1
|
Jiao Z, Li W, Xiang C, Li D, Huang W, Nie P, Huang B. IRF11 synergizes with STAT1 and STAT2 to promote type I IFN production. FISH & SHELLFISH IMMUNOLOGY 2024; 150:109656. [PMID: 38801844 DOI: 10.1016/j.fsi.2024.109656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/21/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
Interferon regulatory factor 11 (IRF11), a fish specific member of IRF family, is a transcription factor known for its positive role in teleost antiviral defense by regulating IFN expression. Despite its recognized function, the precise mechanism of IRF11 in type I IFNs production remains largely unknown. In this study, we identified IRF11 in Japanese eel, Anguilla japonica, (AjIRF11) and determined its involvement in the later phase of fish IFN production. Our results demonstrate that IRF11-induced IFN production operates through ISRE binding. Mutations in each ISRE site within the promoter of AjIFN2 or AjIFN4 abolished IRF11-mediated activation of IFN promoters. In addition, the overexpression of AjIRF11 does not significantly impact the activation of AjIFN promoters induced by RLR-related signaling pathway proteins. Furthermore, IRF11-knockdown in ZFLs (zebrafish liver cells) has no effect on the RLRs-induced expression of zebrafish IFN-φ1 and IFN-φ3, indicating that IRF11 is not involved in the RLR-mediated IFN production. However, AjIRF11 can form transcription complexes with AjSTAT1 or AjSTAT2, or form homo- or heterodimers with AjIRF1 to stimulate the transcription of type I IFNs. Overall, it is shown in this study that IRF11 can act synergistically with STAT1 and/or STAT2 for the induction of IFN.
Collapse
Affiliation(s)
- Zhiyuan Jiao
- Fisheries College, Jimei University, Xiamen, 361021, PR China
| | - Wenxing Li
- Fisheries College, Jimei University, Xiamen, 361021, PR China
| | - Chao Xiang
- Fisheries College, Jimei University, Xiamen, 361021, PR China
| | - DongLi Li
- Fisheries College, Jimei University, Xiamen, 361021, PR China
| | - Wenshu Huang
- Fisheries College, Jimei University, Xiamen, 361021, PR China; Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, PR China
| | - Pin Nie
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, PR China
| | - Bei Huang
- Fisheries College, Jimei University, Xiamen, 361021, PR China; Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, PR China.
| |
Collapse
|
2
|
He HX, Guo HY, Liu BS, Zhang N, Zhu KC, Zhang DC. Two IFNa3s mediate the regulation of IRF9 in the process of infection with Streptococcus iniae in yellowfin seabream, Acanthopagrus latus (Hottuyn, 1782). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 156:105167. [PMID: 38574830 DOI: 10.1016/j.dci.2024.105167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/20/2024] [Accepted: 03/20/2024] [Indexed: 04/06/2024]
Abstract
IRF9 can play an antibacterial role by regulating the type I interferon (IFN) pathway. Streptococcus iniae can cause many deaths of yellowfin seabream, Acanthopagrus latus in pond farming. Nevertheless, the regulatory mechanism of type I IFN signalling by A. latus IRF9 (AlIRF9) against S. iniae remains elucidated. In our study, AlIRF9 has a total cDNA length of 3200 bp and contains a 1311 bp ORF encoding a presumed 436 amino acids (aa). The genomic DNA sequence of AlIRF9 has nine exons and eight introns, and AlIRF9 was expressed in various tissues, containing the stomach, spleen, brain, skin, and liver, among which the highest expression was in the spleen. Moreover, AlIRF9 transcriptions in the spleen, liver, kidney, and brain were increased by S. iniae infection. By overexpression of AlIRF9, AlIRF9 is shown as a whole-cell distribution, mainly concentrated in the nucleus. Moreover, the promoter fragments of -415 to +192 bp and -311 to +196 bp were regarded as core sequences from two AlIFNa3s. The point mutation analyses verified that AlIFNa3 and AlIFNa3-like transcriptions are dependent on both M3 sites with AlIRF9. In addition, AlIRF9 could greatly reduce two AlIFNa3s and interferon signalling factors expressions. These results showed that in A. latus, both AlIFNa3 and AlIFNa3-like can mediate the regulation of AlIRF9 in the process of infection with S. iniae.
Collapse
Affiliation(s)
- Hong-Xi He
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China.
| | - Hua-Yang Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, 510300, China; Sanya Tropical Fisheries Research Institute, Sanya, 510300, China.
| | - Bao-Suo Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, 510300, China; Sanya Tropical Fisheries Research Institute, Sanya, 510300, China.
| | - Nan Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, 510300, China; Sanya Tropical Fisheries Research Institute, Sanya, 510300, China.
| | - Ke-Cheng Zhu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, 510300, China; Sanya Tropical Fisheries Research Institute, Sanya, 510300, China.
| | - Dian-Chang Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, 510300, China; Sanya Tropical Fisheries Research Institute, Sanya, 510300, China.
