1
|
Zhang L, Song Z, He L, Zhong S, Ju X, Sha H, Xu J, Qin Q, Peng J, Liang H. Unveiling the toxicological effects and risks of prometryn on red swamp crayfish (Procambarus clarkii): Health assessments, ecological, and molecular insights. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175512. [PMID: 39151629 DOI: 10.1016/j.scitotenv.2024.175512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/21/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
Prometryn is commonly used in agricultural and non-agricultural settings. However, possible harm to aquatic organisms remains a persistent concern. Prometryn was also the only one of the 26 triazine herbicides detected in this study. Numerous studies have assessed the harmful effects of prometryn in teleost fish and shrimp. There is a lack of information regarding the ecological and human health risks, as well as the toxic mechanisms affecting crayfish. In this study, human health risk assessment (THQ) and ecological risk assessment (RQ) were conducted on P. clarkii in the rice-crayfish co-culture (IRCC) farming model. The 96 h of exposure to 0.286 mg/L and 1.43 mg/L prometryn was conducted to investigate the potential effects and molecular mechanisms of hepatopancreatic resistance to prometryn in P. clarkii. The original sample analysis revealed that the THQ calculated from the prometryn levels in the muscle and hepatopancreas was below 0.1, suggesting no threat to human health. However, the calculated RQ values were >0.1, indicating a risk to P. clarkii. Histological analysis and biochemical index detection of the experimental samples revealed that the hepatopancreatic injury and oxidative damage in P. clarkii were caused by prometryn. Moreover, transcriptome analysis identified 2512 differentially expressed genes (DEGs) after 96 h of prometryn exposure. Prometryn exposure caused significant changes in metabolic pathways, including oxoacid metabolic processes and cytochrome P450-associated drug metabolism. Further hub gene analysis via PPI indicated that exposure to prometryn may inhibit lipid synthesis, storage, and amino acid transport and affect glucose metabolic pathways and hormone synthesis. Additionally, we hypothesized that prometryn-triggered cell death could be linked to the PI3K-Akt signaling cascade. This study's findings have significant meaning for the efficient and logical application of herbicides in IRCC, ultimately aiding in advancing a highly productive agricultural system.
Collapse
Affiliation(s)
- Lang Zhang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China.
| | - Ziwei Song
- Department of Genetics, Wuhan University, Wuhan, Hubei 430071, China; School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Li He
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Shan Zhong
- Department of Genetics, Wuhan University, Wuhan, Hubei 430071, China; Hubei Province Key Laboratory of Allergy and Immunology, Wuhan, Hubei 430071, China
| | - Xiaoqian Ju
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Hang Sha
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Jing Xu
- College of Pharmacy, South Central University for Nationalities, Wuhan 430074, China
| | - Qiuying Qin
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China; College of Pharmacy, South Central University for Nationalities, Wuhan 430074, China
| | - Jie Peng
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China.
| | - Hongwei Liang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China.
| |
Collapse
|
2
|
Liu X, Bian DD, Jiang Q, Jiang JJ, Jin Y, Chen FX, Zhang DZ, Liu QN, Tang BP, Dai LS. Insights into chlorantraniliprole exposure via activating cytochrome P450-mediated xenobiotic metabolism pathway in the Procambarus clarkii: Identification of P450 genes involved in detoxification. Int J Biol Macromol 2024; 277:134231. [PMID: 39074699 DOI: 10.1016/j.ijbiomac.2024.134231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/26/2024] [Accepted: 07/26/2024] [Indexed: 07/31/2024]
Abstract
To investigate the impact of chlorantraniliprole on Procambarus clarkii, acute toxicity tests were performed. Results indicated that 96 h post-exposure to chlorantraniliprole (60 mg/L) led to the separation of the hepatopancreas basement membrane, causing cell swelling, rupture, and vacuolation. Moreover, acid phosphatase (ACP) and alkaline phosphatase (AKP) activities exhibited divergent trends across four concentrations of chlorantraniliprole (0, 30, 60, and 90 mg/L). Hydrogen peroxide (H2O2) and catalase (CAT) levels significantly increased, while total superoxide dismutase (T-SOD) and malonaldehyde (MDA) activities decreased, indicating oxidative stress in the hepatopancreas. A total of 276 differentially expressed genes (DEGs) were identified, with 204 up-regulated and 72 down-regulated. Out of these, 114 DEGs were successfully annotated and classified into 99 pathways, with a primary focus on the cytochrome P450-mediated xenobiotic metabolism pathway. The DEGs enriched in this pathway, along with transcriptome data, were validated using quantitative-polymerase chain reaction. This study enhances the transcriptome database of P. clarkii and provides fundamental insights into its immune defense and antioxidant mechanisms. Additionally, it lays a theoretical foundation for future research on disease prevention in P. clarkii within rice-shrimp culture systems.
Collapse
Affiliation(s)
- Xin Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, People's Republic of China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, College of Aquaculture and Life Science, Shanghai Ocean University, Shanghai 201306, People's Republic of China
| | - Dan-Dan Bian
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China; Anhui Key Laboratory of Resource Insect Biology and Innovative Utilization, College of Life Sciences, Anhui Agricultural University, Hefei 230036, People's Republic of China
| | - Qi Jiang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China
| | - Jun-Jie Jiang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, College of Aquaculture and Life Science, Shanghai Ocean University, Shanghai 201306, People's Republic of China
| | - Ye Jin
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China
| | - Fan-Xing Chen
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China
| | - Dai-Zhen Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China
| | - Qiu-Ning Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China.
| | - Bo-Ping Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China.
| | - Li-Shang Dai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, People's Republic of China.
| |
Collapse
|
3
|
Jiang H, Li R, Zhao M, Peng X, Sun M, Liu C, Liu G, Xue H. Toxic effects of combined exposure to cadmium and diclofenac on freshwater crayfish (Procambarus clarkii): Insights from antioxidant enzyme activity, histopathology, and gut microbiome. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 268:106844. [PMID: 38295602 DOI: 10.1016/j.aquatox.2024.106844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/20/2023] [Accepted: 01/21/2024] [Indexed: 02/02/2024]
Abstract
In recent years, excessive discharge of pollutants has led to increasing concentrations of cadmium (Cd) and diclofenac (DCF) in water; however, the toxicity mechanism of combined exposure of the two pollutants to aquatic animals has not been fully studied. Procambarus clarkii is an economically important aquatic species that is easily affected by Cd and DCF. This study examined the effects of combined exposure to Cd and DCF on the tissue accumulation, physiology, biochemistry, and gut microflora of P. clarkii. The results showed that Cd and DCF accumulated in tissues in the order of hepatopancreas > gill > intestine > muscle. The hepatopancreas and intestines were subjected to severe oxidative stress, with significantly increased antioxidant enzyme activity. Pathological examination revealed lumen expansion and epithelial vacuolisation in the hepatopancreas and damage to the villous capillaries and wall in the intestine. The co-exposure to Cadmium (Cd) and Diclofenac (DCF) disrupts the Firmicutes/Bacteroidetes (F/B) ratio, impairing the regular functioning of intestinal microbiota in carbon (C) and nitrogen (N) cycling. This disturbance consequently hinders the absorption and utilization of energy and nutrients in Procambarus clarkii. This study offers critical insights into the toxicological mechanisms underlying the combined effects of Cd and DCF, and suggests potential approaches to alleviate their adverse impacts on aquatic ecosystems.
Collapse
Affiliation(s)
- Hucheng Jiang
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, 210017, China; The Low-temperature Germplasm Bank of Important Economic Fish (Freshwater Fisheries Research Institute of Jiangsu Province) of Jiangsu Provincial Science and Technology Resources (Agricultural Germplasm Resources) Coordination Service Platform, Nanjing, 210017, China
| | - Runbo Li
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China
| | - Muzi Zhao
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, 210017, China; The Low-temperature Germplasm Bank of Important Economic Fish (Freshwater Fisheries Research Institute of Jiangsu Province) of Jiangsu Provincial Science and Technology Resources (Agricultural Germplasm Resources) Coordination Service Platform, Nanjing, 210017, China
| | - Xinran Peng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Mengling Sun
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, 210017, China
| | - Chongwan Liu
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, 210017, China
| | - Guoxing Liu
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, 210017, China; The Low-temperature Germplasm Bank of Important Economic Fish (Freshwater Fisheries Research Institute of Jiangsu Province) of Jiangsu Provincial Science and Technology Resources (Agricultural Germplasm Resources) Coordination Service Platform, Nanjing, 210017, China
| | - Hui Xue
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, 210017, China; The Low-temperature Germplasm Bank of Important Economic Fish (Freshwater Fisheries Research Institute of Jiangsu Province) of Jiangsu Provincial Science and Technology Resources (Agricultural Germplasm Resources) Coordination Service Platform, Nanjing, 210017, China.
| |
Collapse
|
4
|
Liang Z, Xu Q, Chen X, Xiao J, Gao Q, Cao H, Liao M. Ecological Toxicity of Cyantraniliprole against Procambarus clarkii: Histopathology, Oxidative Stress, and Intestinal Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3363-3373. [PMID: 38324778 DOI: 10.1021/acs.jafc.3c07693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Cyantraniliprole is a novel insecticide recently introduced for rice pest control that may cause potential threats to the red swamp crayfish (Procambarus clarkii) in rice-crayfish coculture systems. In this study, we investigated the acute toxicity of cyantraniliprole against P. clarkii with a LC50 value of 149.77 mg/L (96 h), first. Some abnormal behaviors of P. clarkii treated with 125 mg/L cyantraniliprole, including incunabular hyperexcitability, imbalance, inactivity, and increased excretion were observed. Moreover, it was observed that exposure to 5 mg/L cyantraniliprole for 14 days resulted in histopathological alterations in abdominal muscle, gills, hepatopancreas, and intestines. Furthermore, exposure to 0.05 and 5 mg/L cyantraniliprole induced increased activities of several oxidative stress-related enzymes, which was verified by the upregulation of related genes. Additionally, dysregulation of the intestinal microbiota was determined via 16S rRNA sequencing. These results will provide the basis for the utilization of cyantraniliprole in the fields of rice-crayfish integrated system.
Collapse
Affiliation(s)
- Zihao Liang
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Hefei, Anhui Province 230036, China
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Qiang Xu
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Hefei, Anhui Province 230036, China
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Xin Chen
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Hefei, Anhui Province 230036, China
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Jinjing Xiao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Hefei, Anhui Province 230036, China
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Quan Gao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Hefei, Anhui Province 230036, China
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Haiqun Cao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Hefei, Anhui Province 230036, China
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Min Liao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Hefei, Anhui Province 230036, China
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| |
Collapse
|
5
|
Yang H, Mo A, Yi L, Wang J, He X, Yuan Y. Selenium attenuated food borne cadmium-induced intestinal inflammation in red swamp crayfish (Procambarus clarkii) via regulating PI3K/Akt/NF-κB pathway. CHEMOSPHERE 2024; 349:140814. [PMID: 38040256 DOI: 10.1016/j.chemosphere.2023.140814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/23/2023] [Accepted: 11/23/2023] [Indexed: 12/03/2023]
Abstract
Selenium (Se), an indispensable micronutrient for living organisms, has been extensively studied for its heavy metal-detoxifying properties in diverse biological systems and tissues. Nevertheless, it is not entirely certain whether Se can effectively protect against Cadmium (Cd)-induced gut inflammation, especially in aquatic animals. In this study, we employed various approaches, including transcriptome profiling, histological examinations, assessment of antioxidant enzyme activities, and analysis of gut microbiota composition to investigate the effects on crayfish growth and intestinal health after exposure to dietary Cd (15 mg kg-1 diet) and Se (15 mg kg-1 diet) individually or in combination for 8 weeks. The results revealed that dietary Cd exposure resulted in reduced body weight and survival rates, along with an increased occurrence of intestinal inflammation. Nevertheless, Se supplementation proved effective in mitigating the adverse effects of Cd on growth and gut health. Se exhibited a remarkable ability to counteract the disruption of gut antioxidant abilities induced by dietary Cd, as evidenced by the observed increases in ROS and MDA contents, decrease in GSH levels, and inhibition of antioxidative enzyme activities. At the concentration of 6 mg kg-1 in the diet, Se was found beneficial for maintaining gut microbiota richness and diversity. Among them, Flavobacterium, Thermomonas, and Chloronema displayed a weak negative correlation with the rate of gut inflammation. Meanwhile, the levels of short chain fatty acids (SCFAs), including acetic acid (AA) and butanoic acid (BA), showed a significant increase in the Se-Cd group compared to the Cd-only group. Furthermore, transcriptome analysis exhibited significant responses of the PI3K/Akt and NF-κB pathways following crayfish exposure to dietary Se and Cd, either separately or in combination. In short, this study provides a new evidence regarding the molecular mechanisms through which Se could regulate the PI3K/Akt and NF-κB pathways, either directly or indirectly via ROS and SCFAs, thereby alleviating Cd-induced gut inflammation in crayfish.
Collapse
Affiliation(s)
- Huijun Yang
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Aijie Mo
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Linyuan Yi
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Jianghua Wang
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Xugang He
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yongchao Yuan
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Shuangshui Shuanglu Institute, Huazhong Agricultural University, Wuhan, 430070, China; National Demonstration Center for Experimental Aquaculture Education, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
6
|
Li Z, Wang H, Bao X, Liu X, Yang J. Gene network analyses of Sepia esculenta larvae exposed to copper and cadmium: A comprehensive investigation of oxidative stress, immune response, and toxicological mechanisms. FISH & SHELLFISH IMMUNOLOGY 2023; 143:109230. [PMID: 37977542 DOI: 10.1016/j.fsi.2023.109230] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/12/2023] [Accepted: 11/11/2023] [Indexed: 11/19/2023]
Abstract
Copper (Cu) and Cadmium (Cd), prevalent heavy metals in marine environments, have known implications in oxidative stress, immune response, and toxicity in marine organisms. Sepia esculenta, a cephalopod of significant economic value along China's eastern coastline, experiences alterations in growth, mobility, and reproduction when subjected to these heavy metals. However, the specific mechanisms resulting from heavy metal exposure in S. esculenta remain largely uncharted. In this study, we utilized transcriptome and four oxidative, immunity, and toxicity indicators to assess the toxicological mechanism in S. esculenta larvae exposed to Cu and Cd. The measurements of Superoxide Dismutase (SOD), Malondialdehyde (MDA), Glutathione S-Transferase (GST), and Metallothioneins (MTs) revealed that Cu and Cd trigger substantial oxidative stress, immune response, and metal toxicity. Further, we performed an analysis on the transcriptome data through Weighted Gene Co-expression Network Analysis (WGCNA) and Protein-Protein Interaction (PPI) network analysis. Our findings indicate that exposure methods and duration influence the type and the extent of toxicity and oxidative stress within the S. esculenta larvae. We took an innovative approach in this research by integrating WGCNA and PPI network analysis with four significant physiological indicators to closely examine the toxicity and oxidative stress profiles of S. esculenta upon exposure to Cu and Cd. This investigation is vital in decoding the toxicological, immunological, and oxidative stress mechanisms within S. esculenta when subjected to heavy metals. It provides foundational insights capable of advancing invertebrate environmental toxicology and informs S. esculenta artificial breeding practices.
