virus, while a good seroconversion with low neutralization property was highlighted against the heterologous virus. In fish IP vaccinated with inactivated SJNNV the protection recorded was equal to 25%, significantly lower respect to the one provided by RGNNV IP vaccine. ELISA test detected good IgM production against the homologous virus, and a lower, but still detectable IgM production against the heterologous one. By contrast, serum neutralization test highlighted a poorly detectable antibody production unable to neutralize either the homologous or the heterologous virus. These results confirm that the two serotypes are not cross-protective in vivo. According to these findings, the production of multivalent formulation, or at least the provision of different types of vaccines based on both fish and virus species requirement, should be recommended in order to broaden the range of protection.
Collapse
Affiliation(s)
- Francesco Pascoli
- Istituto Zooprofilattico Sperimentale delle Venezie, National Reference Laboratory (NRL) for Diseases of Fish, Mollusk and Crustacean, Legnaro, PD, Italy.
| | - Andrea Guazzo
- Istituto Zooprofilattico Sperimentale delle Venezie, National Reference Laboratory (NRL) for Diseases of Fish, Mollusk and Crustacean, Legnaro, PD, Italy
| | - Alessandra Buratin
- Istituto Zooprofilattico Sperimentale delle Venezie, National Reference Laboratory (NRL) for Diseases of Fish, Mollusk and Crustacean, Legnaro, PD, Italy
| | - Marica Toson
- Istituto Zooprofilattico Sperimentale delle Venezie, Aquatic Animal Epidemiology Laboratory, Legnaro, PD, Italy
| | - Francesco Buonocore
- Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Viterbo, Italy
| | - Giuseppe Scapigliati
- Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Viterbo, Italy
| | - Anna Toffan
- Istituto Zooprofilattico Sperimentale delle Venezie, National Reference Laboratory (NRL) for Diseases of Fish, Mollusk and Crustacean, Legnaro, PD, Italy
| |
Collapse
|
28
|
Valero Y, Mokrani D, Chaves-Pozo E, Arizcun M, Oumouna M, Meseguer J, Esteban MÁ, Cuesta A. Vaccination with UV-inactivated nodavirus partly protects European sea bass against infection, while inducing few changes in immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 86:171-179. [PMID: 29758230 DOI: 10.1016/j.dci.2018.05.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/10/2018] [Accepted: 05/10/2018] [Indexed: 05/19/2023]
Abstract
Developing viral vaccines through the ultraviolet (UV) inactivation of virus is promising technique since it is straightforward and economically affordable, while the resulting viruses are capable of eliciting an adequate antiviral immune response. Nodavirus (NNV) is a devastating virus that mainly affects European sea bass juveniles and larvae, causing serious economic losses in Mediterranean aquaculture. In this work, a potential vaccine consisting on UV-inactivated NNV (iNNV) was generated and administered to healthy juveniles of European sea bass to elucidate whether it triggers the immune response and improves their survival upon challenge. First, iNNV failed to replicate in cell cultures and its intraperitoneal administration to sea bass juveniles also failed to produce fish mortality and induction of the type I interferon (IFN) pathway, indicating that the NNV was efficiently inactivated. By contrast, iNNV administration induced significant serum non-specific antimicrobial activity as well as a specific antiviral activity and immunoglobulin M (IgM) titres against NNV. Interestingly, few changes were observed at transcriptional level in genes related to either innate or adaptive immunity, suggesting that iNNV could be modulating the immune response at protein or functional level. In addition, the iNNV vaccinated group showed improved survival, reaching a relative survival percentage of 57.9%. Moreover, challenged fish that had been vaccinated presented increased serum antibacterial, antiviral and IgM titres, as well as the higher transcription of mhc1a, ifn, isg15 and cd8a genes in brain, while in the head-kidney the transcription of mhc1a, mhc2b and cd8a was down-regulated and mx, isg15 and tcrb was up-regulated. Although the UV-inactivated vaccine against NNV showed promising results, more effort should be addressed to improving this prophylactic method by increasing our understanding of its action mechanisms, thus enabling the mortality rate of NNV to be further reduced.
Collapse
Affiliation(s)
- Yulema Valero
- Centro Oceanográfico de Murcia, Instituto Español de Oceanografía (IEO), Carretera de la Azohía s/n, Puerto de Mazarrón, 30860 Murcia, Spain; Grupo de Marcadores Inmunológicos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Djamal Mokrani
- Institut des Sciences Vétérinaires, Unniversité de Blida 1, Algeria
| | - Elena Chaves-Pozo
- Centro Oceanográfico de Murcia, Instituto Español de Oceanografía (IEO), Carretera de la Azohía s/n, Puerto de Mazarrón, 30860 Murcia, Spain
| | - Marta Arizcun
- Centro Oceanográfico de Murcia, Instituto Español de Oceanografía (IEO), Carretera de la Azohía s/n, Puerto de Mazarrón, 30860 Murcia, Spain
| | - Mustapha Oumouna
- Faculty of Natural Science and Life, University Dr. Yahia Fares, Medea, Algeria
| | - José Meseguer
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain
| | - M Ángeles Esteban
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain
| | - Alberto Cuesta
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain.
| |
Collapse
|
29
|
Moreno P, Lopez-Jimena B, Randelli E, Scapigliati G, Buonocore F, Garcia-Rosado E, Borrego JJ, Alonso MC. Immuno-related gene transcription and antibody response in nodavirus (RGNNV and SJNNV)-infected European sea bass (Dicentrarchus labrax L.). FISH & SHELLFISH IMMUNOLOGY 2018; 78:270-278. [PMID: 29702239 DOI: 10.1016/j.fsi.2018.04.054] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/19/2018] [Accepted: 04/23/2018] [Indexed: 06/08/2023]
Abstract
The immune response of European sea bass to RGNNV and SJNNV infections has been evaluated by quantifying the transcription of some genes involved in the IFN I system, as well as in the inflammatory and adaptive immune mechanisms. The transcription of IFN-I, ISG-12, ISG-15 and MxA genes has been analyzed in brain and head kidney, showing that RGNNV genotype induces a more intense response of the IFN I system than SJNNV in both organs. In addition, the results obtained indicate the importance of the inflammatory response in nodavirus pathogenesis, with the transcription of IL-8 and TNF-α significantly higher in brain than in head kidney, being RGNNV the strongest inductor. An important difference between the immune response induced by both genotypes refers to the IgM titre in sera, which was higher in SJNNV-inoculated fish. The acquired response is also important locally, since TR-γ transcription is higher in brain than in head kidney (especially in the RGNNV-inoculated group). To our knowledge, this is the first study addressing the sea bass anti-SJNNV immune response.
Collapse
Affiliation(s)
- Patricia Moreno
- Universidad de Málaga, Departamento de Microbiología, Facultad de Ciencias, 29071 Málaga, Spain
| | - Benjamin Lopez-Jimena
- Mast Group Ltd., Mast House, Derby Road, Bootle, Merseyside, L20 1EA, England, United Kingdom
| | - Elisa Randelli
- Department for Innovation in Biological, Agrofood and Forest Systems, University of Tuscia, Viterbo, Italy
| | - Giuseppe Scapigliati
- Department for Innovation in Biological, Agrofood and Forest Systems, University of Tuscia, Viterbo, Italy
| | - Francesco Buonocore
- Department for Innovation in Biological, Agrofood and Forest Systems, University of Tuscia, Viterbo, Italy
| | - Esther Garcia-Rosado
- Universidad de Málaga, Departamento de Microbiología, Facultad de Ciencias, 29071 Málaga, Spain
| | - Juan J Borrego
- Universidad de Málaga, Departamento de Microbiología, Facultad de Ciencias, 29071 Málaga, Spain
| | - M Carmen Alonso
- Universidad de Málaga, Departamento de Microbiología, Facultad de Ciencias, 29071 Málaga, Spain.
