1
|
Zhang H, Wu Y, Zhu Y, Ge L, Huang J, Qin Z. Identification and functional analysis of a serine protease inhibitor using machine learning strategy. Int J Biol Macromol 2024; 265:130852. [PMID: 38508547 DOI: 10.1016/j.ijbiomac.2024.130852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/03/2024] [Accepted: 03/11/2024] [Indexed: 03/22/2024]
Abstract
In the intricate realm of animal biology, a multitude of vital processes heavily rely on precisely orchestrated proteinase cascades, but the potential for havoc makes proteinase inhibitors indispensable, with serine proteinase inhibitors (serpins) at the forefront, serving as custodians of homeostasis and participating in various critical biological processes. Importantly, there are still many unexplored facets of serpin functionality. In this study, we focused on the serpin family proteins from Marsupenaeus japonicus, utilizing a fine-tuned pretrained protein language model. This approach led to the identification and evolutionary validation of 28 serpins, one of which, referred to as Mjserpin-1, was both computationally and experimentally demonstrated to show potential as an antiviral and apoptosis inhibitor. Our research unveils exciting prospects for the fusion of state-of-the-art artificial intelligence and rich bioinformatics, holding the promise of significant discoveries that could pave the way for future therapeutic advancements.
Collapse
Affiliation(s)
- Heqian Zhang
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, Guangdong 519087, China.
| | - Yaxin Wu
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, Guangdong 519087, China
| | - Yanran Zhu
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, Guangdong 519087, China
| | - Liangjun Ge
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, Guangdong 519087, China
| | - Jiaquan Huang
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, Guangdong 519087, China.
| | - Zhiwei Qin
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, Guangdong 519087, China.
| |
Collapse
|
2
|
Hanif MA, Hossen S, Choi CY, Kho KH. Cloning, characterization, and spatio-temporal expression patterns of HdhSPARC and its responses to multiple stressors. Sci Rep 2024; 14:2224. [PMID: 38278828 PMCID: PMC10817941 DOI: 10.1038/s41598-024-51950-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/11/2024] [Indexed: 01/28/2024] Open
Abstract
SPARC is an extracellular Ca2+-binding, secreted glycoprotein that plays a dynamic role in the growth and development of organisms. This study aimed to describe the isolation, characterization, and expression analysis of HdhSPARC in Pacific abalone (Haliotis discus hannai) to infer its potential functional role. The isolated HdhSPARC was 1633 bp long, encoding a polypeptide of 284 amino acid residues. Structurally, the SPARC protein in abalone is comprised of three biological domains. However, the structure of this protein varied between vertebrates and invertebrates, as suggested by their distinct clustering patterns in phylogenetic analysis. In early development, HdhSPARC was variably expressed, and higher expression was found in veliger larvae. Moreover, HdhSPARC was highly expressed in juvenile abalone with rapid growth compared to their slower-growing counterparts. Among the testicular development stages, the growth stage exhibited higher HdhSPARC expression. HdhSPARC was also upregulated during muscle remodeling and shell biomineralization, as well as in response to different stressors such as heat shock, LPS, and H2O2 exposure. However, this gene was downregulated in Cd-exposed abalone. The present study first comprehensively characterized the HdhSPARC gene, and its spatio-temporal expressions were analyzed along with its responses to various stressors.
Collapse
Affiliation(s)
- Md Abu Hanif
- Department of Fisheries Science, Chonnam National University, Yeosu, 59626, South Korea
| | - Shaharior Hossen
- Department of Fisheries Science, Chonnam National University, Yeosu, 59626, South Korea
| | - Cheol Young Choi
- Division of Marine BioScience, National Korea Maritime and Ocean University, Busan, 49112, South Korea
| | - Kang Hee Kho
- Department of Fisheries Science, Chonnam National University, Yeosu, 59626, South Korea.
| |
Collapse
|
3
|
A Kazal-type serine protease inhibitor mediates innate immunity in wild silkworm Actias selene Hübner. J Biosci 2022. [DOI: 10.1007/s12038-022-00272-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
Effects of the artificial reef and flow field environment on the habitat selection behavior of Sebastes schlegelii juveniles. Appl Anim Behav Sci 2021. [DOI: 10.1016/j.applanim.2021.105492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
Zhang M, Cao M, Xiu Y, Fu Q, Yang N, Su B, Li C. Identification of Antimicrobial Peptide Genes in Black Rockfish Sebastes schlegelii and Their Responsive Mechanisms to Edwardsiella tarda Infection. BIOLOGY 2021; 10:1015. [PMID: 34681113 PMCID: PMC8533284 DOI: 10.3390/biology10101015] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/18/2021] [Accepted: 09/20/2021] [Indexed: 01/01/2023]
Abstract
The black rockfish, Sebastes schlegelii, is a typical viviparous teleost, which belongs to the family Scorpaenidae. Due to its high economic and ecological values, S. schlegelii has been widely cultured in East Asian countries. With the enlargement of cultivation scale, bacterial and viral diseases have become the main threats to the farming industry of S. schlegelii, which have resulted in significant economic losses. In this study, Illumina shotgun sequencing, single-molecule real-time (SMRT) sequencing, 10× genomics and high-throughput chromosome conformation capture (Hi-C) technologies were collectively applied to assemble the genome of S. schlegelii. Then, we identified the antimicrobial peptide genes (AMPs) in the S. schlegelii genome. In total, 214 AMPs were identified in the S. schlegelii genome, which can be divided into 33 classes according to the annotation and cataloging of the Antimicrobial Peptides Database (APD3). Among these AMPs, thrombin-derived C-terminal peptide (TCP) was the dominant type, followed by RegIIIgamma and chemokine. The amino acid sequences of the TCP, cgUbiquitin, RegIIIalpha, RegIIIgamma, chemokine shared 32.55%, 42.63%, 29.87%, 28.09%, and 32.15% similarities among the same type in S. schlegelii. Meanwhile, the expression patterns of these AMPs in nine healthy tissues and at different infection time points in intestine were investigated. The results showed that the numbers and types of AMPs that responded to Edwardsiella tarda infection gradually increased as the infection progressed. In addition, we analyzed the phylogenetic relationships of hepcidins in teleost. The identification of AMPs based on the whole genome could provide a comprehensive database of potential AMPs, and benefit for the understanding of the molecular mechanisms of immune responses to E. tarda infection in S. schlegelii. This would further offer insights into an accurate and effective design and development of AMP for aquaculture therapy in the future.
Collapse
Affiliation(s)
- Min Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (M.Z.); (M.C.); (Y.X.); (Q.F.); (N.Y.)
| | - Min Cao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (M.Z.); (M.C.); (Y.X.); (Q.F.); (N.Y.)
| | - Yunji Xiu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (M.Z.); (M.C.); (Y.X.); (Q.F.); (N.Y.)
| | - Qiang Fu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (M.Z.); (M.C.); (Y.X.); (Q.F.); (N.Y.)
| | - Ning Yang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (M.Z.); (M.C.); (Y.X.); (Q.F.); (N.Y.)
| | - Baofeng Su
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA;
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (M.Z.); (M.C.); (Y.X.); (Q.F.); (N.Y.)
| |
Collapse
|
6
|
Harikrishnan R, Devi G, Balasundaram C, Van Doan H, Jaturasitha S, Saravanan K, Ringø E. Impact of cinnamaldehyde on innate immunity and immune gene expression in Channa striatus against Aphanomyces invadans. FISH & SHELLFISH IMMUNOLOGY 2021; 117:1-16. [PMID: 34274424 DOI: 10.1016/j.fsi.2021.07.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 07/05/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
The effect of cinnamaldehyde (CM) enriched diet on immunity and cytokine gene expression in Channa striatus against Aphanomyces invadans is reported. C. striatus was uniformly divided into eight groups (n = 25 fish each) and fed with formulated diets with 0, 5, 10, and 15 mg kg-1 CM enriched diet. In healthy and infected groups fed with 5 mg kg-1 diet the leukocytes count increased significantly after 4th week; with 10 mg kg-1 CM diet the increase manifested after 6th week, but with 15 mg kg-1 not even after 8th week. In both groups, 5 mg kg-1 CM diet resulted in a significant increase in the serum total protein, albumin, and globulin levels after 4th week, whereas with other diets this effect was observed only after 6th week. Similarly, with any enriched diet the lysozyme activity increased significantly, but with 15 mg kg-1 CM diet only after 6th week. In both groups the complement activity and lymphocyte production increased significantly when fed with 5 mg kg-1 CM diet after 4th week while with other enriched diets only after 6th week. The phagocytic activity increased significantly in both groups fed with 5 mg kg-1 CM diet after 6th week, whereas the SOD activity increased after 4th week. The IgM production increased significantly in both groups fed with 5 mg kg-1 CM diet after 2nd week, while with 5 and 10 mg kg-1 CM diet after 4th week. In both groups, the expression of CXCR3α was significant on 4th week when fed with 10 mg kg-1 CM diet, while in the healthy group fed with 15 mg kg-1 CM diet the expression manifested earlier than 4th week. However, when fed with 10 and 15 mg kg-1 CM diets the increase was observed on 6th week; whereas, the expression of MHC-I reached the maximum on 6th week with any enriched diet. The results indicate that in C. striatus the innate immunity and expression of cytokine and immune related genes were significantly modulated when fed with 5 mg kg-1 CM diet on 4th week against A. invadans.