Collapse
Affiliation(s)
- Zan Li
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Haoyu Wang
- St. John's School, Vancouver, V6K 2J1, Canada
| | - Xiaokai Bao
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Xiumei Liu
- College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Jianmin Yang
- School of Agriculture, Ludong University, Yantai, 264025, China.
| |
Collapse
|
7
|
Xu W, Yang Y, Tian J, Du X, Ye Y, Liu Z, Li Y, Zhao Y. Haloxyfop-P-methyl induces immunotoxicity and glucose metabolism disorders and affects the Nrf2/ARE pathway mediated antioxidant system in Chiromantes dehaani. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122332. [PMID: 37558200 DOI: 10.1016/j.envpol.2023.122332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/21/2023] [Accepted: 08/06/2023] [Indexed: 08/11/2023]
Abstract
Haloxyfop-P-methyl is used extensively in agricultural production, and its metabolites in soil have potentially toxic effects on aquatic ecosystems. In this study, we explored the toxicity of haloxyfop-P-methyl on Chiromantes dehaani. The results of the 21-day toxicity test showed that haloxyfop-P-methyl decreased the weight gain (WG), specific growth rate (SGR) and hepatosomatic index (HSI). In glucose metabolism, haloxyfop-P-methyl reduced pyruvate, lactate, lactate dehydrogenase and succinate dehydrogenase, but enhanced glucose-6-phosphate dehydrogenase and hexokinase. Furthermore, expression of glucose metabolism-related genes was upregulated. We cloned the full-length CdG6PDH gene, which contains a 1587 bp ORF that encoded a 528 amino acid polypeptide. In antioxidant system, haloxyfop-P-methyl increased glutathione, thioredoxin reductase and thioredoxin peroxidase activities and activated the Nrf2/ARE pathway through upregulation of ERK, JNK, PKC and Nrf2. In immunity, low concentrations haloxyfop-P-methyl, or short-term exposure, upregulated the expression of immune-related genes and enhanced immune-related enzymes activity, while high concentrations or long-term exposure inhibited immune function. In summary, haloxyfop-P-methyl inhibited the growth performance, disrupted glucose metabolism, activated the antioxidant system, and led to immunotoxicity. The results deepen our understanding of the toxicity mechanism of haloxyfop-P-methyl and provide basic biological data for the comprehensive assessment of the risk of haloxyfop-P-methyl to the environment and humans.
Collapse
Affiliation(s)
- Wenyue Xu
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Ying Yang
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Jiangtao Tian
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Xinglin Du
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Yucong Ye
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Zhiquan Liu
- School of Engineering, Hangzhou Normal University, 311121, Hangzhou, Zhejiang, China
| | - Yiming Li
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai, 200092, China
| | - Yunlong Zhao
- School of Life Science, East China Normal University, Shanghai, 200241, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
8
|
Wen Z, Xu X, Xiang D, Xu J, Yang Q, Wang X, Liu J, Luo M, Wei W. Effects of Lipopolysaccharide and Deoxynivalenol on the Survival, Antioxidant and Immune Response, and Histopathology of Crayfish ( Procambarus clarkii). Toxins (Basel) 2023; 15:479. [PMID: 37624236 PMCID: PMC10467083 DOI: 10.3390/toxins15080479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/11/2023] [Accepted: 07/21/2023] [Indexed: 08/26/2023] Open
Abstract
Bacterial lipopolysaccharide (LPS) in the aquatic environment has been reported to cause diseases in red swamp crayfish (Procambarus clarkii). In addition, deoxynivalenol (DON) is one of the primary mycotoxins found in aquaculture. However, the potential synergistic toxic effects of LPS and DON on crayfish are yet to be fully elucidated. In this study, crayfish were exposed to LPS (1 mg kg-1), DON (3 mg kg-1), and their combination (1 mg kg-1 LPS + 3 mg kg-1 DON, L+D) for a duration of six days. Co-exposure to LPS and DON exhibited the lowest survival rate compared to the control or individual treatments with LPS or DON alone. In the initial stage of the experiment, the combined treatment of LPS and DON showed a more pronounced up-regulation of antioxidant and immune-related enzymes in the sera compared to the other treatment groups, with a fold change ranging from 1.3 to 15. In addition, the (L+D) treatment group showed a down-regulation of immune-related genes, as well as Toll pathway-related genes in the hepatopancreas compared to LPS or DON. Moreover, the (L+D) treatment group demonstrated a 100% incidence of histopathological changes in the hepatopancreas, which were significantly more severe compared to the other three groups. In conclusion, our study provides physiological and histopathological evidence that the co-exposure to LPS and DON exerted synergistic toxic effects on crayfish. The observed effects could potentially hinder the development of the crayfish aquaculture industry in China.
Collapse
Affiliation(s)
- Zhengrong Wen
- Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Animal Science, Yangtze University, Jingzhou 434025, China; (Z.W.); (D.X.); (Q.Y.)
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.X.); (J.X.); (X.W.)
| | - Xiaoli Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.X.); (J.X.); (X.W.)
| | - Dan Xiang
- Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Animal Science, Yangtze University, Jingzhou 434025, China; (Z.W.); (D.X.); (Q.Y.)
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.X.); (J.X.); (X.W.)
| | - Junfeng Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.X.); (J.X.); (X.W.)
| | - Qiufeng Yang
- Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Animal Science, Yangtze University, Jingzhou 434025, China; (Z.W.); (D.X.); (Q.Y.)
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.X.); (J.X.); (X.W.)
| | - Xiaofu Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.X.); (J.X.); (X.W.)
| | - Jiashou Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China;
| | - Mingzhong Luo
- Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Animal Science, Yangtze University, Jingzhou 434025, China; (Z.W.); (D.X.); (Q.Y.)
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China;
| | - Wei Wei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.X.); (J.X.); (X.W.)
| |
Collapse
|
9
|
Li S, Lin Y, He N, Fang L, Wang Q, Ruan G. Antioxidation, immunity and hepatopancreatic histology of red swamp crayfish (Procambarus clarkii) subjected to low-temperature aerial exposure stress and re-immersion. Comp Biochem Physiol A Mol Integr Physiol 2023; 282:111441. [PMID: 37182788 DOI: 10.1016/j.cbpa.2023.111441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/19/2023] [Accepted: 05/11/2023] [Indexed: 05/16/2023]
Abstract
Desiccation is a stressful situation that decapods often experience during live transportation. This study investigated the effects of low-temperature aerial exposures (LTAEs) (dry exposure (DL) and moist exposure (ML) at 6 °C) and re-immersion on the antioxidative and immune responses and hepatopancreatic histopathology in P. clarkii. Compared to the control group (normally feeding at 24.0 °C water temperature), the crayfish under LTAEs showed overall severe hepatopancreatic oxidative damage, with significantly increased malondialdehyde (MDA) contents and significantly reduced total antioxidant capacity (T-AOC), and oxidant damage was not fully recovered even after 12 h of re-immersion; the expression of hsp70 was significantly increased within 24-48 h of stress and re-immersion. The activity of hemolymphatic acid phosphatase (ACP) was significantly increased during 24-48 h of the stress and at 12 h of re-immersion; the activity of aspartic aminotransferase (AST) and alanine aminotransferase (ALT) was significantly increased throughout the experiment; and the gene expression of proPO or TLR was significantly increased during 12-48 h of the stress. Severe histopathological changes (lumen dilatation, vacuolation of epithelial cells and reduced cell numbers) were observed in hepatopancreas at 48 h of stress and 12 h of re-immersion. These results indicated that 48 h of low-temperature aerial exposure stress stimulated the non-specific immunity but adversely affected the antioxidation and hepatopancreatic histomorphology of P. clarkii, whereas 12 h of re-immersion was not sufficient to restore crayfish from stress to a normal state.
Collapse
Affiliation(s)
- Shengxuan Li
- The Innovative Technology Research Center of Crayfish Breeding and Healthy Farming, Yangtze University, Jingzhou 434025, PR China
| | - Yanbin Lin
- The Innovative Technology Research Center of Crayfish Breeding and Healthy Farming, Yangtze University, Jingzhou 434025, PR China
| | - Naijuan He
- The Innovative Technology Research Center of Crayfish Breeding and Healthy Farming, Yangtze University, Jingzhou 434025, PR China
| | - Liu Fang
- The Innovative Technology Research Center of Crayfish Breeding and Healthy Farming, Yangtze University, Jingzhou 434025, PR China
| | - Qian Wang
- The Innovative Technology Research Center of Crayfish Breeding and Healthy Farming, Yangtze University, Jingzhou 434025, PR China.
| | - Guoliang Ruan
- The Innovative Technology Research Center of Crayfish Breeding and Healthy Farming, Yangtze University, Jingzhou 434025, PR China.
| |
Collapse
|
10
|
Wang Z, Yang L, Zhou F, Li J, Wu X, Zhong X, Lv H, Yi S, Gao Q, Yang Z, Zhao P, Wu Y, Wu C, Zhang L, Wang H, Zhang L. Integrated comparative transcriptome and weighted gene co-expression network analysis provide valuable insights into the response mechanisms of crayfish (Procambarus clarkii) to copper stress. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130820. [PMID: 36860031 DOI: 10.1016/j.jhazmat.2023.130820] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
One of the significant limitations of aquaculture worldwide is the prevalence of divalent copper (Cu). Crayfish (Procambarus clarkii) are economically important freshwater species adapted to a variety of environmental stimuli, including heavy metal stresses; however, large-scale transcriptomic data of the hepatopancreas of crayfish in response to Cu stress are still scarce. Here, integrated comparative transcriptome and weighted gene co-expression network analyses were initially applied to investigate gene expression profiles of the hepatopancreas of crayfish subjected to Cu stress for different periods. As a result, 4662 significant differentially expressed genes (DEGs) were identified following Cu stress. Bioinformatics analyses revealed that the "focal adhesion" pathway was one of the most significantly upregulated response pathways following Cu stress, and seven DEGs mapped to this pathway were identified as hub genes. Furthermore, the seven hub genes were examined by quantitative PCR, and each was found to have a substantial increase in transcript abundance, suggesting a critical role of the "focal adhesion" pathway in the response of crayfish to Cu stress. Our transcriptomic data can be a good resource for the functional transcriptomics of crayfish, and these results may provide valuable insights into the molecular response mechanisms underlying crayfish to Cu stress.
Collapse
Affiliation(s)
- Zhanqi Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China.
| | - Lianlian Yang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Fan Zhou
- Zhejiang Fisheries Technical Extension Center, Hangzhou 310023, China
| | - Jiapeng Li
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Xiaoyin Wu
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Xueting Zhong
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - He Lv
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Shaokui Yi
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Quanxin Gao
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Zi Yang
- Department of Ecology, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Pengfei Zhao
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Yi Wu
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Choufei Wu
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Liqin Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Hua Wang
- Huzhou Key Laboratory of Medical and Environmental Application Technologies, College of Life Sciences, Huzhou University, Huzhou 313000, China.
| | - Lixia Zhang
- Department of Ecology, College of Life Sciences, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
11
|
Li ZH, Xing S, Li P, He S, Cao Z, Wang X, Cao X, Liu B, You H. Systematic toxicological analysis of the effect of salinity on the physiological stress induced by triphenyltin in Nile tilapia. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 257:106441. [PMID: 36848695 DOI: 10.1016/j.aquatox.2023.106441] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 01/11/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Triphenyltin (TPT), a synthetic chemical, is prevalent in complex salinity areas, including estuaries and coastal regions. However, current studies on the toxicological effects of TPT relevant to the environment at different salinities are limited. In the study, biochemical, histological, and transcriptional analyses of TPT and salinity alone, or in combination, was performed on the Nile tilapia (Oreochromis niloticus) liver. Nile tilapia exhibited weakened antioxidant defenses and liver damage. Transcriptomic analysis revealed that TPT exposure primarily affected lipid metabolism and immunity; salinity exposure alone particularly affected carbohydrate metabolism; combined exposure primarily immune- and metabolic-related signaling pathways. In addition, the single exposure to TPT or salinity induced inflammatory responses by up-regulating the expression of pro-inflammatory cytokines, whereas combined exposure suppressed inflammation by down-regulating pro-inflammatory cytokine levels. These findings are beneficial to understand the negative effects of TPT exposure in Nile tilapia in the broad salinity zones and its potential defense mechanisms.
Collapse
Affiliation(s)
- Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Shaoying Xing
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Ping Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Shuwen He
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Zhihan Cao
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Xu Wang
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Xuqian Cao
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Bin Liu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Hong You
- State Key Laboratory of Urban Water Resources & Environment, Harbin Institute of Technology, Harbin 150001, China.
| |
Collapse
|
12
|
Lin W, Wu J, Luo H, Liu X, Cao B, Hu F, Liu F, Yang J, Yang P. Sub-chronic ammonia exposure induces hepatopancreatic damage, oxidative stress, and immune dysfunction in red swamp crayfish (Procambarus clarkii). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 254:114724. [PMID: 36871356 DOI: 10.1016/j.ecoenv.2023.114724] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/26/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Ammonia, as one of the primary water pollutants in aquaculture, has been shown to induce a wide range of ecotoxicological effects on aquatic animals. In order to investigate the antioxidant and innate immune responses in crustaceans disrupted by ammonia, red swamp crayfish (Procambarus clarkii) were exposed to 0, 15, 30, and 50 mg/L total ammonia nitrogen for 30 d, the alterations of antioxidant responses as well as innate immunity were studied. The results showed that the severity of hepatopancreatic injury were aggravated by the increasing ammonia levels, which were mainly characterized by tubule lumen dilatation and vacuolization. The swollen mitochondria and disappeared mitochondria ridges suggested that oxidative stress induced by ammonia targets the mitochondria. Concurrently, enhanced MDA levels, and decreased GSH levels as well as the decreased transcription and activity of antioxidant enzymes, including SOD, CAT, and GPx were noticed, which suggested that high concentrations of ammonia exposure induce oxidative stress in P. clarkii. Furthermore, a significant decrease of the hemolymph ACP, AKP, and PO along with the significant downregulation of immune-related genes (ppo, hsp70, hsp90, alf1, ctl) jointly indicated that ammonia stress inhibited the innate immune function. Our findings demonstrated that sub-chronic ammonia stress induced hepatopancreatic injury and exert suppressive effects on the antioxidant capacity as well as innate immunity of P. clarkii. Our results provide a fundamental basis for the deleterious effects of ammonia stress on aquatic crustaceans.