| |
Collapse
|
30
|
Valero Y, Boughlala B, Arizcun M, Patel S, Fiksdal IU, Esteban MÁ, De Juan J, Meseguer J, Chaves-Pozo E, Cuesta A. Genes related to cell-mediated cytotoxicity and interferon response are induced in the retina of European sea bass upon intravitreal infection with nodavirus. FISH & SHELLFISH IMMUNOLOGY 2018; 74:627-636. [PMID: 29414318 DOI: 10.1016/j.fsi.2018.01.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 01/18/2018] [Accepted: 01/21/2018] [Indexed: 06/08/2023]
Abstract
Viral diseases are responsible for high rates of mortality and subsequent economic losses in modern aquaculture. The nervous necrosis virus (NNV) produces viral encephalopathy and retinopathy (VER), which affects the central nervous system, is considered one of the most serious viral diseases in marine aquaculture. Although some studies have localized NNV in the retina cells, none has dealt with immunity in the retina. Thus, for the first time, we intravitreally infected healthy specimens of European sea bass (Dicentrarchus labrax) with NNV with the aim of characterizing the immune response in the retina. Ultrastructural analysis detected important retinal injuries and structure degradation, including pycnosis, hydropic degeneration and vacuolization in some cell layers as well as myelin sheaths in the optic nerve fibres. Immunohistochemistry demonstrated that NNV replicated in the eyes. Regarding retinal immunity, NNV infection elicited the transcription of genes encoding proteins involved in the interferon (IFN) and cell-mediated cytotoxicity (CMC) responses as well as B and T cell markers, demonstrating that viral replication influences innate and adaptive responses. Further studies are needed to understand the retina immunity and whether the main retinal function, vision, is affected by nodavirus.
Collapse
Affiliation(s)
- Yulema Valero
- Centro Oceanográfico de Murcia, Instituto Español de Oceanografía (IEO), Carretera de la Azohía s/n, Puerto de Mazarrón, 30860, Murcia, Spain; Grupo de Marcadores Inmunológicos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Bassima Boughlala
- Departamento de Biotecnología, Universidad de Alicante, Ctra. San Vicente-Alicante s/n, 03080, Alicante, Spain
| | - Marta Arizcun
- Centro Oceanográfico de Murcia, Instituto Español de Oceanografía (IEO), Carretera de la Azohía s/n, Puerto de Mazarrón, 30860, Murcia, Spain
| | - Sonal Patel
- Diseases and Pathogen Transmission, Institute of Marine Research, Nordnesgaten 50, 5005, Bergen, Norway
| | - Ingrid U Fiksdal
- Diseases and Pathogen Transmission, Institute of Marine Research, Nordnesgaten 50, 5005, Bergen, Norway
| | - M Ángeles Esteban
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Joaquín De Juan
- Departamento de Biotecnología, Universidad de Alicante, Ctra. San Vicente-Alicante s/n, 03080, Alicante, Spain
| | - José Meseguer
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Elena Chaves-Pozo
- Centro Oceanográfico de Murcia, Instituto Español de Oceanografía (IEO), Carretera de la Azohía s/n, Puerto de Mazarrón, 30860, Murcia, Spain
| | - Alberto Cuesta
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain.
| |
Collapse
|
31
|
Azeredo R, Serra CR, Oliva-Teles A, Costas B. Amino acids as modulators of the European seabass, Dicentrarchus labrax, innate immune response: an in vitro approach. Sci Rep 2017; 7:18009. [PMID: 29269876 PMCID: PMC5740149 DOI: 10.1038/s41598-017-18345-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 12/11/2017] [Indexed: 02/07/2023] Open
Abstract
Teleost innate immune system is a most developed and powerful system in which fish highly rely throughout their lives. Conditions in aquaculture farms are particularly prone to disease, thus, health and welfare ensuring strategies are an urgent call to which nutrition is gradually becoming a most regarded achievement tool. This study intended to evaluate different amino acids' effect on immune-related mechanisms as well as their potential as enhancers of European seabass, Dicentrarchus labrax, leucocyte functioning. To achieve these goals, primary cultures of head-kidney leucocytes were established and kept in amino acid (glutamine, arginine, tryptophan or methionine) supplemented culture media in two doses. The effects of amino acids treatments were then evaluated after stimulation with either Vibrio anguillarum or Vibrio anguillarum lipopolysaccharides by measuring nitric oxide production, extracellular respiratory burst, ATP and arginase activities, and expression of immune-related genes. Glutamine, arginine and tryptophan showed to be particularly relevant regarding cell energy dynamics; arginine and tryptophan supplementation also resulted in down-regulation of important immune-related genes. Immune responses in cells treated with methionine were generally enhanced but further studies, particularly those of enzymes activity, are essential to complement gene expression results and to better understand this nutrient's immune role in fish.
Collapse
Affiliation(s)
- Rita Azeredo
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4450-208, Matosinhos, Portugal.
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto (FCUP), Rua do Campo Alegre s/n, Ed. FC4, 4169-007, Porto, Portugal.
| | - Cláudia R Serra
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| | - Aires Oliva-Teles
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto (FCUP), Rua do Campo Alegre s/n, Ed. FC4, 4169-007, Porto, Portugal
| | - Benjamín Costas
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4450-208, Matosinhos, Portugal.
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal.
| |
Collapse
|
32
|
Chaves-Pozo E, Valero Y, Esteve-Codina A, Gómez-Garrido J, Dabad M, Alioto T, Meseguer J, Esteban MÁ, Cuesta A. Innate Cell-Mediated Cytotoxic Activity of European Sea Bass Leucocytes Against Nodavirus-Infected Cells: A Functional and RNA-seq Study. Sci Rep 2017; 7:15396. [PMID: 29133947 PMCID: PMC5684396 DOI: 10.1038/s41598-017-15629-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 10/31/2017] [Indexed: 12/21/2022] Open
Abstract
Nervous necrosis virus (NNV) causes high mortalities in several marine species. We aimed to evaluate the innate cell-mediated cytotoxic (CMC) activity of head-kidney leucocytes (HKLs) isolated from naïve European sea bass (Dicentrarchus labrax) and gilthead seabream (Sparus aurata), a very susceptible and resistant fish species to NNV, respectively, against fish cell lines infected with NNV. Seabream HKLs showed significantly increased innate CMC activity against NNV-infected cells, compared to those uninfected, while sea bass HKLs failed to do so. Thus, we performed a RNA-seq study to identify genes related to the CMC activity of sea bass leucocytes. Thus, we found that sea bass HKLs incubated with DLB-1 cells alone (CMC_DLB1) or with NNV-infected DLB-1 cells (CMC_DLB1-NNV) showed very similar transcriptomic profiles and the GO analysis revealed that most of the up-regulated genes were related to immunity. Strikingly, when the CMC samples with and without NNV were compared, GO analysis revealed that most of the up-regulated genes in CMC_DLB1-NNV samples were related to metabolism and very few to immunity. This is also in agreement with the functional data. These data point to the escape of CMC activity by NNV infection as an important factor involved in the high susceptibility to nodavirus infections of European sea bass.