| |
Collapse
|
3
|
Das BK, Panda SP, Pradhan SP, Raut SS, Kumari M, Meena DK. Molecular insights into STAT1a protein in rohu ( Labeo rohita): unveiling expression profiles, SRC homology domain recognition, and protein-protein interactions triggered by poly I: C. Front Immunol 2024; 15:1398955. [PMID: 38994355 PMCID: PMC11237311 DOI: 10.3389/fimmu.2024.1398955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/09/2024] [Indexed: 07/13/2024] Open
Abstract
Introduction STAT1a is an essential signal transduction protein involved in the interferon pathway, playing a vital role in IFN-alpha/beta and gamma signaling. Limited information is available about the STAT protein in fish, particularly in Indian major carps (IMC). This study aimed to identify and characterize the STAT1a protein in Labeo rohita (LrSTAT1a). Methods The full-length CDS of LrSTAT1a transcript was identified and sequenced. Phylogenetic analyses were performed based on the nucleotide sequences. The in-vivo immune stimulant poly I: C was used to treat various tissues, and the expression of LrSTAT1a was determined using quantitative real-time polymerase chain reaction (qRT-PCR). A 3D model of the STAT1a protein was generated using close structure homologs available in the database and checked using molecular dynamics (MD) simulations. Results The full-length CDS of Labeo rohita STAT1a (LrSTAT1a) transcript consisted of 3238 bp that encoded a polypeptide of 721 amino acids sequence was identified. Phylogenetic analyses were performed based on the nucleotide sequences. Based on our findings, other vertebrates share a high degree of conservation with STAT1a. Additionally, we report that the in vivo immune stimulant poly I: C treatment of various tissues resulted in the expression of LrSTAT1a as determined by quantitative real-time polymerase chain reaction (qRT-PCR). In the current investigation, treatment with poly I: C dramatically increased the expression of LrSTAT1a in nearly every organ and tissue, with the brain, muscle, kidney, and intestine showing the highest levels of expression compared to the control. We made a 3D model of the STAT1a protein by using close structure homologs that were already available in the database. The model was then checked using molecular dynamics (MD) simulations. Consistent with previous research, the MD study highlighted the significance of the STAT1a protein, which is responsible for Src homology 2 (SH2) recognition. An important H-bonding that successfully retains SH2 inside the STAT1a binding cavity was determined to be formed by the conserved residues SER107, GLN530, SER583, LYS584, MET103, and ALA106. Discussion This study provides molecular insights into the STAT1a protein in Rohu (Labeo rohita) and highlights the potential role of STAT1a in the innate immune response in fish. The high degree of conservation of STAT1a among other vertebrates suggests its crucial role in the immune response. The in-vivo immune stimulation results indicate that STAT1a is involved in the immune response in various tissues, with the brain, muscle, kidney, and intestine being the most responsive. The 3D model and MD study provide further evidence of the significance of STAT1a in the immune response, specifically in SH2 recognition. Further research is necessary to understand the specific mechanisms involved in the IFN pathway and the role of STAT1a in the immune response of IMC.
Collapse
Affiliation(s)
- Basanta Kumar Das
- Aquatic Environmental Biotechnology (AEB) Division, Indian Council of Agricultural Research (ICAR) - Central Inland Fisheries Research Institute, Kolkata, West Bengal, India
| | - Soumya Prasad Panda
- Aquatic Environmental Biotechnology (AEB) Division, Indian Council of Agricultural Research (ICAR) - Central Inland Fisheries Research Institute, Kolkata, West Bengal, India
| | - Smruti Priyambada Pradhan
- Aquatic Environmental Biotechnology (AEB) Division, Indian Council of Agricultural Research (ICAR) - Central Inland Fisheries Research Institute, Kolkata, West Bengal, India
| | - Subhashree Subhasmita Raut
- Aquatic Environmental Biotechnology (AEB) Division, Indian Council of Agricultural Research (ICAR) - Central Inland Fisheries Research Institute, Kolkata, West Bengal, India
| | - Mala Kumari
- Riverine & Estuaries Fisheries Division, Indian Council of Agricultural Research (ICAR) -Central Inland Fisheries Research Institute, Kolkata, West Bengal, India
| | - Dharmendra Kumar Meena
- Open Water Aquaculture Production and Management (OWAPM) Division, Indian Council of Agricultural Research (ICAR)-Central Inland Fisheries Research Institute, Kolkata, West Bengal, India
| |
Collapse
|
4
|
Chen L, Zhong S, Wang Y, Wang X, Liu Z, Hu G. Bmp4 in Zebrafish Enhances Antiviral Innate Immunity through p38 MAPK (Mitogen-Activated Protein Kinases) Pathway. Int J Mol Sci 2023; 24:14444. [PMID: 37833891 PMCID: PMC10572509 DOI: 10.3390/ijms241914444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/17/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023] Open
Abstract
Bone morphogenetic proteins (BMPs) are a group of structurally and functionally related signaling molecules that comprise a subfamily, belonging to the TGF-β superfamily. Most BMPs play roles in the regulation of embryonic development, stem cell differentiation, tumor growth and some cardiovascular and cerebrovascular diseases. Although evidence is emerging for the antiviral immunity of a few BMPs, more BMPs are needed to determine whether this function is universal. Here, we identified the zebrafish bmp4 ortholog, whose expression is up-regulated through challenge with grass carp reovirus (GCRV) or its mimic poly(I:C). The overexpression of bmp4 in epithelioma papulosum cyprini (EPC) cells significantly decreased the viral titer of GCRV-infected cells. Moreover, compared to wild-type zebrafish, viral load and mortality were significantly increased in both larvae and adults of bmp4-/- mutant zebrafish infected with GCRV virus. We further demonstrated that Bmp4 promotes the phosphorylation of Tbk1 and Irf3 through the p38 MAPK pathway, thereby inducing the production of type I IFNs in response to virus infection. These data suggest that Bmp4 plays an important role in the host defense against virus infection. Our study expands the understanding of BMP protein functions and opens up new targets for the control of viral infection.
Collapse
Affiliation(s)
| | | | | | | | - Zhenhui Liu
- College of Marine Life Science, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; (L.C.); (S.Z.); (Y.W.); (X.W.)
| | - Guobin Hu
- College of Marine Life Science, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; (L.C.); (S.Z.); (Y.W.); (X.W.)
