1
|
Zhang Y, Zhang R, Guo Z, Chen Y, Meng X, Han Y, Zhao X, Ren T. Effects of Rhodopseudomonas palustris and composite probiotics on growth performance, intestinal health, and non-specific immunity of sea urchin (Strongylocentrotus intermedius). Comp Biochem Physiol B Biochem Mol Biol 2025; 276:111058. [PMID: 39674568 DOI: 10.1016/j.cbpb.2024.111058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/09/2024] [Accepted: 12/09/2024] [Indexed: 12/16/2024]
Abstract
In recent decades, antibiotics have been widely used in sea urchin aquaculture to prevent diseases and improve water quality. However, their use leads to the emergence of resistant strains and environmental problems. Probiotics can serve as a green and pollution-free alternative. In this study, we mixed probiotics (Rhodopseudomonas palustris) (3 × 108 CFU/mL) and composite probiotics (5 × 108 CFU/mL) in a 1:1 ratio, establishing four supplementation levels: 0 % (FC, control group), 0.5 % (FL group), 1 % (FM group), and 2 % (FH group). At the end of the 50-day experiment, compared to the control group (FC), supplementation with R. palustris and composite probiotics (containing 60.13 % Lactobacillaceae and 20.79 % Acetobacteraceae) in the FL, FM, and FH groups significantly improved the growth performance of sea urchins (Strongylocentrotus intermedius), including final body weight (FBW), weight gain rate (WGR), specific growth rate (SGR), and gonadosomatic index (GSI). Additionally, antioxidant indicators (e.g., total antioxidant capacity (T-AOC), superoxide dismutase (SOD), and catalase (CAT)), immune indicators (e.g., acid phosphatase (ACP), alkaline phosphatase (AKP), and lysozyme (LZM)), and digestive enzyme activity were significantly increased in FM and FH groups. Probiotic supplementation also increased colonization of beneficial bacteria (Rhodobacteraceae) and enhanced microbiota diversity. The FM group, in particular, showed significantly upregulated expression of heat shock protein 70 (HSP70), glutathione peroxidase (GPX), glutathione (GST), toll-like receptor (TLR), and lysozyme (LYZ) genes. Overall, 1 % supplementation significantly enhanced growth, antioxidant capacity, digestive ability, microbiota stability, and immune-related gene expression in S. intermedius.
Collapse
Affiliation(s)
- Yuntian Zhang
- College of Fisheries and Life Science, Dalian Ocean University, 52 Heishijiao Street, Shahekou District, Dalian City, Liaoning Province 116023, China; Dalian Key Laboratory of Breeding, Reproduction and Aquaculture of Crustaceans, 52 Heishijiao Street, Shahekou District, Dalian City, Liaoning Province 116023, China
| | - Rongwei Zhang
- College of Fisheries and Life Science, Dalian Ocean University, 52 Heishijiao Street, Shahekou District, Dalian City, Liaoning Province 116023, China; Dalian Key Laboratory of Breeding, Reproduction and Aquaculture of Crustaceans, 52 Heishijiao Street, Shahekou District, Dalian City, Liaoning Province 116023, China
| | - Zhixu Guo
- College of Fisheries and Life Science, Dalian Ocean University, 52 Heishijiao Street, Shahekou District, Dalian City, Liaoning Province 116023, China; Dalian Key Laboratory of Breeding, Reproduction and Aquaculture of Crustaceans, 52 Heishijiao Street, Shahekou District, Dalian City, Liaoning Province 116023, China
| | - Yi Chen
- College of Fisheries and Life Science, Dalian Ocean University, 52 Heishijiao Street, Shahekou District, Dalian City, Liaoning Province 116023, China; Dalian Key Laboratory of Breeding, Reproduction and Aquaculture of Crustaceans, 52 Heishijiao Street, Shahekou District, Dalian City, Liaoning Province 116023, China
| | - Xiangyu Meng
- College of Fisheries and Life Science, Dalian Ocean University, 52 Heishijiao Street, Shahekou District, Dalian City, Liaoning Province 116023, China; Dalian Key Laboratory of Breeding, Reproduction and Aquaculture of Crustaceans, 52 Heishijiao Street, Shahekou District, Dalian City, Liaoning Province 116023, China
| | - Yuzhe Han
- College of Fisheries and Life Science, Dalian Ocean University, 52 Heishijiao Street, Shahekou District, Dalian City, Liaoning Province 116023, China; Dalian Key Laboratory of Breeding, Reproduction and Aquaculture of Crustaceans, 52 Heishijiao Street, Shahekou District, Dalian City, Liaoning Province 116023, China
| | - Xiaoran Zhao
- College of Fisheries and Life Science, Dalian Ocean University, 52 Heishijiao Street, Shahekou District, Dalian City, Liaoning Province 116023, China; Dalian Key Laboratory of Breeding, Reproduction and Aquaculture of Crustaceans, 52 Heishijiao Street, Shahekou District, Dalian City, Liaoning Province 116023, China
| | - Tongjun Ren
- College of Fisheries and Life Science, Dalian Ocean University, 52 Heishijiao Street, Shahekou District, Dalian City, Liaoning Province 116023, China; Dalian Key Laboratory of Breeding, Reproduction and Aquaculture of Crustaceans, 52 Heishijiao Street, Shahekou District, Dalian City, Liaoning Province 116023, China.