Collapse
Affiliation(s)
- Wang Lin
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, China; Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China; Hunan Provincial Key Laboratory for Health Aquaculture and Product Processing in Dongting Lake Area, Changde 415000, China
| | - Jingyi Wu
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, China
| | - Huimin Luo
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, China
| | - Xiangli Liu
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, China
| | - Beibei Cao
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, China
| | - Fen Hu
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, China
| | - Fang Liu
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, China
| | - Jifeng Yang
- College of Chemistry and Material Engineering, Hunan University of Arts and Science, Changde 415000, China.
| | - Pinhong Yang
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, China; Hunan Provincial Key Laboratory for Health Aquaculture and Product Processing in Dongting Lake Area, Changde 415000, China.
| |
Collapse
|
13
|
Dai C, Xiao L, Mo A, Yuan Y, Yuan J, Gu Z, Wang J. Effect of dietary Bacillus subtilis supplement on Cd toxicokinetics and Cd-induced immune and antioxidant impairment of Procambarus clarkii. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:43914-43926. [PMID: 36680717 DOI: 10.1007/s11356-023-25297-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Cadmium (Cd), a non-biodegradable contaminant in freshwater ecosystems, can pose a serious threat to aquatic animals at high levels. In this study, the Cd toxicokinetics and the immune and antioxidant defense were explored in Procambarus clarkii exposed to different levels of Cd (0, 0.1, 1.0 mg Cd/L) or treated with 1.0 mg Cd/L and dietary Bacillus subtilis supplementation (1 × 107 cfu/g). Results from the 21-day uptake and depuration experiment revealed that Cd exposure elicited a dose- and time-dependent uptake in all crayfish tissues, and the rank order of Cd concentration was gill > hepatopancreas > exoskeleton > muscle. The one-compartment model demonstrated that gills had the highest uptake rate (ku) value after Cd aqueous exposure and the ku and elimination rate (kd) values in gill, hepatopancreas, and exoskeleton of the group with 1.0 mg Cd/L were higher than those of the group at alow Cd concentration (0.1 mg Cd/L). However, B. subtilis could decrease Cd ku and increase Cd kd in hepatopancreas, resulting in the reduction of bioconcentration factors (BCF), steady-state concentrations (Css), and biological half-life (Tb1/2). A positive correlation was found between aqueous Cd concentration and the severity of hepatopancreas histopathological injury, while B. subtilis could ameliorate the pathological damage in the high Cd group. Similarly, aqueous exposure to Cd elevated malonaldehyde (MDA) content and suppressed the activities of lysozyme (LZM), acid phosphatase (ACP) in hepatopancreas and alkaline phosphatase (AKP) in hemolymph. The activities of superoxide dismutase (SOD) and catalase (CAT) in hepatopancreas were also inhibited. Nevertheless, they were all recovered with the dietary addition of B. subtilis. In conclusion, our results indicated that exposure to Cd significantly increased Cd accumulation and toxic damages in crayfish hepatopancreas, while dietary administration of B. subtilis to crayfish significantly decreased Cd accumulation and improved the immune and antioxidant defense, leading to the prevention in toxic effects of Cd.
Collapse
Affiliation(s)
- Caijiao Dai
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lin Xiao
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Aijie Mo
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yongchao Yuan
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Junfa Yuan
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Wuhan, 430070, China
| | - Zemao Gu
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Wuhan, 430070, China
| | - Jianghua Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
14
|
Huang Z, Zheng X, Chen Z, Zheng Z, Yao D, Yang S, Zhang Y, Aweya JJ. Modulation of SREBP Expression and Fatty Acid Levels by Bacteria-Induced ER Stress Is Mediated by Hemocyanin in Penaeid Shrimp. Mar Drugs 2023; 21:md21030164. [PMID: 36976213 PMCID: PMC10055750 DOI: 10.3390/md21030164] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/23/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
Many environmental and pathogenic insults induce endoplasmic reticulum (ER) stress in animals, especially in aquatic ecosystems, where these factors are crucial for life. In penaeid shrimp, pathogens and environmental stressors induce hemocyanin expression, but the involvement of hemocyanin in ER stress response is unknown. We demonstrate that in response to pathogenic bacteria (Vibrio parahaemolyticus and Streptococcus iniae), hemocyanin, ER stress proteins (Bip, Xbp1s, and Chop), and sterol regulatory element binding protein (SREBP) are induced to alter fatty acid levels in Penaeus vannamei. Interestingly, hemocyanin interacts with ER stress proteins to modulate SREBP expression, while ER stress inhibition with 4-Phenylbutyric acid or hemocyanin knockdown attenuates the expression of ER stress proteins, SREBP, and fatty acid levels. Contrarily, hemocyanin knockdown followed by tunicamycin treatment (ER stress activator) increased their expression. Thus, hemocyanin mediates ER stress during pathogen challenge, which consequently modulates SREBP to regulate the expression of downstream lipogenic genes and fatty acid levels. Our findings reveal a novel mechanism employed by penaeid shrimp to counteract pathogen-induced ER stress.
Collapse
Affiliation(s)
- Zishu Huang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Xiaoyu Zheng
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Zeyan Chen
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Zhihong Zheng
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Defu Yao
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Shen Yang
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Yueling Zhang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, China
- Correspondence: (Y.Z.); (J.J.A.); Tel.: +86-13615050594 (J.J.A.); +86-754-86502580 (Y.L.Z.)
| | - Jude Juventus Aweya
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, China
- Correspondence: (Y.Z.); (J.J.A.); Tel.: +86-13615050594 (J.J.A.); +86-754-86502580 (Y.L.Z.)
| |
Collapse
|
15
|
MafG-like contribute to copper and cadmium induced antioxidant response by regulating antioxidant enzyme in Procambarus clarkii. Gene 2022; 847:146848. [PMID: 36096331 DOI: 10.1016/j.gene.2022.146848] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/11/2022] [Accepted: 08/25/2022] [Indexed: 11/23/2022]
Abstract
Avian musculoaponeurotic fibrosarcoma (Maf) proteins play an important role in Nrf2/Keap1 signaling pathway, which mainly resist the oxidant stress. The members of sMaf have a high homology basic leucine zipper (bZIP) and lack trans activation domain, and could interact with other transcriptional regulatory factors as a molecular chaperone. In this study, a full-length MafG-like gene was cloned from Procambarus Clarkii, designated as PcMafG-like, which consisted of an ORF length of 246 bp encoding 82 amino acids, a 5' untranslated region (UTR) of 483 bp, and a 3' UTR of 111 bp. The domain of PcMafG-like had a bZIP-Maf domain that binds to DNA. The cDNA sequence of PcMafG-like was 99 % similar to that of Penaeus vannamei. The mRNA of PcMafG-like was expressed in all tested tissues, and the highest expression was in muscle tissue. Under stimulation of Cu2+ and Cd2+, PcMafG-like was significantly up-regulated in hepatopancreas and gill, and the same result was testified by situ hybridization. The representative antioxidant genes, CAT, GPx and CZ-SOD, were significantly induced by Cu2+; CAT and GPx was induced by Cd2+. PcMafG-dsRNA significantly inhibited the expression of these up-regulated genes, but also inhibited the expression of other detected genes CZ-SOD, GST-θ and GST-1like. The antioxidant effect of PcMafG-like was further verified by oxidative stress markers (T-SOD, CuZnSOD, GPx, CAT, GSH and MDA) kits. Cu2+ and Cd2+ could induce the contents of these oxidative stress markers (MDA, GSH, CZ-SOD, CAT in Cu2+/Cd2+ treated group, and GSH-Px in Cd2+ group), while interference of PcMafG-like significantly inhibited the up-regulation. Furthermore, hematoxylin-eosin staining experiments showed that the degree of pathological damage was dose-dependent and time-dependent, and the pathological damage was more serious after dsRNA interfered with PcMafG-like. In addition, subcellular localization showed that PcMafG-like gene existed in nucleus. The recombinant protein PcMafG-like was expressed and purified in prokaryotic expression. The affinity analysis of promoter by agarose gel electrophoresis suggested that PcMafG-like could bind with CAT promoter in vitro. This indicated that PcMafG-like could activate antioxidant genes.
Collapse
|
16
|
Hadeed MN, Castiglione CL, Saleem S, Chammout DH, Muskovac MD, Crile KG, Abdulelah SA, Maalhagh-Fard A, Rampuri EY, Grabowski GM, Belanger RM. Environmentally relevant atrazine exposure leads to increases in DNA damage and changes in morphology in the hepatopancreas of crayfish ( Faxonius virilis). ENVIRONMENTAL ADVANCES 2022; 10:100320. [PMID: 37122617 PMCID: PMC10135391 DOI: 10.1016/j.envadv.2022.100320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The herbicide atrazine is widely used for controlling broad leaf weeds and increasing crop yields in agricultural areas. Atrazine enters aquatic environments through runoff, ground water discharge and seepage where concentrations have been recorded above 300 ppb. Exposure to the herbicide atrazine at environmentally relevant concentrations has been shown to negatively impact aquatic organisms, including crayfish. Because xenobiotics are concentrated in the crayfish hepatopancreas (digestive gland), we examined changes in morphology and DNA damage in hepatopancreatic tissue structure and cells following a 10-day exposure to atrazine (0, 10, 40, 80, 100 and 300 ppb). We found that there were marked morphological changes, post-exposure, for all atrazine concentrations tested. Hepatopancreatic tissue exhibited degenerated tubule epithelium with necrosis of microvilli, tubule lumen dilation, changes in tubular epithelium height and vacuolization of the epithelium. Likewise, we also performed a terminal deoxynucleotidyl transferase (TdT) mediated dUTP nick-end labeling (TUNEL) assay which showed the percentage of cells with DNA damage increased following atrazine exposure. Crayfish hepatopancreatic tissue displayed significant increases in TUNEL-positive cells following exposure to atrazine at 100 ppb and above. Overall, exposure to atrazine at environmentally relevant concentrations damages hepatopancreatic tissue. This impairment could lead to changes in biotransformation, detoxification, digestion and molting, subsequently reducing crayfish populations and negatively impacting the aquatic ecosystem.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Rachelle M. Belanger
- Corresponding author at: Biology Department, University of Detroit Mercy, 4001 W. McNichols, Detroit, MI 48221, United States. (R.M. Belanger)
| |
Collapse
|
17
|
Cao H, Zhang S, An J, Diao J, Xu L, Gai C. Rhodobacter azotoformans supplementation improves defense ability of Chinese mitten crab Eriocheir sinensis against citrobacteriosis. FISH & SHELLFISH IMMUNOLOGY 2022; 131:991-998. [PMID: 36368632 DOI: 10.1016/j.fsi.2022.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/27/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Rhodobacter probiotics are considered as good alternatives to antibiotics for aquaculture. Yet the beneficial effects of Rhodobacter on Chinese mitten crab Eriocheir sinensis are still unclear, and more functions of Rhodobacter supplementation need to be clarified. In this study, a 60-day feeding trial was performed to investigate the protective effects of R. azotoformans against citrobacteriosis in E. sinensis by growth performance, serum immunity, hepatopancreatic antioxidant capability, intestinal flora, and resistance to Citrobacter freundii challenge assays. The results showed that R. azotoformans supplementation significantly and dose-dependently increased weight gain and specific growth rate as well as activities of serum immune and hepatopancreatic antioxidant enzymes, leading to notable improvement in the growth performance, serum immunity and hepatopancreatic antioxidant status of E. sinensis. Besides, R. azotoformans supplementation significantly enhanced intestinal microbial abundance and diversity in E. sinensis, and conferred significant protection of the crabs against C. freundii challenge with seven-day survival rates of 70.0%-100.0%. To the best of our knowledge, this is the first study to reveal the protective effects of R. azotoformans against citrobacteriosis in E. sinensis.
Collapse
Affiliation(s)
- Haipeng Cao
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Engineering Research Center for Aquaculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Shumeng Zhang
- Shanghai Engineering Research Center for Aquaculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Jian An
- Marine and Fisheries Development Promotion Center of Lianyungang City, Lianyungang, Jiangsu, 266104, China
| | - Jing Diao
- Shandong Key Laboratory of Disease Control in Mariculture, Marine Science Research Institute of Shandong Province, Qingdao, 266104, China
| | - La Xu
- Shandong Key Laboratory of Disease Control in Mariculture, Marine Science Research Institute of Shandong Province, Qingdao, 266104, China
| | - Chunlei Gai
- Shandong Key Laboratory of Disease Control in Mariculture, Marine Science Research Institute of Shandong Province, Qingdao, 266104, China.
| |
Collapse
|
18
|
Lu J, Tao X, Luo J, Zhu T, Jiao L, Jin M, Zhou Q. Dietary choline promotes growth, antioxidant capacity and immune response by modulating p38MAPK/p53 signaling pathways of juvenile Pacific white shrimp (Litopenaeus vannamei). FISH & SHELLFISH IMMUNOLOGY 2022; 131:827-837. [PMID: 36334698 DOI: 10.1016/j.fsi.2022.10.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
The objective of the present study was to evaluate the effects of dietary choline levels on growth performance, antioxidant capacity, innate immunity and hemocyte apoptosis of Litopenaeus vannamei. Six isonitrogenous and isolipidic diets were formulated to contain different choline levels: 2.91 (basal diet), 3.85, 4.67, 6.55, 10.70 and 18.90 g kg-1choline, respectively. The results indicated that shrimp fed diet with 4.67 g kg-1 choline had the highest final body weight (FBW), percent weight gain (PWG), specific growth rate (SGR), feed efficiency (FE), and activities of alkaline phosphatase (AKP) and phenoloxidase (PO) in hemolymph among all treatments. Shrimp fed diet with 18.90 g kg-1 choline exhibited significantly lower crude lipid in hepatopancreas than those fed diets with 2.91, 3.85, 4.67 and 6.55 g kg-1 choline (P < 0.05). The concentration of reactive oxygen species (ROS) and apoptosis rate in hemocytes significantly decreased with the increase of dietary choline levels (P < 0.05). Shrimp fed diets with 6.55, 10.70 and 18.90 g kg-1 choline had significantly higher scavenging ability of hydroxyl radical (SAHR) and total antioxidant capacity (T-AOC) in hemolymph than those fed diet with 2.91 g kg-1 choline (P < 0.05). Dietary choline supplementation down-regulated the expression of genes related to apoptosis such as caspase-1, caspase-3, caspase-8, p53, and p38MAPK in hemocytes (P < 0.05), while up-regulated the expression of anti-apoptosis gene bcl2 in hemocytes (P < 0.05). Overall, the results of the present study demonstrated that appropriate dietary choline could improve growth performance and feed utilization, enhance antioxidant capacity and innate immunity, and mitigate apoptosis in Litopenaeus vannamei. Moreover, the inhibition of hemocyte apoptosis by dietary choline may be regulated by the p38MAPK-p53 signaling pathway.