| |
Collapse
|
5
|
Zhu X, Wang J, Jia Z, Feng J, Wang B, Wang Z, Liu Q, Wu K, Huang W, Zhao X, Dang H, Zou J. Novel Dimeric Architecture of an IFN-γ-Related Cytokine Provides Insights into Subfunctionalization of Type II IFNs in Teleost Fish. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:2203-2214. [PMID: 36426983 DOI: 10.4049/jimmunol.2200334] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/06/2022] [Indexed: 01/04/2023]
Abstract
Gene duplication leads to subfunctionalization of paralogs. In mammals, IFN-γ is the sole member of the type II IFN family and binds to a receptor complex consisting of IFN-γR1 and IFN-γR2. In teleost fish, IFN-γ and its receptors have been duplicated due to the teleost-specific whole-genome duplication event. In this study, the functions of an IFN-γ-related (IFN-γrel) cytokine were found to be partially retained relative to IFN-γ in grass carp (Ctenopharyngodon idella [CiIFN-γrel]). CiIFN-γrel upregulated the expression of proinflammatory genes but had lost the ability to activate genes involved in Th1 response. The results suggest that CiIFN-γrel could have been subfunctionalized from CiIFN-γ. Moreover, CiIFN-γrel induced STAT1 phosphorylation via interaction with duplicated homologs of IFN-γR1 (cytokine receptor family B [CRFB] 17 and CRFB13). Strikingly, CiIFN-γrel did not bind to the IFN-γR2 homolog (CRFB6). To gain insight into the subfunctionalization, the crystal structure of CiIFN-γrel was solved at 2.26 Å, revealing that it forms a homodimer that is connected by two pairs of disulfide bonds. Due to the spatial positions of helix A, loop AB, and helix B, CiIFN-γrel displays a unique topology that requires elements from two identical monomers to form a unit that is similar to IFN-γ. Further, mutagenesis analyses identified key residues interacting with CiIFN-γrel receptors and those required for the biological functions. Our study can help understand the subfunctionalization of duplicated IFN-γ paralogs in fish.
Collapse
Affiliation(s)
- Xiaozhen Zhu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Junya Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Zhao Jia
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Jianhua Feng
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Bangjie Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Zixuan Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Qin Liu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Kaizheng Wu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Wenji Huang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Xin Zhao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Huifeng Dang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Jun Zou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.,State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China; and.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
6
|
Shen M, Jiang Z, Zhang K, Li C, Liu F, Hu Y, Zheng S, Zheng R. Transcriptome analysis of grass carp (Ctenopharyngodon idella) and Holland's spinibarbel (Spinibarbus hollandi) infected with Ichthyophthirius multifiliis. FISH & SHELLFISH IMMUNOLOGY 2022; 121:305-315. [PMID: 35031476 DOI: 10.1016/j.fsi.2022.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 12/23/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Ichthyophthirius multifiliis is a protozoan ciliate that causes white spot disease (also known as ichthyophthiriasis) in freshwater fish. Holland's spinibarbel (Spinibarbus hollandi) was less susceptible to white spot disease than grass carp (Ctenopharyngodon Idella). In this study, grass carp and Holland's spinibarbel are infected by I. multifiliis and the amount of infection is 10,000 theronts per fish. All grass carp died within 12 days after infection, and the survival rate of Holland's spinibarbel was more than 80%. In order to study the difference in sensitivity of these two fish species to I. multifiliis, transcriptome analysis was conducted using gill, skin, liver, spleen and head kidney of Holland's spinibarbel and grass carp at 48 h post-infection with I. multifiliis. A total of 489,296,696 clean reads were obtained by sequencing. A total of 105 significantly up-regulated immune-related genes were obtained by Gene Ontology (GO) classification and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis in grass carp. Cluster of differentiation 40 (CD40), cluster of differentiation 80 (CD 80), tumor necrosis factor-alpha (TNF-α), toll-like receptor 4 (TLR-4), interleukin 1 beta (IL-1β) and other inflammatory-related genes in grass carp were enriched in the cytokine-cytokine receptor interaction pathway and toll-like receptor pathway. In Holland's spinibarbel, a total of 46 significantly up-regulated immune-related genes were obtained by GO classification and KEGG pathway enrichment analysis. Immune-related genes, such as Immunoglobin heavy chain (IgH), cathepsin S (CTSS), complement C1q A chain (C1qA), complement component 3 (C3) and complement component (C9) were enriched in phagosome pathway, lysosome pathway and complement and coagulation concatenation pathway. C3 was significantly up-regulated in gill and head kidney. Fluorescence in situ hybridization (FISH) showed that the C3 gene was highly expressed in gill tissue of Holland's spinibarbel infected with I. multifiliis. A small amount of C3 gene was expressed in the gill arch of grass carp after infected with I. multifiliis. In conclusion, the severe inflammatory response in vivo after infecting grass carp with I. multifiliis might be the main cause of the death of grass carp. The extrahepatic expression of the gene of Holland's spinibarbel might play an important role in the immune defense against I. multifiliis.
Collapse
Affiliation(s)
- Minghao Shen
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Lab of Wildlife Biotechnology and Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua, 321004, China.
| | - Zeyuan Jiang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Lab of Wildlife Biotechnology and Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua, 321004, China.
| | - Kai Zhang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Lab of Wildlife Biotechnology and Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua, 321004, China.
| | - Chenyang Li
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Lab of Wildlife Biotechnology and Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua, 321004, China.
| | - Fangling Liu
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Lab of Wildlife Biotechnology and Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua, 321004, China.
| | - Yibing Hu
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Lab of Wildlife Biotechnology and Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua, 321004, China.
| | - Shanjian Zheng
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Lab of Wildlife Biotechnology and Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua, 321004, China.
| | - Rongquan Zheng
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Lab of Wildlife Biotechnology and Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua, 321004, China; Xinzhi College, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
7
|
Xu D, Li Q, Zhou Y, Shen Y, Lai W, Hao T, Ding Y, Mai K, Ai Q. Functional analysis and regulation mechanism of interferon gamma in macrophages of large yellow croaker (Larimichthys crocea). Int J Biol Macromol 2022; 194:153-162. [PMID: 34863827 DOI: 10.1016/j.ijbiomac.2021.11.183] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 12/24/2022]
Abstract
Interferon gamma (IFN-γ) is a widely expressed cytokine that has potent antiviral and immunomodulatory effects. The expression and bioactivity of IFN-γ have been reported in several fish species. However, the molecular mechanism mediated by IFN-γ in fish macrophages has not been completely elucidated. This study used the macrophage cell line to investigate the functional activities and regulation mechanism of large yellow croaker IFN-γ (LcIFN-γ). Herein, the mRNA expression of Lcifn-γ was significantly upregulated in macrophages after LPS and poly(I:C) treatment. Recombinant LcIFN-γ protein (rLcIFN-γ) significantly enhanced the phagocytic ability and respiratory burst activity of macrophages. Meanwhile, rLcIFN-γ induced M1 phenotype polarization of macrophages with the upregulated expressions of pro-inflammatory gene. Moreover, rLcIFN-γ upregulated the IFN-stimulated genes (ISGs) expression and activated JAK (Janus tyrosine kinases)-STAT (signal transducer and activator of transcription) signaling pathway by causing the phosphorylation of JAK1 and STAT1Tyr701. Furthermore, the promoter activity of IFN-regulatory factor 1 (IRF1) was significantly upregulated by the phosphorylated transcription factor STAT1 through binding to its promoter region. In addition to the classical JAK-STAT pathway, rLcIFN-γ also activated multiple distinct signaling cascades such as mitogen-activated protein kinase (MAPK) and protein kinase B (AKT) pathways. Overall, this study indicated the powerful effects of LcIFN-γ on macrophage activation of large yellow croaker and its molecular mechanism.
Collapse
Affiliation(s)
- Dan Xu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China
| | - Qingfei Li
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China
| | - Yan Zhou
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China
| | - Yanan Shen
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China
| | - Wencong Lai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China
| | - Tingting Hao
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China
| | - Yi Ding
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
8
|
Bmp8a is an essential positive regulator of antiviral immunity in zebrafish. Commun Biol 2021; 4:318. [PMID: 33750893 PMCID: PMC7943762 DOI: 10.1038/s42003-021-01811-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 02/05/2021] [Indexed: 02/06/2023] Open
Abstract
Bone morphogenetic protein (BMP) is a kind of classical multi-functional growth factor that plays a vital role in the formation and maintenance of bone, cartilage, muscle, blood vessels, and the regulation of adipogenesis and thermogenesis. However, understanding of the role of BMPs in antiviral immunity is still limited. Here we demonstrate that Bmp8a is a newly-identified positive regulator for antiviral immune responses. The bmp8a−/− zebrafish, when infected with viruses, show reduced antiviral immunity and increased viral load and mortality. We also show for the first time that Bmp8a interacts with Alk6a, which promotes the phosphorylation of Tbk1 and Irf3 through p38 MAPK pathway, and induces the production of type I interferons (IFNs) in response to viral infection. Our study uncovers a previously unrecognized role of Bmp8a in regulation of antiviral immune responses and provides a target for controlling viral infection. Zhang, Liu and colleagues identify the role of Bmp8a in antiviral immunity in zebrafish and provide mechanistic insight into its function. Bmp8a could serve as a future target for investigative studies of antiviral immune responses.
Collapse
|
9
|
Li L, Chen SN, Nie P. IRF11 regulates positively type I IFN transcription and antiviral response in mandarin fish, Siniperca chuatsi. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 114:103846. [PMID: 32888970 DOI: 10.1016/j.dci.2020.103846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/26/2020] [Accepted: 08/26/2020] [Indexed: 06/11/2023]
Abstract
In vertebrates, a total of eleven interferon (IFN) regulatory factors (IRFs), IRF1 to IRF11 are reported, with the conserved presence of IRF1 to IRF9 in all classes of vertebrates. However, IRF10 has been reported only in fish and birds, and IRF11 seems to be a fish specific IRF member. In this study, IRF11 in mandarin fish Siniperca chuatsi was found upregulated following virus infection, and IRF11 was localized constitutively in nucleus as revealed through immunofluorescence test. The overexpression and/or luciferase reporter assays showed that IRF11 can induce transcriptionally the ISRE activity, and the expression of type I IFNs, IFNc and IFNh, as well as the IFN-stimulated gene, Mx, thus inhibiting the Siniperca chuatsi rhabdovirus (SCRV) replication as indicated in the reduced expression of virus protein genes. It is thus suggested that IRF11 in mandarin fish and probably in other teleost fish can exert its antiviral effect through the upregulation of type I IFNs and ISGs.
Collapse
Affiliation(s)
- Li Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, PR China
| | - Shan Nan Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, PR China
| | - P Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, PR China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong Province, 266237, PR China; School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, PR China.
| |
Collapse
|
10
|
Liang Y, Liu H, Li X, Huang W, Huang B, Xu J, Xiong J, Zhai S. Molecular insight, expression profile and subcellular localization of two STAT family members, STAT1a and STAT2, from Japanese eel, Anguilla japonica. Gene 2020; 769:145257. [PMID: 33164823 DOI: 10.1016/j.gene.2020.145257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 12/14/2022]
Abstract
Signal transducer and activator of transcription 1 (STAT1) and STAT2 are critical components of type I and type II IFNs signaling. To date, seven STAT family proteins have been identified from mammals. However, the information on STAT genes in teleost fish is still limited. In the present study, two STAT family genes (STAT1a and STAT2) were identified from Japanese eel, Anguilla japonica and designated as AjSTAT1a and AjSTAT2. The open reading frames of AjSTAT1a and AjSTAT2 are 2244 bp and 2421 bp, encoding for polypeptides of 747 aa and 806 aa, respectively. Both AjSTAT1a and AjSTAT2 contain the conserved domains of STAT proteins. Phylogenetic analysis was performed based on the STATs protein sequences, and showed that AjSTAT1a and AjSTAT2 shared the closest relationship with Oncorhynchus mykiss. Quantitative real-time PCR analysis revealed that AjSTAT1a and AjSTAT2 were expressed in most examined tissues, with the highest expression both in blood. Significantly up-regulated transcripts of AjSTAT1a and AjSTAT2 were detected in response to poly I:C stimulation, and Edwardsiella tarda induced increase in the expression of AjSTAT1a and AjSTAT2 genes. Subcellular localization analysis showed that in both IFNγ-stimulated and unstimulated EPC cells AjSTAT1a and AjSTAT2 were mainly distributed in the cytoplasm, but few AjSTAT1a was distributed in the nucleus. All these results suggested that AjSTAT1a and AjSTAT2 may be critical for regulating the host innate immune defense against pathogens invasion.
Collapse
Affiliation(s)
- Ying Liang
- Fisheries College, Jimei University, Xiamen 361021, China; Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen 361021, China; Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Xiamen 361000, China; Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, P.R. China, Xiamen 361021, China.
| | - Haizi Liu
- Fisheries College, Jimei University, Xiamen 361021, China
| | - Xiang Li
- Fisheries College, Jimei University, Xiamen 361021, China
| | - Wenshu Huang
- Fisheries College, Jimei University, Xiamen 361021, China; Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, P.R. China, Xiamen 361021, China
| | - Bei Huang
- Fisheries College, Jimei University, Xiamen 361021, China; Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, P.R. China, Xiamen 361021, China
| | - Jisong Xu
- Fisheries College, Jimei University, Xiamen 361021, China; Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, P.R. China, Xiamen 361021, China
| | - Jing Xiong
- Fisheries College, Jimei University, Xiamen 361021, China; Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, P.R. China, Xiamen 361021, China
| | - Shaowei Zhai
- Fisheries College, Jimei University, Xiamen 361021, China; Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, P.R. China, Xiamen 361021, China
| |
Collapse
|
11
|
Hou J, Chen SN, Gan Z, Li N, Huang L, Huo HJ, Yang YC, Lu Y, Yin Z, Nie P. In Primitive Zebrafish, MHC Class II Expression Is Regulated by IFN-γ, IRF1, and Two Forms of CIITA. THE JOURNAL OF IMMUNOLOGY 2020; 204:2401-2415. [DOI: 10.4049/jimmunol.1801480] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 02/13/2020] [Indexed: 12/21/2022]
|
12
|
Lu X, Liu J, Yan J, Wu H, Feng H. Identification and characterization of IRF9 from black carp Mylopharyngodon piceus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 103:103528. [PMID: 31654647 DOI: 10.1016/j.dci.2019.103528] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/21/2019] [Accepted: 10/21/2019] [Indexed: 06/10/2023]
Abstract
Interferon regulatory factor 9 (IRF9) plays a crucial role in JAK-STAT signaling in human and mammal. However, the relationship between IRF9 and STAT1 in teleost fish remains largely unknown. The previous study has elucidated that two STAT1 isoforms (bcSTAT1a and bcSTAT1b) of black carp (Mylopharyngodon piceus) play an important role during the innate immune activation initiated by grass carp reovirus (GCRV). In this paper, black carp IRF9 (bcIRF9) has been identified and characterized. bcIRF9 was distributed majorly in the nucleus and the linker domain (LD) of bcIRF9 was vital for its nuclear localization. bcIRF9 showed ISRE-inducing activity in reporter assay and presented antiviral activity against GCRV in plaque assay, in which both DNA binding domain (DBD) and LD of bcIRF9 were essential for its antiviral signaling. bcIRF9 was identified to interact with both bcSTAT1a and bcSTAT1b in the co-immunoprecipitation assay. It was interesting that bcIRF9-mediated antiviral signaling was up-regulated by bcSTAT1a; however, down-regulated by bcSTAT1b. Thus, our data support the conclusion that bcIRF9 plays an important role in the innate immune defense against GCRV, in which two STAT1 proteins function differently.
Collapse
Affiliation(s)
- Xingyu Lu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Ji Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Jun Yan
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Hui Wu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Hao Feng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
13
|
Chen T, Hu Y, Zhou J, Hu S, Xiao X, Liu X, Su J, Yuan G. Chitosan reduces the protective effects of IFN-γ2 on grass carp (Ctenopharyngodon idella) against Flavobacterium columnare infection due to excessive inflammation. FISH & SHELLFISH IMMUNOLOGY 2019; 95:305-313. [PMID: 31654768 DOI: 10.1016/j.fsi.2019.10.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/27/2019] [Accepted: 10/19/2019] [Indexed: 06/10/2023]
Abstract
IFN-γ is an immunomodulatory factor that has been extensively studied in phenotypes of mammalian macrophages and multifarious inflammatory responses. Usually these studies relied on the classical synergistic activation of IFN-γ with LPS (LipoPolySaccharides). However, non-mammalian vertebrates, and in particular fish, are not very susceptible to LPS, and easily acquire tolerance upon repeated exposure. Therefore, for studies in fish, it is necessary to replace the classical IFN-γ+LPS immune system activation method, and find other pathogen-associated molecular patterns (PAMPs) capable of stimulating the fish immune system. Here we used an important farmed fish species, Ctenopharyngodon idella, to study the effects of CiIFN-γ2 (C. idella IFN-γ2) and chitosan (CS) on its immune responses in vivo and vitro. Our results showed that the combination of CS and CiIFN-γ2 significantly enhanced the activation of macrophages, with an activation intensity even stronger than in CiIFN-γ2 and CiIFN-γ2+LPS groups. In vivo, injection of CiIFN-γ2 could improve the survival rate of C. idella infected with Flavobacterium columnare, while a combined injection of CiIFN-γ2+CS only improved protection in the early stages after the challenge. Notably, both injections reduced the bacterial load of viscera and improved the levels of several plasma parameters (TP, T-SOD, LA, and NO). However, a dramatic up-regulation of inflammatory factors, severe inflammatory damage in the intestines and hepatopancreas, and increased mortality in late stages of infection were observed in the CiIFN-γ2+CS group. Our findings provide new insights into the macrophage activation phenotypes and inflammatory responses in fish. They also demonstrate that CiIFN-γ2 could be used as a potential immunopotentiator, but not in combination with CS. This suggests that selection of immunological adjuvants should be carefully tested experimentally.
Collapse
Affiliation(s)
- Tong Chen
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, Hubei, 430070, China; State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Yazhen Hu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, Hubei, 430070, China
| | - Jiancheng Zhou
- Wuhan DBN Aquaculture Technology Co. LTD, Wuhan, Hubei, 430090, China
| | - Shengbiao Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Xun Xiao
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, Hubei, 430070, China
| | - Xiaoling Liu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, Hubei, 430070, China
| | - Jianguo Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, Hubei, 430070, China
| | - Gailing Yuan
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, Hubei, 430070, China; State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
14
|
Li L, Chen SN, Laghari ZA, Huang B, Huo HJ, Li N, Nie P. Receptor complex and signalling pathway of the two type II IFNs, IFN-γ and IFN-γrel in mandarin fish or the so-called Chinese perch Siniperca chuatsi. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 97:98-112. [PMID: 30922782 DOI: 10.1016/j.dci.2019.03.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/23/2019] [Accepted: 03/23/2019] [Indexed: 06/09/2023]
Abstract
IFN-γ, as the sole member of mammalian type II IFN, is a multifunctional cytokine which exerts its effects through two distinct IFN-γ receptors, IFNGR1 and IFNGR2. However, in teleost fish, another IFN-γ homologous gene, namely IFN-γ related gene (IFN-γrel), has been identified. Although IFN-γ and IFN-γrel genes have been described in some fish species, many important aspects remain poorly understood in relation with their signalling and function. In the present study, IFN-γ and IFN-γrel, as well as their receptors, cytokine receptor family B (CRFB) 17, CRFB13, two of which are homologous to IFNGR1 in mammals, and CRFB6, homolomous to IFNGR2, have been characterized in mandarin fish, Siniperca chuatsi. It was revealed that the two type IFN members exhibit antiviral activity, and IFN-γ transduces downstream signalling through CRFB13 and CRFB6, while IFN-γrel interacts with CRFB17 to activate downstream signalling. Moreover, IFN-γ and IFN-γrel have been shown to exert antiviral biological activity in a STAT1-dependent manner. Intracellular domain analysis of CRFB17 and CRFB13 demonstrated that the Y386 tyrosine residue of CRFB13 is required for the activation of the IFN-γ-mediated biologic response, and the Y324 and Y370 residues in CRFB17 are required to activate IFN-γrel signalling.
Collapse
Affiliation(s)
- Li Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shan Nan Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Zubair Ahmed Laghari
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Bei Huang
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Hui Jun Huo
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Nan Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - P Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong Province, 266237, China; School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China.
| |
Collapse
|
15
|
Pereiro P, Figueras A, Novoa B. Insights into teleost interferon-gamma biology: An update. FISH & SHELLFISH IMMUNOLOGY 2019; 90:150-164. [PMID: 31028897 DOI: 10.1016/j.fsi.2019.04.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/20/2019] [Accepted: 04/02/2019] [Indexed: 06/09/2023]
Abstract
Interferon-gamma (IFN-ϒ) is probably one of the most relevant cytokines orchestrating the immune response in vertebrates. Although the activities mediated by this molecule are well known in mammals, several aspects of the IFN-ϒ system in teleosts remain a riddle to scientists. Numerous studies support a potentially similar role of the fish IFN-ϒ signalling pathway in some well-described immunological processes induced by this cytokine in mammals. Nevertheless, the existence in some teleost species of duplicated ifng genes and an additional gene derived from ifng known as interferon-γ-related (ifngrel), among other things, raises new interesting questions about the mode of action of these various molecules in fish. Moreover, certain IFN-ϒ-mediated activities recently observed in mammals are still fully unknown in fish. Another attractive but mainly unexplored curious property of IFN-ϒ in vertebrates is its potential dual role depending on the type of pathogen. In addition, some aspects mediated by this molecule could favour the resolution of a bacterial infection but be harmful in the context of a viral disease, and vice versa. This review collects old and new aspects of IFN-ϒ research in teleosts and discusses new questions and pathways of investigation based on recent discoveries in mammals.
Collapse
Affiliation(s)
- Patricia Pereiro
- Instituto de Investigaciones Marinas (IIM), CSIC, Vigo, Spain; Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Concepción, Chile
| | | | - Beatriz Novoa
- Instituto de Investigaciones Marinas (IIM), CSIC, Vigo, Spain.
| |
Collapse
|
16
|
Jiang B, Du JJ, Li YW, Ma P, Hu YZ, Li AX. Transcriptome analysis provides insights into molecular immune mechanisms of rabbitfish, Siganus oramin against Cryptocaryon irritans infection. FISH & SHELLFISH IMMUNOLOGY 2019; 88:111-116. [PMID: 30797068 DOI: 10.1016/j.fsi.2019.02.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 12/18/2018] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
The rabbitfish Siganus oramin is resistant to the ciliate parasite Cryptocaryon irritans. L-amino acid oxidase (LAAO) protein from rabbitfish can kill C. irritans in vitro, however, other immune defence mechanisms against C. irritans remains unknown. Here, we generated transcriptomes of rabbitfish skin at 12 h post infection (PI) by C. irritans. The transcriptomes contained 238, 504, 124 clean reads were obtained and then assembled into 258,869 unigenes with an average length of 621 bp and an N50 of 833 bp. Among them, we obtained 418 differentially expressed genes (DEGs) in the skin of rabbitfish under C. irritans infection and control conditions, including 336 significantly up-regulated genes and 82 significantly down-regulated genes. Seven immune-related categories with 32 differentially expressed immune genes were obtained using Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. DEGs included innate immune molecules, such as LAAO, antimicrobial peptide, lysozyme g, as well as complement components, chemokines and chemokine receptors, NOD-like receptor/Toll-like receptor signaling pathway molecules, antigen processing and T/B cell activation and proliferation molecules. We further validated the expression results of nine immune-related DEGs using quantitative real-time PCR. This study provides new insights into the early immune response of a host that is resistant to C. irritans.
Collapse
Affiliation(s)
- Biao Jiang
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Lab for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong Province, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, Shandong Province, PR China
| | - Jia-Jia Du
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Lab for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong Province, PR China
| | - Yan-Wei Li
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Pan Ma
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Lab for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong Province, PR China
| | - Ya-Zhou Hu
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Lab for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong Province, PR China
| | - An-Xing Li
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Lab for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong Province, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, Shandong Province, PR China.
| |
Collapse
|
17
|
Wu H, Zhang Y, Lu X, Xiao J, Feng P, Feng H. STAT1a and STAT1b of black carp play important roles in the innate immune defense against GCRV. FISH & SHELLFISH IMMUNOLOGY 2019; 87:386-394. [PMID: 30703549 DOI: 10.1016/j.fsi.2019.01.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 01/14/2019] [Accepted: 01/25/2019] [Indexed: 06/09/2023]
Abstract
Signal transducer and activator of transcription 1 (STAT1) plays an important role in the Janus kinase (JAK)-STAT signaling of human and mammals; however, the mechanism of STAT1 in innate immune activation of teleost fishes remains largely unknown. In this study, two STAT1 homologues (bcSTAT1a and bcSTAT1b) of black carp (Mylopharyngodon piceus) have been cloned and characterized. Both bcSTAT1a and bcSTAT1b transcription in host cells was obviously increased in response to the stimulation of poly (I:C), lipopolysaccharide (LPS), grass carp reovirus (GCRV) and interferon (IFN); however, the increase rate of bcSTAT1b transcription post stimulation was obviously higher than that of bcSTAT1a. bcSTAT1a and bcSTAT1b were distributed in both cytoplasm and nucleus in the immunofluorescence staining assay. Self-association of bcSTAT1a and bcSTAT1b, and the interaction between bcSTAT1a and bcSTAT1b have been detected through co-immunoprecipitation (co-IP) assay; and the data of native polyacrylamide gel electrophoresis (PAGE) implied that bcSTAT1a and bcSTAT1b might form homodimer and heterodimer in vivo like their mammalian counterparts. Both bcSTAT1a and bcSTAT1b presented IFN-inducing ability in report assay, and both bcSTAT1a and bcSTAT1b showed antiviral activities against GCRV in EPC cells. Our data support the conclusion that both bcSTAT1a and bcSTAT1b play important roles in host antiviral innate immune activation initiated by GCRV.
Collapse
Affiliation(s)
- Hui Wu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Yinyin Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Xingyu Lu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Jun Xiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Pinghui Feng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Hao Feng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
18
|
Kato G, Kakazu T, Yamada M, Lau LM, Nakajima K, Sato S, Nakanishi T, Endo M, Sano M. Granulomatous inflammation in ginbuna crucian carp Carassius auratus langsdorfii against Mycobacterium gordonae. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 91:93-100. [PMID: 30385316 DOI: 10.1016/j.dci.2018.10.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/27/2018] [Accepted: 10/27/2018] [Indexed: 06/08/2023]
Abstract
In this study, we investigated the immune responses against Mycobacterium gordonae in ginbuna crucian carp. Cumulative mortality of ginbuna injected with 2.0 × 107 CFU of M. gordonae was 50% at 170 days post-infection. CD4-1, CD8α, T-bet and IFNγ2 gene expression levels were significantly upregulated in ginbuna injected with 1.9 × 108 CFU of M. gordonae at 21 and 28 days post-infection. The CD4-2 level did not change during the experiment. Granulomatous responses consisted of central macrophage accumulation and surrounding lymphocytes, and Ziehl-Neelsen-positive bacteria were observed in the trunk kidney of the challenged fish. Immunohistochemistry using anti-ginbuna IFNγs and anti-ginbuna CD4-1 polyclonal antibody revealed that the marginal lymphocytes were positive for CD4-1, and the IFNγ-producing cells surrounded the mycobacterial cell-laden phagocytes. These results suggest that CD4-1+ cells and IFNγ2 play important roles in the granulomatous inflammation against Mycobacterial infections in teleosts.
Collapse
Affiliation(s)
- Goshi Kato
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, 108-8477, Japan.
| | - Taichi Kakazu
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, 108-8477, Japan
| | - Mitsuo Yamada
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, 108-8477, Japan
| | - Lik-Ming Lau
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, 108-8477, Japan
| | - Kazue Nakajima
- Niigata Prefectural Inland Water Fisheries Experiment Station, Niigata, 940-1137, Japan
| | - Shoh Sato
- Niigata Prefectural Inland Water Fisheries Experiment Station, Niigata, 940-1137, Japan
| | - Teruyuki Nakanishi
- Department of Veterinary Medicine, Nihon University, Kanagawa, 252-0880, Japan
| | - Makoto Endo
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, 108-8477, Japan
| | - Motohiko Sano
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, 108-8477, Japan
| |
Collapse
|
19
|
Zahradník J, Kolářová L, Pařízková H, Kolenko P, Schneider B. Interferons type II and their receptors R1 and R2 in fish species: Evolution, structure, and function. FISH & SHELLFISH IMMUNOLOGY 2018; 79:140-152. [PMID: 29742458 DOI: 10.1016/j.fsi.2018.05.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 04/27/2018] [Accepted: 05/02/2018] [Indexed: 06/08/2023]
Abstract
Interferon gamma (IFN-γ) is one of the key players in the immune system of vertebrates. The evolution and properties of IFN-γ and its receptors in fish species are of special interest as they point to the origin of innate immunity in vertebrates. We studied the phylogeny, biophysical and structural properties of IFN-γ and its receptors. Our phylogeny analysis suggests the existence of two groups of IFN-γ related proteins, one specific for Acanthomorpha, the other for Cypriniformes, Characiformes and Siluriformes. The analysis further shows an ancient duplication of the gene for IFN-γ receptor 1 (IFN- γR1) and the parallel existence of the duplicated genes in all current teleost fish species. In contrast, only one gene can be found for receptor 2, IFN- γR2. The specificity of the interaction between IFN- γ and both types of IFN- γR1 was determined by microscale thermophoresis measurements of the equilibrium dissociation constants for the proteins from three fish species. The measured preference of IFN- γ for one of the two forms of receptor 1agrees with the bioinformatic analysis of the coevolution between IFN- γ and receptor 1. To elucidate structural relationships between IFN-γ of fish and other vertebrate species, we determined the crystal structure of IFN-γ from olive flounder (Paralichthys olivaceus, PoliIFN-γ) at crystallographic resolution of 2.3 Å and the low-resolution structures of Takifugu rubripes, Oreochromis niloticus, and Larimichthys crocea IFN-γ by small angle X-ray diffraction. The overall PoliIFN-γ fold is the same as the fold of the other known IFN- γ structures but there are some significant structural differences, namely the additional C-terminal helix G and a different angle between helices C and D in PoliIFN-γ.
Collapse
Affiliation(s)
- Jiří Zahradník
- Laboratory of Biomolecular Recognition, Institute of Biotechnology of the Czech Academy of Sciences, v. v. i., BIOCEV, Průmyslová 595, CZ-252 42 Vestec, Czech Republic.
| | - Lucie Kolářová
- Laboratory of Biomolecular Recognition, Institute of Biotechnology of the Czech Academy of Sciences, v. v. i., BIOCEV, Průmyslová 595, CZ-252 42 Vestec, Czech Republic
| | - Hana Pařízková
- Laboratory of Biomolecular Recognition, Institute of Biotechnology of the Czech Academy of Sciences, v. v. i., BIOCEV, Průmyslová 595, CZ-252 42 Vestec, Czech Republic
| | - Petr Kolenko
- Laboratory of Biomolecular Recognition, Institute of Biotechnology of the Czech Academy of Sciences, v. v. i., BIOCEV, Průmyslová 595, CZ-252 42 Vestec, Czech Republic
| | - Bohdan Schneider
- Laboratory of Biomolecular Recognition, Institute of Biotechnology of the Czech Academy of Sciences, v. v. i., BIOCEV, Průmyslová 595, CZ-252 42 Vestec, Czech Republic.
| |
Collapse
|
20
|
Grayfer L, Kerimoglu B, Yaparla A, Hodgkinson JW, Xie J, Belosevic M. Mechanisms of Fish Macrophage Antimicrobial Immunity. Front Immunol 2018; 9:1105. [PMID: 29892285 PMCID: PMC5985312 DOI: 10.3389/fimmu.2018.01105] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/02/2018] [Indexed: 12/13/2022] Open
Abstract
Overcrowding conditions and temperatures shifts regularly manifest in large-scale infections of farmed fish, resulting in economic losses for the global aquaculture industries. Increased understanding of the functional mechanisms of fish antimicrobial host defenses is an important step forward in prevention of pathogen-induced morbidity and mortality in aquaculture setting. Like other vertebrates, macrophage-lineage cells are integral to fish immune responses and for this reason, much of the recent fish immunology research has focused on fish macrophage biology. These studies have revealed notable similarities as well as striking differences in the molecular strategies by which fish and higher vertebrates control their respective macrophage polarization and functionality. In this review, we address the current understanding of the biological mechanisms of teleost macrophage functional heterogeneity and immunity, focusing on the key cytokine regulators that control fish macrophage development and their antimicrobial armamentarium.
Collapse
Affiliation(s)
- Leon Grayfer
- Department of Biological Sciences, George Washington University, Washington, DC, United States
| | - Baris Kerimoglu
- Department of Biological Sciences, George Washington University, Washington, DC, United States
| | - Amulya Yaparla
- Department of Biological Sciences, George Washington University, Washington, DC, United States
| | | | - Jiasong Xie
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Miodrag Belosevic
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
21
|
Laghari ZA, Li L, Chen SN, Huo HJ, Huang B, Zhou Y, Nie P. Composition and transcription of all interferon regulatory factors (IRFs), IRF1‒11 in a perciform fish, the mandarin fish, Siniperca chuatsi. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 81:127-140. [PMID: 29180032 DOI: 10.1016/j.dci.2017.11.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/23/2017] [Accepted: 11/23/2017] [Indexed: 06/07/2023]
Abstract
Interferon regulatory factors (IRFs) are a family of mediators in various biological processes including immune modulation of interferon (IFN) and proinflammatory cytokine expression. However, the data on the complete composition of IRFs is rather limited in teleost fish. In the present study, all IRF members, i.e. IRF1‒11 with two IRF4, IRF4a and IRF4b have been characterised in an aquaculture species of fish, the mandarin fish, Siniperca chuatsi, in addition to the previous report of IRF1, IRF2, IRF3 and IRF7 from the fish. These IRFs are constitutively expressed in various organs/tissues of the fish, and their expression can be induced following the stimulation of polyinosinic:polycytidylic acid (poly(I:C)) and the infection of infectious spleen and kidney necrosis virus (ISKNV), a viral pathogen of mandarin fish in aquaculture. The ISKNV infection induced the significant increase in the expression of some IRF genes, i.e. IRF2, IRF4a, IRF7, IRF9, IRF10 at 24 or 36 h post-infection (hpi) in spleen and head-kidney, and the significant increase of some other IRF genes, e.g. IRF1, IRF3, IRF4b, IRF5, IRF6, IRF8 at later stage of infection from 72, or 96, or even 120 hpi, which may imply the inhibitory effect of ISKNV on fish immune response. It is considered that the present study provides the first detailed analysis on all IRF members in an aquaculture species of fish, and can be served as the base for further investigation on the role of IRFs in teleost fish.
Collapse
Affiliation(s)
- Zubair Ahmed Laghari
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Shan Nan Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Hui Jun Huo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Bei Huang
- College of Fisheries, Jimei University, Xiamen, Fujian Province, 361021, China
| | - Ying Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - P Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China.
| |
Collapse
|
22
|
Antitumor and Immunoregulatory Activities of Seleno-β-Lactoglobulin on S180 Tumor-Bearing Mice. Molecules 2017; 23:molecules23010046. [PMID: 29283364 PMCID: PMC5943936 DOI: 10.3390/molecules23010046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/17/2017] [Accepted: 12/24/2017] [Indexed: 11/17/2022] Open
Abstract
Degeneration of immune organs like thymus and spleen has been discovered in tumor-bearing mice; which increases the difficulties on oncotherapy. More effective drugs which target the protection of immune organs are expected to be researched. In this study; we aim to analyze the antitumor and immunoregulatory activities of seleno-β-lactoglobulin (Se-β-lg) on S180 tumor-bearing mice. Results indicated that Se-β-lg exhibited a remarkable inhibitory effect on S180 solid tumors with the inhibition rate of 48.38%; and protected the thymuses and spleens of S180-bearing mice. In addition, Se-β-lg could also balance the proportions of CD4+ and CD8+ T cells in spleens; thymuses and peripheral bloods; and improve Levels of IL-2; IFN-γ; TNF-α in mice serums. β-lg showed weaker bioactivities while SeO2 showed stronger toxicity on mice. Therefore our results demonstrated that Se-β-lg possessed stronger antitumor and immunoregulatory activities with lower side effects and had the potential to be a novel immunopotentiator and antitumor agent.
Collapse
|