| |
Collapse
|
2
|
Lin S, Chen M, Chen X, Li Y, Liu Y, Zhang P, Hou X, Tan B, Niu J. Supplemental effects of Haematococcus pluvialis in a low-fish meal diet for Litopenaeus vannamei at varying temperatures: growth performance, innate immunity and gut bacterial community. Front Immunol 2024; 15:1501753. [PMID: 39720708 PMCID: PMC11666440 DOI: 10.3389/fimmu.2024.1501753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/25/2024] [Indexed: 12/26/2024] Open
Abstract
This study examined the effects of Haematococcus pluvialis on the growth performance, innate immunity, and gut microbiota of Litopenaeus vannamei under different water temperature conditions. Feeding regimens included a 20% fishmeal diet (control), a low-fish meal (LFM) diet with 10% fishmeal and an LFM diet supplemented with 0.03% H. pluvialis. These diets were administered to six groups of L. vannamei at normal (30°C) (NT) and low (20°C) (LT) temperatures (NT_C, NT_LFM, NT_LFM_HP, LT_C, LT_LFM, and LT_LFM_HP) over 8 weeks. The weight gain rate of L. vannamei in group NT_LFM_HP was significantly higher compared to group NT_LFM. Astaxanthin levels and body pigmentation intensity in L. vannamei were significantly increased in the NT_LFM_HP and LT_LFM_HP groups. Moreover, hepatopancreatic antioxidant capacities, such as superoxide dismutase (SOD) activity and total antioxidant capacity (T-AOC), were lower in normal-temperature groups compared to the low-temperature groups. Nevertheless, antioxidant capacity was significantly higher in both the NT_LFM_HP and LT_LFM_HP groups compared to the control group. Meanwhile, the expression levels of antioxidants were significantly higher at lower temperatures compared to higher temperatures, with the NT_LFM_HP and LT_LFM_HP groups exhibiting the highest expression levels. Additionally, the mRNA levels of genes associated with the Toll and IMD pathways indicated immunoregulatory effects in the organism. The expression levels of immune genes were significantly higher at lower temperatures, especially in the NT_LFM_HP and LT_LFM_HP groups compared to the control groups. Notably, significant differences in gut microbial composition were observed in the NT_LFM_HP group compared to other groups, with variations influenced by temperature and fishmeal content. Specifically, Vibrionaceae abundance was significantly lower in the LT_LFM_HP group compared to the control group. The results also revealed that the abundance of Actinomarinales was significantly higher in low-temperature groups, with the LT_LFM_HP group displaying the greatest increase. Overall, these findings suggest that L. vannamei may be susceptible to reduced fishmeal levels, potentially impacting growth and immune function. Furthermore, H. pluvialis supplementation may assist L. vannamei in acclimating to prolonged low-temperature conditions.
Collapse
Affiliation(s)
- Sihan Lin
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Mengdie Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xuanqi Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yanmei Li
- Algae Health Science Co., Ltd., Kunming, China
| | - Yafeng Liu
- Algae Health Science Co., Ltd., Kunming, China
| | | | | | - Beiping Tan
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Jin Niu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
3
|
Fu Y, Cheng Y, Ma L, Zhou Q. Longitudinal Microbiome Investigations Reveal Core and Growth-Associated Bacteria During Early Life Stages of Scylla paramamosain. Microorganisms 2024; 12:2457. [PMID: 39770661 PMCID: PMC11678816 DOI: 10.3390/microorganisms12122457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/24/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025] Open
Abstract
In animals, growth and development are strongly correlated with the gut microbiota. The gut of the economically important marine crab (Scylla paramamosain) harbors a diverse microbial community, yet its associations with the surrounding environment, growth performance, and developmental stages remain obscure. In this study, we first characterized stage-specific microbiomes and shifts in the contributions of live feed and water via SourceTracker. We observed decreased microbial diversity and increased priority effects along zoea stages. Psychobacter was identified as the core genus, whereas Lactobacillus was the hub genus connecting different stages. Second, microbial correlations with various stage-specific growth traits were observed under interventions generating enhanced (probiotic mixture enrichment), normal (control), and reduced (antibiotic treatment) microbiomes. By combining machine learning regression and bioinformatics analysis, we identified four candidate growth performance-associated probiotics belonging to Rhodobacterales, Sulfitobacter, Confluentimicrobium, and Lactobacillus, respectively. Our study interpreted the dynamics and origins of the Scylla paramamosain zoea microbiome and underscored the importance of optimizing potential probiotics to increase growth performance during early life stages in marine invertebrates for effective larviculture.