Collapse
Affiliation(s)
- Elena Chaves-Pozo
- Centro Oceanográfico de Murcia, Instituto Español de Oceanografía (IEO), Carretera de la Azohía s/n, Puerto de Mazarrón, 30860, Murcia, Spain
| | - Yulema Valero
- Centro Oceanográfico de Murcia, Instituto Español de Oceanografía (IEO), Carretera de la Azohía s/n, Puerto de Mazarrón, 30860, Murcia, Spain
- Grupo de Marcadores Inmunológicos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Anna Esteve-Codina
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Jèssica Gómez-Garrido
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Marc Dabad
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Tyler Alioto
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - José Meseguer
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028, Barcelona, Spain
| | - M Ángeles Esteban
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Alberto Cuesta
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain.
| |
Collapse
|
33
|
Banerjee R, Patel B, Basu M, Lenka SS, Paicha M, Samanta M, Das S. Molecular cloning, characterization and expression of immunoglobulin D on pathogen challenge and pathogen associated molecular patterns stimulation in freshwater carp, Catla catla. Microbiol Immunol 2017; 61:452-458. [DOI: 10.1111/1348-0421.12534] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/31/2017] [Indexed: 11/27/2022]
Affiliation(s)
- Rajanya Banerjee
- Laboratory of Environmental Microbiology and Ecology; Department of Life; Science; National Institute of Technology; Rourkela 769008
| | - Bhakti Patel
- Laboratory of Environmental Microbiology and Ecology; Department of Life; Science; National Institute of Technology; Rourkela 769008
| | - Madhubanti Basu
- Fish Health Management Division; Central Institute of Freshwater Aquaculture; Kausalyaganga, Bhubaneswar 751002 Odisha India
| | - Saswati S. Lenka
- Fish Health Management Division; Central Institute of Freshwater Aquaculture; Kausalyaganga, Bhubaneswar 751002 Odisha India
| | - Mahismita Paicha
- Fish Health Management Division; Central Institute of Freshwater Aquaculture; Kausalyaganga, Bhubaneswar 751002 Odisha India
| | - Mrinal Samanta
- Fish Health Management Division; Central Institute of Freshwater Aquaculture; Kausalyaganga, Bhubaneswar 751002 Odisha India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology; Department of Life; Science; National Institute of Technology; Rourkela 769008
| |
Collapse
|
34
|
Yong CY, Yeap SK, Omar AR, Tan WS. Advances in the study of nodavirus. PeerJ 2017; 5:e3841. [PMID: 28970971 PMCID: PMC5622607 DOI: 10.7717/peerj.3841] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/01/2017] [Indexed: 12/14/2022] Open
Abstract
Nodaviruses are small bipartite RNA viruses which belong to the family of Nodaviridae. They are categorized into alpha-nodavirus, which infects insects, and beta-nodavirus, which infects fishes. Another distinct group of nodavirus infects shrimps and prawns, which has been proposed to be categorized as gamma-nodavirus. Our current review focuses mainly on recent studies performed on nodaviruses. Nodavirus can be transmitted vertically and horizontally. Recent outbreaks have been reported in China, Indonesia, Singapore and India, affecting the aquaculture industry. It also decreased mullet stock in the Caspian Sea. Histopathology and transmission electron microscopy (TEM) are used to examine the presence of nodaviruses in infected fishes and prawns. For classification, virus isolation followed by nucleotide sequencing are required. In contrast to partial sequence identification, profiling the whole transcriptome using next generation sequencing (NGS) offers a more comprehensive comparison and characterization of the virus. For rapid diagnosis of nodavirus, assays targeting the viral RNA based on reverse-transcription PCR (RT-PCR) such as microfluidic chips, reverse-transcription loop-mediated isothermal amplification (RT-LAMP) and RT-LAMP coupled with lateral flow dipstick (RT-LAMP-LFD) have been developed. Besides viral RNA detections, diagnosis based on immunological assays such as enzyme-linked immunosorbent assay (ELISA), immunodot and Western blotting have also been reported. In addition, immune responses of fish and prawn are also discussed. Overall, in fish, innate immunity, cellular type I interferon immunity and humoral immunity cooperatively prevent nodavirus infections, whereas prawns and shrimps adopt different immune mechanisms against nodavirus infections, through upregulation of superoxide anion, prophenoloxidase, superoxide dismutase (SOD), crustin, peroxinectin, anti-lipopolysaccharides and heat shock proteins (HSP). Potential vaccines for fishes and prawns based on inactivated viruses, recombinant proteins or DNA, either delivered through injection, oral feeding or immersion, are also discussed in detail. Lastly, a comprehensive review on nodavirus virus-like particles (VLPs) is presented. In recent years, studies on prawn nodavirus are mainly focused on Macrobrachium rosenbergii nodavirus (MrNV). Recombinant MrNV VLPs have been produced in prokaryotic and eukaryotic expression systems. Their roles as a nucleic acid delivery vehicle, a platform for vaccine development, a molecular tool for mechanism study and in solving the structures of MrNV are intensively discussed.
Collapse
Affiliation(s)
- Chean Yeah Yong
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | | | - Abdul Rahman Omar
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Wen Siang Tan
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
35
|
Álvarez-Torres D, Podadera AM, Alonso MC, Bandín I, Béjar J, García-Rosado E. Molecular characterization and expression analyses of the Solea senegalensis interferon-stimulated gene 15 (isg15) following NNV infections. FISH & SHELLFISH IMMUNOLOGY 2017; 66:423-432. [PMID: 28527896 DOI: 10.1016/j.fsi.2017.05.040] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/11/2017] [Accepted: 05/15/2017] [Indexed: 05/07/2023]
Abstract
Interferons are essential in fish resistance to viral infections. They induce interferon-stimulated genes, such as isg15. In this study, the Senegalese sole isg15 gene (ssisg15) has been characterized. As other isg15, ssisg15 contains a 402-bp intron sited in the 5'-UTR, and the full length cDNA is 1492-bp, including a 480-bp ORF. The expression analyses revealed basal levels of isg15 transcripts, and a clear induction after poly I:C injection, that reached maximum values in brain, head kidney and gills. The ssisg15 induction patterns were similar in RGNNV- and SJNNV-inoculated fish, whereas the reassortant (RG/SJ) isolate, which has higher replication fitness, triggered delayed but higher transcript levels. Furthermore, RG/SJ infection after poly I:C treatment reduced the induction of ssisg15 transcripts, suggesting an antagonistic mechanism against interferon type I system, that might allow an efficient viral replication at the initial steps of the infective process.
Collapse
Affiliation(s)
- Daniel Álvarez-Torres
- Universidad de Málaga, Departamento de Microbiología, Facultad de Ciencias, Campus de Teatinos s/n, 29071 Málaga, Spain; Universidad de Málaga, Departamento de Genética, Facultad de Ciencias, Campus de Teatinos s/n, 29071 Málaga, Spain
| | - Ana María Podadera
- Universidad de Málaga, Departamento de Microbiología, Facultad de Ciencias, Campus de Teatinos s/n, 29071 Málaga, Spain
| | - M Carmen Alonso
- Universidad de Málaga, Departamento de Microbiología, Facultad de Ciencias, Campus de Teatinos s/n, 29071 Málaga, Spain
| | - Isabel Bandín
- Universidad de Santiago de Compostela, Departamento de Microbiología, Instituto de Acuicultura, 15782 Santiago de Compostela, Spain
| | - Julia Béjar
- Universidad de Málaga, Departamento de Genética, Facultad de Ciencias, Campus de Teatinos s/n, 29071 Málaga, Spain
| | - Esther García-Rosado
- Universidad de Málaga, Departamento de Microbiología, Facultad de Ciencias, Campus de Teatinos s/n, 29071 Málaga, Spain.
| |
Collapse
|
36
|
Carballo C, Castro D, Borrego JJ, Manchado M. Gene expression profiles associated with lymphocystis disease virus (LCDV) in experimentally infected Senegalese sole (Solea senegalensis). FISH & SHELLFISH IMMUNOLOGY 2017; 66:129-139. [PMID: 28476672 DOI: 10.1016/j.fsi.2017.04.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 04/28/2017] [Accepted: 04/30/2017] [Indexed: 06/07/2023]
Abstract
In the present study, the pathogenesis of lymphocystis disease virus (LCDV) and the immune gene expression patterns associated with this viral infection were determined in the flatfish Senegalese sole. The results indicate that LCDV spreads rapidly from the peritoneal cavity through the bloodstream to reach target organs such as kidney, gut, liver, and skin/fin. The viral load was highest in kidney and reduced progressively thorough the experiment in spite of the viral major capsid protein gene was transcribed. The LCDV injection activated a similar set of differentially expressed transcripts in kidney and intestine although with some differences in the intensity and time-course response. This set included antiviral-related transcripts (including the mx and interferon-related factors irf1, irf2, irf3, irf7, irf8, irf9, irf10), cytokines (il1b, il6, il8, il12 and tnfa) and their receptors (il1r, il8r, il10r, il15ra, il17r), chemokines (CXC-type, CC-type and IL-8), prostaglandins (cox-2), g-type lysozymes, hepcidin, complement fractions (c2, c4-1 and c4-2) and the antigen differentiation factors cd4, cd8a, and cd8b. The expression profile observed indicated that the host triggered a systemic defensive response including inflammation able to cope with the viral challenge.