Collapse
Affiliation(s)
- Jingjing Lu
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Xinyue Tao
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Jiaxiang Luo
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Tingting Zhu
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Lefei Jiao
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Min Jin
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China.
| | - Qicun Zhou
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
19
|
Zhang YM, Lin CY, Li BZ, Cheng YX, Xu WB, Xiao Y, Chen DY, Dong WR, Shu MA. The health risk for consumers under heavy metal scenarios: Reduce bioaccumulation of Cd in estuary mud crab (Scylla paramamosain) through the antagonism of Se. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:157149. [PMID: 35798109 DOI: 10.1016/j.scitotenv.2022.157149] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/20/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Heavy metal pollution has gained increasing attention over past years, and notably, cadmium (Cd) is a non-essential heavy metal that can be toxic to human and wildlife. Furthermore, selenium (Se) is a component of the selenoproteins and influences the toxicity of Cd in different organisms, and protect organisms as a kind of heavy metal antagonist. This study exposed mud crab to 5.0 mg/L Cd for 28 days, and investigated whether different concentrations (0.1, 0.2, 0.3 mg/kg) of selenite (Na2SeO3) or selenomethionine (SeMet) affect the bioaccumulation of Cd, serum biochemical index, antioxidant and stress-response genes of S. paramamosain. The results showed that the Cd concentration in Cd group was significantly higher than the organic or inorganic Se group. Serum biochemical index demonstrated that Se might relieve the damage or dysfunction of hepatopancreas caused by both Cd accumulation and toxicity. Furthermore, Se improved CAT, GPx T-AOC and SOD activity, and decreased MDA concentrations and the lipid peroxidation levels, antagonistic to Cd. Then, this study analyzed the expression of 26 stress-related genes, the results indicated that the inorganic and organic Se might reduce the damage of cell and the toxicity of heavy metals in the hepatopancreas after Cd exposure. Therefore, this study indicated that Se might alleviate Cd toxicity via the different antioxidative mechanisms, and increased the understanding of environmental toxins on estuary crustaceans.
Collapse
Affiliation(s)
- Yan-Mei Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chen-Yang Lin
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bang-Ze Li
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuan-Xin Cheng
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wen-Bin Xu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yi Xiao
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Da-Yong Chen
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wei-Ren Dong
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Miao-An Shu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
20
|
Feng W, Su S, Song C, Yu F, Zhou J, Li J, Jia R, Xu P, Tang Y. Effects of Copper Exposure on Oxidative Stress, Apoptosis, Endoplasmic Reticulum Stress, Autophagy and Immune Response in Different Tissues of Chinese Mitten Crab ( Eriocheir sinensis). Antioxidants (Basel) 2022; 11:antiox11102029. [PMID: 36290752 PMCID: PMC9598082 DOI: 10.3390/antiox11102029] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/05/2022] [Accepted: 10/11/2022] [Indexed: 11/17/2022] Open
Abstract
High concentrations of copper (Cu2+) pose a great threat to aquatic animals. However, the mechanisms underlying the response of crustaceans to Cu2+ exposure have not been well studied. Therefore, we investigated the alterations of physiological and molecular parameters in Chinese mitten crab (Eriocheir sinensis) after Cu2+ exposure. The crabs were exposed to 0 (control), 0.04, 0.18, and 0.70 mg/L of Cu2+ for 5 days, and the hemolymph, hepatopancreas, gills, and muscle were sampled. The results showed that Cu2+ exposure decreased the antioxidative capacity and promoted lipid peroxidation in different tissues. Apoptosis was induced by Cu2+ exposure, and this activation was associated with the mitochondrial and ERK pathways in the hepatopancreas. ER stress-related genes were upregulated in the hepatopancreas but downregulated in the gills at higher doses of Cu2+. Autophagy was considerably influenced by Cu2+ exposure, as evidenced by the upregulation of autophagy-related genes in the hepatopancreas and gills. Cu2+ exposure also caused an immune response in different tissues, especially the hepatopancreas, where the TLR2-MyD88-NF-κB pathway was initiated to mediate the inflammatory response. Overall, our results suggest that Cu2+ exposure induces oxidative stress, ER stress, apoptosis, autophagy, and immune response in E. sinensis, and the toxicity may be implicated following the activation of the ERK, AMPK, and TLR2-MyD88-NF-κB pathways.
Collapse
Affiliation(s)
- Wenrong Feng
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Shengyan Su
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Changyou Song
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Fan Yu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Jun Zhou
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China
| | - Jianlin Li
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Rui Jia
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Pao Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yongkai Tang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
- Correspondence: ; Tel.: +86-051085554198
| |
Collapse
|
21
|
Xu J, Zhu Z, Zhong B, Gong W, Du S, Zhang D, Chen Y, Li X, Zheng Q, Ma J, Sun L, Lu S. Health risk assessment of perchlorate and chlorate in red swamp crayfish (Procambarus clarkii) in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156889. [PMID: 35753452 DOI: 10.1016/j.scitotenv.2022.156889] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/14/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
Perchlorate and chlorate are both strong oxidants and thyroid toxicants that are widely distributed in soil, water and human foods. The red swamp crayfish (Procambarus clarkii) is a common aquatic organism that is popular in Chinese culinary dishes. Dietary intake is the main route of human exposure to perchlorate and chlorate, though the health risks of crayfish consumption are unknown. Thus, this study investigated the quantities of perchlorate and chlorate in red swap crayfish from sampling sites in five provinces located near the Yangtze River in China, along with the associated health risks of consuming this species. Perchlorate was detected in 55.6-100 % of crayfish samples in each sampling location, and chlorate was found in 100 % of samples cross all sites. Concentrations of perchlorate in crayfish from upstream provinces (Hubei, Hunan and Jiangxi) were higher than those from downstream provinces (Anhui and Jiangsu). Perchlorate and chlorate concentrations were positively correlated in crayfish, suggesting that chlorate may be a degradation byproduct of perchlorate. The quantities of both pollutants in hepatopancreas tissue were higher than in muscle tissues (p < 0.05), such that we do not recommend ingesting crayfish hepatopancreas. Hazard quotient (HQ) values for chlorate in crayfish were <1 across all provinces, suggesting no potential health risk of chlorate exposure through crayfish consumption. However, perchlorate concentrations in crayfish from the Jiangxi province had an associated HQ value >1, suggesting potential risks for human health. These results will be useful in informing mitigation measures aimed at reducing perchlorate exposure associated with crayfish consumption.
Collapse
Affiliation(s)
- Jiayi Xu
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Zhou Zhu
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Baisen Zhong
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Weiran Gong
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Sijin Du
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Duo Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Yining Chen
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Xiangyu Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Quanzhi Zheng
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Jiaojiao Ma
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Litao Sun
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
22
|
Bautista-Covarrubias JC, Valdez-Soto IE, Aguilar-Juárez M, Arreola-Hernández JO, Soto-Jiménez MF, Soto-Rodríguez SA, López-Sánchez JA, Osuna-Martínez CC, Frías-Espericueta MG. Cadmium and copper mixture effects on immunological response and susceptibility to Vibrio harveyi in white shrimp Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2022; 129:145-151. [PMID: 36055556 DOI: 10.1016/j.fsi.2022.08.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
Cadmium (Cd2+) and copper (Cu2+) are considered immunotoxic metals and their presence in combination in the aquatic environment may cause effects on shrimp species as Litopenaeus vannamei. Thus, this research evaluates the combined effects of Cd2+ and Cu2+ on shrimp inoculated with Vibrio harveyi bacteria. The experiments were performed at 96-h of exposure to sublethal concentrations of both metals. No mortality was observed in organisms exposed to the sum of Criterion of Continuous Concentration (ΣCCC) in Cd + Cu mixture and those inoculated with V. harveyi. Higher clotting times were recorded in Cd + Cu + V. harveyi treatment at higher metal concentrations. No significant differences (P > 0.05) were recorded in hemocyanin content between shrimp exposed to metals and those experimentally infected. Significantly higher (P < 0.05) total hemocyte count (THC) was recorded at 96 h exposure in the ΣCCC and 10% treatments of Cd + Cu + V. harveyi experiment. Regarding Cd + Cu + V. harveyi bioassay, the highest phenoloxidase (PO) activity was recorded in shrimp inoculated with V. harveyi (0.326 ± 0.031 PO units/mg protein) at 96-h exposure. The lowest PO activity was observed in organisms exposed to Cd + Cu + V. harveyi. Regarding superoxide dismutase (SOD) activity, shrimp exposed to higher metal concentrations at 96 h showed the lowest hemolymph activity (6.03 ± 0.62 SOD units/mL). Protein decrease was observed in organisms exposed to metal mixture. The results showed that L. vannamei could be more susceptible to V. harveyi when exposed to Cd + Cu.
Collapse
Affiliation(s)
- Juan Carlos Bautista-Covarrubias
- Unidad Académica Escuela Nacional de Ingeniería Pesquera, Bahía de Matanchén. Universidad Autónoma de Nayarit. Tepic, Nayarit, C.P., 63740, Mexico
| | - Iriana Edith Valdez-Soto
- Facultad de Ciencias del Mar. Universidad Autónoma de Sinaloa, Mazatlán, Sinaloa, C.P., 82000, Mexico
| | - Marisela Aguilar-Juárez
- Facultad de Ciencias del Mar. Universidad Autónoma de Sinaloa, Mazatlán, Sinaloa, C.P., 82000, Mexico
| | | | - Martín Federico Soto-Jiménez
- Unidad Académica Mazatlán, Instituto de Ciencias del Mar y Limnología, UNAM. Mazatlán Sinaloa, C.P., 82047, Mexico
| | | | - José Armando López-Sánchez
- Unidad Académica Escuela Nacional de Ingeniería Pesquera, Bahía de Matanchén. Universidad Autónoma de Nayarit. Tepic, Nayarit, C.P., 63740, Mexico
| | | | | |
Collapse
|
23
|
Mercury Induced Tissue Damage, Redox Metabolism, Ion Transport, Apoptosis, and Intestinal Microbiota Change in Red Swamp Crayfish (Procambarus clarkii): Application of Multi-Omics Analysis in Risk Assessment of Hg. Antioxidants (Basel) 2022; 11:antiox11101944. [PMID: 36290667 PMCID: PMC9598479 DOI: 10.3390/antiox11101944] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/22/2022] [Accepted: 09/24/2022] [Indexed: 11/22/2022] Open
Abstract
As one of the most toxic elements, mercury (Hg) is a widespread toxicant in aquatic environments. Crayfish are considered suitable for indicating the impact of heavy metals on aquatic crustaceans. Nevertheless, Hg toxicity on Procambarus clarkii is largely unknown. In this research, the acute Hg-induced alterations of biochemical responses, histopathology, hepatopancreatic transcriptome, and intestinal microbiome of Procambarus clarkii were studied. Firstly, Hg induced significant changes in reactive oxygen species (ROS) and malonaldehyde (MDA) content as well as antioxidant enzyme activity. Secondly, Hg exposure caused structural damage to the hepatopancreas (e.g., vacuolization of the epithelium and dilatation of the lumen) as well as to the intestines (e.g., dysregulation of lamina epithelialises and extension of lamina proprias). Thirdly, after treatment with three different concentrations of Hg, RNA-seq assays of the hepatopancreas revealed a large number of differentially expressed genes (DEGs) linked to a specific function. Among the DEGs, a lot of redox metabolism- (e.g., ACOX3, SMOX, GPX3, GLO1, and P4HA1), ion transport- (e.g., MICU3, MCTP, PYX, STEAP3, and SLC30A2), drug metabolism- (e.g., HSP70, HSP90A, CYP2L1, and CYP9E2), immune response- (e.g., SMAD4, HDAC1, and DUOX), and apoptosis-related genes (e.g., CTSL, CASP7, and BIRC2) were identified, which suggests that Hg exposure may perturb the redox equilibrium, disrupt the ion homeostasis, weaken immune response and ability, and cause apoptosis. Fourthly, bacterial 16S rRNA gene sequencing showed that Hg exposure decreased bacterial diversity and dysregulated intestinal microbiome composition. At the phylum level, there was a marked decrease in Proteobacteria and an increase in Firmicutes after exposure to high levels of Hg. With regards to genus, abundances of Bacteroides, Dysgonomonas, and Arcobacter were markedly dysregulated after Hg exposures. Our findings elucidate the mechanisms involved in Hg-mediated toxicity in aquatic crustaceans at the tissue, cellular, molecular as well as microbial levels.
Collapse
|
24
|
Cao H, Huang X, Gu Y, Zheng X, Xu L, Gai C. Protective effects of Bacillus licheniformis against Citrobacter freundii infection in Chinese mitten crab Eriocheir sinensis. J Invertebr Pathol 2022; 193:107805. [DOI: 10.1016/j.jip.2022.107805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/07/2022] [Accepted: 07/27/2022] [Indexed: 11/28/2022]
|
25
|
Lin W, Luo H, Wu J, Liu X, Cao B, Hung TC, Liu Y, Chen Z, Yang P. Distinct vulnerability to oxidative stress determines the ammonia sensitivity of crayfish (Procambarus clarkii) at different developmental stages. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113895. [PMID: 35872490 DOI: 10.1016/j.ecoenv.2022.113895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/12/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
Red swamp crayfish (Procambarus clarkii) has increasingly become a high-value freshwater product in China. During the intensive cultivation, excessive ammonia exposure is an important lethal factor of crayfish. We investigated the toxic effects and mechanisms of ammonia on crayfish at two different developmental stages. A preliminary ammonia stress test showed a 96-h LC50 of 135.10 mg/L and 299.61 mg/L for Stage_1 crayfish (8.47 ± 1.68 g) and Stage_2 crayfish (18.33 ± 2.41 g), respectively. During a prolonged ammonia exposure (up to 96 h), serum acid phosphatase and alkaline phosphatase showed a time-dependent decrease. Histological assessment indicated the degree of hepatopancreatic injury, which was mainly characterized as tubule lumen dilatation, degenerated tubule, vacuolization and dissolved hepatic epithelial cell, increased with exposure time. Enhanced malondialdehyde level and reduced antioxidant capacity of hepatopancreas were also observed. The mRNA expression and activity of catalase and superoxide dismutase showed an initial up-regulation within 24 h, and then gradually down-regulated with the exposure time. In the post-treatment recovery period, the Stage_2 crayfish exerted a stronger antioxidant and detoxification capacity than that of the Stage_1 crayfish, and thus quickly recovered from the ammonia exposure. Our findings provide a further understanding of the adverse effects of ammonia stress and suggest guidelines for water quality management during crayfish farming.
Collapse
Affiliation(s)
- Wang Lin
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan 415000, China; Hunan Provincial Key Laboratory for Health Aquaculture and Product Processing in Dongting Lake Area, Changde, Hunan 415000, China; Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, Changde, Hunan 415000, China
| | - Huimin Luo
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan 415000, China
| | - Jingyi Wu
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan 415000, China
| | - Xiangli Liu
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan 415000, China
| | - Beibei Cao
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan 415000, China
| | - Tien-Chieh Hung
- Department of Biological and Agricultural Engineering, University of California, Davis, CA 95616, USA
| | - Yuqing Liu
- Department of Gastroenterology, The First People's Hospital of Changde City, Changde 415000, China
| | - Zhongyuan Chen
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan 415000, China; Hunan Provincial Key Laboratory for Health Aquaculture and Product Processing in Dongting Lake Area, Changde, Hunan 415000, China; Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, Changde, Hunan 415000, China
| | - Pinhong Yang
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan 415000, China; Hunan Provincial Key Laboratory for Health Aquaculture and Product Processing in Dongting Lake Area, Changde, Hunan 415000, China; Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, Changde, Hunan 415000, China.
| |
Collapse
|
26
|
Huang Q, Zhu Y, Yu J, Fang L, Li Y, Wang M, Liu J, Yan P, Xia J, Liu G, Yang X, Zeng J, Guo L, Ruan G. Effects of sulfated β-glucan from Saccharomyces cerevisiae on growth performance, antioxidant ability, nonspecific immunity, and intestinal flora of the red swamp crayfish (Procambarus clarkii). FISH & SHELLFISH IMMUNOLOGY 2022; 127:891-900. [PMID: 35810965 DOI: 10.1016/j.fsi.2022.06.056] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
The aim of this study was to examine the combined effects of sulfated β-Glucan from Saccharomyces cerevisiae (sGSC) on growth performance, antioxidant ability, nonspecific immunity, and intestinal flora of the red swamp crayfish (Procambarus clarkii). Four experimental diets (sGSC25, sGSC50, sGSC100 and sGSC200) with different levels of sGSC (0.025%, 0.05%, 0.1% and 0.2% in diet, respectively) were fed to juvenile crayfish (average weight: 2.5 ± 0.5 g) for 8 weeks. The control diet was given with 2000 mg/kg GSC (GSC200 group). The based control diet was given without sGSC or GSC (blank group). Each group had 3 parallel test pools, 20 crayfish were reared in each pool. At the end of the growth trial, adding dietary 0.025%-0.1% sGSC could significantly improve the growth performance, antioxidant capacity and immunity of crayfish. Compared with GSC, sGSC had a better effect at lower concentration. Higher concentration of sGSC (>0.1%) would cause some side effects. sGSC also could improve the structure of the intestinal flora and optimize the function of the flora. sGSC would increase the abundances of probiotics such as Hafnia and Acinetobacter, and decreases the abundances of maleficent bacteria such as Enterobacteriaceae. Higher concentration of sGSC (>0.1%) would increase the abundance of Aeromonas. To conclude, 0.025%-0.1% sGSC can be used as a supplement in crayfish feed to increase growth, immunity, and antioxidant capacity and improve the structure of intestinal flora. These results provided a theoretical basis for the application of sGSC instead of GSC in crayfish breeding. It will be necessary to further study the optimal concentration of sGSC in feed additives in different growth stages of crayfish in the future.
Collapse
Affiliation(s)
- Qi Huang
- College of Animal Science, Yangtze University, Jingzhou, 434025, China
| | - Yiling Zhu
- College of Animal Science, Yangtze University, Jingzhou, 434025, China
| | - Jie Yu
- College of Animal Science, Yangtze University, Jingzhou, 434025, China
| | - Liu Fang
- College of Animal Science, Yangtze University, Jingzhou, 434025, China
| | - Yana Li
- College of Animal Science, Yangtze University, Jingzhou, 434025, China
| | - Mi Wang
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Jiali Liu
- College of Animal Science, Yangtze University, Jingzhou, 434025, China
| | - Pupu Yan
- College of Animal Science, Yangtze University, Jingzhou, 434025, China
| | - Jinjin Xia
- College of Animal Science, Yangtze University, Jingzhou, 434025, China
| | - Guoping Liu
- College of Animal Science, Yangtze University, Jingzhou, 434025, China
| | - Xiaolin Yang
- College of Animal Science, Yangtze University, Jingzhou, 434025, China
| | - Jianguo Zeng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Liwei Guo
- College of Animal Science, Yangtze University, Jingzhou, 434025, China.
| | - Guoliang Ruan
- College of Animal Science, Yangtze University, Jingzhou, 434025, China.
| |
Collapse
|
27
|
D'Costa AH. Microplastics in decapod crustaceans: Accumulation, toxicity and impacts, a review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:154963. [PMID: 35367539 DOI: 10.1016/j.scitotenv.2022.154963] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
The presence of microplastics in the aquatic environment poses a serious threat not only to aquatic organisms but also to human beings that consume them. The uptake and effects of microplastics have been studied in almost all groups of aquatic organisms. This review details the different aspects of microplastics exposure in an ecologically and economically important group of crustaceans, the Decapods. A majority of Decapod crustaceans such as prawns, shrimp, crabs, lobsters and crayfish are consumed as seafood and play important roles in food chains and food webs. Numerous studies are available on the accumulation of microplastics in tissues such as the gills, hepatopancreas and gastrointestinal tract in these organisms. Experimental studies have also highlighted the toxic effects of microplastics such as oxidative stress, immunotoxicity and reproductive and developmental toxicity in them. This review also summarizes the ecological impacts and implications in human beings as well as lacunae with regard to microplastic uptake in Decapods.
Collapse
|
28
|
Yang L, He Z, Li X, Jiang Z, Xuan F, Tang B, Bian X. Behavior and toxicity assessment of copper nanoparticles in aquatic environment: A case study on red swamp crayfish. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 313:114986. [PMID: 35390660 DOI: 10.1016/j.jenvman.2022.114986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 03/23/2022] [Accepted: 03/27/2022] [Indexed: 06/14/2023]
Abstract
With the wide use of copper nanoparticles (CuNPs) in various industrial and commercial applications, they inevitably enter the aquatic environment. However, their behavior in the aquatic environment and potential toxicity to aquatic organisms remain little known. In this study, we investigated the behavior of CuNPs in freshwater, as well as the toxicity and bioaccumulation of CuNPs and copper sulfate (CuSO4), used as a positive control for copper ions toxicity, in red swamp crayfish (Procambarus clarkii). The results showed that CuNPs released copper ions into freshwater and aggregated rapidly in freshwater, and their release of copper ions and aggregation slowed down at a higher concentration of CuNPs. The calculated 72-h LC50 values for crayfish were 1.18 and 0.54 mg/L for CuNPs and CuSO4, respectively. Cu accumulation in the gill and hepatopancreas from CuSO4 treatments was significantly higher than that from CuNPs, and the highest Cu bioaccumulation level in crayfish was found in the gill, followed by hepatopancreas and muscle with the exposure of copper. The activities of the antioxidative enzymes in the crayfish significantly decreased after exposure to CuNPs for 48 h, compared to the control (without CuNPs or CuSO4). Histological examination revealed that there was no significant alteration of hepatopancreas in the crayfish exposed to CuNPs. Meanwhile, the growth of crayfish was not significantly inhibited by CuNPs. These results suggested that CuNPs exposure can induce oxidative stress in the crayfish, gill is the main tissue for their accumulation, and their toxicity is mainly caused by the released copper ions.
Collapse
Affiliation(s)
- Li Yang
- Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Yancheng, 224007, Jiangsu, PR China; Jiangsu Synthetic Innovation Center for Coastal Bioagriculture, Yancheng, 224007, Jiangsu, PR China
| | - Zhen He
- Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Yancheng, 224007, Jiangsu, PR China; Jiangsu Synthetic Innovation Center for Coastal Bioagriculture, Yancheng, 224007, Jiangsu, PR China
| | - Xiaoyi Li
- College of Ocean and Biology Engineering, Yancheng Teachers University, Yancheng, 224007, Jiangsu, PR China
| | - Ziqiang Jiang
- Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Yancheng, 224007, Jiangsu, PR China; Jiangsu Synthetic Innovation Center for Coastal Bioagriculture, Yancheng, 224007, Jiangsu, PR China
| | - Fujun Xuan
- Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Yancheng, 224007, Jiangsu, PR China; Jiangsu Synthetic Innovation Center for Coastal Bioagriculture, Yancheng, 224007, Jiangsu, PR China
| | - Boping Tang
- Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Yancheng, 224007, Jiangsu, PR China; Jiangsu Synthetic Innovation Center for Coastal Bioagriculture, Yancheng, 224007, Jiangsu, PR China
| | - Xunguang Bian
- Jiangsu Synthetic Innovation Center for Coastal Bioagriculture, Yancheng, 224007, Jiangsu, PR China; College of Ocean and Biology Engineering, Yancheng Teachers University, Yancheng, 224007, Jiangsu, PR China.
| |
Collapse
|
29
|
Zhao M, You X, Wu Y, Wang L, Wu W, Shi L, Sun W, Xiong G. Acute heat stress during transportation deteriorated the qualities of rainbow trout (Oncorhynchus mykiss) fillets during chilling storage and its relief attempt by ascorbic acid. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Lavarías SML, Colpo KD, Landro SM, Ambrosio ES, Rodrigues Capítulo A, Arrighetti F. Deleterious effects of two pesticide formulations with different toxicological mechanisms in the hepatopancreas of a freshwater prawn. CHEMOSPHERE 2022; 286:131920. [PMID: 34426275 DOI: 10.1016/j.chemosphere.2021.131920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/09/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
The aim of this study was to evaluate the acute effects of the pyrethroid cypermethrin (CYP) and the last generation pesticide spirotetramat (STM) on the prawn Macrobrachium borellii. Initially, the 96-h LC50 was determined in adult prawns. Then, prawns were exposed to sublethal concentrations of pesticides (5% and 20% of the 96-h LC50 values) for four days and hepatopancreas were dissected for biomarkers analyses. Total protein and uric acid content, glutathione S-transferase (GST) activity, levels of lipid peroxidation (LPO), and protein oxidation (PO) were evaluated. Additionally, the presence of histopathological changes, lipofuscins, and neutral lipids accumulation were analyzed. The 96-h LC50 values were 0.12 μg/L and 8.2 mg/L for CYP and STM, respectively. The total proteins and uric acid content were not significantly affected by the treatments (p > 0.05). STM significantly affected the GST activity only at the highest concentration (p < 0.001). However, LPO and OP levels were affected by the lowest concentrations of both pesticides (p < 0.003). CYP and STM caused dose-dependent histological damage as was indicated by the histopathological index. The accumulation of lipofuscins showed a dose-dependent response, while the neutral lipids were significantly accumulated in the prawns exposed to the lowest concentration of both pesticides (p < 0.001). The integrated biomarker index (IBRv2) results indicated that the histological parameters represented the most sensitive biomarkers in M. borellii exposed to CYP and STM. Besides, the pyrethroid showed the highest response at concentration ranges that could be present in its natural environments.
Collapse
Affiliation(s)
- S M L Lavarías
- Instituto de Limnología de La Plata"Dr. Raúl A. Ringuelet" (ILPLA) CONICET CCT La Plata-Universidad Nacional de La Plata (UNLP), La Plata, Argentina.
| | - K D Colpo
- Instituto de Limnología de La Plata"Dr. Raúl A. Ringuelet" (ILPLA) CONICET CCT La Plata-Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| | - S M Landro
- Museo Argentino de Ciencias Naturales "Bernardino Rivadavia" CONICET, CABA, Argentina
| | - E S Ambrosio
- Instituto de Limnología de La Plata"Dr. Raúl A. Ringuelet" (ILPLA) CONICET CCT La Plata-Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| | - A Rodrigues Capítulo
- Instituto de Limnología de La Plata"Dr. Raúl A. Ringuelet" (ILPLA) CONICET CCT La Plata-Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| | - F Arrighetti
- Museo Argentino de Ciencias Naturales "Bernardino Rivadavia" CONICET, CABA, Argentina
| |
Collapse
|
31
|
Chahouri A, Agnaou M, El Hanaoui M, Yacoubi B, Moukrim A, Banaoui A. Assessment of seasonal and spatial variation responses of integrated biomarkers in two marine sentinel bivalve species: Agadir Bay (Southern of Morocco). MARINE POLLUTION BULLETIN 2022; 174:113179. [PMID: 34844146 DOI: 10.1016/j.marpolbul.2021.113179] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/14/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
The present study aims to assess the effects of contamination of the Agadir bay coasts using bivalves as a biomonitoring sentinel species. Seasonal variations of biochemical composition in terms of total protein content and oxidative stress biomarkers including glutathione-S-transferase, malondialdehyde, catalase and acetylcholinesterase were evaluated in the soft tissues of Scrobicularia plana and Donax trunculus specimens. The latter were collected from two sites in Agadir bay during two-year span (2018-2020). The Integrated Biomarker Response Index (IBR) was performed to classify the stress response in both species and to assess the level of exposure to xenobiotics. The data showed maximum annual values of acetylcholinesterase and malondialdehyde for Donax trunculus in Agadir beach (AG) with 6.25 nmol/mn/mg and 3 nmol/mg of protein, respectively. Those of catalase and glutathione-S-transferase for Scrobicularia plana in Oued Souss estuary (OS) were of 4.41 μmol/mn/mg and 14.43 nmol/mn/mg of protein, respectively. The studied species are considered good indicators in aquatic ecosystems.
Collapse
Affiliation(s)
- Abir Chahouri
- Aquatic System Laboratory: Marine and Continental Environment, Faculty of Sciences Agadir, Department of Biology, Ibn Zohr University, Agadir, Morocco.
| | - Mustapha Agnaou
- Aquatic System Laboratory: Marine and Continental Environment, Faculty of Sciences Agadir, Department of Biology, Ibn Zohr University, Agadir, Morocco
| | - Mohamed El Hanaoui
- Aquatic System Laboratory: Marine and Continental Environment, Faculty of Sciences Agadir, Department of Biology, Ibn Zohr University, Agadir, Morocco
| | - Bouchra Yacoubi
- Aquatic System Laboratory: Marine and Continental Environment, Faculty of Sciences Agadir, Department of Biology, Ibn Zohr University, Agadir, Morocco
| | | | - Ali Banaoui
- Aquatic System Laboratory: Marine and Continental Environment, Faculty of Sciences Agadir, Department of Biology, Ibn Zohr University, Agadir, Morocco
| |
Collapse
|
32
|
Mamdouh S, Mohamed AS, Mohamed HA, Fahmy WS. Zn contamination stimulate agonistic behavior and oxidative stress of crayfishes (Procambarus clarkii). J Trace Elem Med Biol 2022; 69:126895. [PMID: 34785418 DOI: 10.1016/j.jtemb.2021.126895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/10/2021] [Accepted: 11/02/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND As a result of the global industrial revolution, contamination of the ecosystem by heavy metals has given rise to one of the most important ecological and organismic problems. The current study aimed to evaluate the effect of Zn contamination on agonistic behavior and oxidative damage of crayfish. METHODS Crayfishes of the field study group were collected from a polluted area (Rosetta branch), where the highest concentration for heavy metals in water was zinc (Zn). Besides the field study group, other crayfishes were exposed to different doses of ZnSO4 (0, 203, and 406 mg L-1), which corresponding to Zn concentration (0, 46.03, and 92.06 mg L-1) respectively in aquariums for consecutive four days. Agonistic behavior is quantified by decreasing fast retreat, slowly back away and no response, increasing initial claw use, active claw use, approach with the threat, approach without threat, and unrestrained behavior. RESULTS The result revealed that agonistic behavior increases significantly with the increase of water Zn concentration. Malondialdehyde and catalase levels increased, while glutathione concentration reduced with the increase of Zn concentration. CONCLUSION Our current study reveals that zinc exposure is capable of inducing an increase in the social status (agonistics behavior) and oxidative stress parameters in Procambarus clarkii. The increase in aggressive behavior may have major population-level consequences given the high mortality experienced by this crayfish.
Collapse
Affiliation(s)
- Samar Mamdouh
- Zoology Department, Faculty of Science, Cairo University, Egypt.
| | | | | | | |
Collapse
|
33
|
Xue W, Zhang Y, Wei W. Single and binary-combined toxic effects of acetochlor and Cu 2+ on goldfish (Carassius auratus) larvae. Comp Biochem Physiol C Toxicol Pharmacol 2021; 250:109165. [PMID: 34416384 DOI: 10.1016/j.cbpc.2021.109165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 10/20/2022]
Abstract
Acetochlor and copper are common freshwater pollutants and pose a severe threat to aquatic animals. The toxicity of acetochlor (Ac) and Cu2+ toward goldfish larvae was investigated by subjecting the larvae to different concentrations of acetochlor, Cu2+, and mixed solutions for 1, 3, and 7 days. The length of goldfish larvae exposed to the 100 μg/L Ac + 100 μg/L Cu2+ mixed solution was considerably lower than that of the control on day 3, but there were no significant differences among the other groups. The heart rates of the larvae in 100 μg/L Ac + 100 μg/L Cu2+ mixed solution were higher than those of the control group on days 3 and 7. Acetochlor and Cu2+ also caused severe damage to the liver and intestine of the larvae, especially in the 100 μg/L Ac + 100 μg/L Cu2+ mixed solution group. Indicators related to oxidative stress (hydrogen peroxide, catalase, glutathione peroxidase, and total superoxide dismutase) that could potentially be induced by acetochlor or Cu2+ began to increase on day 7, and the enzyme activities of the larvae in the mixed groups were significantly lower than those in the control group. In contrast, the expression levels of the genes related to antioxidant stress were rapidly down-regulated in all groups on the 7th day after exposure. Briefly, the combined toxicity of acetochlor and Cu2+ was stronger than that of the single toxicity treatments. Furthermore, toxicity toward larvae in the mixed solution group (100 μg/L Ac + 100 μg/L Cu2+) was more obvious.
Collapse
Affiliation(s)
- Wen Xue
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yingying Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Wenzhi Wei
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
34
|
Yang H, Jiang Y, Lu K, Xiong H, Zhang Y, Wei W. Herbicide atrazine exposure induce oxidative stress, immune dysfunction and WSSV proliferation in red swamp crayfish Procambarus clarkii. CHEMOSPHERE 2021; 283:131227. [PMID: 34147975 DOI: 10.1016/j.chemosphere.2021.131227] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/07/2021] [Accepted: 06/11/2021] [Indexed: 06/12/2023]
Abstract
Atrazine is considered as a potential environmental endocrine disruptors and exhibits various toxic effects on animals. It has a great impact in the aquatic ecosystems, but there are few studies on its immunotoxicity in crustaceans. In the present study, the Procambarus clarkii were utilized to assess the immune toxicity after 0.5 mg/L and 5 mg/L atrazine exposure. A significant decrease in total hemocytes count (THC) was observed at 5 mg/L atrazine exposure throughout the experiment. The activities of antioxidant enzymes including superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) were significantly inhibited, but the content of reactive oxygen species (ROS) and malondialdehyde (MDA) were up-regulated, indicating the potential oxidative stress. The analysis of the integrated biomarker response (IBR) showed the induction of oxidative stress biomarkers and the inhibition of antioxidants. After 5 mg/L atrazine exposure for 144 h, the integrity of crayfish hepatopancreas was destroyed with disappeared connections between tubules and increased liver tubules vacuoles. The relative expression levels of different immune genes in hepatopancreas after atrazine exposure were measured. Most of these genes were suppressed and exhibited a certain dose-dependent effect. The results of crayfish white spot syndrome virus (WSSV) replication shown the amount of virus in muscle was significantly higher and exhibited a higher mortality rate at 5 mg/L group than other groups. The present study determined the impact of atrazine exposure on WSSV outbreaks, and also provide an important basis for further assessing the occurrence of pesticides on diseases of P. clarkii.
Collapse
Affiliation(s)
- Hui Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| | - Yinan Jiang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Kaiyuan Lu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Haoran Xiong
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Yingying Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Wenzhi Wei
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| |
Collapse
|
35
|
Combined stress of acute cold exposure and waterless duration at low temperature induces mortality of shrimp Litopenaeus vannamei through injuring antioxidative and immunological response in hepatopancreas tissue. J Therm Biol 2021; 100:103080. [PMID: 34503768 DOI: 10.1016/j.jtherbio.2021.103080] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 11/23/2022]
Abstract
High mortality is a frequent occurrence during live transport of shrimp species and the biochemical mechanism remains unknown. This study aimed to explore the influence of combined stress of acute cold exposure (AC) and waterless duration (WD) on survivability and biochemical response of shrimp L. vannamei during live transport. The shrimps in NC and AC groups remained the total survivability throughout the experiment while the shrimps exposed to AC + WD stress exhibited significantly higher mortality since 6h afterwards (P < 0.05) and the median survival time was calculated at 10.46 h. Moreover, the typical combined stress points at AC + WD3h, AC + WD6h and AC + WD9h were assigned for exploring the immunological and antioxidative responses. For immunity response, the total hemocyte counts (THC) decreased with the prolongation of duration time and the activities of non-specific immunity enzymes such as phenol oxidase (PO), acid phosphatase (ACP), alkaline phosphatase (AKP), aspartate aminotransferase (AST) and alanine transaminase (ALT) were significantly elevated in AC + WD9h groups (P < 0.05). Moreover, compared with that in NC group, the significant accumulation of reactive oxygen species (ROS) was observed in AC group and then reduced in combined stress groups (P < 0.05), with the highest level of malonaldehyde (MDA) in AC and AC + WD3h groups. Overall, the significant elevation of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px) and total antioxidant capacity (T-AOC) was detected in AC + WD9h group (P < 0.05). Furthermore, the accumulative pathological impairment on hepatopancreas tissue revealed the cytoskeleton degradation. In addition, correlation analyses visualized the correlation between oxidative stress and biochemical response. This study not only deepens our understanding on the biochemical mechanism of shrimp mortality induced by combined stress, but also provides a potential strategy for improving the management of L. vannamei during live transport.
Collapse
|
36
|
Zhang X, Pan L, Tong R, Li Y, Si L, Chen Y, Li D. The exploration of neuroendocrine regulation of crustacean hyperglycemic hormone (CHH) on innate immunity of Litopenaeus vannamei under ammonia-N stress. Mol Immunol 2021; 139:50-64. [PMID: 34454185 DOI: 10.1016/j.molimm.2021.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 12/23/2022]
Abstract
To unveil the neuroendocrine-immune (NEI) mechanism of crustaceans under high ambient ammonia-N, crustacean hyperglycemic hormone (CHH) in L. vannamei was knocked down under 20 mg/L ammonia-N exposure. The results showed that the expression of CHH in the eyestalks decreased significantly when CHH was silenced. After CHH was knocked down, the levels of CHH, ACh, DA, NE, and 5-HT in the haemolymph decreased significantly. Correspondingly, the expressions of GC, ACh7R, DM1, DA1R, and 5-HT7R in haemocytes down-regulated significantly, while DA4R and α2AR up-regulated significantly. Besides, the expression of Toll3 reduced significantly. And significantly changes occurred in the levels of G protein effectors (AC and PLC), second messengers (cAMP, cGMP, CaM, and DAG), protein kinases (PKA, PKC and PKG), and nuclear transcription factors (CREB, Dorsal, Relish and NKRF). Furthermore, immune defense proteins (BGBP and PPO3, Crustin A, ALF, LYC, TNFα, and IL-16), phagocytosis-related proteins (Cubilin, Integrin, Peroxinectin, Mas-like protein, and Dynamin-1) and exocytosis-related proteins (SNAP-25, VAMP-2 and Syntaxin) changed significantly. Eventually, a significant decrease in the levels of THC, haemocytes phagocytosis rate, plasma PO, antibacterial and bacteriolytic activities was detected. Therefore, these results indicate that under ammonia-N stress, the combination of CHH and GC mainly affects exocytosis of shrimp through the cGMP-PKG-CREB pathway. Simultaneously, CHH stimulates the release of biogenic amines, and then activate G protein effectors after binding to their specific receptors, to regulate exocytosis mainly via the cAMP-PKA-CREB pathway and influence phagocytosis primarily by the cAMP-PKA-NF-κB pathway. CHH can enhance ACh, and then activate G protein effectors after binding to the receptors, and finally regulate exocytosis mainly through the cAMP-PKA-CREB pathway and regulate phagocytosis by the cAMP-PKA-NF-κB pathway. CHH can also promote Toll3-NF-κB pathway, thereby affecting the expressions of immune defense factors. This study contributes to a further understanding of the NEI mechanism of crustacean in response to environmental stress.
Collapse
Affiliation(s)
- Xin Zhang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China.
| | - Ruixue Tong
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Yufen Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Lingjun Si
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Yuanjing Chen
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Dongyu Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| |
Collapse
|
37
|
Jiang Q, Ao S, Ji P, Zhou Y, Tang H, Zhou L, Zhang X. Assessment of deltamethrin toxicity in Macrobrachium nipponense based on histopathology, oxidative stress and immunity damage. Comp Biochem Physiol C Toxicol Pharmacol 2021; 246:109040. [PMID: 33862233 DOI: 10.1016/j.cbpc.2021.109040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/29/2021] [Accepted: 04/01/2021] [Indexed: 02/02/2023]
Abstract
Deltamethrin (Del), a commonly used broad-spectrum insecticide, has been reported to have a toxic effect on aquatic animals, but knowledge in freshwater prawns is limited. This study revealed that Del is highly toxic to Macrobrachium nipponens with the 24 h, 48 h, 72 h, and 96 h LC50 values to be 0.268, 0.165, 0.104, and 0.066 μg/L, respectively. To further investigate the toxic effect of Del in M. nipponense and the reversibility of damage, prawns were exposed to 0.05 μg/L Del for four days and then transferred into fresh water for seven days. Histopathological examination, oxidative stress, hepatopancreas function, respiration system, and immune system were analyzed through multiple biomarkers. Results showed that Del exposure caused severe histopathological damage to hepatopancreas and gill in M. nipponense, and the prominent decrease of acid phosphatase (ACP) and alkaline phosphatase (AKP) activity further enhanced the hepatopancreas damage; the accumulation of malonaldehyde (MDA) and hydrogen peroxide (H2O2), and the decrease of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activity, indicated severe oxidative stress caused by Del. Besides, Del exposure also induced remarkably increased lactic acid (LD) level, decreased lactate dehydrogenase (LDH) activity, and decreased expression of immune-related genes, which demonstrated the respiration disruption and immunosuppression caused by Del. After 7-day decontamination in freshwater, the indicator of hepatopancreas function (ACP and AKP activity) and respiration (LD level and LDH activity) improved to the control group level. However, the histopathological damage and the biomarker in oxidative stress and immune system did not recover to the initial level.
Collapse
Affiliation(s)
- Qun Jiang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Shiqi Ao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Peng Ji
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yifan Zhou
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Huanyu Tang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Liying Zhou
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xiaojun Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
38
|
Huang Y, Hong Y, Yin H, Yan G, Huang Q, Li Z, Huang Z. Imidacloprid induces locomotion impairment of the freshwater crayfish, Procambarus clarkii via neurotoxicity and oxidative stress in digestive system. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 238:105913. [PMID: 34304056 DOI: 10.1016/j.aquatox.2021.105913] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/08/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
Imidacloprid (IMI) is used in integrated farming like the rice-crayfish co-culture system to prevent water weevil. However, the toxic effect of IMI on the freshwater crayfish Procambarus clarkii is unknown. In the current study, the effects of IMI on the locomotion, antioxidative status, digestion and intestinal microbiota of P. clarkii were investigated. The results showed that IMI caused locomotion impairment with reduced crawl velocity, and attenuated their dark preference, aggressiveness and reversal ability. Inhibited AChE in muscle and hepatopancreas indicates the neurotoxicity of IMI which may directly lead their locomotion dysfunction. The increase of antioxidative enzymes activity and MDA level were found after 25 μg/L and 250 μg/L exposure. Significant up-regulation of several antioxidative and immune-related genes, including CZ-SOD, CAT, GPx, GST, AFL, proPO, HSP27 and HSP70 confirmed that oxidative stress was induced in all treatments when exposed to IMI. In addition, there was significant increase of LDH, indicating the different energy allocation during the exposure. Meanwhile, results from DNA damage analysis showed elevated OTM value and 8-OHdG level in hepatopancretic cells. On the other hand, decreases of alpha-amylase, lipase and increase of trypsin in hepatopancreas was observed at 25 and 250 μg/L. In addition, significant changes of composition of intestinal microbiota at both phylum and genus levels were observed according to the 16S rRNA sequencing results. Increase of pathogenic genera and decrease of beneficial bacterial communities revealed the disequilibrium of intestinal flora of crayfish. In summary, results in the present study suggest that IMI at environmentally realistic concentration could induce AChE inhibition and oxidative stress, conjointly leading the locomotion impairment in crayfish. IMI also affected the digestive functions by enzymes inhibition and gut microbiota dysbiosis.
Collapse
Affiliation(s)
- Yi Huang
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang 415000, Sichuan Province, China
| | - Yuhang Hong
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang 415000, Sichuan Province, China; Key Laboratory of Animal Disease Detection and Prevention in Panxi District, Xichang University, Xichang 415000, China.
| | - Hongmei Yin
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang 415000, Sichuan Province, China; Key Laboratory of Animal Disease Detection and Prevention in Panxi District, Xichang University, Xichang 415000, China
| | - Guangwen Yan
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang 415000, Sichuan Province, China; Key Laboratory of Animal Disease Detection and Prevention in Panxi District, Xichang University, Xichang 415000, China
| | - Qiang Huang
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang 415000, Sichuan Province, China
| | - Zhiqiang Li
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang 415000, Sichuan Province, China
| | - Zhiqiu Huang
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang 415000, Sichuan Province, China
| |
Collapse
|
39
|
Wang X, Tan Z, Chen S, Gui L, Li X, Ke D, Hou L, Leung JYS. Norethindrone causes cellular and hepatic injury in zebrafish by compromising the metabolic processes associated with antioxidant defence: Insights from metabolomics. CHEMOSPHERE 2021; 275:130049. [PMID: 33662720 DOI: 10.1016/j.chemosphere.2021.130049] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 02/08/2021] [Accepted: 02/18/2021] [Indexed: 06/12/2023]
Abstract
Progestins, such as norethindrone (NET), have been increasingly detected in aquatic environments due to their extensive use for medical applications. While NET is notorious for its endocrine disrupting effects, it has been recently shown to cause cellular damage, suggesting its potential impacts on the body defence of organisms. Hence, we examined the histological features and antioxidant defence of zebrafish (Danio rerio) after exposing to NET (50 ng/L and 500 ng/L) for 72 days, followed by analysing its metabolome to explore whether NET disturbs the metabolic processes responsible for antioxidant defence. While acute mortality was not triggered, we found that antioxidant defence was substantially weakened by NET at 500 ng/L (i.e. reduced SOD and GSH levels) and hence liver injury was inflicted (i.e. elevated ALT and MDA levels), as manifested by vacuolization of liver tissues and reduced number of normal cells in the liver. Metabolomic analysis showed that the metabolic processes responsible for antioxidant defence were disrupted by NET (e.g. upregulation of nervonyl carnitine and chenodeoxycholic acid 3-sulfate; downregulation of homolanthionine and acevaltrate) and these changes can undermine antioxidant defence by suppressing Nrf2-ARE and NF-κB pathways that contribute to the synthesis of SOD and GSH. This study demonstrates how NET can compromise the body defence of aquatic organisms via metabolic disruption, suggesting that the impacts of progestins on their fitness are more detrimental than previously thought.
Collapse
Affiliation(s)
- Xiaolan Wang
- School of Life Sciences, Guangzhou University, Guangzhou, 510655, China
| | - Zhiqing Tan
- School of Life Sciences, Guangzhou University, Guangzhou, 510655, China
| | - Shanduo Chen
- School of Life Sciences, Guangzhou University, Guangzhou, 510655, China
| | - Lin Gui
- School of Life Sciences, Guangzhou University, Guangzhou, 510655, China
| | - Xinchang Li
- College of Life Science, Zhaoqing University, Zhaoqing, 526100, China
| | - Desen Ke
- School of Life Sciences, Guangzhou University, Guangzhou, 510655, China
| | - Liping Hou
- School of Life Sciences, Guangzhou University, Guangzhou, 510655, China.
| | - Jonathan Y S Leung
- Faculty of Materials and Energy, Southwest University, Chongqing, 400715, China; School of Biological Sciences, The University of Adelaide, Adelaide, 5005, Australia.
| |
Collapse
|
40
|
Bouallegui Y. A Comprehensive Review on Crustaceans' Immune System With a Focus on Freshwater Crayfish in Relation to Crayfish Plague Disease. Front Immunol 2021; 12:667787. [PMID: 34054837 PMCID: PMC8155518 DOI: 10.3389/fimmu.2021.667787] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 04/27/2021] [Indexed: 12/21/2022] Open
Abstract
Freshwater crayfish immunity has received great attention due to the need for urgent conservation. This concern has increased the understanding of the cellular and humoral defense systems, although the regulatory mechanisms involved in these processes need updating. There are, however, aspects of the immune response that require clarification and integration. The particular issues addressed in this review include an overall description of the oomycete Aphanomyces astaci, the causative agent of the pandemic plague disease, which affects freshwater crayfish, and an overview of crustaceans' immunity with a focus on freshwater crayfish. It includes a classification system of hemocyte sub-types, the molecular factors involved in hematopoiesis and the differential role of the hemocyte subpopulations in cell-mediated responses, including hemocyte infiltration, inflammation, encapsulation and the link with the extracellular trap cell death pathway (ETosis). In addition, other topics discussed include the identity and functions of hyaline cells, the generation of neoplasia, and the emerging topic of the role of sessile hemocytes in peripheral immunity. Finally, attention is paid to the molecular execution of the immune response, from recognition by the pattern recognition receptors (PRRs), the role of the signaling network in propagating and maintaining the immune signals, to the effector elements such as the putative function of the Down syndrome adhesion molecules (Dscam) in innate immune memory.
Collapse
Affiliation(s)
- Younes Bouallegui
- LR01ES14 Laboratory of Environmental Biomonitoring, Faculty of Sciences of Bizerte, University of Carthage, Bizerte, Tunisia
| |
Collapse
|
41
|
Jiang Q, Jiang Z, Ao S, Gao X, Zhu X, Zhang Z, Zhang X. Multi-biomarker assessment in the giant freshwater prawn Macrobrachium rosenbergii after deltamethrin exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 214:112067. [PMID: 33640724 DOI: 10.1016/j.ecoenv.2021.112067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/07/2021] [Accepted: 02/12/2021] [Indexed: 06/12/2023]
Abstract
Deltamethrin (DM) is a synthetic pyrethroid used for agricultural purposes to control insects. However, its extensive use contaminates the aquatic environment and results in serious health problems in aquatic organisms. Knowledge about the toxic effect of DM in freshwater prawns is limited; therefore, this study aims to assess the toxicity of DM in Macrobrachium rosenbergii based on multiple biomarkers. Four-day acute toxicity tests showed that DM was highly toxic to M. rosenbergii with the 24 h, 48 h, 72 h and 96 h LC50 values to be 1.919, 0.603, 0.539, and 0.449 μg/L, respectively. According to 96 h LC50, prawns were exposed to DM at three concentrations (0.02, 0.08, and 0.32 μg/L) for 4 days, and then moved into fresh water for decontamination to investigate the toxic effect of DM in M. rosenbergii. At low concentration (0.02 μg/L and 0.08 μg/L), DM did not cause obvious histopathological damage to hepatopancreas and gill tissue, while at high concentration (0.32 μg/L), the histopathological harm was serious and the damage did not recover to the initial level after 7-day decontamination. 0.02 μg/L DM exposure did not induce significant changes in most of the biomarkers except the increased lactate dehydrogenase (LDH) activity, lactic acid (LD) level, and the first increased then decreased mRNA expression of immune-related genes, indicating the stimulation of DM on energy production and immunity. 0.08 μg/L and 0.32 μg/L DM exposure resulted in varying degrees of damage on prawns, but overall, their toxic effects showed similar trends based on the biomarkers. Increase in malonaldehyde (MDA) and hydrogen peroxide (H2O2) content and decrease in superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activity after DM exposure demonstrated the oxidative stress caused by DM. The significantly increased acid phosphatase (ACP), alkaline phosphatase (AKP), LDH activity and LD level indicated hepatopancreatic dysfunction and respiration disruption. The first increased and then decreased expression pattern of immune-related genes indicated the immunosuppression caused by DM. After 7-day decontamination in freshwater, the activity/level of the biomarkers partly recovered. This study revealed the severe toxic effect of DM on Macrobrachium rosenbergii based on multiple biomarkers, providing fundamental knowledge for the establishment of DM toxicity assessment system with proper parameters in freshwater crustaceans.
Collapse
Affiliation(s)
- Qun Jiang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009 Jiangsu, China
| | - Ziyan Jiang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009 Jiangsu, China
| | - Shiqi Ao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009 Jiangsu, China
| | - Xiaojian Gao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009 Jiangsu, China
| | - Xinhai Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009 Jiangsu, China
| | - Zirui Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009 Jiangsu, China
| | - Xiaojun Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009 Jiangsu, China.
| |
Collapse
|
42
|
Hossain MM, Huang H, Yuan Y, Wan T, Jiang C, Dai Z, Xiong S, Cao M, Tu S. Silicone stressed response of crayfish (Procambarus clarkii) in antioxidant enzyme activity and related gene expression. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 274:115836. [PMID: 33190981 DOI: 10.1016/j.envpol.2020.115836] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/24/2020] [Accepted: 10/11/2020] [Indexed: 06/11/2023]
Abstract
Organosilicon has been widely used in various fields of industry and agriculture due to its excellent properties, such as high and low temperature resistance, flame retardant, insulation, radiation resistance and physiological inertia. However, organosilicon toxicity in aquatic animals is seldom known. In this research, two typical silicone or silane coupling agents (KH-560 (3-Glycidoxypropyltrimethoxysilane) and KH-570 (3-Methacryloxypropyltrimethoxysilane)) were used in a hydroponic experiment to evaluate the effects on survival rate, antioxidant response and gene expression in red swamp crayfish (Procambarus clarkii). Crayfishes were grown in black aquaculture boxes containing different concentrations (0, 10, 100 and 1000 mg L-1) of KH-560 and KH-570 for 72 h, and then crayfish samples were harvested and separated into tissues of carapace, gill and muscle for analysis. The results showed that silicone significantly increased malondialdehyde (MDA) content in muscle by 17%-38% except for the treatment of 100 mg L-1 KH-570, and reduced the survival rate of crayfish. Additionally, silicone KH-570 increased the activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) by 15%-31%, 17%-35%, and 9%-46%, as well as the contents of ascorbate (AsA) and glutathione (GSH) by 19%-31%, and 23%-29% respectively, in muscle tissue, and similar results occurred in KH-560. In the carapace, however, SOD activity was significantly decreased at high concentrations level of both silicone treatments. Moreover, silicon (Si) content was higher in the abdominal muscle of crayfish after silicone treatment. Assay of gene expression showed an obvious increasing expression of antioxidant related genes (Sod1, Sod2, Cat1, Cat2, and Pod1, Pod2) under silicone stress. The above results suggested that silicone caused an obvious stress response in crayfish in both biochemical and molecular levels.
Collapse
Affiliation(s)
- Md Muzammel Hossain
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Hengliang Huang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Yuan Yuan
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Tianyin Wan
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Chengfeng Jiang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Zhihua Dai
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Shuanglian Xiong
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Menghua Cao
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Shuxin Tu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Research Center for Soil Remediation Engineering, Wuhan, 430070, China.
| |
Collapse
|
43
|
Exposure to Dodecamethylcyclohexasiloxane (D6) Affects the Antioxidant Response and Gene Expression of Procambarus clarkii. SUSTAINABILITY 2021. [DOI: 10.3390/su13063495] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Dodecamethylcyclohexasiloxane (D6) is widely used daily in the chemical industry and exists in the environment; however, its eco-toxicity is not well documented. A hydroponic experiment was performed to investigate the effects of D6 exposure (10–1000 mg L−1) on oxidative stress induction and gene expression changes in crayfish (Procambarus clarkii). The results showed that superoxide dismutase (SOD) activity was enhanced by 20–32% at low D6 exposure (10 mg L−1) in muscle but reduced in gill tissue at high D6 exposure (1000 mg L−1). High D6 (1000 mg L−1) also increased catalase (CAT) and peroxidase (POD) activities in muscle tissue by 14–37% and 14–45%, respectively, and the same trend was observed in the carapace and gill tissue of crayfish. The Malondialdehyde (MDA), ascorbate (AsA), and glutathione (GSH) contents were increased by 16–31%, 19–31%, and 21–28% in the muscle of crayfish under D6 exposure. Additionally, silicon (Si) content increased in three organs (gill, carapace, and muscle) of crayfish. Related genes involved in enzyme and nonenzyme activities were detected, and when crayfish was exposed to D6, genes such as Sod3, Cat3, Pod3, and Gsh3 were up-regulated, while Asa3 and Oxido3 were significantly down-regulated in the muscle. The research results help us to understand the toxicity of D6 in crayfish and provide a basis for further research on the mechanism of D6-induced stress in crayfish and other aquatic organisms.
Collapse
|
44
|
Izral NM, Brua RB, Culp JM, Yates AG. Crayfish tissue metabolomes effectively distinguish impacts of wastewater and agriculture in aquatic ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 760:143322. [PMID: 33218799 DOI: 10.1016/j.scitotenv.2020.143322] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/23/2020] [Accepted: 10/24/2020] [Indexed: 06/11/2023]
Abstract
Environmental metabolomics has been proposed as a tool for biomonitoring because organisms regulate production or consumption of metabolites in response to environmental conditions. We evaluated the efficacy of the metabolome of three tissues (hepatopancreas, gill, and tail muscle) from the northern crayfish (Faxonius virilis) to detect and differentiate between impacts of human activities (i.e., reference, municipal wastewater, and agriculture). We conducted a reciprocal transfer study exposing crayfish for 1 or 2 weeks in three streams with different amounts and types of human activities in southern Manitoba, Canada. Tissue samples were analyzed using nuclear magnetic resonance spectroscopy to generate a metabolic profile. Findings indicated the gill tissue metabolome best detected and differentiated between human activities. In particular, the gill metabolome was able to rapidly integrate abrupt changes in environmental conditions associated with municipal wastewater activity. In contrast, the tail metabolome best differentiated between crayfish collected at the reference site from those collected at the two impacted sites. Metabolites extracted from hepatopancreas tissue showed limited and inconsistent detection of among site differences. Based on our findings, we conclude that the metabolome of the northern crayfish can be an effective biomonitoring tool, but monitoring purpose will dictate tissue selection. Indeed, we recommend the gill metabolome be used for short-term assays aimed at detecting acute effects, whereas the tail be applied for survey monitoring aimed at detecting deviations in ecological condition at test sites from reference site conditions.
Collapse
Affiliation(s)
- Natalie M Izral
- Western University and Canadian Rivers Institute, Department of Geography, London, ON N6A 5C2, Canada
| | - Robert B Brua
- Environment and Climate Change Canada, Watershed Hydrology and Ecology Research Division, Saskatoon, SK S7N 3H5, Canada.
| | - Joseph M Culp
- Environment and Climate Change Canada and Cold Regions Research Centre, Wilfrid Laurier University, Waterloo, ON N2L 3E5, Canada
| | - Adam G Yates
- Western University and Canadian Rivers Institute, Department of Geography, London, ON N6A 5C2, Canada
| |
Collapse
|
45
|
Hong Y, Huang Y, Yan G, Yin H, Huang Z. DNA damage, immunotoxicity, and neurotoxicity induced by deltamethrin on the freshwater crayfish, Procambarus clarkii. ENVIRONMENTAL TOXICOLOGY 2021; 36:16-23. [PMID: 32757256 DOI: 10.1002/tox.23006] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/18/2020] [Accepted: 07/11/2020] [Indexed: 06/11/2023]
Abstract
Pyrethroid pesticides are applied to both agricultural and aquacultural industries for pest control. However, information of their impact on the commercial important freshwater crayfish, Procambarus clarkii is scarce. Therefore, the present study aimed to characterize to effects of a commonly used pyrethroid pesticide, deltamethrin on DNA damage, immune response, and neurotoxicity in P. clarkii. Animals were exposed to 7, 14, and 28 ng/L of deltamethrin, which correspond to 1/8, 1/4, and 1/2 of the LC50 (96 hours) of this pyrethroid to P. clarkii. Significant increase of olive tail moment (OTM) and 8-hydroxy-2'-deoxyguanosine (8-OHdG) was found after deltamethrin exposure in a dose-dependent way. Total hemocyte counts (THC) and activities of immune-related enzymes including acid phosphatase (ACP), lysozyme (LZM), and phenoloxidase (PO) were all decreased and significantly lower than control at concentration of 28 ng/L after 96 hours exposure. Acetylcholinesterase (AChE) activity, an indicator of neurotoxic effect was investigated and it was decreased significantly in muscles at 14 and 28 ng/L after 24 hours exposure. The level of intracellular reactive oxygen species (ROS) in hemocytes was also measured and the significant increase of ROS was found at 14 and 28 ng/L concentrations. The results revealed that deltamethrin induced DNA damage, immunotoxicity, and neurotoxicity in P. clarkii by excessive generation of ROS. Because of the dose-dependent responses of all parameters under exposure of deltamethrin at environmentally realistic concentrations, these parameters could be used as sensitive biomarkers for risk assessment of deltamethrin in aquaculture area.
Collapse
Affiliation(s)
- Yuhang Hong
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang, Sichuan, China
| | - Yi Huang
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang, Sichuan, China
| | - Guangwen Yan
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang, Sichuan, China
| | - Hongmei Yin
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang, Sichuan, China
| | - Zhiqiu Huang
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang, Sichuan, China
| |
Collapse
|
46
|
Transcriptome reveals the important role of metabolic imbalances, immune disorders and apoptosis in the treatment of Procambarus clarkii at super high temperature. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 37:100781. [PMID: 33316578 DOI: 10.1016/j.cbd.2020.100781] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/18/2020] [Accepted: 11/24/2020] [Indexed: 01/03/2023]
Abstract
Temperature is an important environmental factor in the living environment of crustaceans. Changes in temperature can affect their normal growth and metabolism and even cause bacterial disease. Currently, the potential anti-reverse molecular reaction mechanism of crustaceans during high-temperature conditions has not yet been fully understood. Therefore, in this study, we characterised the transcriptome of Procambarus clarkii using RNA sequencing and performed a comparison between super-high-temperature treated samples and controls. After assembly and annotation, 81,097 unigenes with an average length of 069 bp and 358 differentially expressed genes (DEGs) were identified. Among these DEGs, 264 were differentially upregulated and 94 were differentially downregulated. To obtain comprehensive gene function information, we queried seven databases, namely, Nr, Nt, Pfam, KOG, Swiss-Prot, KEGG, and GO to annotate gene functions. Transcriptome analysis revealed that the identified DEGs have significant effects on immune-related pathways, including lysosomal and phagosomal pathways, and that super-high-temperature conditions can cause disease in P. clarkii. Some significantly downregulated genes are involved in oxidative phosphorylation and the PPAR signalling pathway; this suggests a metabolic imbalance in P. clarkia during extreme temperature conditions. In addition, elevated temperature changed the expression patterns of key apoptosis genes XIAP, CASP2, CASP2, CASP8, and CYTC, thereby confirming that high-temperature conditions caused immune disorders, metabolic imbalance, and, finally, triggered apoptosis. Our results provide a useful foundation for understanding the molecular mechanisms underlying the responses of P. clarkii during high-temperature conditions.
Collapse
|
47
|
Banaee M, Akhlaghi M, Soltanian S, Sureda A, Gholamhosseini A, Rakhshaninejad M. Combined effects of exposure to sub-lethal concentration of the insecticide chlorpyrifos and the herbicide glyphosate on the biochemical changes in the freshwater crayfish Pontastacus leptodactylus. ECOTOXICOLOGY (LONDON, ENGLAND) 2020; 29:1500-1515. [PMID: 32445013 DOI: 10.1007/s10646-020-02233-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/11/2020] [Indexed: 05/04/2023]
Abstract
Glyphosate is an herbicide that inhibits the growth of weed plants, while chlorpyrifos is an insecticide commonly applied to control the pests' population. This study aimed to investigate the combined effects of chlorpyrifos and glyphosate on biochemical, immunological parameters, and oxidative stress biomarkers in freshwater crayfish Pontastacus leptodactylus for 21 days. The experimental design of this study was factorial (3 × 3), including 0.0, 0.4, and 0.8 mg L-1 glyphosate and 0.0, 2.5, and 5 µg L-1 chlorpyrifos. The exposure to chlorpyrifos, glyphosate alone and a mixture of them significantly decreased acetylcholinesterase, alkaline phosphatase, phenoloxidase activities, and total protein levels. The lactate dehydrogenase, glutamic-pyruvic-transaminase, and catalase activities, the contents of glucose, and malondialdehyde levels were increased in the crayfish. No significant changes were detected in glutamic-oxaloacetic-transaminase (SGOT) activity, triglyceride, and total antioxidant (TAO) levels in the crayfish treated with 0.4 mg L-1 glyphosate and the control group. Co-exposure of crayfish to chlorpyrifos and glyphosate increased SGOT activity and TAO levels. Although chlorpyrifos combined with glyphosate decreased the γ-Glutamyltransferase (GGT) activity, the GGT activity was significantly increased in the P. leptodactylus exposed during 21 days to 5 µg L-1 chlorpyrifos alone and 0.8 mg L-1 glyphosate alone. In comparison with the reference group, no significant changes were evidenced in the cholesterol levels in the P. leptodactylus treated with 2.5 µg L-1 chlorpyrifos, but its levels were significantly increased in the other treatment groups. In conclusion, the mix of glyphosate and chlorpyrifos exhibited synergic effects on the different toxicological biomarkers in the narrow-clawed crayfish. Co-exposure to pesticides may result in disruption of homeostasis in the crayfish by altering the biochemical and immunological parameters.
Collapse
Affiliation(s)
- Mahdi Banaee
- Aquaculture Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran.
| | - Mostafa Akhlaghi
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Siyavash Soltanian
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress, Department of Fundamental Biology and Health Sciences, and CIBEROBN Fisiopatología de la Obesidad la Nutrición, University of Balearic Islands, 07122, Palma de Mallorca, Spain
| | - Amin Gholamhosseini
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Mostafa Rakhshaninejad
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
48
|
Ning M, Hao W, Cao C, Xie X, Fan W, Huang H, Yue Y, Tang M, Wang W, Gu W, Meng Q. Toxicity of deltamethrin to Eriocheir sinensis and the isolation of a deltamethrin-degrading bacterium, Paracoccus sp. P-2. CHEMOSPHERE 2020; 257:127162. [PMID: 32485514 DOI: 10.1016/j.chemosphere.2020.127162] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
Abstract
Deltamethrin is used widely in Eriocheir sinensis aquaculture to remove wild fish and parasites. The residual deltamethrin greatly affects the growth and quality of E. sinensis. In this study, the LC50 of deltamethrin against E. sinensis at 24, 48 and 96 h was determined to be 6.5, 5.0 and 2.8 μg/L, respectively. The enzyme activity and gene transcription of SOD, CAT, and PO in the hepatopancreas of E. sinensis after deltamethrin stimulation showed an increasing tendency, and these enzymes reached their maximum activities at 6-10 d. The MDA content accumulated with increased time of deltamethrin stress. After 15 d of deltamethrin stress, the hepatopancreas of E. sinensis was found to be damaged based on HE staining. These results showed that deltamethrin is highly toxic to E. sinensis. But the half-life of deltamethrin is long and mainly relies on biodegradation. To resolve the pollution of residual deltamethrin, a strain of deltamethrin-degrading bacteria, P-2, was isolated from the sediment of an E. sinensis culture pond. Through morphological observation, physiological and biochemical identification and 16S rDNA sequence analysis, we found that this strain belonged to Paracoccus sp. When the pH was 7, the substrate concentration was low, the inoculation amount was high, and the deltamethrin degradation effect of Paracoccus sp. P-2 was good. The deltamethrin residue in the hepatopancreas and muscle of E. sinensis decreased significantly when Paracoccus sp. P-2 was added at 6.0 × 108 CFU/L. The degradation efficiency of Paracoccus sp. P-2 in the hepatopancreas and muscle was more than 70%. These results showed that Paracoccus sp. P-2, the first deltamethrin-degrading bacterium in aquaculture, could be used to remove residual deltamethrin and improve the food safety of E. sinensis.
Collapse
Affiliation(s)
- Mingxiao Ning
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences & College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Wenjing Hao
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences & College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Cheng Cao
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences & College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Xiaojun Xie
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences & College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Weifeng Fan
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences & College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Hua Huang
- Wujin Aquatic Technology Promotion Station, Changzhou, 213017, Jiangsu, China
| | - Yichao Yue
- Wujin Aquatic Technology Promotion Station, Changzhou, 213017, Jiangsu, China
| | - Mengyue Tang
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences & College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Wen Wang
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences & College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Wei Gu
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences & College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu, China.
| | - Qingguo Meng
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences & College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu, China.
| |
Collapse
|
49
|
Hong Y, Huang Y, Yang X, Zhang J, Li L, Huang Q, Huang Z. Abamectin at environmentally-realistic concentrations cause oxidative stress and genotoxic damage in juvenile fish (Schizothorax prenanti). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 225:105528. [PMID: 32569996 DOI: 10.1016/j.aquatox.2020.105528] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 05/15/2020] [Accepted: 05/31/2020] [Indexed: 05/22/2023]
Abstract
Abamectin (ABM) has been extensively used in Chinese aquaculture systems for parasite control, but no information is available regarding its effects on the important freshwater commercial fish species Schizothorax prenanti. We performed an acute toxicity test to determine the effects of ABM on S. prenanti, and the 48- and 96-h median lethal concentration values were 33.32 and 15.98 μg/L, respectively. In a second test, animals were exposed to sublethal concentrations of ABM (0.5, 2 or 8 μg/L) for 8 days, and various cytological and biochemical parameters were measured. ABM caused DNA damage in hepatocytes, with significant increases in Olive Tail Moment values and 8-hydroxy-2'-deoxyguanosine levels. Hepatocytic apoptosis occurred following all treatments, and was accompanied by an increase in reactive oxygen species (ROS) generation and caspase activity in a dose- and time-dependent manner. In addition, there were significant decreases in glutathione peroxidase levels and superoxide dismutase and catalase activity and increases in malonaldehyde levels. ABM-induced hepatocytic apoptosis in S. prenanti was probably triggered by ROS generation following a cascade reaction of caspases in mitochondrial or death receptor pathways, which caused antioxidant inhibition, oxidative product accumulation, and DNA damage in the liver.
Collapse
Affiliation(s)
- Yuhang Hong
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang 415000, Sichuan Province, China.
| | - Yi Huang
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang 415000, Sichuan Province, China
| | - Xiaozhen Yang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Engineering Research Center of Agriculture, Shanghai Ocean University, 999 Huchenghuan Road, Lingang New District, Shanghai 201306, China
| | - Jilei Zhang
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang 415000, Sichuan Province, China
| | - Lanshi Li
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang 415000, Sichuan Province, China
| | - Qiang Huang
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang 415000, Sichuan Province, China
| | - Zhiqiu Huang
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang 415000, Sichuan Province, China
| |
Collapse
|
50
|
Huang Y, Hong Y, Huang Z, He H. Cytotoxicity induced by abamectin exposure in haemocytes of Chinese mitten crab, Eriocheir sinensis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 77:103384. [PMID: 32330854 DOI: 10.1016/j.etap.2020.103384] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
Abamectin is widely utilized in both agricultural and aquaculture areas in China for pest control. However, information about toxic effects of abamectin on non-target aquatic organisms is still incomplete. The Chinese mitten crab, Erocheir sinensis has been extensively bred in the rice-crab co-culture system for years, resulting in the frequent exposure to pesticides including abamectin. In the present study, a primary haemocyte culture model was established to investigate the immune response under exposure of abamectin. The results showed that medium osmolarity ranging from 360 to 480 mOsM/Kg was optimal for primary haemocyte culture from E. sinensis. Abamectin could induce significant decrease of cell viability, inhibition of phagocytic activity, as well as decline of acid phosphatase (ACP) and alkaline phosphatase (AKP) activities. All parameters decreased in time- and dose- dependent manners throughout the experiment, indicating the remarkable immunosuppression of abamectin on E. sinensis and also the sensitivity of the cytotoxicology model of haemocytes in vitro under abamectin exposure. In addition, a dose dependent increase of intracellular reactive oxygen species (ROS) was found after 6 h exposure. It revealed that excessive generation of ROS may a main reason to the degradation of cell viability, and moreover, the decrease in immune function.
Collapse
Affiliation(s)
- Yi Huang
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang 415000, Sichuan Province, China
| | - Yuhang Hong
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang 415000, Sichuan Province, China.
| | - Zhiqiu Huang
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang 415000, Sichuan Province, China
| | - Hongying He
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang 415000, Sichuan Province, China
| |
Collapse
|