Collapse
Affiliation(s)
- Yin Fu
- College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai 201306, China;
- Key Laboratory of East China Sea and Oceanic Fishery Resources Exploitation, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Affairs, Shanghai 200090, China
| | - Yongxu Cheng
- College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai 201306, China;
| | - Lingbo Ma
- Key Laboratory of East China Sea and Oceanic Fishery Resources Exploitation, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Affairs, Shanghai 200090, China
| | - Qicun Zhou
- Laboratory of Fish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China;
| |
Collapse
|
4
|
Yang W, Liang H, Chen R, Du Z, Deng T, Zheng Y, Song Y, Duan Y, Lin J, Bakky MAH, Tran NT, Zhang M, Li S. Effects of dietary probiotic ( Clostridium butyricum I9, C. butyricum G15, or Paraclostridium bifermentans X13) on growth, digestive enzyme activities, immunity, and intestinal microbiota of Pacific white shrimp ( Penaeus vannamei). Front Microbiol 2024; 15:1479446. [PMID: 39664054 PMCID: PMC11631857 DOI: 10.3389/fmicb.2024.1479446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/06/2024] [Indexed: 12/13/2024] Open
Abstract
Pacific white shrimp (Penaeus vannamei) is one of the most productive and economically important species globally. However, the development and continuous expansion of the farming scale led to an increase in the risk of disease occurrence in shrimp farming. The application of probiotics as an effective method for controlling diseases in aquaculture has been widely considered. In shrimp farming, several probiotics have been used and shown benefits to the health of the host. To diverse the sources of bacterial species as probiotics in shrimp farming, in this study, we aimed to elucidate the effects of dietary probiotics (Clostridium butyricum I9 (I9), Clostridium butyricum G15 (G15), or Paraclostridium bifermentans X13) on the growth, immune response and intestinal microbiome of white shrimp. Shrimps were fed with diets containing either phosphate-buffered saline (PBS), I9 (107 CFU/g feed), G15 (107 CFU/g feed), or X13 (107 CFU/g feed) for 30 days and followed by the challenge with Vibrio parahaemolyticus (Vp). The results showed that the survival rate, body weight gain, and special growth rate of shrimps in the I9, X13, and G15 groups significantly increased, compared to the PBS. The supplementation of probiotics increased the content of short-chain fatty acids and effectively maintained the normal morphology and structure of the intestinal tract and hepatopancreas. The I9, X13, or G15 groups showed a positive change in the diversity and abundance of gut bacteria. There was a significant up-regulation of CTL, SOD, proPO, Crustin, PEN2-4, and ALF1-3 genes in shrimps in the I9, X13, and G15. Additionally, dietary probiotics significantly increased the survival rate, maintained the intestinal structure, promoted the activities of SOD, AKP, ACP, and T-AOC enzymes, and reduced the level of MDA in shrimps after Vp infection. In conclusion, dietary supplementation of I9, G15, or X13 improved the growth, immunity, and disease resistance of Pacific white shrimp, providing a scientific basis for shrimp farming.
Collapse
Affiliation(s)
- Wei Yang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
- Institute of Marine Sciences, Shantou University, Shantou, China
| | - Huifen Liang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
- Institute of Marine Sciences, Shantou University, Shantou, China
| | - Ruhan Chen
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
- Institute of Marine Sciences, Shantou University, Shantou, China
| | - Zhinuo Du
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
- Institute of Marine Sciences, Shantou University, Shantou, China
| | - Taoqiu Deng
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
- Institute of Marine Sciences, Shantou University, Shantou, China
| | - Yuqing Zheng
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
- Institute of Marine Sciences, Shantou University, Shantou, China
| | - Ying Song
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
- Institute of Marine Sciences, Shantou University, Shantou, China
| | - Yanchuang Duan
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
- Institute of Marine Sciences, Shantou University, Shantou, China
| | - Junyuan Lin
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
- Institute of Marine Sciences, Shantou University, Shantou, China
| | - Md. Akibul Hasan Bakky
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
- Institute of Marine Sciences, Shantou University, Shantou, China
| | - Ngoc Tuan Tran
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
- Institute of Marine Sciences, Shantou University, Shantou, China
| | - Ming Zhang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
- Institute of Marine Sciences, Shantou University, Shantou, China
| | - Shengkang Li
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
- Institute of Marine Sciences, Shantou University, Shantou, China
| |
Collapse
|
5
|
Abdelsamad AEM, Said REM, Assas M, Gaafar AY, Hamouda AH, Mahdy A. Effects of dietary supplementation with Bacillus velezensis on the growth performance, body composition, antioxidant, immune-related gene expression, and histology of Pacific white shrimp, Litopenaeus vannamei. BMC Vet Res 2024; 20:368. [PMID: 39152418 PMCID: PMC11328396 DOI: 10.1186/s12917-024-04207-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/24/2024] [Indexed: 08/19/2024] Open