Collapse
Affiliation(s)
- Carlos Carballo
- IFAPA Centro El Toruño, Junta de Andalucía, Camino Tiro Pichón s/n, 11500 El Puerto de Santa María, Cádiz, Spain
| | - Dolores Castro
- Universidad de Málaga, Departamento de Microbiología, Campus Universitario Teatinos, 29071 Málaga, Spain
| | - Juan J Borrego
- Universidad de Málaga, Departamento de Microbiología, Campus Universitario Teatinos, 29071 Málaga, Spain
| | - Manuel Manchado
- IFAPA Centro El Toruño, Junta de Andalucía, Camino Tiro Pichón s/n, 11500 El Puerto de Santa María, Cádiz, Spain.
| |
Collapse
|
37
|
Doan QK, Vandeputte M, Chatain B, Morin T, Allal F. Viral encephalopathy and retinopathy in aquaculture: a review. JOURNAL OF FISH DISEASES 2017; 40:717-742. [PMID: 27633881 DOI: 10.1111/jfd.12541] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/23/2016] [Accepted: 06/27/2016] [Indexed: 05/22/2023]
Abstract
Viral encephalopathy and retinopathy (VER), otherwise known as viral nervous necrosis (VNN), is a major devastating threat for aquatic animals. Betanodaviruses have been isolated in at least 70 aquatic animal species in marine and in freshwater environments throughout the world, with the notable exception of South America. In this review, the main features of betanodavirus, including its diversity, its distribution and its transmission modes in fish, are firstly presented. Then, the existing diagnosis and detection methods, as well as the different control procedures of this disease, are reviewed. Finally, the potential of selective breeding, including both conventional and genomic selection, as an opportunity to obtain resistant commercial populations, is examined.
Collapse
Affiliation(s)
- Q K Doan
- Ifremer, UMR 9190 MARBEC, Palavas-les-Flots, France
- TNU, Thai Nguyen University of Agriculture and Forestry (TUAF), Quyet Thang Commune, Thai Nguyen City, Vietnam
| | - M Vandeputte
- Ifremer, UMR 9190 MARBEC, Palavas-les-Flots, France
- INRA, GABI, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - B Chatain
- Ifremer, UMR 9190 MARBEC, Palavas-les-Flots, France
| | - T Morin
- Anses, Ploufragan-Plouzané Laboratory, Unit Viral Diseases of Fish, Plouzané, France
| | - F Allal
- Ifremer, UMR 9190 MARBEC, Palavas-les-Flots, France
| |
Collapse
|
38
|
Tang X, Qin Y, Sheng X, Xing J, Zhan W. Characterization of CD3 + T lymphocytes of Japanese flounder (Paralichthys olivaceus) and its response after immunization with formalin-inactivated Edwardsiella tarda. FISH & SHELLFISH IMMUNOLOGY 2017; 63:220-227. [PMID: 28232197 DOI: 10.1016/j.fsi.2017.02.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 02/16/2017] [Accepted: 02/17/2017] [Indexed: 06/06/2023]
Abstract
The CD3 complex is an important cell surface marker of T lymphocytes and essential for T lymphocytes activation in higher vertebrates. In the present work, the CD3ε of Japanese flounder (Paralichthys olivaceus) was recombinantly expressed in E. coli BL21 (DE3) and used as an immunogen to produce mouse anti-rCD3ε polyclonal antibodies, which could specifically recognize a 20 kDa protein in the membrane proteins of peripheral blood lymphocytes (PBL) of Japanese flounder by co-immunoprecipitation assay. Mass spectrometric analysis showed the 20 kDa protein was the native CD3ε of Japanese flounder. Both the flow cytometric analysis and double immunofluorescence assay (DIFA) showed that the CD3+ T lymphocytes could be identified specifically by the mouse anti-rCD3ε polyclonal antibodies, which didn't cross-react with the sIgM+ lymphocytes. Immunohistochemistry showed that CD3+ T lymphocytes could be detected in gill, skin, stomach, intestine, spleen, liver, head-kidney and mid-kidney. Flow cytometric analysis showed the percentages of CD3+ T lymphocytes in the PBL, spleen lymphocytes (SL) and head-kidney lymphocytes (HKL) of Japanese flounder increased rapidly after immunization with formalin-inactivated Edwardsiella tarda, and reached their peak levels at 5th day with 12.6%, 9.7% and 8.7%, respectively, and then decreased gradually. These results suggested that CD3+ T lymphocytes play important roles in mucosal and cell-mediated immunity, and the results would deepen our understanding on the roles of teleost T lymphocytes in the immune response.
Collapse
Affiliation(s)
- Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Yinghui Qin
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Aoshanwei Town, Jimo, Qingdao 266071, PR China.
| |
Collapse
|
39
|
Buonocore F, Stocchi V, Nunez-Ortiz N, Randelli E, Gerdol M, Pallavicini A, Facchiano A, Bernini C, Guerra L, Scapigliati G, Picchietti S. Immunoglobulin T from sea bass (Dicentrarchus labrax L.): molecular characterization, tissue localization and expression after nodavirus infection. BMC Mol Biol 2017; 18:8. [PMID: 28298204 PMCID: PMC5353873 DOI: 10.1186/s12867-017-0085-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 03/11/2017] [Indexed: 11/10/2022] Open
Abstract
Background Immunoglobulins (Igs) are fundamental components of the adaptive immune system of vertebrates, with the IgT/IgZ isotype specific of Teleosts. In this paper we describe the identification of an IgT heavy chain from the European sea bass (Dicentrarchus labrax L.), its molecular characterization and tissue mRNA localization by in situ hybridization. Results Sea bass IgT consists of 552 aa (Accession Number KM410929) and it contains a putative 19 amino acids long signal peptide and one potential N-glycosylation site. The C-region consists of four CH domains; each contains the cysteine and tryptophan residues required for their correct folding. Based on the recent sequencing of sea bass genome, we have identified five different genomic contigs bearing exons unequivocally pertaining to IgT (CH2, CH3 and CH4), but none corresponded to a complete IgH locus as IgT sequences were found in the highly fragmented assembled genomic regions which could not be assigned to any major scaffold. The 3D structure of sea bass IgT has been modelled using the crystal structure of a mouse Ig gamma as a template, thus showing that the amino acid sequence is suitable for the expected topology referred to an immunoglobulin-like architecture. The basal expression of sea bass IgT and IgM in different organs has been analysed: gut and gills, important mucosal organs, showed high IgT transcripts levels and this was the first indication of the possible involvement of sea bass IgT in mucosal immune responses. Moreover, sea bass IgT expression increased in gills and spleen after infection with nodavirus, highlighting the importance of IgT in sea bass immune responses. In situ hybridization confirmed the presence of IgT transcripts in the gut and it revealed a differential expression along the intestinal tract, with a major expression in the posterior intestine, suggesting the hindgut as a site for the recruitment of IgT+ cells in this species. IgT transcripts were also found in gill filaments and parallel lamellae and, for the first time, we identified scattered IgT positive cells in the liver, with a strong signal in the hepatic parenchyma. Conclusions In conclusion, we performed a full molecular characterization of IgT in sea bass that points out its possible involvement in mucosal immune responses of this species.
Collapse
Affiliation(s)
- Francesco Buonocore
- Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Largo dell'Università snc, 05100, Viterbo, VT, Italy.
| | - Valentina Stocchi
- Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Largo dell'Università snc, 05100, Viterbo, VT, Italy
| | - Noelia Nunez-Ortiz
- Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Largo dell'Università snc, 05100, Viterbo, VT, Italy
| | - Elisa Randelli
- Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Largo dell'Università snc, 05100, Viterbo, VT, Italy
| | - Marco Gerdol
- Department of Life Sciences, University of Trieste, Via Giorgieri 5, 34127, Trieste, TS, Italy
| | - Alberto Pallavicini
- Department of Life Sciences, University of Trieste, Via Giorgieri 5, 34127, Trieste, TS, Italy
| | - Angelo Facchiano
- Institute of Food Science, CNR, Via Roma, 64, 83100, Avellino, AV, Italy
| | - Chiara Bernini
- Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Largo dell'Università snc, 05100, Viterbo, VT, Italy
| | - Laura Guerra
- Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Largo dell'Università snc, 05100, Viterbo, VT, Italy
| | - Giuseppe Scapigliati
- Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Largo dell'Università snc, 05100, Viterbo, VT, Italy
| | - Simona Picchietti
- Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Largo dell'Università snc, 05100, Viterbo, VT, Italy
| |
Collapse
|
40
|
Valero Y, Awad E, Buonocore F, Arizcun M, Esteban MÁ, Meseguer J, Chaves-Pozo E, Cuesta A. An oral chitosan DNA vaccine against nodavirus improves transcription of cell-mediated cytotoxicity and interferon genes in the European sea bass juveniles gut and survival upon infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 65:64-72. [PMID: 27370973 DOI: 10.1016/j.dci.2016.06.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/26/2016] [Accepted: 06/26/2016] [Indexed: 05/19/2023]
Abstract
Vaccines for fish need to be improved for the aquaculture sector, with DNA vaccines and the oral administration route providing the most promising improvements. In this study, we have created an oral chitosan-encapsulated DNA vaccine (CP-pNNV) for the nodavirus (NNV) in order to protect the very susceptible European sea bass (Dicentrarchus labrax). Our data show that the oral CP-pNNV vaccine failed to induce serum circulating or neutralizing specific antibodies (immunoglobulin M) or to up-regulate their gene expression in the posterior gut. However, the vaccine up-regulated the expression of genes related to the cell-mediated cytotoxicity (CMC; tcrb and cd8a) and the interferon pathway (IFN; ifn, mx and ifng). In addition, 3 months after vaccination, challenged fish showed a retarded onset of fish death and lower cumulative mortality with a relative survival of 45%. Thus, we created a chitosan-encapsulated DNA vaccine against NNV that is partly protective to European sea bass juveniles and up-regulates the transcription of genes related to CMC and IFN. However, further studies are needed to improve the anti-NNV vaccine and to understand its mechanisms.
Collapse
Affiliation(s)
- Yulema Valero
- Centro Oceanográfico de Murcia, Instituto Español de Oceanografía (IEO), Carretera de la Azohía s/n, Puerto de Mazarrón, Murcia, Spain
| | - Elham Awad
- Department of Hydrobiology, National Research Center, Giza, Egypt
| | - Francesco Buonocore
- Dipartimento per l'Innovazione nei Sistemi Biologici Agroalimentari e Forestali, Università della Tuscia, Italy
| | - Marta Arizcun
- Centro Oceanográfico de Murcia, Instituto Español de Oceanografía (IEO), Carretera de la Azohía s/n, Puerto de Mazarrón, Murcia, Spain
| | - M Ángeles Esteban
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| | - José Meseguer
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| | - Elena Chaves-Pozo
- Centro Oceanográfico de Murcia, Instituto Español de Oceanografía (IEO), Carretera de la Azohía s/n, Puerto de Mazarrón, Murcia, Spain
| | - Alberto Cuesta
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Murcia, Spain.
| |
Collapse
|
41
|
Nuñez-Ortiz N, Pascoli F, Picchietti S, Buonocore F, Bernini C, Toson M, Scapigliati G, Toffan A. A formalin-inactivated immunogen against viral encephalopathy and retinopathy (VER) disease in European sea bass (Dicentrarchus labrax): immunological and protection effects. Vet Res 2016; 47:89. [PMID: 27590537 PMCID: PMC5010674 DOI: 10.1186/s13567-016-0376-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 07/26/2016] [Indexed: 12/15/2022] Open
Abstract
The European sea bass (Dicentrarchus labrax) is an important farmed fish species in the Mediterranean area, very sensitive to the infection by encephalopathy and retinopathy virus (VERv), or Betanodavirus, which causes massive mortalities. Effective vaccines to fight the pathology are not yet available and in this work we describe a promising intraperitoneal immunization route against VERv of sea bass juveniles. We performed intraperitoneal and immersion immunization trials with a VERv (isolate 283.2009 RGNNV) inactivated by formalin, β-propiolactone and heat treatment. Interestingly, the intraperitoneal immunization with formalin-inactivated VERv induced a significant antigen-specific IgM production, differently from other inactivation protocols. However, the same formalin-inactivated antigen resulted in very low IgM antibodies when administered by immersion. Following the intraperitoneal injection with formalin-inactivated virus, the quantitative expression of the antiviral MxA gene showed a modulation of transcripts in the gut after 48 h and on head kidney after 24 h, whereas ISG12 gene was significantly up-regulated after 48 h on both tissues. In immersion immunization with formalin-inactivated VERv, a modulation of MxA and ISG12 genes after 24 h post-treatment was detected in the gills. An effective uptake of VERv particles in the gills was confirmed by immunohistochemistry using anti-VERv antibodies. Lastly, in challenge experiments using live VERv after intraperitoneal immunization with formalin-inactivated VERv, we observed a significant increase (81.9%) in relative survival percentage with respect to non-immunized fish, whereas immersion immunization resulted in no protection. Our results suggest that intraperitoneal immunization with formalin-inactivated VERv could be a safe and effective strategy to fight Betanodavirus infection in European sea bass.
Collapse
Affiliation(s)
- Noelia Nuñez-Ortiz
- Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Viterbo, Italy
| | - Francesco Pascoli
- Centro di Referenza Nazionale (NRL) per le patologie dei pesci, molluschi e crostacei, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro (PD), Italy
| | - Simona Picchietti
- Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Viterbo, Italy
| | - Francesco Buonocore
- Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Viterbo, Italy
| | - Chiara Bernini
- Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Viterbo, Italy
| | - Marica Toson
- Epidemiologia applicata agli animali acquatici, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro (PD), Italy
| | - Giuseppe Scapigliati
- Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Viterbo, Italy.
| | - Anna Toffan
- Centro di Referenza Nazionale (NRL) per le patologie dei pesci, molluschi e crostacei, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro (PD), Italy
| |
Collapse
|
42
|
Moreno P, Garcia-Rosado E, Borrego JJ, Alonso MC. Genetic characterization and transcription analyses of the European sea bass (Dicentrarchus labrax) isg15 gene. FISH & SHELLFISH IMMUNOLOGY 2016; 55:642-6. [PMID: 27368533 DOI: 10.1016/j.fsi.2016.06.043] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 06/21/2016] [Accepted: 06/27/2016] [Indexed: 05/07/2023]
Abstract
Fish interferons are cytokines involved in its resistance to viral infections by inducing the transcription of several interferon-induced genes, such as isg15. The aim of the present study was the genetic characterization of the European sea bass isg15 gene, describing the regulatory motifs found in its sequence. In addition, an in vivo analysis of transcription in response to betanodavirus (RGNNV genotype) and poly I:C has been performed. The analysis of the resulting sequences showed that sea bass isg15 gene is composed of two exons and a single 276-bp intron located at the 5'-UTR region. The full length cDNA is 1143-bp, including a 102-bp 5'-UTR region, a 474-bp ORF, and a 291-bp 3'-UTR region. Several mRNA-regulatory elements, including three unusual ATTTA instability motifs in the intron, and four ATTTA motifs along with a cytoplasmic polyadenylation element in the 3'-UTR region, have been found in this sequence. The in vivo analyses revealed a similar kinetics and level of transcription in fish brain and head kidney after poly I:C inoculation; however, the induction caused by RGNNV started earlier in brain, where the upregulation of isg15 gene transcription was high. The present study contributes to further characterize the European sea bass IFN I response against RGNNV infections.
Collapse
Affiliation(s)
- Patricia Moreno
- Universidad de Málaga, Departamento de Microbiología, Facultad de Ciencias, 29071 Málaga, Spain
| | - Esther Garcia-Rosado
- Universidad de Málaga, Departamento de Microbiología, Facultad de Ciencias, 29071 Málaga, Spain
| | - Juan J Borrego
- Universidad de Málaga, Departamento de Microbiología, Facultad de Ciencias, 29071 Málaga, Spain
| | - M Carmen Alonso
- Universidad de Málaga, Departamento de Microbiología, Facultad de Ciencias, 29071 Málaga, Spain.
| |
Collapse
|
43
|
Nuñez-Ortiz N, Stocchi V, Toffan A, Pascoli F, Sood N, Buonocore F, Picchietti S, Papeschi C, Taddei AR, Thompson KD, Scapigliati G. Quantitative immunoenzymatic detection of viral encephalopathy and retinopathy virus (betanodavirus) in sea bass Dicentrarchus labrax. JOURNAL OF FISH DISEASES 2016; 39:821-831. [PMID: 26610431 DOI: 10.1111/jfd.12415] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 07/30/2015] [Accepted: 07/31/2015] [Indexed: 06/05/2023]
Abstract
Viral encephalopathy and retinopathy disease caused by betanodavirus, genus of the family Nodaviridae, affects marine, wild and farmed species including sea bass, one of the most important farmed species in Europe. This work describes a reliable and sensitive indirect ELISA assay to detect betanodavirus in biological samples using a polyclonal antiserum (pAb 283) against the 283/I09 virus strain, the most common red-spotted grouper nervous necrosis virus (RGNNV) genotype in the Mediterranean area, and a capture-based ELISA using a monoclonal antibody (mAb 4C3) specific to a common epitope present on the capsid protein. Using adsorbed, purified VERv preparation, the detection limit of indirect ELISA was 2 μg mL(-1) (3 × 10(5) TCID50 per mL), whereas for capture-based ELISA, the sensitivity for the antigen in solution was 17 μg mL(-1) (35 × 10(5) TCID50 per mL). The capture-based ELISA was employed to detect VERv in brain homogenates of in vivo infected sea bass and resulted positive in 22 of 32 samples, some of these with a high viral load estimates (about 1.1 × 10(8) TCID50 per mL). The ELISA system we propose may be helpful in investigations where coupling of viral content in fish tissues with the presence of circulating VERv-specific IgM is required, or for use in samples where PCR is difficult to perform.
Collapse
Affiliation(s)
- N Nuñez-Ortiz
- Dipartimento per l'Innovazione nei Sistemi Biologici Agroalimentari e Forestali, Università della Tuscia, Viterbo, Italy
| | - V Stocchi
- Dipartimento per l'Innovazione nei Sistemi Biologici Agroalimentari e Forestali, Università della Tuscia, Viterbo, Italy
| | - A Toffan
- Fish Virology Department, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Padova, Italy
| | - F Pascoli
- Fish Virology Department, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Padova, Italy
| | - N Sood
- National Bureau of Fish Genetic Resources, Lucknow, UP, India
| | - F Buonocore
- Dipartimento per l'Innovazione nei Sistemi Biologici Agroalimentari e Forestali, Università della Tuscia, Viterbo, Italy
| | - S Picchietti
- Dipartimento per l'Innovazione nei Sistemi Biologici Agroalimentari e Forestali, Università della Tuscia, Viterbo, Italy
| | - C Papeschi
- Dipartimento per l'Innovazione nei Sistemi Biologici Agroalimentari e Forestali, Università della Tuscia, Viterbo, Italy
| | - A R Taddei
- Centro di Microscopia Elettronica, Università della Tuscia, Viterbo, Italy
| | - K D Thompson
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Near Edimburgh, Scotland, UK
| | - G Scapigliati
- Dipartimento per l'Innovazione nei Sistemi Biologici Agroalimentari e Forestali, Università della Tuscia, Viterbo, Italy
| |
Collapse
|
44
|
Costa JZ, Thompson KD. Understanding the interaction between Betanodavirus and its host for the development of prophylactic measures for viral encephalopathy and retinopathy. FISH & SHELLFISH IMMUNOLOGY 2016; 53:35-49. [PMID: 26997200 DOI: 10.1016/j.fsi.2016.03.033] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/04/2016] [Accepted: 03/15/2016] [Indexed: 05/22/2023]
Abstract
Over the last three decades, the causative agent of viral encephalopathy and retinopathy (VER) disease has become a serious problem of marine finfish aquaculture, and more recently the disease has also been associated with farmed freshwater fish. The virus has been classified as a Betanodavirus within the family Nodaviridae, and the fact that Betanodaviruses are known to affect more than 120 different farmed and wild fish and invertebrate species, highlights the risk that Betanodaviruses pose to global aquaculture production. Betanodaviruses have been clustered into four genotypes, based on the RNA sequence of the T4 variable region of their capsid protein, and are named after the fish species from which they were first derived i.e. Striped Jack nervous necrosis virus (SJNNV), Tiger puffer nervous necrosis virus (TPNNV), Barfin flounder nervous necrosis virus (BFNNV) and Red-spotted grouper nervous necrosis virus (RGNNV), while an additional genotype turbot betanodavirus strain (TNV) has also been proposed. However, these genotypes tend to be associated with a particular water temperature range rather than being species-specific. Larvae and juvenile fish are especially susceptible to VER, with up to 100% mortality resulting in these age groups during disease episodes, with vertical transmission of the virus increasing the disease problem in smaller fish. A number of vaccine preparations have been tested in the laboratory and in the field e.g. inactivated virus, recombinant proteins, virus-like particles and DNA based vaccines, and their efficacy, based on relative percentage survival, has ranged from medium to high levels of protection to little or no protection. Ultimately a combination of effective prophylactic measures, including vaccination, is needed to control VER, and should also target larvae and broodstock stages of production to help the industry deal with the problem of vertical transmission. As yet there are no commercial vaccines for VER and the aquaculture industry eagerly awaits such a product. In this review we provide an overview on the current state of knowledge of the disease, the pathogen, and interactions between betanodavirus and its host, to provide a greater understanding of the multiple factors involved in the disease process. Such knowledge is needed to develop effective methods for controlling VER in the field, to protect the various aquaculture species farmed globally from the different Betanodavirus genotypes to which they are susceptible.
Collapse
Affiliation(s)
- Janina Z Costa
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Scotland, EH26 0PZ, United Kingdom.
| | - Kim D Thompson
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Scotland, EH26 0PZ, United Kingdom
| |
Collapse
|
45
|
Hong S, Jin JW, Park JH, Kim JK, Jeong HD. Analysis of proinflammatory gene expression by RBIV infection in rock bream, Oplegnathus faciatus. FISH & SHELLFISH IMMUNOLOGY 2016; 50:317-326. [PMID: 26386196 DOI: 10.1016/j.fsi.2015.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/26/2015] [Accepted: 09/01/2015] [Indexed: 06/05/2023]
Abstract
Early induction of proinflammatory cytokines is known to regulate the later immune responses to inhibit the progress of infectious diseases. In this study, proinflammatory cytokine gene expression has been studied in immune tissues to understand the early immune response induced by megalocytivirus in rock bream (Oplegnathus faciatus). For this, we have cloned interleukin (IL)-1β and IL-8 gene and performed the phylogenetic and structural analysis. Also the constitutive gene expressions of IL-1β and IL-8 were assessed in 12 organs and found to be the highest expression in tail fin and liver, respectively. The expressions of proinflammatory cytokine genes including IL-1β, IL-8, TNFα and Cox-2, and antiviral genes like Mx and IFN1 were analysed by stimulation with PAMPs and RBIV infection. In vitro study showed the highly up-regulated proinflammatory gene expressions in head kidney and the moderate up-regulation in spleen by LPS. Same concentration of polyI:C moderately upregulated IL-1β gene expression in head kidney but down-regulated IL-8 and TNFα gene expression in head kidney and spleen at 8 h. Mx and IFN1 gene expressions were highly upregulated by polyI:C in head kidney and spleen cells in vitro. By RBIV infection, proinflammatory gene expressions were initially up-regulated and later down-regulated in head kidney. In spleen, although mostly not significant, proinflammatory cytokine gene expressions were down-regulated by RBIV infection except up-regulation of Cox-2 gene expression by low concentration of RBIV at 24 h. Mx and IFN1 gene expressions were down-regulated by high dose of RBIV infection in vitro. In vivo study revealed that IL-8, TNFα, and IFN1 gene expressions were down-regulated in brain, head kidney, spleen, and gill while up-regulated in heart and liver, indicating differential proinflammatory and antiviral responses in the organs. It is supposed that down-regulation of proinflammatory gene expression in the immune organs may result in the failure of antiviral immune responses, causing high mortalities by megalocytivirus infection in rock bream.
Collapse
Affiliation(s)
- Suhee Hong
- Department of Marine Bioscience and Technology, Gangneung-Wonju National University, Gangneung 210-702, South Korea
| | - Ji Woong Jin
- Namhae Fisheries Hatchery Station, Korea Fisheries Resources Agency, Wando 537-806, South Korea
| | - Jae-Heon Park
- Department of Marine Bioscience and Technology, Gangneung-Wonju National University, Gangneung 210-702, South Korea
| | - Joong-Kyun Kim
- Department of Aquatic Life Medicine, Pukyong National University, Busan 608-737, South Korea
| | - Hyun Do Jeong
- Department of Aquatic Life Medicine, Pukyong National University, Busan 608-737, South Korea.
| |
Collapse
|
46
|
Carballo C, Garcia-Rosado E, Borrego JJ, Alonso MC. SJNNV down-regulates RGNNV replication in European sea bass by the induction of the type I interferon system. Vet Res 2016; 47:6. [PMID: 26743933 PMCID: PMC4705746 DOI: 10.1186/s13567-015-0304-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 04/17/2015] [Indexed: 01/09/2023] Open
Abstract
European sea bass is highly susceptible to the betanodavirus RGNNV genotype, although the SJNNV genotype has also been detected in this fish species. The coexistence of both genotypes may affect the replication of both viruses by viral interaction or by stimulation of the host antiviral defense system in which the IFN I system plays a key role. IFN I triggers the transcription of interferon-stimulated genes, including Mx genes, whose expression has been used as a reporter of IFN I activity. The present study evaluated the effect of a primary exposure to an SJNNV isolate on a subsequent RGNNV infection and analyzed the role of the IFN I system in controlling VNNV infections in sea bass using different in vivo approaches. VNNV infection and Mx transcription were comparatively evaluated after single infections, superinfection (SJ+RG) and co-infection (poly I:C+RG). The single RGNNV infection resulted in a 24% survival rate, whereas the previous SJNNV or poly I:C inoculation increased the survival rate up to 96 and 100%, respectively. RGNNV replication in superinfection was reduced compared with RGNNV replication after a single inoculation. Mx transcription analysis shows differential induction of the IFN I system by both isolates. SJNNV was a potent Mx inducer, whereas RGNNV induced lower Mx transcription and did not interfere with the IFN I system triggered by SJNNV or poly I:C. This study demonstrates that an antiviral state exists after SJNNV and poly I:C injection, suggesting that the IFN I system plays an important role against VNNV infections in sea bass.
Collapse
Affiliation(s)
- Carlos Carballo
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, 29071, Málaga, Spain. .,IFAPA centro El Toruño, Junta de Andalucía, El Puerto de Santa María, Cádiz, Spain.
| | - Esther Garcia-Rosado
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, 29071, Málaga, Spain.
| | - Juan J Borrego
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, 29071, Málaga, Spain.
| | - M Carmen Alonso
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, 29071, Málaga, Spain.
| |
Collapse
|
47
|
Jaramillo D, Dürr S, Hick P, Whittington R. Bayesian estimation of diagnostic sensitivity and specificity of a nervous necrosis virus antibody ELISA. Prev Vet Med 2015; 123:138-142. [PMID: 26702588 DOI: 10.1016/j.prevetmed.2015.11.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 11/23/2015] [Accepted: 11/30/2015] [Indexed: 10/22/2022]
Abstract
Diagnosis of nervous necrosis virus (NNV) infection in susceptible fish species is mostly performed post-mortem due to the neurotropism of the causative agent and the only validated diagnostic assays require samples from brain and retinal tissue. However, a non-lethal alternative to test for exposure of fish to NNV is needed. An indirect ELISA for the detection of anti-NNV antibodies in was recently developed and evaluated to detect responses in the sera from immunized fish. For this study, we assessed the accuracy of the assay at detecting specific antibodies from naturally exposed fish using field samples from populations with differing infection status. We applied a Bayesian model, using RTqPCR as a second test. Median estimates of the diagnostic sensitivity and specificity of the VNN ELISA were 81.8% and 86.7%, respectively. We concluded that the assay was fit for the purpose of identifying animals in naturally exposed populations. With further evaluation in larger populations the test might be used to inform implementation of control measures, and for estimating infection prevalence to facilitate risk analysis. To our knowledge this is the first report on the diagnostic accuracy of an antibody ELISA for an infectious disease in finfish.
Collapse
Affiliation(s)
- Diana Jaramillo
- Faculty of Veterinary Science, The University of Sydney, Camden, NSW, Australia()
| | - Salome Dürr
- Faculty of Veterinary Science, The University of Sydney, Camden, NSW, Australia()
| | - Paul Hick
- Faculty of Veterinary Science, The University of Sydney, Camden, NSW, Australia()
| | - Richard Whittington
- Faculty of Veterinary Science, The University of Sydney, Camden, NSW, Australia().
| |
Collapse
|
48
|
Grasso V, Padilla D, Bravo J, Román L, Rosario I, Acosta B, Vega B, El Aamri F, Escuela O, Ramos-Vivas J, Acosta F. Immunization of sea bream (Sparus aurata) juveniles against Photobacterium damselae subsp. piscicida by short bath: Effect on some pro-inflammatory molecules and the Mx gene expression. FISH & SHELLFISH IMMUNOLOGY 2015; 46:292-296. [PMID: 26118933 DOI: 10.1016/j.fsi.2015.06.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 05/19/2015] [Accepted: 06/23/2015] [Indexed: 06/04/2023]
Abstract
Cytokines are a family of proteins derived from macrophages, lymphocytes, granulocytes, mast cells and epithelial cells and can be divided into interferons (IFNs), Interleukins (ILs) and Tumor Necrosis factors (TNFs) among others. The presence of cytokines in a wide number of fish species has been proved and several molecules types have been already cloned and sequenced. In this work some proinflamatory molecules and Mx gene were detected in the liver of vaccinated sea bream juveniles with an average body weight of 5 g. The method of immunization was by short bath and three different bacterins against the marine pathogen Photobacterium damselae subsp. piscicida were designed and used to immunize fish. Five genes encoding for five different molecules were analyzed by real time PCR: IL-1β, IL Ir-2, Cox-2, Mx and TNFα. Gene expression was quantified along four days after fish immunization and results were compared among groups. Results show that the heat-inactivated vaccine stimulates the up-regulation of IL-1β, IL Ir-2, Cox-2 and TNFα genes whereas the UV-light inactivated vaccine was the unique vaccine which stimulates the expression of Mx gene. The present is a novel study that shows by the first time the effect of the inactivation process of vaccines on the expression levels of genes involved in the defense against Photobacterium damselae subsp piscicida.
Collapse
Affiliation(s)
- V Grasso
- University of Las Palmas de Gran Canaria, Arucas, Transmontaña s/n, 35413, Spain
| | - D Padilla
- University of Las Palmas de Gran Canaria, Arucas, Transmontaña s/n, 35413, Spain
| | - J Bravo
- University of Las Palmas de Gran Canaria, Arucas, Transmontaña s/n, 35413, Spain
| | - L Román
- University of Las Palmas de Gran Canaria, Arucas, Transmontaña s/n, 35413, Spain
| | - I Rosario
- University of Las Palmas de Gran Canaria, Arucas, Transmontaña s/n, 35413, Spain
| | - B Acosta
- University of Las Palmas de Gran Canaria, Arucas, Transmontaña s/n, 35413, Spain
| | - B Vega
- University of Las Palmas de Gran Canaria, Arucas, Transmontaña s/n, 35413, Spain
| | - F El Aamri
- University of Las Palmas de Gran Canaria, Arucas, Transmontaña s/n, 35413, Spain
| | - O Escuela
- University of Las Palmas de Gran Canaria, Arucas, Transmontaña s/n, 35413, Spain
| | - J Ramos-Vivas
- Department of Microbiology, Hospital Universitario Marqués de Valdecilla-IDIVAL, Santander, Spain
| | - F Acosta
- University of Las Palmas de Gran Canaria, Arucas, Transmontaña s/n, 35413, Spain.
| |
Collapse
|
49
|
Valero Y, García-Alcázar A, Esteban MÁ, Cuesta A, Chaves-Pozo E. Antimicrobial response is increased in the testis of European sea bass, but not in gilthead seabream, upon nodavirus infection. FISH & SHELLFISH IMMUNOLOGY 2015; 44:203-213. [PMID: 25707600 DOI: 10.1016/j.fsi.2015.02.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 01/14/2015] [Accepted: 02/10/2015] [Indexed: 06/04/2023]
Abstract
Antimicrobial peptides (AMPs) have a crucial role in the fish innate immune response, being considered a fundamental component of the first line of defence against pathogens. Moreover, AMPs have not been studied in the fish gonad since this is used by some pathogens as a vehicle or a reservoir to be transmitted to the progeny, as occurs with nodavirus (VNNV), which shows vertical transmission through the gonad and/or gonadal fluids, but no study has looked into the gonad of infected fish. In this framework, we have characterized the antimicrobial response triggered by VNNV in the testis of European sea bass, a very susceptible species of the virus, and in the gilthead seabream, which acts as a reservoir, both in vivo and in vitro, and compared with that present in the serum and brain (target tissue of VNNV). First, our data show a great antiviral response in the brain of gilthead seabream and in the gonad of European sea bass. In addition, for the first time, our results demonstrate that the antimicrobial activities (complement, lysozyme and bactericidal) and the expression of AMP genes such as complement factor 3 (c3), lysozyme (lyz), hepcidin (hamp), dicentracin (dic), piscidin (pis) or β-defensin (bdef) in the gonad of both species are very different, but generally activated in the European sea bass, probably related with the differences of susceptibility upon VNNV infection, and even differs to the brain response. Furthermore, the in vitro data suggest that some AMPs are locally regulated playing a local immune response in the gonad, while others are more dependent of the systemic immune system. Data are discussed in the light to ascertain their potential role in viral clearance by the gonad to avoid vertical transmission.
Collapse
Affiliation(s)
- Yulema Valero
- Centro Oceanográfico de Murcia, Instituto Español de Oceanografía (IEO), Carretera de la Azohía s/n. Puerto de Mazarrón, 30860 Murcia, Spain
| | - Alicia García-Alcázar
- Centro Oceanográfico de Murcia, Instituto Español de Oceanografía (IEO), Carretera de la Azohía s/n. Puerto de Mazarrón, 30860 Murcia, Spain
| | - M Ángeles Esteban
- Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain
| | - Alberto Cuesta
- Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain
| | - Elena Chaves-Pozo
- Centro Oceanográfico de Murcia, Instituto Español de Oceanografía (IEO), Carretera de la Azohía s/n. Puerto de Mazarrón, 30860 Murcia, Spain.
| |
Collapse
|
50
|
Valero Y, Morcillo P, Meseguer J, Buonocore F, Esteban MA, Chaves-Pozo E, Cuesta A. Characterization of the IFN pathway in the teleost fish gonad against vertically transmitted viral nervous necrosis virus. J Gen Virol 2015; 96:2176-2187. [PMID: 25918238 DOI: 10.1099/vir.0.000164] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
One of the most powerful innate immune responses against viruses is mediated by type I IFN. In teleost fish, it is known that virus infection triggers the expression of ifn and many IFN-stimulated genes, but the viral RNA sensors and mediators leading to IFN production are scarcely known. Thus, we have searched for the presence of these genes in gilt-head sea bream (Sparus aurata) and European sea bass (Dicentrarchus labrax), and evaluated their expression after infection with viral nervous necrosis virus (VNNV) in the brain, the main viral target tissue, and the gonad, used to transmit the virus vertically. In sea bream, a fish species resistant to the VNNV strain used, we found an upregulation of the genes encoding MDA5 (melanoma differentiation-associated gene 5), TBK1 (TANK-binding kinase 1), IRF3 (IFN regulatory factor 3), IFN, Mx [myxovirus (influenza) resistance protein] and PKR (dsRNA-dependent protein kinase receptor) proteins in the brain, which were unaltered in the gonad and could favour the dissemination by gonad fluids or gametes. Strikingly, in European sea bass, a very susceptible species, we also identified, transcripts coding for LGP2 (Laboratory of Genetics and Physiology 2), MAVS (mitochondrial antiviral signalling), TRAF3 (TNF receptor-associated factor 3), TANK (TRAF family member-associated NFκB activator) and IRF7 (IFN regulatory factor 7), and found that all the genes analysed were upregulated in the gonad, but only mda5, lgp2, irf3, mx and pkr were upregulated in the brain. These findings supported the notion that the European sea bass brain innate immune response is unable to clear the virus and pointed to the importance of gonad immunity to control the dissemination of VNNV to the progeny--an aspect that is worth investigating in aquatic animals.
Collapse
Affiliation(s)
- Yulema Valero
- Centro Oceanográfico de Murcia, Instituto Español de Oceanografía (IEO), Carretera de la Azohía s/n, Puerto de Mazarrón, 30860 Murcia, Spain
| | - Patricia Morcillo
- Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, 30100 Murcia, Spain
| | - José Meseguer
- Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, 30100 Murcia, Spain
| | - Francesco Buonocore
- Dipartimento per l'Innovazione nei Sistemi Biologici Agroalimentari e Forestali, Università della Tuscia, Italy
| | - María A Esteban
- Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, 30100 Murcia, Spain
| | - Elena Chaves-Pozo
- Centro Oceanográfico de Murcia, Instituto Español de Oceanografía (IEO), Carretera de la Azohía s/n, Puerto de Mazarrón, 30860 Murcia, Spain
| | - Alberto Cuesta
- Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, 30100 Murcia, Spain
| |
Collapse
|