Collapse
Affiliation(s)
- Ramasamy Harikrishnan
- Department of Zoology, Pachaiyappa's College for Men, Kanchipuram, 631 501, Tamil Nadu, India.
| | - Gunapathy Devi
- Department of Zoology, Nehru Memorial College, Puthanampatti, 621 007, Tamil Nadu, India
| | - Chellam Balasundaram
- Department of Herbal and Environmental Science, Tamil University, Thanjavur, 613 005, Tamil Nadu, India
| | - Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand; Science and Technology Research Institute, Chiang Mai University, 239 Huay Keaw Rd., Suthep, Muang, Chiang Mai, 50200, Thailand.
| | - Sanchai Jaturasitha
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand; Science and Technology Research Institute, Chiang Mai University, 239 Huay Keaw Rd., Suthep, Muang, Chiang Mai, 50200, Thailand
| | | | - Einar Ringø
- Norwegian College of Fishery Science, Faculty of Bioscience, Fisheries and Economics, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
7
|
Li Q, Cao M, Fu Q, Yang N, Yan X, Song L, Li C. Complement genes in black rockfish (Sebastods schlegelii): genome-wide identification, evolution and their potential functions in response to Vibrio anguillarum infection. FISH & SHELLFISH IMMUNOLOGY 2021; 114:119-131. [PMID: 33930548 DOI: 10.1016/j.fsi.2021.04.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/29/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
As complex components of innate immune system, members of complement system play crucial roles during the process of defensing against pathogens. Black rockfish (Sebastes schlegelii) is one of the important aquaculture species in East Asian. However, studies of complement genes in black rockfish and its related immune activities are still lacking. Therefore, a total of 112 members of the complement genes were identified from the genome of black rockfish and were classified into five subgroups. According to their functional annotations, 30 genes belonged to pattern recognition, 6 genes belonged to proteases, 14 genes belonged to complement components, 36 genes belonged to receptors, and 26 genes belonged to regulators. It can be found that many complement genes evolved into multi-copies, especially in teleost, which may be influenced by whole-genome duplication or tandem duplication events. Complement genes were randomly distributed on 22 chromosomes. The number of introns of complement genes varied from 1 to 70. Results of the expression patterns of 10 randomly selected genes from 5 subtypes response to Vibrio anguillarum infection revealed that most of the members of the complement genes were induced in gill and skin. In contrast, most genes in intestine showed downregulation. This study systematically characterized and analyzed the complement genes in black rockfish and provided new insights into their functions responding to bacterial infection.
Collapse
Affiliation(s)
- Qi Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Min Cao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qiang Fu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ning Yang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xu Yan
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266011, China
| | - Lin Song
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266011, China
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
8
|
Wickramasinghe PDSU, Kwon H, Elvitigala DAS, Wan Q, Lee J. Identification and characterization of cystatin B from black rockfish, Sebastes schlegelii, indicating its potent immunological importance. FISH & SHELLFISH IMMUNOLOGY 2020; 104:497-505. [PMID: 32534230 DOI: 10.1016/j.fsi.2020.05.068] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 05/09/2020] [Accepted: 05/25/2020] [Indexed: 06/11/2023]
Abstract
Cystatins represent a large superfamily of proteins involved in the competitive reversible inhibition of C1 class cysteine proteases. Plant-derived papain proteases and cysteine cathepsins are the major cysteine proteases that interact with cystatins. The cystatin superfamily can be further classified into three groups: stefins, cystatins, and kininogens. Among these, cystatin B is categorized under stefins. Cystatin B lacks a signal sequence, disulfide bonds, and carbohydrate groups. However, it contains the conserved cystatin family signature, including a single cystatin-like domain, cysteine protease inhibitory signature concealing pentapeptide (QXVXG) consensus sequence, and two conserved neighboring glycine (8GG9) residues at the N-terminal. In the current study, a member of cystatin B was identified from Korean black rockfish (Sebastes schlegeli) using a cDNA database and designated as RfCytB. The full-length cDNA of RfCytB was 573 bp long, with a coding region of 294 bp. The 5'-untranslated region (UTR) comprised 55 bp, and the 263-bp-long 3'-UTR included a polyadenylation signal sequence and a poly-A tail. The coding sequence encodes a polypeptide comprising 97 amino acids, with a predicted molecular weight of 11 kDa and theoretical isoelectric point of 6.3. RfCytB shared homology features with similar molecules from other teleost and vertebrate species, and was clustered with Cystatin family 1 in our phylogenetic reconstruction. RfCytB was ubiquitously expressed in all tissue types of healthy animals, with the highest levels of expression observed in gill and spleen. Temporal expression of RfCytB displayed significant up-regulation upon infection with Aeromonas salmonicida. Recombinantly expressed RfCytB showed a concentration-dependent inhibitory activity towards papain, with a high thermal stability. Transient expression of RfCytB in LPS activated murine macrophages, thereby inducing the expression of genes related to pro-inflammatory conditions, such as iNOS and TNF α. These results provide evidence for its protease inhibitory and immunity relevant roles in hosts.
Collapse
Affiliation(s)
- P D S U Wickramasinghe
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Department of Chemistry, Faculty of Science, University of Colombo, Colombo-03, Sri Lanka
| | - Hyukjae Kwon
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Don Anushka Sandaruwan Elvitigala
- Dept. of Basic Science and Social Sciences for Nursing, Faculty of Nursing, University of Colombo, Thalapathpitiya, Nugegoda, 10250, Sri Lanka.
| | - Qiang Wan
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea.
| |
Collapse
|
9
|
Shi Y, Shao Y, Lv Z, Li C. Serpin-type serine protease inhibitor mediates coelomocyte apoptosis in Apostichopus japonicus. FISH & SHELLFISH IMMUNOLOGY 2020; 104:410-418. [PMID: 32569714 DOI: 10.1016/j.fsi.2020.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/25/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
Serine protease inhibitors (SPIs, serpins) are a protein superfamily involved in almost all physiological processes in all organisms. In this study, a novel serpin was identified from Apostichopus japonicus (Ajserpin) by using high-throughput sequencing and RACE approaches. The full-length cDNA of Ajserpin was 1893 bp with a 5'-untranslated region (UTR) of 130 bp, a 3'-UTR of 587 bp, and an open reading frame of 1176 bp encoding a polypeptide of 391 amino acids with a deduced molecular weight of 43.8 kDa. Ajserpin shares the standard structure of SPI, including three β-sheets and eight α-helices. The deduced amino acid sequences of Ajserpin had no nuclear location signal and signal peptide structure. The phylogenetic tree and immunofluorescence showed that Ajserpin belonged to the clade B subfamily and was mainly located in the cytoplasm and nucleus. Sequence comparison and protein inhibition experiments showed that the active site (P1-P1' site) of Ajserpin was Arginine and Serine, which displayed inhibitory activity toward trypsin in a dose-dependent manner. Tissue distribution analysis showed that Ajserpin transcripts were constitutively expressed in all examined tissues with the peak in the body wall. Ajserpin mRNA transcripts could be induced in Vibrio splendidus-challenged sea cucumber or lipopolysaccharide-exposed coelomocytes. Furthermore, Ajserpin knockdown by small interfering RNAs could inhibit coelomocytes apoptosis. All our results revealed that Ajserpin might serve as an immune regulator in sea cucumber.
Collapse
Affiliation(s)
- Yuhong Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, PR China
| | - Yina Shao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, PR China
| | - Zhimeng Lv
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, PR China
| | - Chenghua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China.
| |
Collapse
|
10
|
Wang D, Gou M, Hou J, Pang Y, Li Q. The role of serpin protein on the natural immune defense against pathogen infection in Lampetra japonica. FISH & SHELLFISH IMMUNOLOGY 2019; 92:196-208. [PMID: 31176010 DOI: 10.1016/j.fsi.2019.05.062] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/27/2019] [Accepted: 05/30/2019] [Indexed: 06/09/2023]
Abstract
Serine protease inhibitors (serpins) are a large protein family that is involved in various physiological processes and is known to regulate innate immunity pathways. However, research for the functional study of serpins in lamprey is limited. In the present study, a serpin gene was cloned and characterized from Lampetra japonica at molecular, protein and cellular levels, named L-serpin which belongs to family F serine protease inhibitors (serpin family). The L-serpin includes a serpin domain in the N-terminus. The mRNA transcript of L-serpin was extensively expressed in kidney, supraneural body, intestine, liver, heart, gill and the highest expression in leukocytes. The mRNA expression level of L-serpin increased significantly after Vibrio anguillarum, Staphylocccus aureus and Poly I:C stimulation and dramatically peak at 8 h. It is demonstrated that the L-serpin protected cells from lethal Gram-negative endotoxemia through associating with inhibition of lipopolysaccharide (LPS)-triggered cell death and inflammatory factors expression. Surface plasmon resonance (SPR) and the microbe binding assay were used to determine that L-serpin interacts directly with LPS (KD = 6.14 × 10-7 M). Furthermore, we confirmed L-serpin is a major inhibitor of complement activation by inactivating lamprey-C1q protein (KD = 2.06 × 10-6 M). Taken together, these findings suggest that L-serpin is a endogenous anti-inflammatory factor to defend against Gram-negative bacterial challenge and involved in lamprey innate immunity.
Collapse
Affiliation(s)
- Dayu Wang
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China.
| | - Meng Gou
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China.
| | - Jianqiang Hou
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China.
| | - Yue Pang
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China.
| | - Qingwei Li
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China.
| |
Collapse
|