Abstract
In recent decades, probiotics have become an acceptable aquaculture strategy for shrimp growth promotion and immune modulation. This study aimed to evaluate the effect of Bacillus velezensis on Litopenaeus vannamei following a 60-day trial. L. vannamei (3 ± 0.4 g) were distributed into four groups with three replicates per group and fed an isonitrogenous diet supplemented with B. velezensis at 0, 1 × 107, 1 × 108, and 1 × 109 CFU/g, which were defined as the control, G1, G2, and G3 groups, respectively. B. velezensis significantly improved the growth, survival rate, and proximate body composition of L. vannamei (P < 0.05). All groups fed the B. velezensis diet showed significant increases in digestive enzymes (lipase, amylase, and protease), superoxide dismutase (SOD; G3), catalase (CAT; G3, G2, and G1), lysozyme activity (G3 and G2), immunoglobulin M (IgM), bactericidal activity BA%, alkaline phosphatase (AKP), and acid phosphatase (ACP) compared with the control group (P < 0.05). Malondialdehyde (MDA), triglycerides, cholesterol, high-density lipoprotein (HDL), low-density lipoprotein (LDL), aspartate aminotransferase (AST), and alanine aminotransferase (ALT) levels were significantly decreased in all groups fed B. velezensis diet compared with the control group (P < 0.05). The expression levels of SOD (G3), LZM, and serine proteinase genes were significantly higher in L. vannamei fed diets containing B. velezensis than in the control group (P < 0.05). This is the first study to address the effects of B. velezensis on the expression of the LZM and serine proteinase genes in L. vannamei. L. vannamei fed diet containing B. velezensis had more B and R cells in its hepatopancreas than did the control group. In conclusion, B. velezensis is a promising probiotic that can be safely added to the diet of L. vannamei with 1 × 109 CFU/g. Its application had a positive influence on the health status, survival rate, nutritional value, and immunity of L. vannamei.
Collapse
Affiliation(s)
- Arwa E M Abdelsamad
- Zoology Department, Faulty of Science, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Rashad E M Said
- Zoology Department, Faulty of Science, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Mona Assas
- Fish Processing and Biotechnology Department, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Alkhateib Y Gaafar
- Hydrobiology Department, Veterinary Research Division, National Research Centre, El Buhouth St, Dokki, Cairo, 12311, Egypt
| | - Awatef H Hamouda
- Fish Health and Diseases Department, Faculty of Fish and Fisheries Technology, Aswan University, Aswan, 81528, Egypt.
| | - Aldoushy Mahdy
- Fish Processing and Biotechnology Department, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| |
Collapse
|
6
|
Qiu H, Huang L, Wang H, Tao C, Ran Z, Xu J, Sun H, Wang P. Effects of Lactobacillus acidophilus AC on the growth, intestinal flora and metabolism of zebrafish (Danio rerio). FISH & SHELLFISH IMMUNOLOGY 2024; 149:109570. [PMID: 38643956 DOI: 10.1016/j.fsi.2024.109570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/23/2024]
Abstract
The intensive aquaculture model has resulted in a heightened prevalence of diseases among farmed animals. It is imperative to identify healthy and efficacious alternatives to antibiotics for the sustainable progression of aquaculture. In this investigation, a strain of Lactobacillus acidophilus AC was introduced into the cultural water at varying concentrations (105 CFU/mL, 106 CFU/mL, 107 CFU/mL) to nourish zebrafish (Danio rerio). The findings revealed that L. acidophilus AC effectively increased the growth performance of zebrafish, improved the ion exchange capacity of gills, and enhanced hepatic antioxidant and immune-enzyme activities. Furthermore, L. acidophilus AC notably enhanced the intestinal morphology and augmented the activity of digestive enzymes within the intestinal tract. Analysis of intestinal flora revealed that L. acidophilus AC exerted a significant impact on the intestinal flora community, manifested by a reduction in the relative abundance of Burkholderiales, Candidatus_Saccharibacteria_bacterium, and Sutterellaceae, coupled with an increase in the relative abundance of Cetobacterium. Metabolomics analysis demonstrated that L. acidophilus AC significantly affected intestinal metabolism of zebrafish. PG (i-19:0/PGE2) and 12-Hydroxy-13-O-d-glucuronoside-octadec-9Z-enoate were the metabolites with the most significant up- and down-regulation folds, respectively. Finally, L. acidophilus AC increased the resistance of zebrafish to Aeromonas hydrophila. In conclusion, L. acidophilus AC was effective in enhancing the health and immunity of zebrafish. Thus, our findings suggested that L. acidophilus AC had potential applications and offered a reference for its use in aquaculture.
Collapse
Affiliation(s)
- Haoyu Qiu
- College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Ling Huang
- College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Hanying Wang
- National Marine Facility Aquaculture Engineering and Technology Research Center, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Chenzhi Tao
- College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Zhiqiang Ran
- College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Jiahang Xu
- College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Haofeng Sun
- College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Ping Wang
- College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, 316022, China.
| |
Collapse
|
7
|
Huang MY, Truong BN, Nguyen TP, Ju HJ, Lee PT. Synergistic effects of combined probiotics Bacillus pumilis D5 and Leuconostoc mesenteroide B4 on immune enhancement and disease resistance in Litopenaeus vannamei. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 155:105158. [PMID: 38467323 DOI: 10.1016/j.dci.2024.105158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/08/2024] [Accepted: 03/09/2024] [Indexed: 03/13/2024]
Abstract
This study investigated the effects of two distinct probiotics, Leuconostoc mesenteroides B4 (B4) and Bacillus pumilus D5 (D5), along with their combination, on the diet of white shrimp (Litopenaeus vannamei) during an eight-week feeding trial. The diets tested included B4 + dextran at 107 CFU/g feed (the B4 group), D5 alone at 107 CFU/g feed (the D5 group), and a combination of B4 + dextran and D5 at 5 × 106 CFU/g feed each (the B4+dextran + D5 group). Relative to the control group, those administered probiotics exhibited moderate enhancements in growth. By the eighth week, the weight gain for the B4, D5, and B4+D5 groups was 696.50 ± 78.15%, 718.53 ± 130.73%, and 693.05 ± 93.79%, respectively, outperforming the control group's 691.66 ± 31.10% gain. The feed conversion ratio was most efficient in the B4 group (2.16 ± 0.06), closely followed by B4+D5 (2.21 ± 0.03) and D5 (2.22 ± 0.06), with the control group having the highest ratio (2.27 ± 0.03). While phenoloxidase activity was somewhat elevated in the B4 and D5 groups, no significant differences were noted in respiratory burst activity or total hemocyte count across all groups. Challenge tests at weeks 4 and 8 showed that the B4 + D5 combination offered superior protection against AHPND-causing Vibrio parahaemolyticus. The 4-week cumulative survival rate was highest in shrimp treated with B4 + dextran + D5 (56.25%), followed by B4 + dextran (31.25%), control (18.75%), and lowest in D5 (12.5%). By week 8, the B4 + dextran + D5 (43.75%) and B4 + dextran (37.5%) groups significantly outperformed the control group (6.25%, p < 0.05), with no significant difference observed between the D5 group (37.5%) and the control group at day 56. Analysis of the shrimp's foregut microbiota revealed an increase in unique OTUs in the B4 and B4 + D5 groups. Compared to the control, Proteobacteria abundance was reduced in all probiotic groups. Potential pathogens like Vibrio, Bacteroides, Neisseria, Botrytis, Clostridioides, and Deltaentomopoxvirus were detected in the control but were reduced or absent in probiotic groups. Beneficial microbes such as Methanobrevibacter and Dictyostelium in the B4+D5 group, and Sugiyamaella in the B4 group, showed significant increases. Probiotics also led to higher transcript levels of nitric oxide synthase in the hemocytes, and lysozyme and transglutaminase in the midgut, along with lysozyme and α2-macroglobulin in the foregut. Notably, the combined B4 + D5 probiotics synergistically enhanced the expression of superoxide dismutase and prophenoloxidase in the foregut, indicating an improved immune response. In summary, this study demonstrates that the probiotics evaluated, especially when used in combination, significantly boost the expression of specific immune-related genes, enhance the bacterial diversity and richness of the intestine, and thus prevent the colonization and proliferation of Vibrio spp. in L. vannamei.
Collapse
Affiliation(s)
- Mei-Ying Huang
- Aquaculture Division, Fisheries Research Institute, Ministry of Agriculture, Taiwan
| | - Bich Ngoc Truong
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Tan Phat Nguyen
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Huei-Jen Ju
- Aquaculture Division, Fisheries Research Institute, Ministry of Agriculture, Taiwan
| | - Po-Tsang Lee
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan.
| |
Collapse
|
8
|
He X, Chen A, Liao Z, Zhong J, Cheng A, Xue X, Li F, Chen M, Yao R, Zhao W, Niu J. Dietary Supplementation of Astragalus membranaceus Extract Affects Growth Performance, Antioxidant Capacity, Immune Response, and Energy Metabolism of Largemouth Bass ( Micropterus salmoides). AQUACULTURE NUTRITION 2024; 2024:3893671. [PMID: 38464590 PMCID: PMC10923623 DOI: 10.1155/2024/3893671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/01/2024] [Accepted: 02/20/2024] [Indexed: 03/12/2024]
Abstract
The present study investigated the effects of Astragalus membranaceus extract (AME) on growth performance, immune response, and energy metabolism of juvenile largemouth bass (Micropterus salmoides). Seven diets containing 0%, 0.1%, 0.2%, 0.3%, 0.4%, 0.5%, and 0.6% AME (Con, AME0.1, AME0.2, AME0.3, AME0.4, AME0.5, and AME0.6 groups) were formulated and fed to M. salmoides for 8 weeks. Final body weight (FBW), feed intake (FI), weight gain (WG), and specific growth rate (SGR) were all significantly higher in AME0.4 group than in Con group (P < 0.05). Feed conversion rate (FCR) was significantly improved in AME0.5 group compared with Con group (P < 0.05). Whole-body crude protein contents were significantly increased in AME0.2 group (P < 0.05). Whole-body crude lipid contents were significantly lower in AME0.2 and AME0.3 groups, while muscle lipid was upregulated by dietary AME (P < 0.05). Hepatic malondialdehyde (MDA) contents were significantly lowered in AME0.3 and AME0.4 groups, and catalase (CAT) activities were significantly increased in AME0.1 and AME0.2 groups (P < 0.05). Plasma aspartate aminotransferase (AST) level was significantly lowered in AME0.5, and AME0.6 groups, and alanine aminotransferase (ALT) level was lowered in AME0.5 groups (P < 0.05). Plasma triglyceride was declined in AME0.6 group, and glucose was decreased by 0.3%-0.5% AME (P < 0.05). Significantly higher hepatocyte diameter, lamina propria width, and submucosal layer thickness were recorded in AME0.6 groups, while the longest villi height was obtained in AME0.2 and AME0.3 groups (P < 0.05). The mRNA expression levels of insulin-like growth factor 1 (igf1) revealed the growth-promoting effect of AME. The anti-inflammatory and antiapoptotic effects of AME were demonstrated by transcription levels of interleukin 8 (il-8), tumor necrosis factor-alpha (tnf-a), caspase, B-cell lymphoma-xl (Bcl-xl), bcl-2 associated x (Bax), and bcl-2-associated death protein (Bad). The transcription levels of lipid metabolism and gluconeogenesis related genes, including acetyl-CoA carboxylase alpha (acc1), fatty acid synthase (fasn), fatty acid binding protein 1 (fabp1), phosphoenolpyruvate carboxykinase 2 (pepck2), and glucose-6-phosphatase catalytic subunit 1a (g6pc), were reduced by AME treatment, while the levels of glycolysis-related genes, including glucokinase (gck) and pyruvate kinase (pk), were the highest in AME0.2 and AME0.3 groups (P < 0.05). According to polynomial regression analysis of SGR, WG, FCR, whole-body crude lipid, MDA, and ALT, the optimal AME supplementation level was estimated to be 0.320%-0.429% of the diet. These results provided insights into the roles of AME in regulating immunity and metabolism, which highly indicated its potential as immunostimulants and metabolic regulators in diverse aquatic animals.
Collapse
Affiliation(s)
- Xuanshu He
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Anqi Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhihong Liao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | | | - Anda Cheng
- Beijing Centre Biology Co. Ltd., Beijing, China
| | - Xinghua Xue
- Beijing Centre Biology Co. Ltd., Beijing, China
| | - Fuyuan Li
- Beijing Centre Biology Co. Ltd., Beijing, China
| | - Mengdie Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Rong Yao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wei Zhao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jin Niu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
9
|
Aini N, Putri DSYR, Achhlam DH, Fatimah F, Andriyono S, Hariani D, Do HDK, Wahyuningsih SPA. Supplementation of Bacillus subtilis and Lactobacillus casei to increase growth performance and immune system of catfish ( Clarias gariepinus) due to Aeromonas hydrophila infection. Vet World 2024; 17:602-611. [PMID: 38680146 PMCID: PMC11045519 DOI: 10.14202/vetworld.2024.602-611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/16/2024] [Indexed: 05/01/2024] Open
Abstract
Background and Aim Catfish has a high economic value and is popular among consumers. To ensure well-stocked catfish stocks, good fisheries management must also be ensured. The high demand for catfish must be supplemented by preventive measures against pathogenic bacterial infections using probiotics with high potential for Lactobacillus casei and Bacillus subtilis. The aim of this study was to determine the effect of probiotic supplementation consisting of a combination of L. casei and B. subtilis probiotics on the growth, immune system, water quality, proximate value of feed, and body composition of catfish infected with Aeromonas hydrophila. Materials and Methods This study used a completely randomized study with eight treatments and three replications. The manipulated factor was the probiotic concentration [0% (A), 0.5% (B), 10% (C), and 15% (D)] in groups of catfish infected and uninfected with A. hydrophila. Combination of B. subtilis, and L. casei that were used in a 1:1 ratio of 108 colony forming unit/mL. The study lasted for 42 days. On the 35th day, A. hydrophila was infected by intramuscular injection into fish. The Statistical Package for the Social Sciences (SPSS) software version 23.0 (IBM SPSS Statistics) was used to analyze data on growth, immune system, and water quality. Results Providing probiotics in feed can increase the nutritional value of feed based on proximate test results. There were significant differences in average daily gain (ADG), feed conversion ratio (FCR), and survival rate (SR) parameters in the group of catfish infected with A. hydrophila (p > 0.05); however, there were no significant differences in final body weight, specific growth rate (SGR), and percentage weight gain. Interleukin-1β (IL-1β) levels were significantly different between treatments C and D. The tumor necrosis factor (TNF) α parameters were significantly different between treatments A and C, whereas the phagocytic activity of treatment A was significantly different from that of treatment D. There was a significant difference (p > 0.05) in the growth parameters of SGR, ADG, and FCR in the group of fish that were not infected with A. hydrophila, with the best treatment being a probiotic concentration of 15%, but there was no significant difference in the SR parameters. IL-1β and TNF-α levels significantly differed between E and E0 (15% probiotics) but were not significantly different in terms of phagocytosis parameters. Conclusion Based on the results of this study, it can be concluded that using a combination of probiotics L. casei and B. subtilis can improve the growth, immune system, water quality, proximate value of feed, and body composition of catfish infected with A. hydrophila.
Collapse
Affiliation(s)
- Nurul Aini
- Doctoral Mathematics and Natural Sciences Study Program, Faculty of Science and Technology, Universitas Airlangga, Surabaya, Indonesia
- Department of Agricultural Technology, KH University. A. Wahab Hasbullah, Jombang, Indonesia
| | | | - Divany Hunaimatul Achhlam
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, Indonesia
| | - Fatimah Fatimah
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, Indonesia
- University Center of Excellence Research Center for Bio-Molecule Engineering, Universitas Airlangga, Surabaya, Indonesia
| | - Sapto Andriyono
- Department of Marine, Faculty of Fisheries and Marine Sciences, Universitas Airlangga, Surabaya, Indonesia
| | - Dyah Hariani
- Department of Biology, Faculty of Mathematics and Natural Sciences, Surabaya State University, Surabaya, Indonesia
| | - Hoang Dang Khoa Do
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | | |
Collapse
|
10
|
Chang YT, Ko HT, Wu PL, Kumar R, Wang HC, Lu HP. Gut microbiota of Pacific white shrimp ( Litopenaeus vannamei) exhibits distinct responses to pathogenic and non-pathogenic Vibrio parahaemolyticus. Microbiol Spectr 2023; 11:e0118023. [PMID: 37750710 PMCID: PMC10580984 DOI: 10.1128/spectrum.01180-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 08/11/2023] [Indexed: 09/27/2023] Open
Abstract
Acute hepatopancreatic necrosis disease (AHPND), a high-mortality-rate shrimp disease, is caused by specific Vibrio parahaemolyticus (Vp) strains with a plasmid encoding the PirABVp toxins. As a bacterial pathogen, the invasion of AHPND-causing Vp might impose pressure on commensal microbiota in the shrimp gut, while the relationship between the pathogenesis of AHPND and the dysbiosis of gut bacterial communities remains unclear. Here we explored the temporal changes of shrimp gut microbiota in response to AHPND-causing and non-AHPND-causing Vp strains, with the non-infected controls as a baseline of the shrimp gut microbiota. The diversity and composition of bacterial communities from 168 gut samples (covering three treatments at seven time points with eight individuals per set) were investigated using 16S rRNA gene metabarcoding with high-throughput sequencing. The results showed that (i) species diversity of gut bacterial communities declined in Vp-infected shrimp, independent of the strain pathogenicity; (ii) taxonomic compositions of gut bacterial communities were significantly different between shrimp infected by AHPND-causing and non-AHPND-causing Vp strains; (iii) short-term (within 6 hours) compositional shifts in the gut microbiota were found only in AHPND-causing Vp-infected shrimp; (iv) the gut microbiota of AHPND-causing Vp-infected shrimp was enriched with genera Photobacterium and Vibrio, with a decline in Candidatus Bacilliplasma; and (v) functional predictions suggested the loss of normal metabolism due to compositional shifts in the gut microbiota. Our work reveals distinct features of community dynamics in shrimp gut microbiota, associated with pathogenic versus non-pathogenic Vibrio infections, providing a new perspective of the pathogenesis of AHPND. IMPORTANCE Shrimp production is continually threatened by newly emerging diseases, such as AHPND, which is caused by specific Vp strains. Previous studies on the pathogenesis of AHPND have mainly focused on the histopathology and immune responses of the host. However, more attention needs to be paid to the gut microbiota, which acts as the first barrier to pathogen colonization. In this study, we revealed that shrimp gut microbiota responded differently to pathogenic and non-pathogenic Vp strains, with bacterial genera Photobacterium and Vibrio enriched in pathogenic Vp-infected shrimp, and Candidatus Bacilliplasma enriched in non-pathogenic Vp-infected shrimp. Moreover, functional predictions suggested that changes in taxonomic compositions would further affect normal metabolic functions, emphasizing the importance of sustaining an equilibrium in the gut microbiota. Several biomarkers associated with specific microbial taxa and functional pathways were identified in our data sets, which help predict the incidence of disease outcomes.
Collapse
Affiliation(s)
- Yi-Ting Chang
- Department of Biotechnology and Bioindustry Sciences, College of Biosciences and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Hao-Ting Ko
- Department of Biotechnology and Bioindustry Sciences, College of Biosciences and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Ping-Lun Wu
- Department of Biotechnology and Bioindustry Sciences, College of Biosciences and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Ramya Kumar
- Department of Biotechnology and Bioindustry Sciences, College of Biosciences and Biotechnology, National Cheng Kung University, Tainan, Taiwan
- International Center for Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan, Taiwan
| | - Han-Ching Wang
- Department of Biotechnology and Bioindustry Sciences, College of Biosciences and Biotechnology, National Cheng Kung University, Tainan, Taiwan
- International Center for Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan, Taiwan
| | - Hsiao-Pei Lu
- Department of Biotechnology and Bioindustry Sciences, College of Biosciences and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
11
|
Zhang M, Chen X, Xue M, Jiang N, Li Y, Fan Y, Zhang P, Liu N, Xiao Z, Zhang Q, Zhou Y. Oral Vaccination of Largemouth Bass (Micropterus salmoides) against Largemouth Bass Ranavirus (LMBV) Using Yeast Surface Display Technology. Animals (Basel) 2023; 13:ani13071183. [PMID: 37048441 PMCID: PMC10093309 DOI: 10.3390/ani13071183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/20/2023] [Accepted: 03/25/2023] [Indexed: 03/31/2023] Open
Abstract
Largemouth bass ranavirus (LMBV) infects largemouth bass, leading to significant mortality and economic losses. There are no safe and effective drugs against this disease. Oral vaccines that directly target the intestinal mucosal immune system play an important role in resisting pathogens. Herein, the B subunit of Escherichia coli heat-labile enterotoxin (LTB, a mucosal immune adjuvant) and the LMBV main capsid protein (MCP) were expressed using Saccharomyces cerevisiae surface display technology. The yeast-prepared oral vaccines were named EBY100-OMCP and EBY100-LTB-OMCP. The candidate vaccines could resist the acidic intestinal environment. After 7 days of continuous oral immunization, indicators of innate and adaptive immunity were measured on days 1, 7, 14, 21, 28, 35, and 42. High activities of immune enzymes (T-SOD, AKP, ACP, and LZM) in serum and intestinal mucus were detected. IgM in the head kidney was significantly upregulated (EBY100-OMCP group: 3.8-fold; BY100-LTB-OMCP group: 4.3-fold). IgT was upregulated in the intestines (EBY100-OMCP group: 5.6-fold; EBY100-LTB-OMCP group: 6.7-fold). Serum neutralizing antibody titers of the two groups reached 1:85. Oral vaccination protected against LMBV infection. The relative percent survival was 52.1% (EBY100-OMCP) and 66.7% (EBY100-LTB-OMCP). Thus, EBY100-OMCP and EBY100-LTB-OMCP are promising and effective candidate vaccines against LMBV infection.
Collapse
|
12
|
Pan PK, Wang KT, Wu TM, Chen YY, Nan FH, Wu YS. Heat inactive Bacillus subtilis var. natto regulate Nile tilapia (Oreochromis niloticus) intestine microbiota and metabolites involved in the intestine phagosome response. FISH & SHELLFISH IMMUNOLOGY 2023; 134:108567. [PMID: 36731811 DOI: 10.1016/j.fsi.2023.108567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 12/15/2022] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
In this study, we evaluated the intestinal microbiota, intestinal and fecal metabolites production and the intestinal RNA-seq analysis of the Nile tilapia intestine after feeding with 105and 107 of the inactive Bacillus subtilis var. natto. First, we assessed the influence of heat inactive Bacillus subtilis var. natto on the growth performance, biochemical blood analysis, and evaluated the liver/body, spleen/body and intestine/body ratio. This evidence was known feeding with inactive Bacillus subtilis var. natto was able to improve the growth performance after 4 weeks, but not to affect the inflammatory biochemical blood parametres total protein (T-pro), albumin (Alb), Alb/T-pro ratio, creatine-phospho-kinase (CPK) and lactate dehydrogenase (LDH). Further, in the intestine microbiota, the Lactobacillaceae, Firmicutes, Chromatiales, and Rhodobacteria, was significantly higher than the control and the Firmicutes/Bacteroidetes ratio (F/B), which was indicated with a significantly increased. The intestine tissue metabolites OPLS-DA analysis indicated that the prominent bioactive metabolites changed. The peonidin-3-glucoside, l-Tyrosine, 1-Deoxy-1-(N6-lysino)-d-fructose was significantly increased. The feces metabolite OPLS-DA analysis indicated that the palmitelaidic acid, 5-KETE, tangeritin was significantly increased. In the transcriptome, the Gene Ontology (GO) analysis was found to enhance the intestine intestinal immune network. Combine of these evidence, feeding of the heat inactive Bacillus subtilis var. natto exactly improved the O. niloticus growth performance and regulation of the microbiota to promote the metabolites. In the transcriptome analysis, it was found to involve in the intestine immune phagosome response. Summarized of this study, the heat inactive Bacillus subtilis var. natto was reported to affect Nile tilapia intestine microbiota, and could positively regulate the intestine and fecal metabolites production to improve the intestine immune network.
Collapse
Affiliation(s)
- Po-Kai Pan
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, 912301, Taiwan
| | - Kuang-Teng Wang
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, 912301, Taiwan
| | - Tsung-Meng Wu
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, 912301, Taiwan
| | - Yin-Yu Chen
- Department of Aquaculture, National Taiwan Ocean University, Keelung, 202301, Taiwan
| | - Fan-Hua Nan
- Department of Aquaculture, National Taiwan Ocean University, Keelung, 202301, Taiwan
| | - Yu-Sheng Wu
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, 912301, Taiwan.
| |
Collapse
|
13
|
Zhou N, Wang Z, Yang L, