1
|
Eissa ESH, Hendam BM, Dighiesh HS, Abd Elnabi HE, Sakr SES, Kabary H, Abdel Rahman AN, Eissa MEH, Ahmed NH. The benefits of astaxanthin-rich microalgal powder on growth, health, and disease resistance against Fusarium solani in Pacific white shrimp. FISH & SHELLFISH IMMUNOLOGY 2025; 156:110059. [PMID: 39613170 DOI: 10.1016/j.fsi.2024.110059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024]
Abstract
In shrimp aquaculture, enhancing health and disease resistance is crucial for sustainable production. This study investigates the pioneering effects of astaxanthin-enriched microalgal powder from Haematococcus pluvialis (HP) on Pacific white shrimp (Litopenaeus vannamei), focusing on growth efficiency, body composition, immune and antioxidant responses, intestinal health, histopathology, gene expression, and resistance against Fusarium solani. Shrimp (initial weight 5.27 ± 0.12 g) were separated into four groups and fed diets supplemented with HP at concentrations of 0, 0.5, 1, and 1.5 g/kg feed (control, HP 0.5, HP1, and HP1.5), respectively, for 8 weeks. The outcomes revealed marked improvements in growth, feed utilization, and survival rate of the HP-fed groups. The improvement was dose-dependent. The protein and ash content increased and the lipid decreased with HP supplementation. A dose-dependent augmented antioxidant-immune response was obvious in the HP-fed groups. This is proven by the high level of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase, total hemocyte count, respiratory burst, lysozyme (LYZ), phenoloxidase (PO), and phagocytic activity with up-regulation of proPO, LYZ, SOD, and CAT genes. Dietary HP influenced the intestinal bacterial community, where it reduced total aerobic and fecal bacteria and rose total probiotic bacteria and Clostridium counts. Histological investigation showed increased secretory vesicles within B-cells in the hepato-pancreas and larger muscle fibers in the HP-fed groups. Additionally, dietary HP notably lowered mortality rates upon the F. solani challenge, with a reduction from 65.00 % in the control to 45.00 %, 35.00%, and 35.00 % in the HP 0.5, HP1, and HP1.5 groups, respectively. Our study recommends adopting dietary HP at the optimal dose of 1.2 g/kg diet relying on the broken line regression model. This study provides valuable insights into the potential of HP as a dietary supplement to improve the health, growth, and disease resistance of L. vannamei, marking a significant advancement in shrimp aquaculture.
Collapse
Affiliation(s)
- El-Sayed Hemdan Eissa
- Fish Research Centre, Faculty of Agricultural Environmental Sciences, Arish University, El-Arish, Egypt.
| | - Basma M Hendam
- Department of Animal Wealth Development, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Hagar Sedeek Dighiesh
- Department of Aquaculture, Faculty of Fish Resources, Suez University, P.O.Box:43512, Suez, Egypt
| | - Heba E Abd Elnabi
- Department of Fish Resources and Aquaculture, Faculty of Environmental Agricultural Sciences, Arish University, El-Arish, Egypt
| | - Salah El-Sayed Sakr
- Department of Fish Resources and Aquaculture, Faculty of Environmental Agricultural Sciences, Arish University, El-Arish, Egypt
| | - Hoda Kabary
- Biotechnology Department, Fish Farming and Technology Institute, Suez Canal University, Ismailia 41522, Egypt
| | - Afaf N Abdel Rahman
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Egypt
| | - Moaheda E H Eissa
- Department of Biotechnology, Fish Farming and Technology Institute, Suez Canal University, Ismailia, Egypt
| | - Norhan H Ahmed
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| |
Collapse
|
2
|
Lin S, Chen M, Chen X, Li Y, Liu Y, Zhang P, Hou X, Tan B, Niu J. Supplemental effects of Haematococcus pluvialis in a low-fish meal diet for Litopenaeus vannamei at varying temperatures: growth performance, innate immunity and gut bacterial community. Front Immunol 2024; 15:1501753. [PMID: 39720708 PMCID: PMC11666440 DOI: 10.3389/fimmu.2024.1501753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/25/2024] [Indexed: 12/26/2024] Open
Abstract
This study examined the effects of Haematococcus pluvialis on the growth performance, innate immunity, and gut microbiota of Litopenaeus vannamei under different water temperature conditions. Feeding regimens included a 20% fishmeal diet (control), a low-fish meal (LFM) diet with 10% fishmeal and an LFM diet supplemented with 0.03% H. pluvialis. These diets were administered to six groups of L. vannamei at normal (30°C) (NT) and low (20°C) (LT) temperatures (NT_C, NT_LFM, NT_LFM_HP, LT_C, LT_LFM, and LT_LFM_HP) over 8 weeks. The weight gain rate of L. vannamei in group NT_LFM_HP was significantly higher compared to group NT_LFM. Astaxanthin levels and body pigmentation intensity in L. vannamei were significantly increased in the NT_LFM_HP and LT_LFM_HP groups. Moreover, hepatopancreatic antioxidant capacities, such as superoxide dismutase (SOD) activity and total antioxidant capacity (T-AOC), were lower in normal-temperature groups compared to the low-temperature groups. Nevertheless, antioxidant capacity was significantly higher in both the NT_LFM_HP and LT_LFM_HP groups compared to the control group. Meanwhile, the expression levels of antioxidants were significantly higher at lower temperatures compared to higher temperatures, with the NT_LFM_HP and LT_LFM_HP groups exhibiting the highest expression levels. Additionally, the mRNA levels of genes associated with the Toll and IMD pathways indicated immunoregulatory effects in the organism. The expression levels of immune genes were significantly higher at lower temperatures, especially in the NT_LFM_HP and LT_LFM_HP groups compared to the control groups. Notably, significant differences in gut microbial composition were observed in the NT_LFM_HP group compared to other groups, with variations influenced by temperature and fishmeal content. Specifically, Vibrionaceae abundance was significantly lower in the LT_LFM_HP group compared to the control group. The results also revealed that the abundance of Actinomarinales was significantly higher in low-temperature groups, with the LT_LFM_HP group displaying the greatest increase. Overall, these findings suggest that L. vannamei may be susceptible to reduced fishmeal levels, potentially impacting growth and immune function. Furthermore, H. pluvialis supplementation may assist L. vannamei in acclimating to prolonged low-temperature conditions.
Collapse
Affiliation(s)
- Sihan Lin
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Mengdie Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xuanqi Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yanmei Li
- Algae Health Science Co., Ltd., Kunming, China
| | - Yafeng Liu
- Algae Health Science Co., Ltd., Kunming, China
| | | | | | - Beiping Tan
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Jin Niu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
3
|
Abo-Taleb HA, Mabrouk MM, El-Tabakh MAM, Abdelzaher OF, Nabeeh A, Elokaby MA, Ashour M, Sallam AE, Mansour AT, El-Feky MMM. The potential use of daphnia meal as substitute for fishmeal in diets of hybrid red tilapia affects growth performance, activities of digestive enzymes, antioxidant, immune status and intestinal histological parameters. J Anim Physiol Anim Nutr (Berl) 2024; 108:752-763. [PMID: 38305567 DOI: 10.1111/jpn.13925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 02/03/2024]
Abstract
The current study aimed to evaluate growth performance, digestive enzyme activities, antioxidant status, nonspecific immune response and intestinal histological status of red tilapia fed Daphnia meal (DM) as a substitute for fishmeal (FM). Hybrid red tilapia (Oreochromis mossambicus × Oreochromis aureus) fry (0.54 ± 0.05 g fish-1) was allocated in nylon haba cages (100 fry m-3) for 2 weeks as an acclimation period. The fish were divided into five groups (three replicates each). The experimental diets were prepared by replacing FM with DM at concentrations of 25%, 50%, 75% and 100% respectively. The results indicated that fish fed increasing levels of DM (50%-75%) experienced high growth performance, feed utilisation and protein content. The activities of digestive enzymes were significantly increased in all groups fed DM diets compared to the control. The antioxidant balance was improved by decreasing the level of malondialdehyde and increased the total antioxidant capacity, catalase, superoxide dismutase and glutathione reductase activities in the liver of fish fed DM. The nonspecific immune response, including lysozyme, alkaline phosphatase activities and total protein level improved significantly with increasing FM substitution levels by DM in a dose-dependent manner. Histometric analysis of the intestinal wall revealed an increase in the villus length, crypts depth and goblet cells number in groups fed DM meal up to 50% substitution level compared to other treatments. It may be concluded from results of this feeding trial that in the aquaculture of hybrid tilapia, FM may be substituted with up to 50% DM without compromising intestinal health, growth performance and immune status of the fish.
Collapse
Affiliation(s)
- Hamdy A Abo-Taleb
- Zoology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
- School of Marine and Atmospheric Science, Stony Brook University, Southampton, New York, USA
| | - Mohamed M Mabrouk
- Fish Production Department, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | | | | | - Ahmed Nabeeh
- Zoology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Mohamed A Elokaby
- National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt
| | - Mohamed Ashour
- National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt
| | - Ahmed E Sallam
- National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt
| | - Abdallah T Mansour
- Animal and Fish Production Department, College of Agricultural and Food Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
- Fish and Animal Production Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Mohamed M M El-Feky
- Aquatic Resources, Natural Resources Studies and Research Department, Zagazig University, Zagazig, Egypt
| |
Collapse
|
4
|
Ye B, Wang Q, Ye Q, Wang D, Wang Z, Dong Z, Zou J. Effects of different combinations of koumine and gelsemine on growth performance, intestinal health, and transcriptome of Cyprinus carpio. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133130. [PMID: 38086301 DOI: 10.1016/j.jhazmat.2023.133130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 02/08/2024]
Abstract
Koumine (KM) and gelsemine (GS) have shown significant benefits in livestock production, but their potential in aquaculture remains largely unexplored. This study examined the impact of different KM and GS combinations as feed additives on C. carpio (90 fish per group, initial weight 1.95 ± 0.08 g). KM and GS were introduced in ratios of 2:2 (mg/kg), 2:1 (mg/kg), and 2:0.67 (mg/kg) over a 10-week aquaculture experiment. The results demonstrate that the 2:1 (mg/kg) group increases the villus length, muscular layer thickness, crude protein, and crude fat content. Regarding fatty acid content, KM and GS enhance the levels of various fatty acids, including the total saturated fatty acid and total monounsaturated fatty acid. Additionally, KM and GS improve the composition and function of the intestinal microbiota. The 2:1 (mg/kg) group significantly elevates the enzymatic activities of SOD, MDA, CAT and upregulates the expression of immune-related genes such as toll-like receptor 2, transforming growth factor β, and glutathione S-transferase. Transcriptomic analysis suggests that KM and GS may have potential benefits for nutrient utilization and immune regulation in C. carpio. In summary, this study provides valuable insights into the use of KM and GS as feed additives in aquaculture.
Collapse
Affiliation(s)
- Bin Ye
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Qiujie Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Qiao Ye
- School of Life Sciences, Huizhou University, Huizhou 516007, China
| | - Dongjie Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Zhenlu Wang
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Zaijie Dong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Jixing Zou
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
5
|
Salih AHM, Patra I, Sivaraman R, Alhamzawi R, Khalikov KM, Al-qaim ZH, Golgouneh S, Jawad MA, Adhab AH, Vázquez-Cárdenas AL, Abarghouei S. The Probiotic Lactobacillus sakei Subsp. Sakei and Hawthorn Extract Supplements Improved Growth Performance, Digestive Enzymes, Immunity, and Resistance to the Pesticide Acetamiprid in Common Carp ( Cyprinus carpio). AQUACULTURE NUTRITION 2023; 2023:8506738. [PMID: 36922956 PMCID: PMC10010885 DOI: 10.1155/2023/8506738] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/08/2022] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
This study evaluated the impacts of the probiotic, Lactobacillus sakei (L. sakei), and the extract of hawthorn, Crataegus elbursensis, on growth and immunity of the common carp exposed to acetamiprid. Fish (mean ± SE: 11.48 ± 0.1 g) feeding was done with formulated diets (T 1 (control): no supplementation, T 2: 1 × 106 CFU/g LS (Lactobacillus sakei), T3: 1 × 108 CFU/g LS, T 4: 0.5% hawthorn extract (HWE), and T 5: 1% HWE) for 60 days and then exposed to acetamiprid for 14 days. The growth performance improved in the fish fed LS at dietary level of 1 × 108 CFU/g, even after exposure to acetamiprid (P < 0.05). Intestinal Lactobacillus sakei (CFU/g) load increased (P < 0.05), following supplementation with the probiotic-enriched diet. The LS-treated fish had increases in the activity of digestive enzymes (P < 0.05). Both LS and HWE stimulated antioxidant enzymes and immune system components in serum and mucus (alkaline phosphatase (ALP), protease, total Ig, and lysozyme) (P < 0.05). However, the changes were different depending on the kind of the supplement. The malondialdehyde (MDA) levels decreased in HWE-treated fish after acetamiprid exposure (P < 0.05). Both LS and HWE reduced the liver metabolic enzymes (LDH, ALP, AST, ALT, and LDH) in serum both before and after exposure to the pesticide (P < 0.05). However, each enzyme exhibited a different change trend depending on the type of the supplement. HWE showed a stress-ameliorating effect, as glucose and cortisol levels declined in the HWE-treated fish (P < 0.05). This study indicated the immunomodulatory impacts of LS (1 × 108 CFU/g) and HWE (at dietary levels of 0.5-1%). The probiotic showed more performance compared to HWE. However, the HWE mitigated oxidative stress more efficiently than the probiotic.
Collapse
Affiliation(s)
| | | | - Ramaswamy Sivaraman
- Institution of Dwaraka Doss Goverdhan Doss Vaishnav College, Arumbakkam, University of Madras, Chennai, India
| | - Rahim Alhamzawi
- College of Administration and Economics, University of Al-Qadisiyah, Al Diwaniyah, Iraq
| | - Kakhor M. Khalikov
- Department of Biological Chemistry, Samarkand State Medical University, Samarkand, Uzbekistan
| | | | - Sahar Golgouneh
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, Tehran, Iran
| | | | - Ali Hussein Adhab
- Department of Medical Laboratory Technics, Al-Zahrawi University College, Karbala, Iraq
| | | | - Safoura Abarghouei
- Baharavaran Nastaran Agricultural Applied Scientific Training Center, Applied Scientific University, Qom, Iran
| |
Collapse
|
6
|
García-Márquez J, Vizcaíno AJ, Barany A, Galafat A, Acién G, Figueroa FL, Alarcón FJ, Mancera JM, Martos-Sitcha JA, Arijo S, Abdala-Díaz RT. Evaluation of the Combined Administration of Chlorella fusca and Vibrio proteolyticus in Diets for Chelon labrosus: Effects on Growth, Metabolism, and Digestive Functionality. Animals (Basel) 2023; 13:ani13040589. [PMID: 36830376 PMCID: PMC9951767 DOI: 10.3390/ani13040589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
This study aimed to evaluate the combined effect of dietary Chlorella fusca and ethanol-inactivated Vibrio proteolyticus DCF12.2 (C + V diet) in Chelon labrosus juveniles, highlighting their nutritional, physiological, and morphological effects. The results showed that the combined dietary inclusion of C. fusca and V. proteolyticus significantly enhanced growth performance and feed utilization compared to the control group. The C + V diet increased the fish lipid quality index (FLQ), n-3 polyunsaturated fatty acids, and n-3/n-6 ratio, which might be beneficial in terms of human nutrition. The C + V diet considerably increased carbohydrate metabolic activity by statistically boosting plasma glucose. The dietary inclusion of C. fusca in conjunction with V. proteolyticus increased metabolic enzyme activity as well as intestinal absorption capacity compared to that found in the control group. In conclusion, the experimental diet was suitable for feeding C. labrosus, increasing their growth and the nutritional characteristics of the muscle and intestine, without causing tissue damage.
Collapse
Affiliation(s)
- Jorge García-Márquez
- Departamento de Microbiología, Facultad de Ciencias, Instituto Andaluz de Biotecnología y Desarrollo Azul (IBYDA), Universidad de Málaga, Ceimar-Universidad de Málaga, 29071 Málaga, Spain
| | - Antonio Jesús Vizcaíno
- Departamento de Biología y Geología, Universidad de Almería, Ceimar-Universidad de Almería, 04120 Almería, Spain
| | - André Barany
- Department of Biology, Morrill Science Center, University of Massachusetts, Amherst, MA 01003, USA
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Instituto Universitario de Investigación Marina (INMAR), Universidad de Cádiz, Ceimar-Universidad de Cádiz, 11519 Cádiz, Spain
| | - Alba Galafat
- Departamento de Biología y Geología, Universidad de Almería, Ceimar-Universidad de Almería, 04120 Almería, Spain
| | - Gabriel Acién
- Departamento de Ingeniería Química, Universidad de Almería, Ceimar-Universidad de Almería, 04120 Almería, Spain
| | - Félix L. Figueroa
- Departamento de Ecología y Geología, Facultad de Ciencias, Instituto Andaluz de Biotecnología y Desarrollo Azul (IBYDA), Universidad de Málaga, Ceimar-Universidad de Málaga, 29071 Málaga, Spain
| | - Francisco Javier Alarcón
- Departamento de Biología y Geología, Universidad de Almería, Ceimar-Universidad de Almería, 04120 Almería, Spain
| | - Juan Miguel Mancera
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Instituto Universitario de Investigación Marina (INMAR), Universidad de Cádiz, Ceimar-Universidad de Cádiz, 11519 Cádiz, Spain
| | - Juan Antonio Martos-Sitcha
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Instituto Universitario de Investigación Marina (INMAR), Universidad de Cádiz, Ceimar-Universidad de Cádiz, 11519 Cádiz, Spain
| | - Salvador Arijo
- Departamento de Microbiología, Facultad de Ciencias, Instituto Andaluz de Biotecnología y Desarrollo Azul (IBYDA), Universidad de Málaga, Ceimar-Universidad de Málaga, 29071 Málaga, Spain
- Correspondence: ; Tel.: +34-952136650
| | - Roberto Teófilo Abdala-Díaz
- Departamento de Ecología y Geología, Facultad de Ciencias, Instituto Andaluz de Biotecnología y Desarrollo Azul (IBYDA), Universidad de Málaga, Ceimar-Universidad de Málaga, 29071 Málaga, Spain
| |
Collapse
|
7
|
Idenyi JN, Eya JC, Nwankwegu AS, Nwoba EG. Aquaculture sustainability through alternative dietary ingredients: Microalgal value-added products. ENGINEERING MICROBIOLOGY 2022; 2:100049. [PMID: 39628701 PMCID: PMC11611001 DOI: 10.1016/j.engmic.2022.100049] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/18/2022] [Accepted: 09/18/2022] [Indexed: 12/06/2024]
Abstract
Aquaculture contributes remarkably to the global economy and food security through seafood production, an important part of the global food supply chain. The success of this industry depends heavily on aquafeeds, and the nutritional composition of the feed is an important factor for the quality, productivity, and profitability of aquaculture species. The sustainability of the aquaculture industry depends on the accessibility of quality feed ingredients, such as fishmeal and fish oil. These traditional feedstuffs are under increasing significant pressure due to the rapid expansion of aquaculture for human consumption and the decline of natural fish harvest. In this review, we evaluated the development of microalgal molecules in aquaculture and expanded the use of these high-value compounds in the production of aquaculture diets. Microalgae-derived functional ingredients emerged as one of the promising alternatives for aquafeed production with positive health benefits. Several compounds found in microalgae, including carotenoids (lutein, astaxanthin, and β-carotene), essential amino acids (leucine, valine, and threonine), β-1-3-glucan, essential oils (docosahexaenoic acid and eicosapentaenoic acid), minerals, and vitamins, are of high nutritional value to aquaculture.
Collapse
Affiliation(s)
- John N. Idenyi
- Department of Biology/Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA
- Department of Biotechnology, Ebonyi State University, P.M.B, 053, Abakaliki, Nigeria
| | - Jonathan C. Eya
- Department of Biology/Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA
| | - Amechi S. Nwankwegu
- College of Resources and Environment, Southwest University, 1 Tiansheng Road, Beibei District, Chongqing 400716, China
| | - Emeka G. Nwoba
- Algae R&D Centre, Environmental and Conservation Sciences, Murdoch University, 90 South Street, Murdoch, Western Australia 6150, Australia
- Centre for Water, Energy and Waste, Harry Butler Institute, Murdoch University, 90 South Street, Murdoch, Western Australia 6150, Australia
| |
Collapse
|
8
|
Viswanath K, Hayes M, Avni D. Inflammatory bowel disease - A peek into the bacterial community shift and algae-based ‘biotic’ approach to combat the disease. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
9
|
Zhao W, Cui X, Wang ZQ, Yao R, Xie SH, Gao BY, Zhang CW, Niu J. Beneficial Changes in Growth Performance, Antioxidant Capacity, Immune Response, Hepatic Health, and Flesh Quality of Trachinotus ovatus Fed With Oedocladium carolinianum. Front Immunol 2022; 13:940929. [PMID: 35860234 PMCID: PMC9289517 DOI: 10.3389/fimmu.2022.940929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/07/2022] [Indexed: 01/04/2023] Open
Abstract
The purpose of this study is to assess the feasibility of astaxanthin-rich Oedocladium carolinianum as an immunostimulant in the diet for Trachinotus ovatus. Three experimental diets containing 0% (OC0), 1% (OC1), and 5% (OC5) O. carolinianum powder were formulated for 6-week feeding trials. The results indicated that the OC5 diet boosted the growth performance through decreasing the feed conversion ratio and increasing digestive enzyme activities and intestinal villus length. Meanwhile, fish fed with the OC5 diet promoted antioxidant ability via stimulating the Nrf2-ARE signal pathway and enhancing antioxidant enzyme activities. Furthermore, the OC5 diet exerted hepatoprotective effects by suppressing the lipid deposition and inflammation response and enhancing the transport capacity of cholesterol. Besides, the OC5 diet improved the non-specific immunity by activating the lysozyme and complement system and increasing the nitric oxide content and total nitric oxide synthase activity. Dietary O. carolinianum supplementation promoted the deposition of astaxanthin in the whole body. Therefore, a diet supplemented with 5% O. carolinianum is recommended to boost the growth, antioxidant capacity, immune response, and flesh quality of T. ovatus.
Collapse
Affiliation(s)
- Wei Zhao
- State key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- Department of Ecology, Institute of Hydrobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xin Cui
- State key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Zi-Qiao Wang
- State key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Rong Yao
- State key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Shi-Hua Xie
- State key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Bao-Yan Gao
- Department of Ecology, Institute of Hydrobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Cheng-Wu Zhang
- Department of Ecology, Institute of Hydrobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Jin Niu
- State key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
10
|
Dai J, He J, Chen Z, Qin H, Du M, Lei A, Zhao L, Wang J. Euglena gracilis Promotes Lactobacillus Growth and Antioxidants Accumulation as a Potential Next-Generation Prebiotic. Front Nutr 2022; 9:864565. [PMID: 35811960 PMCID: PMC9257220 DOI: 10.3389/fnut.2022.864565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Euglena gracilis, a single-celled microalga with various trophic growth styles under different cultivation conditions, contains nutrients, such as ß-1,3-glucans, essential amino acids, fatty acids, vitamins, and minerals. It has recently attracted attention as a new health food. Among them, ß-1,3-glucans, paramylon of Euglena, is an insoluble dietary fiber and is well known as an immune booster, attenuator of obesity and diabetes, reducer of acute liver injury, and suppressor of atopic dermatitis, and other chronic inflammatory disorders. Recently, evidence has appeared for the positive health effects of foods, food ingredients, or biochemical compounds derived from several other microalgae, such as Chlorella, Spirulina, Dunaliella, Phaeodactylum, and Pavlova. Until most recently, the prebiotic activity of Euglena and paramylon was reported. Emerging prospects of microalgae as prebiotics were well summarized, but the mechanisms behind the bacterial growth promotion by microalgae are not elucidated yet. Thus, we evaluated the prebiotic prospects of both autotrophic and heterotrophic Euglena on six different Lactobacillus. What’s more, the stimulated mechanism was revealed by bacterial culture medium metabolomic analysis. This study could widen the knowledge about the prebiotic activity of Euglena as a next-generation prebiotic and other microalgae-derived compounds as potential health foods.
Collapse
Affiliation(s)
- Junjie Dai
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Jiayi He
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Zixi Chen
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Huan Qin
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Ming Du
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Anping Lei
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Liqing Zhao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
- *Correspondence: Liqing Zhao,
| | - Jiangxin Wang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Jiangxin Wang,
| |
Collapse
|
11
|
Fang H, Zhuang Z, Huang L, Niu J, Zhao W. A Newly Isolated Strain of Haematococcus pluvialis GXU-A23 Improves the Growth Performance, Antioxidant and Anti-Inflammatory Status, Metabolic Capacity and Mid-intestine Morphology of Juvenile Litopenaeus vannamei. Front Physiol 2022; 13:882091. [PMID: 35547591 PMCID: PMC9081789 DOI: 10.3389/fphys.2022.882091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
Haematococcus pluvialis can be used as a green additive in aquafeeds due to it contains rich astaxanthin and polyunsaturated fatty acid. In the present study, a newly strain of H. pluvialis GXU-A23 with high concentration of astaxanthin was firstly isolated by a newly culture strategy in our laboratory. In addition, H. pluvialis GXU-A23 was applied in the Litopenaeus vannamei feed for determining whether it has positive effects on the growth performance, antioxidant and anti-inflammatory status, metabolic capacity and mid-intestine morphology of juvenile L. vannamei. Shrimp with 0.63 g approximately initial body weight were fed diets supplemented with/without 50 g/kg H. pluvialis GXU-A23. After 8 weeks feeding intervention, significantly higher growth performance of L. vannamei was obtained in the H. pluvialis GXU-A23 treatment group compared to the control group (p < 0.05). At the same time, L. vannamei fed with H. pluvialis GXU-A23 acquired significantly better antioxidant and anti-inflammatory status than the control group (p < 0.05). In addition, higher RNA expression level of hepatopancreas digestive enzyme, hepatopancreas lipid and glucose metabolic enzymes as well as better mid-intestine morphology were found in the H. pluvialis GXU-A23 treatment group than the control group (p < 0.05). These results indicated that 50 g/kg H. pluvialis GXU-A23 was suitable for the L. vannamei feed, which could improve the growth performance, antioxidant and anti-inflammatory status, metabolic capacity and mid-intestine morphology of juvenile L. vannamei.
Collapse
Affiliation(s)
- HaoHang Fang
- College of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Institute of Marine Research, Bergen, Norway
| | - ZhenXiao Zhuang
- College of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - LuoDong Huang
- College of Life Science and Technology, Guangxi University, Nanning, China
| | - Jin Niu
- College of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wei Zhao
- College of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
12
|
Teng CS, Xue C, Lin JY, Ng IS. Towards high-level protein, beta-carotene, and lutein production from Chlorella sorokiniana using aminobutyric acid and pseudo seawater. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
13
|
Sun Z, Liu Y, Wei Z, Mai H, Liu Q, Liu B, Zhuang Y, Zou D, Zhang W, Liu X, Tan X, Ye C. The effects of dietary compound plant extracts on growth performance, liver and intestine health, and immune related genes expression in hybrid grouper (Epinephelus lanceolatus♂ × Epinephelus fuscoguttatus♀). FISH & SHELLFISH IMMUNOLOGY 2021; 119:11-18. [PMID: 34530079 DOI: 10.1016/j.fsi.2021.09.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/09/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
The study explored on the effect of dietary compound plant extract supplementation on the growth performance, serum biochemical indicators, liver and intestinal morphological and gene expression levels in the head kidney and spleen of the hybrid grouper (Epinephelus lanceolatus♂× Epinephelus fuscoguttatus♀). The compound plant extracts (BDG) was a mixture of Bupleurum edulis extract, dandelion extract and Ginkgo biloba extract in a ratio of 1:4:1. Basal diets supplemented with BDG at 0, 0.75, 1.5, 3 and 6 g/kg were fed hybrid grouper for 8 weeks. The results showed that dietary 0.75 and 1.5 g/kg BDG supplementation could significantly increase the WGR and SGR of hybrid grouper (P < 0.05). And dietary 0.75 g/kg BDG could also significantly decrease serum aspartate aminotransferase, glucose and lactate dehydrogenase in hybrid grouper (P < 0.05). Dietary BGD supplementation protected the integrity of liver and intestinal morphological structure, reduced the accumulation of liver fat. Dietary BDG supplementation might enhance the immunity of hybrid grouper by regulating the expression of antioxidant and inflammation-related genes in head kidney and spleen of hybrid grouper. Our study demonstrated that the growth promoting effect of Bupleurum extract, dandelion extract and Ginkgo biloba extract in the ratio of 1:4:1 as a compound feed additive was better than any of them as a feed additive alone, and the dosage was less. The optimal additive dosage of BDG was 0.75 g/kg in hybrid grouper diets.
Collapse
Affiliation(s)
- Zhenzhu Sun
- Institute of Modern Aquaculture Science and Engineering, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Yang Liu
- Institute of Modern Aquaculture Science and Engineering, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Zonglu Wei
- Institute of Modern Aquaculture Science and Engineering, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Haobin Mai
- Institute of Modern Aquaculture Science and Engineering, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631, People's Republic of China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), 524025, China
| | - Qingying Liu
- Institute of Modern Aquaculture Science and Engineering, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Bo Liu
- Institute of Modern Aquaculture Science and Engineering, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Yutong Zhuang
- Institute of Modern Aquaculture Science and Engineering, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Danyang Zou
- Institute of Modern Aquaculture Science and Engineering, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Wenqian Zhang
- Institute of Modern Aquaculture Science and Engineering, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Xinting Liu
- Institute of Modern Aquaculture Science and Engineering, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Xiaohong Tan
- Innovative Institute of Animal Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China.
| | - Chaoxia Ye
- Institute of Modern Aquaculture Science and Engineering, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631, People's Republic of China.
| |
Collapse
|
14
|
Ou W, Yu G, Zhang Y, Mai K. Recent progress in the understanding of the gut microbiota of marine fishes. MARINE LIFE SCIENCE & TECHNOLOGY 2021; 3:434-448. [PMID: 37073265 PMCID: PMC10077274 DOI: 10.1007/s42995-021-00094-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 01/12/2021] [Indexed: 05/03/2023]
Abstract
As the significance of the gut microbiota has become increasingly realized, a large number of related studies have emerged. With respect to the gut microbial composition of fish, the predominant gut microbes and core gut microbiota have been reported by many researchers. Our understanding of fish gut microbiota, especially its functional roles, has fallen far behind that of terrestrial vertebrates, although previous studies using gnotobiotic zebrafish models have revealed that the gut microbiota performs a significant role in gut development, nutrient metabolism and immune responses. Given that environmental factors of marine habitats are very different from those of freshwater habitats, a distinct difference may exist in the gut microbiota between freshwater and marine fish. Therefore, this review aims to address the advances in marine fish gut microbiota in terms of methodologies, the gut microbial composition, and gnotobiotic models of marine fish, the important factors (host genotype and three environmental factors: temperature, salinity and diet) that drive marine fish gut microbiota, and significant roles of the gut microbiota in marine fish.
Collapse
Affiliation(s)
- Weihao Ou
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) and the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003 China
| | - Guijuan Yu
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) and the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003 China
| | - Yanjiao Zhang
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) and the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Kangsen Mai
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) and the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| |
Collapse
|
15
|
Amira KI, Rahman MR, Sikder S, Khatoon H, Afruj J, Haque ME, Minhaz TM. Data on Growth, survivability, water quality and hemato-biochemical indices of Nile Tilapia ( Oreochromis niloticus) fry fed with selected marine microalgae. Data Brief 2021; 38:107422. [PMID: 34632018 PMCID: PMC8488251 DOI: 10.1016/j.dib.2021.107422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/12/2021] [Accepted: 09/15/2021] [Indexed: 11/26/2022] Open
Abstract
Data of this article describes growth, survival rate, water quality and hemato-biochemical indices of Nile Tilapia (Oreochromis niloticus) fry. To collect the data, the Nile Tilapia fry was reared in 30 L glass aquarium (18 fish/ tank) for 56-days under controlled environmental condition. Feed was prepared with 25 and 50% replacement of commercial fish meal with Nannochloropsis sp. and Tetraselmis sp. microalgae, while no replacement was made for control feed. Initial and final body weight of fish was recorded to find the data of growth rate; survival rate was calculated from the initial and final live individuals recorded during the experiment; physico-chemical parameters were analyzed to collect water quality data; hemato-biochemical indices were collected using hematology analyzer and photometry. The data on growth, survival rate and hemato-biochemical indices were statistically significant (p < 0.05). Therefore, these data might contribute to the selection of marine microalgae to improve the water quality during fish farming which could enhance the growth and survivability of fish. In addition, the data of hemato-biochemical indices represent that feeding selected marine microalgae might result in the production of healthy and disease-free fish.
Collapse
Affiliation(s)
- Kafia Islam Amira
- Department of Aquaculture, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh
| | - Mohammad Redwanur Rahman
- Department of Aquaculture, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh
| | - Suchandan Sikder
- Department of Medicine and Surgery, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh
| | - Helena Khatoon
- Department of Aquaculture, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh
| | - Jinat Afruj
- Department of Aquaculture, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh
| | - Mohammad Ekramul Haque
- Department of Aquaculture, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh
| | - Tashrif Mahmud Minhaz
- Department of Aquaculture, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh
| |
Collapse
|
16
|
Sönmez AY, Bi Len S, Taştan Y, Serag KJB, Toring CC, Romero JB, Kenanoğlu ON, Terzi E. Oral administration of Sargassum polycystum extracts stimulates immune response and increases survival against Aeromonas hydrophila infection in Oncorhynchus mykiss. FISH & SHELLFISH IMMUNOLOGY 2021; 117:291-298. [PMID: 34419600 DOI: 10.1016/j.fsi.2021.08.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/09/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
This study investigated the immunomodulatory effects of Sargassum polycystum extract administration in rainbow trout (Oncorhynchus mykiss). S. polycystum methanolic extract was administered orally using feeding needles to individual rainbow trout at the dose of 0 (control), 1 (S1), 3 (S3) and 5 (S5) mg/100 μl/per fish twice a day for 7 days. On 1st, 5th, 3rd and 7th day, blood and tissues were collected from the fish and changes in humoral immune responses and immune-related gene expressions were determined. The result of oxidative radical production showed no difference during early stage of the experiment and was lately decreased (P < 0.05). Lysozyme activity increased on 3rd and 7th day of the study in S5 fish group and on 5th day in S3 group compared to control (P < 0.05). Myeloperoxidase activity had an increased level on the 1st and 3rd day in S1, S5 and S5 fish groups, respectively. IL-1β gene was significantly up-regulated in kidney and intestine in all experimental groups (except on the 1st day, in the intestine of S5 fish group) compared to control (P < 0.05). IL-8 gene expression was elevated on 1st and 3rd day in kidney of all experimental fish groups. IL-6 transcript enhanced in a dose-dependent manner on 3rd and 7th day. IL-10 and IL-12 genes were also up-regulated. Survival in all treated fish groups challenged with Aeromonas hydrophila was significantly increased compared to that of control. The highest survival rate was recorded in S5 fish group (83.65%) followed by S3 fish group (82.62%). Our results suggest that S. polycystum aqueous methanolic extract is an effective immunostimulant and provide protection against A. hydrophila infection in rainbow trout at a dose of 3-10 mg/20 g body weight/day.
Collapse
Affiliation(s)
- Adem Yavuz Sönmez
- Kastamonu University, Faculty of Fisheries, Department of Basic Sciences, Kastamonu, Turkey
| | - Soner Bi Len
- Kastamonu University, Faculty of Fisheries, Department of Aquaculture, Kastamonu, Turkey.
| | - Yiğit Taştan
- Kastamonu University, Faculty of Fisheries, Department of Aquaculture, Kastamonu, Turkey
| | - Karen Joy B Serag
- Mindanao State University, Tawi-Tawi College of Technology and Oceanography, Tawi-Tawi, Philippines
| | - Concepcion C Toring
- Mindanao State University, Tawi-Tawi College of Technology and Oceanography, Tawi-Tawi, Philippines
| | - Jumelita B Romero
- Mindanao State University, Tawi-Tawi College of Technology and Oceanography, Tawi-Tawi, Philippines
| | - Osman Nezih Kenanoğlu
- Kastamonu University, Faculty of Fisheries, Department of Aquaculture, Kastamonu, Turkey
| | - Ertugrul Terzi
- Kastamonu University, Faculty of Fisheries, Department of Aquaculture, Kastamonu, Turkey
| |
Collapse
|
17
|
Kogame T, Kabashima K, Egawa G. Putative Immunological Functions of Inducible Skin-Associated Lymphoid Tissue in the Context of Mucosa-Associated Lymphoid Tissue. Front Immunol 2021; 12:733484. [PMID: 34512668 PMCID: PMC8426509 DOI: 10.3389/fimmu.2021.733484] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/05/2021] [Indexed: 12/12/2022] Open
Abstract
Acquired immunity is orchestrated in various lymphoid organs, including bone marrow, thymus, spleen, and lymph nodes in humans. However, mucosa-associated lymphoid tissue (MALT) is evolutionally known to be emerged in the oldest vertebrates as an immunological tissue for acquired immunity, much earlier than the advent of lymph nodes which appeared in endotherms. Furthermore, the lymphocytes which developed in MALT are known to circulate within the limited anatomical areas. Thus, MALT is comprehended as not the structure but the immune network dedicated to local immunity. As for the skin, skin-associated lymphoid tissue (SALT) was previously postulated; however, its existence has not been proven. Our group recently showed that aggregations of dendritic cells, M2 macrophages, and high endothelial venules (HEVs) are essential components to activate effector T cells in the murine contact hypersensitivity model and termed it as inducible SALT (iSALT) since it was a transient entity that serves for acquired immunity of the skin. Furthermore, in various human skin diseases, we reported that the ectopic formation of lymphoid follicles that immunohistochemically analogous to MALT and regarded them as human counterparts of iSALT. These data raised the possibility that SALT can exist as an inducible form, namely iSALT, which shares the biological significance of MALT. In this article, we revisit the evolution of immunological organs and the related components among vertebrates to discuss the conserved functions of MALT. Furthermore, we also discuss the putative characteristics and functions of iSALT in the context of the MALT concept.
Collapse
Affiliation(s)
- Toshiaki Kogame
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Gyohei Egawa
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
18
|
Growth Performance, Feed Utilization, Gut Integrity, and Economic Revenue of Grey Mullet, Mugil cephalus, Fed an Increasing Level of Dried Zooplankton Biomass Meal as Fishmeal Substitutions. FISHES 2021. [DOI: 10.3390/fishes6030038] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Fishmeal is the most expensive feedstuff in the aquafeed and one of the most environmentally limiting factor of aquaculture development. Therefore, the search for alternative protein sources is a continuous process. The present feeding trial was conducted to evaluate the effects of replacing fishmeal with zooplankton biomass meal (ZBM) on the growth performance, nutrient utilization, intestine, and liver histological changes of grey mullet, Mugil cephalus (initial weight of 0.10 ± 0.01 g). Five isoproteic (35% crude protein) and isolipidic (8% crude lipid) diets were formulated as the control diet (Z0) and the other four diets (Z25, Z50, Z75, and Z100), where 25%, 50%, 75%, and 100% of fishmeal was replaced by ZBM, respectively. After 60 days of feeding, the final weight, weight gain, and daily growth index of the grey mullet fed the Z100 diet were higher than those fed the control diet (p < 0.05). In addition, the better values of feed conversion ratio, protein efficiency ratio and lipid efficiency ratio were recorded in the fish fed with the Z100 diet. Additionally, the intestinal villus length, crypts depth, and muscle thickness were significantly improved with ZBM inclusion (p < 0.05). Meanwhile, there were no histopathological changes observed on the liver when compared with the control group. From the economic point of view, dietary substitution of fishmeal by ZBM (Z100) reduced the cost of diet formulation by 18% and the price per kg weight gain by about 40%. Overall, according to the findings of this study, substituting fishmeal with ZBM up to 100% could improve growth performance, feed utilization, gut health status, and profit ability of rearing M. cephalus juveniles.
Collapse
|
19
|
Liu H, Zhang S, Qiu M, Wang A, Ye J, Fu S. Garlic (Allium sativum) and Fu-ling (Poria cocos) mitigate lead toxicity by improving antioxidant defense mechanisms and chelating ability in the liver of grass carp (Ctenopharyngodon idella). ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:885-898. [PMID: 33830385 DOI: 10.1007/s10646-021-02405-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
Abstract
The heavy metal lead (Pb) is a contaminant widely distributed in the food chain. In this study, eight weeks of feeding containing Garlic (Allium sativum) or Fu-ling (Poria cocos) or both, markedly increased the growth index, enzyme activity, and serum index and significantly decreased muscle Pb level in grass carp (Ctenopharyngodon idella). Upon Pb exposure, the feeding Garlic or Fu-ling or both possessed the similar effects on improving the function of the antioxidant system and chelating ability. Further, the gene expressions of metal binding proteins (TF and MT-2) in the liver of the three experimental groups were significantly higher than those of the control group, which were all highly up-regulated after Pb exposure. At the same time, the activities of antioxidant enzymes (SOD and CAT) and the content of non-enzymatic substance (GSH) in the liver of the Garlic group, Fu-ling group and mixed group were stable compared to the control group after Pb exposure. Moreover, the reduction of Pb toxicity was manifested by the decrease of Pb content in the muscle, and the stable expression of heat stress proteins (HSP30 and HSP60) and immune-related genes (TNF-α and IL-1β). Taken together, the study preliminarily shows that the Garlic and Fu-ling play a role in mitigating the toxicity of Pb in grass carp.
Collapse
Affiliation(s)
- Haisu Liu
- Guangdong Provincial Key Laboratory for Healthy and Saft Aquaculture, School of Life Sciences, South China Normal University, Guangzhou, 510631, P. R. China
| | - Sanshan Zhang
- Guangdong Provincial Key Laboratory for Healthy and Saft Aquaculture, School of Life Sciences, South China Normal University, Guangzhou, 510631, P. R. China
| | - Ming Qiu
- Guangdong Provincial Key Laboratory for Healthy and Saft Aquaculture, School of Life Sciences, South China Normal University, Guangzhou, 510631, P. R. China
| | - Anli Wang
- Guangdong Provincial Key Laboratory for Healthy and Saft Aquaculture, School of Life Sciences, South China Normal University, Guangzhou, 510631, P. R. China
| | - Jianmin Ye
- Guangdong Provincial Key Laboratory for Healthy and Saft Aquaculture, School of Life Sciences, South China Normal University, Guangzhou, 510631, P. R. China
| | - Shengli Fu
- Guangdong Provincial Key Laboratory for Healthy and Saft Aquaculture, School of Life Sciences, South China Normal University, Guangzhou, 510631, P. R. China.
| |
Collapse
|
20
|
Sagaram US, Gaikwad MS, Nandru R, Dasgupta S. Microalgae as feed ingredients: recent developments on their role in immunomodulation and gut microbiota of aquaculture species. FEMS Microbiol Lett 2021; 368:6296415. [PMID: 34113989 DOI: 10.1093/femsle/fnab071] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 06/08/2021] [Indexed: 12/15/2022] Open
Abstract
Microalgae are rapidly evolving alternative ingredients in food and feed. Desirable nutritional and functional qualities make them high potential sources of feed ingredients. Certain microalgae species are known to accumulate large amounts of protein, containing all essential amino acids while some species contain essential fatty acids and bioactive compounds hence offering several possible health benefits. However, successful inclusion of microalgae-based products in feed requires a clear understanding of physiological responses and microbiota of animals receiving microalgae diets. In this review, key microalgae-based feed ingredients and their effect on gut microbiome and immunomodulatory responses of microalgae fed animals, with a focus on aquatic species will be discussed.
Collapse
Affiliation(s)
- Uma Shankar Sagaram
- Reliance Technology Group, Reliance Industries Limited, Reliance Corporate Park, Ghansoli, Thane-Belapur Road, Navi Mumbai 400701, India
| | - Mahadev S Gaikwad
- Reliance Technology Group, Reliance Industries Limited, Reliance Corporate Park, Ghansoli, Thane-Belapur Road, Navi Mumbai 400701, India
| | - Rajesh Nandru
- Reliance Technology Group, Reliance Industries Limited, Reliance Corporate Park, Ghansoli, Thane-Belapur Road, Navi Mumbai 400701, India
| | - Santanu Dasgupta
- Reliance Technology Group, Reliance Industries Limited, Reliance Corporate Park, Ghansoli, Thane-Belapur Road, Navi Mumbai 400701, India
| |
Collapse
|
21
|
Patel AK, Singhania RR, Awasthi MK, Varjani S, Bhatia SK, Tsai ML, Hsieh SL, Chen CW, Dong CD. Emerging prospects of macro- and microalgae as prebiotic. Microb Cell Fact 2021; 20:112. [PMID: 34090444 PMCID: PMC8180151 DOI: 10.1186/s12934-021-01601-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 05/26/2021] [Indexed: 12/15/2022] Open
Abstract
Macro- and microalgae-based foods are becoming popular due to their high nutritious value. The algal biomass is enriched with polysaccharides, protein, polyunsaturated fatty acids, carotenoids, vitamins and minerals. However, the most promising fraction is polysaccharides (PS) or their derivatives (as dietary fibers) which are not entirely fermented by colonic bacteria hence act as potential prebiotic. Primarily, algae become famous as prominent protein sources. Recently, these are widely adopted as functional food (e.g., desserts, dairy products, oil-derivatives, pastas etc.) or animal feed (for poultry, cattle, fish etc.). Besides prebiotic and balanced amino acids source, algae derived compounds implied as therapeutics due to comprising bioactive properties to elicit immunomodulatory, antioxidative, anticancerous, anticoagulant, hepato-protective, and antihypertensive responses. Despite the above potentials, broader research determinations are inevitable to explore these algal compounds until microalgae become a business reality for broader and specific applications in all health domains. However, scale up of algal bioprocess remains a major challenge until commercial affordability is accomplished which can be possible by discovering their hidden potentials and increasing their value and application prospects. This review provides an overview of the significance of algae consumption for several health benefits in humans and animals mainly as prebiotics, however their functional food and animal feed potential are briefly covered. Moreover, their potential to develop an algal-based food industry to meet the people's requirements not only as a sustainable food solution with several health benefits but also as therapeutics is inevitable.
Collapse
Affiliation(s)
- Anil Kumar Patel
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Reeta Rani Singhania
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, People's Republic of China
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat, 382010, India
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Mei-Ling Tsai
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan
| | - Shu-Ling Hsieh
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan.
| |
Collapse
|
22
|
Reyes-Becerril M, Alamillo E, Angulo C. Probiotic and Immunomodulatory Activity of Marine Yeast Yarrowia lipolytica Strains and Response Against Vibrio parahaemolyticus in Fish. Probiotics Antimicrob Proteins 2021; 13:1292-1305. [PMID: 33713310 DOI: 10.1007/s12602-021-09769-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2021] [Indexed: 11/29/2022]
Abstract
Yarrowia lipolytica has been widely used in food industry but scarcely explored as probiotics. Thus, the aims of this study were to characterize in vitro the probiotic potential, antioxidant capacity, and antimicrobial activity of the marine yeast Y. lipolytica D-1 and N-6 strains. Dietary administration effect was evaluated in vivo on immunological parameters in serum, skin-mucus, intestine, and fish leukocytes upon challenge with Vibrio parahaemolyticus. The results showed that Y. lipolytica D-1 and N-6 strains grew with NaCl or bile salts but were sensitive to low pH. Each of the Y. lipolytica strains had a distinctive antioxidant capacity and fatty acid profile, but their antimicrobial activity was similar against fish bacterial pathogens. Fish (Lutjanus peru) supplemented with Y. lipolytica strains showed normal intestinal morphology, high IgM levels, and antioxidant enzyme activities. Immune-related genes were modulated in fish fed Y. lipolytica in a strain-dependent fashion. In addition, leucocytes from fish fed Y. lipolytica challenged with V. parahaemolyticus increased innate immune and antioxidant parameters compared with the control groups. In conclusion, the marine yeast Y. lipolytica D-1 and N-6 strains may be potential probiotics for fish by exerting free-radical scavenging, antimicrobial activity, and improved immune-protective responses against V. parahaemolyticus infection.
Collapse
Affiliation(s)
- Martha Reyes-Becerril
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita, B.C.S., 23096, La Paz, Mexico
| | - Erika Alamillo
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita, B.C.S., 23096, La Paz, Mexico
| | - Carlos Angulo
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita, B.C.S., 23096, La Paz, Mexico.
| |
Collapse
|
23
|
Skalli A, Firmino JP, Andree KB, Salomón R, Estévez A, Puig P, Sabater-Martínez M, Hechavarria T, Gisbert E. The Inclusion of the Microalga Scenedesmus sp. in Diets for Rainbow Trout, Onchorhynchus mykiss, Juveniles. Animals (Basel) 2020; 10:ani10091656. [PMID: 32942719 PMCID: PMC7552274 DOI: 10.3390/ani10091656] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 12/24/2022] Open
Abstract
Simple Summary This study aimed to evaluate the suitability of the microalga Scenedesmus sp. in diets for rainbow trout juveniles. Considering previous results with similar species, the authors tested the inclusion of this microalga at 5% in diets (48% protein and 18% lipid levels). After 45 days, neither trout growth nor feed efficiency parameters nor fillet proximate composition were negatively affected by the inclusion of the microalga in the diet. In addition, provision of the diet containing the microalga did not lead to observable negative effects on liver or intestinal histological organization and function. Dietary Scenedesmus sp. improved the nutritional quality of the fillet in terms of n-3 polyunsaturated fatty acid (PUFA) levels, especially docosahexanoic acid (DHA), although it did alter the color of the fillet. In addition, feeding rainbow trout with diets containing Scenedesmus sp. modified the lipid class composition in the liver by increasing the levels of polar phospholipids with regard to triacylglycerides; results that may be attributed to dietary-induced changes in lipid metabolism. Results showed that the green microalga Scenedesmus sp. is a safe ingredient for compound feeds in rainbow trout when considering fish growth performance, condition, and health parameters, although the visual appearance of the fillet was affected. Abstract A nutritional study was conducted to evaluate the inclusion of the green microalga Scenedesmus sp. at 5% (SCE-5) as an alternative fishmeal ingredient. This microalga was tested with four replicates during 45 days using isolipidic (18%), isoproteic (48%), and isoenergetic (1.9 MJ kg−1) diets. Fish fed Scenedesmus sp. showed similar growth and feed efficiency parameters as the control group. Regarding the digestive function, the SCE-5 diet enhanced the activity of alkaline pancreatic proteases, whereas it did not affect that of intestinal enzymes involved in nutrient absorption. No histological alterations were found in fish fed the SCE-5 diet, although a higher density of goblet cells in the anterior intestine and changes in gut microbiome diversity were found in this group, which collectively suggests positive effects of this green microalga on the intestine. Dietary Scenedesmus sp. improved the fillet’s nutritional quality in terms of n-3 polyunsaturated fatty acid (PUFA) levels, although it also increased its yellowish color. The overall results of this study showed that Scenedesmus sp. is a safe ingredient for compound feeds in rainbow trout when considering fish growth performance, animal condition, and health parameters, although it substantially affected the color of the fillet that may potentially affect consumers’ preferences.
Collapse
Affiliation(s)
- Ali Skalli
- Laboratory Observatory of the Marchica Lagoon of Nador and Limiting Regions (OLMAN-RL), Multidisciplinary Faculty of Nador, Mohamed 1st University, BP 300, Nador 62700, Morocco;
| | - Joana P. Firmino
- IRTA, Centre de Sant Carles de la Rápita (IRTA-SCR), Aquaculture Program, Crta. del Poble Nou Km 5.5, 43540 Sant Carles de la Rápita, Spain; (J.P.F.); (K.B.A.); (R.S.); (A.E.)
| | - Karl B. Andree
- IRTA, Centre de Sant Carles de la Rápita (IRTA-SCR), Aquaculture Program, Crta. del Poble Nou Km 5.5, 43540 Sant Carles de la Rápita, Spain; (J.P.F.); (K.B.A.); (R.S.); (A.E.)
| | - Ricardo Salomón
- IRTA, Centre de Sant Carles de la Rápita (IRTA-SCR), Aquaculture Program, Crta. del Poble Nou Km 5.5, 43540 Sant Carles de la Rápita, Spain; (J.P.F.); (K.B.A.); (R.S.); (A.E.)
| | - Alicia Estévez
- IRTA, Centre de Sant Carles de la Rápita (IRTA-SCR), Aquaculture Program, Crta. del Poble Nou Km 5.5, 43540 Sant Carles de la Rápita, Spain; (J.P.F.); (K.B.A.); (R.S.); (A.E.)
| | - Patricia Puig
- Andrés Pintaluba S.A., Polígono Industrial Agro-Reus, C. Prudenci Bertrana 5, 43206 Reus, Spain; (P.P.); (M.S.-M.); (T.H.)
| | - Mar Sabater-Martínez
- Andrés Pintaluba S.A., Polígono Industrial Agro-Reus, C. Prudenci Bertrana 5, 43206 Reus, Spain; (P.P.); (M.S.-M.); (T.H.)
| | - Teresa Hechavarria
- Andrés Pintaluba S.A., Polígono Industrial Agro-Reus, C. Prudenci Bertrana 5, 43206 Reus, Spain; (P.P.); (M.S.-M.); (T.H.)
| | - Enric Gisbert
- IRTA, Centre de Sant Carles de la Rápita (IRTA-SCR), Aquaculture Program, Crta. del Poble Nou Km 5.5, 43540 Sant Carles de la Rápita, Spain; (J.P.F.); (K.B.A.); (R.S.); (A.E.)
- Correspondence:
| |
Collapse
|
24
|
Kong Y, Gao C, Du X, Zhao J, Li M, Shan X, Wang G. Effects of single or conjoint administration of lactic acid bacteria as potential probiotics on growth, immune response and disease resistance of snakehead fish (Channa argus). FISH & SHELLFISH IMMUNOLOGY 2020; 102:412-421. [PMID: 32387561 DOI: 10.1016/j.fsi.2020.05.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/28/2020] [Accepted: 05/01/2020] [Indexed: 06/11/2023]
Abstract
Lactic acid bacteria (LAB) has been documented to promoting growth, enhancing immunity and disease resistance. In this study, we aimed to evaluate the single or conjoint effects of Lactococcus lactis L19 (Genbank: MT102745.1) and Enterococcus faecalis W24 (Genbank: MT102746.1) isolated from the intestine of Channa argus (C. argus) on growth performance, immune response and disease resistance of C. argus. A total of 720 apparently healthy C. argus (9.50 ± 0.03 g) were randomly divided into four equal groups. Fish were fed with a basal diet (CK) supplemented with L. lactis (L19), E. faecalis (W24), and L. lactis L19 + E. faecalis W24 (L + W) at 1.0 × 108 cfu/g basal diet for 56 days. After feeding, the final body weight (FBW), weight gain (WG), feed efficiency ratio (FER), specific growth rate (SGR) and protein efficiency ratio (PER) had significantly increased (p < 0.05), especially with L19. The results indicated that single or conjoint administration of LAB as potential probiotics can induce high levels of IgM, ACP, AKP, LZM, C3 and C4 activity in serum, which may effectively induce humoral immunity, and L19 induce even higher levels. Meanwhile, when compared to CK group, the results of qPCR showed that LAB administration significantly up-regulated (p < 0.05) the expression of IL-1β, IL-6, IL-10, TNF-α, IFN-γ, HSP70, HSP90, TGF-β in the spleen, head kidney, gill, liver and intestine of C. argus. After challenge with Aeromonas veronii, the survival rates in all LAB-fed groups were significantly higher (p < 0.05) than that of the CK group, and the L19 group showed the highest (63.3%) disease resistance. Our data indicated that L. lactis L19 and E. faecalis W24, as a feed additive at 1.0 × 108 cfu/g feed, could promote growth performance, enhance immune response and disease resistance of C. argus, with greatest effects in fish fed L. lactis L19 for 56 days. Hence, these LAB additives could be used as promising probiotics for C. argus. L19 was more effective than W24 or the mixture of the two for promoting growth performance, enhancing immune response and disease resistance of C. argus.
Collapse
Affiliation(s)
- Yidi Kong
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, 130118, China; Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, Jilin, 130118, China; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Chunshan Gao
- Freshwater Fisheries Research Institute of Jilin Province, Changchun, Jilin, 130000, China
| | - Xiaoyan Du
- Freshwater Fisheries Research Institute of Jilin Province, Changchun, Jilin, 130000, China
| | - Jing Zhao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Min Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, 130118, China; Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, Jilin, 130118, China; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Xiaofeng Shan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, 130118, China; Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, Jilin, 130118, China; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Guiqin Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, 130118, China; Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, Jilin, 130118, China; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, Jilin, 130118, China.
| |
Collapse
|
25
|
Wang Q, Shen J, Yan Z, Xiang X, Mu R, Zhu P, Yao Y, Zhu F, Chen K, Chi S, Zhang L, Yu Y, Ai T, Xu Z, Wang Q. Dietary Glycyrrhiza uralensis extracts supplementation elevated growth performance, immune responses and disease resistance against Flavobacterium columnare in yellow catfish (Pelteobagrus fulvidraco). FISH & SHELLFISH IMMUNOLOGY 2020; 97:153-164. [PMID: 31857222 DOI: 10.1016/j.fsi.2019.12.048] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/11/2019] [Accepted: 12/14/2019] [Indexed: 05/28/2023]
Abstract
The present study was conducted to evaluate the influence of Glycyrrhiza uralensis (G. uralensis) extracts on the growth performance, histological structure, immune response and disease resistance against Flavobacterium columnare (F. columnare) of yellow catfish. Fish were fed with two different diets, i.e., basal diet as control group (CG) and diet containing G. uralensis extracts as experimental group (GG). After 60 days feeding, growth performance of GG fish was significantly improved, with increased WG and SGR but decreased FCR compared to CG fish. Fish were then challenged with F. columnare for two times, as fish showed rare mortality after the first infection. GG fish showed significantly lower cumulative mortality during F. cloumnare infection than CG fish after 21 days infection (dpi). Epithelial cell exfoliation and obvious cellular vacuolization in the skin and congestion of gill lamellae were detected in CG fish, while GG fish showed increased width of epidermis and mucous cells number in skin, and increased length of secondary lamina in gill. GG fish also exhibited higher enzyme activity of lysozyme in serum and mRNA expression of lysozyme in head kidney than CG fish at most time points post infection. G. uralensis extracts supplementation also induced earlier serum anti-oxidative responses, with increased superoxide dismutase activity and total antioxidant capacity in GG fish at 1 dpi. Compared to CG fish, GG fish showed increased expression level of genes involved in TLRs-NFκB signaling (TLR2, TLR3, TLR5, TLR9, Myd88, and p65NFκB), resulting in higher expression levels of pro-inflammatory cytokines (IL-1β and IL-8) in the head kidney post infection. However, these genes showed deviation in the gill of GG fish, which increased at some time points but decreased at other time points. Moreover, G. uralensis extracts supplementation also significantly unregulated the expression levels of IgM and IgD in head kidney, and the expression levels of IgM in the gill of yellow catfish, suggesting the elevated humoral immune response during F. columnare infection. All these results contributed to the elevated disease resistance ability against F. cloumnare infection of yellow catfish after dietary G. uralensis extracts supplementation.
Collapse
Affiliation(s)
- Qi Wang
- Hubei Vocational College of Bio-Technology, Wuhan, Hubei, 430070, China; Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Jinyu Shen
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laborotary of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, Zhejiang, 313001, China
| | - Zuting Yan
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Xiyuan Xiang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Rong Mu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Pengfei Zhu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yongtie Yao
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Fangzheng Zhu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Kaiwei Chen
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Shuyan Chi
- Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Liqiang Zhang
- Wuhan Academy of Agricultural Sciences, Wuhan, Hubei, 430207, China
| | - Yunzhen Yu
- Wuhan Academy of Agricultural Sciences, Wuhan, Hubei, 430207, China
| | - Taoshan Ai
- Wuhan Academy of Agricultural Sciences, Wuhan, Hubei, 430207, China
| | - Zhen Xu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Qingchao Wang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
26
|
Sun Y, Xiang Y, He M, Zhang X, Wang S, Guo W, Liu C, Cao Z, Zhou Y. Evaluation of Lactococcus lactis HNL12 combined with Schizochytrium limacinum algal meal in diets for humpback grouper (Cromileptes altivelis). FISH & SHELLFISH IMMUNOLOGY 2019; 94:880-888. [PMID: 31562894 DOI: 10.1016/j.fsi.2019.09.059] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 09/20/2019] [Accepted: 09/24/2019] [Indexed: 06/10/2023]
Abstract
The humpback grouper (Cromileptes altivelis) is a commercially valuable species of the family Epinephelidae; however, its marketization suffers from slow growth speed, low survival rate, and various pathogenic diseases. Lactococcus lactis and Schizochytrium limacinum are commonly used as immunostimulants due to their health benefits for the aquatic organisms. In the present study, we assessed the effects of dietary supplementation with L. lactis HNL12 combined with S. limacinum algal meal on the growth performances, innate immune response, and disease resistance of C. altivelis against Vibrio harveyi. The results showed that fish fed with a combination diet of L. lactis and S. limacinum exhibited significantly higher final weight, percent weight gain, and specific growth rate compared with groups fed with them alone. A bacterial challenge experiment indicated that the group fed with the L. lactis combined with S. limacinum diet achieved the highest relative percent of survival value (68.63%), suggesting that L. lactis and S. limacinum significantly improved the disease resistance against V. harveyi after a 4-week feeding trial. Moreover, the respiratory burst activity of macrophages of fish fed with a L. lactis combined with S. limacinum diet was significantly higher than that of fish fed the control diet after 1, 2, and 3 weeks of feeding. The serum superoxide dismutase of fish fed with a L. lactis combined with S. limacinum diet significantly increased compared to those fed the control diet after 1 and 2 weeks of feeding, while the serum alkaline phosphatase of fish fed with a L. lactis combined with S. limacinum diet after 2 and 4 weeks was significantly increased, compared to the control group. The serum lysozyme activities of fish fed with a L. lactis combined with S. limacinum diet significantly increased compared to the control group after 2 weeks of feeding. Furthermore, transcriptome sequencing of the C. altivelis head kidney was conducted to explore the immune-regulating effects of the L. lactis combined with S. limacinum diet on C. altivelis. A total of 86,919 unigenes, annotated by at least one of the reference databases (Nr, Swiss-Prot, GO, COG, and KEGG), were assembly yielded by de novo transcriptome. In addition, 157 putative differentially expressed genes (DEGs) were identified between the L. lactis combined with S. limacinum group and the control group. For pathway enrichment, the DEGs were categorized into nine KEGG pathways, which were mainly related to infective diseases, antigen processing and presentation, digestive system, and other immune system responses. The findings of this study suggest that the L. lactis combined with S. limacinum diet can induce positive effects on the growth, immunity, and disease resistance of C. altivelis against V. harveyi. This study expands our understanding of the synergistic combinations of probiotics and prebiotics in aquaculture.
Collapse
Affiliation(s)
- Yun Sun
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China
| | - Yajing Xiang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China
| | - Mingwang He
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China
| | - Xiang Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China
| | - Shifeng Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China
| | - Weiliang Guo
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China
| | - Chunsheng Liu
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China
| | - Zhenjie Cao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China.
| | - Yongcan Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China.
| |
Collapse
|
27
|
Silveira Júnior AM, Faustino SMM, Cunha AC. Bioprospection of biocompounds and dietary supplements of microalgae with immunostimulating activity: a comprehensive review. PeerJ 2019; 7:e7685. [PMID: 31592343 PMCID: PMC6777487 DOI: 10.7717/peerj.7685] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 08/19/2019] [Indexed: 11/21/2022] Open
Abstract
The objective of this review is to analyze the role of microalgal bioprospecting and the application of microalgae as food supplements and immunostimulants in global and regional aquaculture, highlighting the Brazilian Amazon. This study evaluates the primary advantages of the application of the bioactive compounds of these microorganisms, simultaneously identifying the knowledge gaps that hinder their biotechnological and economic exploitation. The methodology used is comparative and descriptive-analytical, considering the hypothesis of the importance of bioprospecting microalgae, the mechanisms of crop development and its biotechnological and sustainable application. In this context, this review describes the primary applications of microalgae in aquaculture during the last decade (2005–2017). The positive effects of food replacement and/or complementation of microalgae on the diets of organisms, such as their influence on the reproduction rates, growth, and development of fish, mollusks and crustaceans are described and analyzed. In addition, the importance of physiological parameters and their association with the associated gene expression of immune responses in organisms supplemented with microalgae was demonstrated. Complementarily, the existence of technical-scientific gaps in a regional panorama was identified, despite the potential of microalgal cultivation in the Brazilian Amazon. In general, factors preventing the most immediate biotechnological applications in the use of microalgae in the region include the absence of applied research in the area. We conclude that the potential of these microorganisms has been relatively well exploited at the international level but not at the Amazon level. In the latter case, the biotechnological potential still depends on a series of crucial steps that involve the identification of species, the understanding of their functional characteristics and their applicability in the biotechnological area, especially in aquaculture.
Collapse
Affiliation(s)
- Arialdo M Silveira Júnior
- Department of Environment and Development, Federal University of Amapá, Macapá, Amapá, Brazil.,Postgraduate Program in Tropical Biodiversity, Federal University of Amapá, Macapá, Amapá, Brazil
| | - Silvia Maria M Faustino
- Department of Biological and Health Sciences, Federal University of Amapá, Macapá, Amapá, Brazil
| | - Alan C Cunha
- Postgraduate Program in Tropical Biodiversity, Federal University of Amapá, Macapá, Amapá, Brazil.,Department of Exact and Natural Sciences, Federal University of Amapá, Macapá, Amapá, Brazil
| |
Collapse
|
28
|
Camacho F, Macedo A, Malcata F. Potential Industrial Applications and Commercialization of Microalgae in the Functional Food and Feed Industries: A Short Review. Mar Drugs 2019; 17:E312. [PMID: 31141887 PMCID: PMC6628611 DOI: 10.3390/md17060312] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/23/2019] [Accepted: 05/25/2019] [Indexed: 12/23/2022] Open
Abstract
Bioactive compounds, e.g., protein, polyunsaturated fatty acids, carotenoids, vitamins and minerals, found in commercial form of microalgal biomass (e.g., powder, flour, liquid, oil, tablet, or capsule forms) may play important roles in functional food (e.g., dairy products, desserts, pastas, oil-derivatives, or supplements) or feed (for cattle, poultry, shellfish, and fish) with favorable outcomes upon human health, including antioxidant, anti-inflammatory, antimicrobial, and antiviral effects, as well as prevention of gastric ulcers, constipation, anemia, diabetes, and hypertension. However, scale up remains a major challenge before commercial competitiveness is attained. Notwithstanding the odds, a few companies have already overcome market constraints, and are successfully selling extracts of microalgae as colorant, or supplement for food and feed industries. Strong scientific evidence of probiotic roles of microalgae in humans is still lacking, while scarce studies have concluded on probiotic activity in marine animals upon ingestion. Limitations in culture harvesting and shelf life extension have indeed constrained commercial viability. There are, however, scattered pieces of evidence that microalgae play prebiotic roles, owing to their richness in oligosaccharides-hardly fermented by other members of the intestinal microbiota, or digested throughout the gastrointestinal tract of humans/animals for that matter. However, consistent applications exist only in the dairy industry and aquaculture. Despite the underlying potential in formulation of functional food/feed, extensive research and development efforts are still required before microalgae at large become a commercial reality in food and feed formulation.
Collapse
Affiliation(s)
- Franciele Camacho
- LEPABE-Laboratory of Process Engineering, Environment, Biotechnology and Energy, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal.
| | - Angela Macedo
- LEPABE-Laboratory of Process Engineering, Environment, Biotechnology and Energy, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal.
- UNICES-ISMAI-University Institute of Maia, Av. Carlos Oliveira Campos, 4475-690 Maia, Portugal.
| | - Francisco Malcata
- LEPABE-Laboratory of Process Engineering, Environment, Biotechnology and Energy, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal.
- Department of Chemical Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal.
| |
Collapse
|
29
|
Probiotic effects of marine Debaryomyces hansenii CBS 8339 on innate immune and antioxidant parameters in newborn goats. Appl Microbiol Biotechnol 2019; 103:2339-2352. [PMID: 30656393 DOI: 10.1007/s00253-019-09621-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/08/2018] [Accepted: 01/04/2019] [Indexed: 12/22/2022]
Abstract
Several marine Debaryomyces hansenii strains have shown probiotic effects on aquatic animals, and D. hansenii-derived β-glucans have recently provided immunostimulant effects on goat leukocytes. This study assessed the probiotic effects of live yeast D. hansenii CBS 8339 on newborn goats administered orally, and subsequently challenged in vitro with Escherichia coli. D. hansenii CBS 8339 demonstrated the capacity to survive gastrointestinal tract conditions (bile salts and acid pH tolerance) and adhere to goat intestine. Twelve Saanen × Nubian crossbred newborn goats (2.9 ± 0.47 kg) were fed with a controlled diet or D. hansenii (0.7 g/kg body weight per day)-supplemented milk for 30 days. Blood samples of newborn goats were taken at days 15 and 30, and peripheral blood leukocytes were isolated for bacterial challenge, and immunological and antioxidant analyses. Despite cell viability was higher in leukocytes of goat kids fed with the yeast supplement, protection against E. coli challenge was not significantly affected. On the other hand, at day 15, oral administration of D. hansenii enhanced respiratory burst and catalase activity and increased superoxide dismutase activity after challenge. In contrast, at day 30, administration of the yeast supplement increased peroxidase activity and enhanced nitric oxide production and catalase activity after challenge. Finally, the yeast-supplemented diet upregulated the expression of the receptor genes TLR (2, 4, 6), modulator genes Raf.1, Syk, and Myd88, transcription factor gene AP-1, and cytokine genes IL-1β and TNF-α only at day 15 in leukocytes from unchallenged goat kids. These results demonstrated that a short time (15 days) of orally administering the probiotic D. hansenii CBS 8339 to newborn goats stimulated innate immune and antioxidant parameters and the expression of immune-related gene signaling pathways.
Collapse
|
30
|
Tarnecki AM, Rhody NR, Walsh CJ. Health Characteristics and Blood Bacterial Assemblages of Healthy Captive Red Drum: Implications for Aquaculture and Fish Health Management. JOURNAL OF AQUATIC ANIMAL HEALTH 2018; 30:339-353. [PMID: 30269412 DOI: 10.1002/aah.10047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 09/21/2018] [Indexed: 06/08/2023]
Abstract
The newly emerging tissue microbiota hypothesis suggests that bacteria found in blood and tissues play a role in host health, as these bacterial communities have been associated with various noncommunicable diseases such as obesity, liver disease, and cardiovascular disease. Numerous reports have identified bacteria in the blood of healthy finfish, indicating bacteremia may not always indicate disease. Current research priorities in aquaculture include the development of technologies and practices that will allow for an effective reduction in antibiotic use for the prevention and treatment of disease. Overall, a better understanding of fish health is needed, particularly among species selected for commercial-scale production. This study investigated blood characteristics of cultured Red Drum Sciaenops ocellatus with the tissue microbiota hypothesis in mind. Bacterial assemblages within the blood were characterized using next-generation sequencing and compared with other various blood characteristics, including innate immune function enzymes, between two fish cohorts reared in aquaculture. A total of 137 prokaryotic operational taxonomic units (OTUs) were identified from the blood of Red Drum. Microbiota diversity and structure varied greatly among individuals, for which the number of OTUs ranged from 4 to 58; however, predicted metagenomic function was highly similar between individuals and was dominated by the metabolism of carbohydrates and amino acids and membrane transport. Communities were dominated by Proteobacteria, followed by Bacteroidetes, Firmicutes, and Actinobacteria. The most commonly identified genera included Acinetobacter, Bacillus, Corynebacterium, and Pseudomonas. Three genera previously identified as containing marine fish pathogens were detected: Corynebacterium, Pantoea, and Chryseobacterium. A subset of bacterial OTUs were positively correlated with superoxide dismutase activity and negatively correlated with lysozyme activity, indicating a relationship between blood microbiota and the innate immune system. The results of this study provide further evidence for the tissue microbiota hypothesis and demonstrate the potential for these bacterial communities to be linked to immunological characteristics often used as biomarkers for fish health.
Collapse
Affiliation(s)
- Andrea M Tarnecki
- Mote Marine Laboratory, 1600 Ken Thompson Parkway, Sarasota, Florida, 34236, USA
| | - Nicole R Rhody
- Mote Aquaculture Research Park, 874 WR Mote Way, Sarasota, Florida, 34240, USA
| | - Catherine J Walsh
- Mote Marine Laboratory, 1600 Ken Thompson Parkway, Sarasota, Florida, 34236, USA
| |
Collapse
|
31
|
Kumar P, Jain KK, Sardar P. Effects of dietary synbiotic on innate immunity, antioxidant activity and disease resistance of Cirrhinus mrigala juveniles. FISH & SHELLFISH IMMUNOLOGY 2018; 80:124-132. [PMID: 29857133 DOI: 10.1016/j.fsi.2018.05.045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 05/26/2018] [Accepted: 05/28/2018] [Indexed: 06/08/2023]
Abstract
The dietary supplementation of synbiotic in Cirrhinus mrigala juvenile (with initial body weight ranging from 2.87 ± 0.01 g to 3.26 ± 0.05 g) was evaluated in terms of changes in innate immunity, antioxidant activity and disease resistance against Aeromonas hydrophilla infection. One hundred eighty acclimatized juveniles of mrigal were randomly distributed in the three replicates of each of four experimental groups i.e. control (without Probiotic and Prebiotic), T1 (High Probiotic + Low Prebiotic), T2 (Low Probiotic + High Prebiotic) and T3 (High Probiotic + High Prebiotic), using completely randomized design (CRD). At the end of the feeding trial for 60 days, fish were challenged by Aeromonas hydrophila and survival rate was recorded for the next 15 days. Bacillus subtilis used as a probiotic source and MOS used as a prebiotic source in the experiment. Results showed that innate immunity was comparatively improved in T3 group. Lysozyme activity and respiratory burst activity (NBT) were significantly (P < 0.05) affected in T3 group. Highest activities of antioxidant enzymes (P < 0.05) were reported in T3 group. Cumulative mortality % was found to be lower in the fish fed dietary synbiotic on T3 group after challenging with Aeromonas hydrophilla infection. The results of this study showed that under the experimental conditions, dietary supplementation of synbiotic had a synergestic effect on enhancing innate immunity and disease resistance of Cirrhinus mrigala (P < 0.05).
Collapse
Affiliation(s)
- Pankaj Kumar
- ICAR-Central Institute of Fisheries Education, Rohtak Centre, Lahli, 124411, Haryana, India.
| | - K K Jain
- Department of Fish Nutrition, Biochemistry and Physiology, Central Institute of Fisheries Education, Fisheries University Road, Versova, Mumbai, 400 061, India
| | - P Sardar
- Department of Fish Nutrition, Biochemistry and Physiology, Central Institute of Fisheries Education, Fisheries University Road, Versova, Mumbai, 400 061, India
| |
Collapse
|
32
|
Tan X, Sun Z, Zhou C, Huang Z, Tan L, Xun P, Huang Q, Lin H, Ye C, Wang A. Effects of dietary dandelion extract on intestinal morphology, antioxidant status, immune function and physical barrier function of juvenile golden pompano Trachinotus ovatus. FISH & SHELLFISH IMMUNOLOGY 2018; 73:197-206. [PMID: 29258755 DOI: 10.1016/j.fsi.2017.12.020] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 11/25/2017] [Accepted: 12/14/2017] [Indexed: 06/07/2023]
Abstract
Intestinal morphology, antioxidant status, immune function and tight junction proteins mRNA expression were examined in golden pompano (Trachinotus ovatus) that fed respectively six diets containing dandelion extracts (DE) at 0, 0.5, 1, 2, 4 and 10 g kg-1 after 8 weeks feeding. The study indicated that dietary DE significantly improved intestinal antioxidant abilities by increasing SOD, CAT, T-AOC activities and up-regulating intestinal cat, gpx mRNA levels, but by decreasing MDA content and down-regulating intestinal keap1 mRNA levels in golden pompano. Meanwhile, dietary DE improved intestinal morphology, suggesting that enhances intestinal digestion and absorption, by increasing muscle thickness, villus length, villus width and villus number in the foregut and hindgut; as well as villus number, villus width and muscle thickness in the midgut (P < .05). Dietary DE enhanced intestinal barrier function by increasing intestinal zo-1 and occludin mRNA levels, but by decreasing the mRNA levels of claudin-12 and claudin-15. Furthermore, dietary DE improved intestinal immunity via increasing goblet cells numbers and regulating expression of immune-related genes. In conclusion, dietary DE supplementation promoted intestine health by improving intestine morphology, immunity, antioxidant abilities and intestinal barrier in golden pompano.
Collapse
Affiliation(s)
- Xiaohong Tan
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China; Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Zhenzhu Sun
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Chuanpeng Zhou
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Zhong Huang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China; Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518116, PR China
| | - Lianjie Tan
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Pengwei Xun
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Qianqian Huang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Heizhao Lin
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China; Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518116, PR China.
| | - Chaoxia Ye
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou 510631, PR China.
| | - Anli Wang
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou 510631, PR China.
| |
Collapse
|
33
|
Sun Z, Tan X, Ye H, Zou C, Ye C, Wang A. Effects of dietary Panax notoginseng extract on growth performance, fish composition, immune responses, intestinal histology and immune related genes expression of hybrid grouper (Epinephelus lanceolatus ♂ × Epinephelus fuscoguttatus ♀) fed high lipid diets. FISH & SHELLFISH IMMUNOLOGY 2018; 73:234-244. [PMID: 29127028 DOI: 10.1016/j.fsi.2017.11.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/04/2017] [Accepted: 11/06/2017] [Indexed: 05/12/2023]
Abstract
Growth, plasma biochemical parameters, fish composition, immune parameters, intestinal histology, and expressions of immune-related genes were examined in hybrid grouper (Epinephelus lanceolatus ♂ × Epinephelus fuscoguttatus ♀) that fed respectively six diets containing Panax notoginseng extract (PNE) at 0, 0.5, 1, 2, 4, and 10 g kg-1 after 8 weeks. Results indicated that dietary PNE significantly improved growth, feed efficiency ratio, protein efficiency ratio, and protein deposit rate, and significantly increased crude protein and crude lipid levels of whole body and crude protein level of muscle. Dietary PNE significantly increased plasma total protein, alkaline phosphatase, immunoglobulin, complement 3 and complement 4 contents, but significantly decreased cholesterol, triglyceride, glucose, and low density lipoprotein cholesterol contents. Furthermore, dietary PNE increased villus length and muscle thickness in foregut, midgut, and hindgut, activities of hepatic superoxide dismutase and total antioxidant capacity, and increased the expression levels of immune related genes (IL-10, TGF-β1, TOR, MHC2 and TLR3) in the head kidney and the expression levels of antioxidant genes (CAT and GR) in fish that fed PNE at 0.5-4 g kg-1. In conclusion, grouper fed high lipid diets supplemented with PNE at 0.5-10 g kg-1 improved growth, feed utilization, blood immune parameters, hepatic antioxidant status, intestine morphology and expression levels of immune related genes in the head kidney.
Collapse
Affiliation(s)
- Zhenzhu Sun
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Xiaohong Tan
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Huaqun Ye
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Cuiyun Zou
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Chaoxia Ye
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou 510631, PR China.
| | - Anli Wang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou 510631, PR China.
| |
Collapse
|
34
|
Bravo-Tello K, Ehrenfeld N, Solís CJ, Ulloa PE, Hedrera M, Pizarro-Guajardo M, Paredes-Sabja D, Feijóo CG. Effect of microalgae on intestinal inflammation triggered by soybean meal and bacterial infection in zebrafish. PLoS One 2017; 12:e0187696. [PMID: 29117213 PMCID: PMC5678869 DOI: 10.1371/journal.pone.0187696] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 10/24/2017] [Indexed: 12/24/2022] Open
Abstract
Soybean meal has been used in many commercial diets for farm fish; despite this component inducing intestinal inflammation. On the other hand, microalgae have increasingly been used as dietary supplements in fish feed. Nevertheless, the vast quantity of microalgae species means that many remain under- or unstudied, thus limiting wide scale commercial application. In this work, we evaluated the effects to zebrafish (Danio rerio) of including Tetraselmis sp (Ts); Phaeodactylum tricornutum (Pt); Chlorella sp (Ch); Nannochloropsis oculata (No); or Nannochloropsis gaditana (Ng) as additives in a soybean meal-based diet on intestinal inflammation and survival after Edwardsiella tarda infection. In larvae fed a soybean meal diet supplemented with Ts, Pt, Ch, or Ng, the quantity of neutrophils present in the intestine drastically decreased as compared to larvae fed only the soybean meal diet. Likewise, Ts or Ch supplements in soybean meal or fishmeal increased zebrafish survival by more than 20% after being challenged. In the case of Ts, the observed effect correlated with an increased number of neutrophils present at the infection site. These results suggest that the inclusion of Ts or Ch in fish diets could allow the use of SBM and at the same time improve performance against pathogen.
Collapse
Affiliation(s)
- Karina Bravo-Tello
- Departamento de Ciencias Biologicas, Facultad de Ciencias Biologicas, Universidad Andres Bello, Santiago, Chile
- Interdisciplinary Center for Aquaculture Research, Concepción, Chile
| | - Nicole Ehrenfeld
- Centro de Investigación Austral Biotech, Escuela de Biotecnología, Universidad Santo Tomás, Santiago, Chile
| | - Camila J. Solís
- Departamento de Ciencias Biologicas, Facultad de Ciencias Biologicas, Universidad Andres Bello, Santiago, Chile
- Interdisciplinary Center for Aquaculture Research, Concepción, Chile
| | - Pilar E. Ulloa
- Departamento de Ciencias Biologicas, Facultad de Ciencias Biologicas, Universidad Andres Bello, Santiago, Chile
- Facultad de Medicina Veterinaria y Agronomia, Escuela de Agronomia, Universidad de Las Américas, Santiago, Chile
| | - Manuel Hedrera
- Departamento de Ciencias Biologicas, Facultad de Ciencias Biologicas, Universidad Andres Bello, Santiago, Chile
| | - Marjorie Pizarro-Guajardo
- Microbiota-Host Interactions and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - Daniel Paredes-Sabja
- Microbiota-Host Interactions and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - Carmen G. Feijóo
- Departamento de Ciencias Biologicas, Facultad de Ciencias Biologicas, Universidad Andres Bello, Santiago, Chile
- Interdisciplinary Center for Aquaculture Research, Concepción, Chile
| |
Collapse
|
35
|
Reyes-Becerril M, Guluarte C, Ceballos-Francisco D, Angulo C, Esteban MÁ. Dietary yeast Sterigmatomyces halophilus enhances mucosal immunity of gilthead seabream (Sparus aurata L.). FISH & SHELLFISH IMMUNOLOGY 2017; 64:165-175. [PMID: 28315392 DOI: 10.1016/j.fsi.2017.03.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/10/2017] [Accepted: 03/11/2017] [Indexed: 06/06/2023]
Abstract
A yeast was isolated from hypersaline sediments, grown and phylogenetically characterized as Sterigmatomyces halophilus strainN16. The dietary administration of this yeast was studied for its effect on skin mucosal immune and antioxidant status of gilthead seabream (Sparus aurata L.). Fish were fed a commercial diet (control, non-supplemented diet), or the same commercial diet supplemented with 0.55% or 1.1% of yeast for 15 and 30 days. One month after the end of the trial, fish from all treatments were intraperitoneally injected with pathogenic Vibrio parahaemolyticus and further fed with the same diets for one week, after which fish were also sampled. Significant increases were observed in the immune activities determined in the fish fed the yeast supplemented diets compared with the values recorded in mucus of fish from the control group. The expression levels of trypsin (one of the main digestive enzymes) and several immune-related genes (IL-1β, TNF-α, IgM, C3 and lysozyme) were also evaluated by real-time PCR in intestine and skin. Interestingly, trypsin gene expression in intestine was up regulated in both experimental diets compared with the control group, particularly in fish fed with 0.55% of S. halophilus at any time of the experimental trial. Immune-related genes in intestine and skin were strongly expressed principally in fish fed with 0.55% of S. halophilus for 15 days and 1.1% for 30 days and after infection, respectively. The present results suggest that the yeast S. halophilus can be considered as a novel fish immunostimulant. The excellent potential of marine microorganisms isolated from extreme environments with beneficial properties for fish is discussed.
Collapse
Affiliation(s)
- Martha Reyes-Becerril
- Immunology& Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S. 23090, Mexico
| | - Crystal Guluarte
- Immunology& Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S. 23090, Mexico
| | - Diana Ceballos-Francisco
- Fish Innate Immune System Group, Department of Cell Biology & Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Spain
| | - Carlos Angulo
- Immunology& Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S. 23090, Mexico.
| | - M Ángeles Esteban
- Fish Innate Immune System Group, Department of Cell Biology & Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Spain.
| |
Collapse
|
36
|
Vallejos-Vidal E, Reyes-López F, Teles M, MacKenzie S. The response of fish to immunostimulant diets. FISH & SHELLFISH IMMUNOLOGY 2016; 56:34-69. [PMID: 27389620 DOI: 10.1016/j.fsi.2016.06.028] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 05/25/2016] [Accepted: 06/21/2016] [Indexed: 06/06/2023]
Abstract
In order to maintain fish health and to improve performance immunostimulants have been used as dietary additives to improve weight gain, feed efficiency, and/or disease resistance in cultured fish. In aquaculture, non-specific immunostimulants have been widely used probably due to the limited knowledge of the immune response in fish and the ease of their application. Many studies have been carried out to assess the effect of dietary immunostimulants in fish including algal derivatives, herb and plant extract containing diets using a wide range of downstream analytical techniques. Many immunostimulants are based upon tradition and folklore transferred through generations and specific to certain geographical regions rather than known biological properties. However, there are studies in which it is possible to observe a clear and direct dose-dependent stimulatory effect upon the immune system. Other dietary supplements used contain PAMPs (Pathogen Associated Molecular Patterns) as immunostimulants whose recognition depends upon PRR (pathogen recognition receptor) interactions including the TLRs (Toll-like receptor). Despite the growing interest in the use of immunostimulants across the aquaculture industry the underlying mechanisms of ligand recognition, extract composition and activation of the fish immune response remains fragmented. In this review we focus upon the last 15 years of studies addressing the assessment of: (1) plant, herb and algae extracts; and (2) PAMPs, upon non-specific immune parameters of activation and immunostimulant diet efficacy.
Collapse
Affiliation(s)
- Eva Vallejos-Vidal
- Institut de Biotecnologia i Biomedicina, Universitat Autonoma de Barcelona, 08193 Bellaterra, Spain
| | - Felipe Reyes-López
- Department of Cell Biology, Physiology and Immunology, Universitat Autonoma de Barcelona, 08193 Bellaterra, Spain
| | - Mariana Teles
- Department of Cell Biology, Physiology and Immunology, Universitat Autonoma de Barcelona, 08193 Bellaterra, Spain
| | - Simon MacKenzie
- Institute of Aquaculture, University of Stirling, FK9 4LA Stirling, UK.
| |
Collapse
|
37
|
Li SQ, Feng L, Jiang WD, Liu Y, Jiang J, Wu P, Kuang SY, Tang L, Tang WN, Zhang YA, Zhou XQ. Deficiency of dietary niacin impaired gill immunity and antioxidant capacity, and changes its tight junction proteins via regulating NF-κB, TOR, Nrf2 and MLCK signaling pathways in young grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2016; 55:212-222. [PMID: 27181596 DOI: 10.1016/j.fsi.2016.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 04/12/2016] [Accepted: 05/05/2016] [Indexed: 06/05/2023]
Abstract
To investigate the effects of dietary niacin on gill immunity, tight junction proteins, antioxidant system and related signaling molecules mRNA expression, young grass carp (Ctenopharyngodon idella) were fed six diets containing graded levels of niacin (3.95-55.01 mg/kg diet) for 8 weeks. The study indicated that niacin deficiency decreased lysozyme and acid phosphatase activities, and complement 3 content, and caused oxidative damage that might be partly due to the decreased copper, zinc superoxide dismutase, catalase, glutathione reductase, glutathione peroxidase and glutathione-S-transferase activities and reduced glutathione content in fish gills (P < 0.05). Moreover, the relative mRNA levels of antimicrobial peptides (liver expressed antimicrobial peptide 2 and Hepcidin), anti-inflammatory cytokines (interleukin 10 and transforming growth factor β1), tight junction proteins (Occludin, zonula occludens 1, Claudin-15 and -3), signaling molecules (inhibitor of κBα (IκBα), target of rapamycin (TOR), ribosomal protein S6 kinase 1 (S6K1) and NF-E2-related factor 2 (Nrf2)) and antioxidant enzymes were significantly decreased (P < 0.05) in niacin-deficient diet group. Conversely, the mRNA levels of pro-inflammatory cytokines (tumor necrosis factor α, interleukin 8, interferon γ2, and interleukin 1β), signaling molecules (nuclear factor kappa B p65, IκB kinase α, IκB kinase β, IκB kinase γ, Kelch-like-ECH-associated protein 1b, myosin light chain kinase and p38 mitogen-activated protein kinase (p38 MAPK) were significantly increased (P < 0.05) in fish gills fed niacin-deficient diet. Interestingly, the varying niacin levels of 3.95-55.01 mg/kg diet had no effect on the mRNA level of Kelch-like-ECH-associated protein 1a, Claudin-c and -12 in fish gills (P > 0.05). In conclusion, niacin deficiency decreased gill immunity, impaired gill antioxidant system, as well as regulated mRNA expression of gill tight junction proteins and related signaling molecules of fish.
Collapse
Affiliation(s)
- Shun-Quan Li
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Wu-Neng Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
38
|
Shi L, Feng L, Jiang WD, Liu Y, Jiang J, Wu P, Kuang SY, Tang L, Tang WN, Zhang YA, Zhou XQ. Immunity decreases, antioxidant system damages and tight junction changes in the intestine of grass carp (Ctenopharyngodon idella) during folic acid deficiency: Regulation of NF-κB, Nrf2 and MLCK mRNA levels. FISH & SHELLFISH IMMUNOLOGY 2016; 51:405-419. [PMID: 26968494 DOI: 10.1016/j.fsi.2016.02.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 02/19/2016] [Accepted: 02/21/2016] [Indexed: 06/05/2023]
Abstract
This investigation used the same growth trial as the previous study, which showed that folic acid deficiency retarded growth in young grass carp (the percent weight gain of Groups 1-6 were 102.32 ± 3.41%, 137.25 ± 10.48%, 179.78 ± 3.95%, 164.33 ± 3.21%, 143.35 ± 8.12% and 115.28 ± 2.66%) [1]. In the present study, we investigated the effects of dietary folic acid on the immune response, antioxidant status and tight junctions in the intestine of young grass carp (Ctenopharyngodon idella). A total of 540 young grass carp were fed diets containing graded levels of folic acid at 0.10, 0.47, 1.03, 1.48, 1.88 and 3.12 mg kg(-1) diet for 8 weeks. The results indicated that acid phosphatase and lysozyme activities, and the complement component 3 content in the proximal intestine (PI), mid intestine (MI) and distal intestine (DI) were decreased with folic acid deficiency (0.1 mg kg(-1)) (P < 0.05). Folic acid deficiency (0.1 mg kg(-1)) up-regulated interleukin 1β, interleukin 8, tumor necrosis factor α, nuclear factor κB p65 (NF-κB p65), IκB kinase α (IKK-α), IKK-β and IKK-γ gene expression, meanwhile down-regulated interleukin 10, transforming growth factor β, IκB and target of rapamycin gene expression in the PI, MI and DI (P < 0.05). These data suggested that folic acid deficiency decreased fish intestinal innate immune function may be partly contributed to the regulation of NF-κB p65 pathway. Moreover, the activities and corresponding gene expression of glutathione content, Cu/Zn superoxide dismutase, catalase, glutathione peroxidase, glutathione s-transferases and glutathione reductase in fish intestine were depressed by deficient folic acid diet (0.1 mg kg(-1)) (P < 0.05). Furthermore, folic acid deficiency (0.1 mg kg(-1)) down-regulated NF-E2-related factor 2 (Nrf2) gene expression, up-regulated Kelch-like-ECH-associated protein 1a (Keap1a) and Keap1b gene expression in fish intestine (P < 0.05). These data indicated that deficient folic acid diet damaged fish intestinal antioxidant capacity partly by regulating Nrf2/Keap1 pathway. Additionally, folic acid deficiency (0.1 mg kg(-1)) down-regulated claudin-b, claudin-c, claudin-3, occludin and zonula occludens 1 gene expression; whereas folic acid deficiency (0.1 mg kg(-1)) up-regulated claudin-12, claudin-15, myosin light chain kinase (MLCK) and p38 mitogen activated protein kinase (p38 MAPK) gene expression in the PI, MI and DI (P < 0.05), suggesting that folic acid deficiency may damage fish intestinal tight junctions associated with the mediation of MLCK and p38 MAPK gene expression. In conclusion, folic acid deficiency (0.1 mg kg(-1)) impaired fish intestinal immunity, antioxidant capacity and tight junctions.
Collapse
Affiliation(s)
- Lei Shi
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Wu-Neng Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
39
|
Yang G, Tian X, Dong S, Peng M, Wang D. Effects of dietary Bacillus cereus G19, B. cereus BC-01, and Paracoccus marcusii DB11 supplementation on the growth, immune response, and expression of immune-related genes in coelomocytes and intestine of the sea cucumber (Apostichopus japonicus Selenka). FISH & SHELLFISH IMMUNOLOGY 2015; 45:800-807. [PMID: 26052012 DOI: 10.1016/j.fsi.2015.05.032] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 05/18/2015] [Accepted: 05/28/2015] [Indexed: 06/04/2023]
Abstract
Probiotics have positive effects on the nutrient digestibility and absorption, immune responses, and growth of aquatic animals, including the sea cucumber (Apostichopus japonicus Selenka). A 60-day feeding trial was conducted to evaluate the effects of Bacillus cereus G19, B. cereus BC-01 and Paracoccus marcusii DB11 supplementation on the growth, immune response, and expression level of four immune-related genes (Aj-p105, Aj-p50, Aj-rel, and Aj-lys) in coelomocytes and the intestine of juvenile sea cucumbers. One group was fed the basal diet (control group), while three other groups were fed the basal diet supplemented with B. cereus G19 (G19 group), B. cereus BC-01 (BC group), or P. marcusii DB11 (PM group). The growth rate of sea cucumbers fed diets with probiotics supplementation was significantly higher than that of the control group (P < 0.05). Sea cucumbers in the G19 and PM groups had a significantly greater phagocytic activity of coelomocytes compared to the control group (P < 0.05), while those in the G19 and BC groups had a greater respiratory burst activity (P < 0.05). The alkaline phosphatase (AKP) activity of coelomocytes in sea cucumbers fed diets with probiotics supplementation was significantly higher than the control group (P < 0.05). Comparatively, superoxide dismutase (SOD) activity of coelomocytes for sea cucumber in the PM group was significantly greater (P < 0.05). As for the immune-related genes, B. cereus G19 supplementation significantly increased the expression level of the Aj-rel gene in coelomocytes (P < 0.05), while B. cereus BC-01 supplementation significantly increased that of the Aj-p50 gene as compared to the control group (P < 0.05). In the intestine, the relative expression level of Aj-p105, Aj-p50, and Aj-lys genes in the PM group was significantly higher than that in the control group (P < 0.05). These results suggested that B. cereus G19 and B. cereus BC-01 supplementation could improve the growth performance and the immune response in coelomocytes, while P. marcusii DB11 supplementation could have a positive effect on the growth performance and immune response in coelomocytes and the intestine of sea cucumbers.
Collapse
Affiliation(s)
- Gang Yang
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao 266003, PR China
| | - Xiangli Tian
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao 266003, PR China.
| | - Shuanglin Dong
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao 266003, PR China
| | - Mo Peng
- School of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Dongdong Wang
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao 266003, PR China
| |
Collapse
|
40
|
Metabolism, health and fillet nutritional quality in Atlantic salmon (Salmo salar) fed diets containing n-3-rich microalgae. J Nutr Sci 2015; 4:e24. [PMID: 26495116 PMCID: PMC4611082 DOI: 10.1017/jns.2015.14] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 03/10/2015] [Accepted: 04/22/2015] [Indexed: 01/12/2023] Open
Abstract
Microalgae, as primary producers of EPA and DHA, are among the most prominent alternative sources to fish oil for n-3 long-chain PUFA in animal and human nutrition. The present study aimed to assess technical, nutritional and fish health aspects of producing n-3-rich Atlantic salmon (Salmo salar) fish fillets by dietary supplementation of increasing levels of a DHA-producing Schizochytrium sp. and reduced or without use of supplemental fish oil. Atlantic salmon smolt were fed diets with graded levels of microalgae for 12 weeks, during which all fish showed high feed intake rates with postprandial plasma leptin levels inversely correlating with final mean fish body weights. Fish performance was optimal in all experimental treatments (thermal growth coefficient about 4·0 and feed conversion ratio 0·8-0·9), protein digestibility was equal in all diets, whereas dietary lipid digestibility inversely correlated with the dietary levels of the SFA 16 : 0. Fillet quality was good and similar to the control in all treatments in terms of n-3 long-chain PUFA content, gaping, texture and liquid losses during thawing. Histological fluorescence staining and immunofluorescence analysis of salmon intestines (midgut: base of intestine and villi) revealed significant effects on slime, goblet cell production and inducible nitric oxide synthase (iNOS) activity with increasing levels of dietary Schizochytrium sp. supplementation. Microarray analysis did not reveal any signs of toxicity, stress, inflammation or any other negative effects from Schizochytrium sp. supplementation in diets for Atlantic salmon.
Collapse
Key Words
- 0_ScYE, 0 g/kg Scizochytrium sp. + yeast extract (control)
- 15_ScYE, 150 g/kg Scizochytrium sp. + yeast extract
- 1_ScYE, 10 g/kg Scizochytrium sp. + yeast extract
- 6_ScYE, 60 g/kg Scizochytrium sp. + yeast extract
- ADC, apparent digestibility coefficient
- CK, creatine kinase
- FAME, fatty acid methyl esters
- FCR, feed conversion ratio
- Farmed salmon fish fillet nutritional quality
- ISO, International Organization for Standardization
- Microalgae
- ScYE, Scizochytrium sp. + yeast extract
- TGC, thermal growth coefficient
- iNOS, inducible nitric oxide synthase
- n-3 LC-PUFA, n-3 long-chain PUFA
- n-3 Long-chain PUFA
Collapse
|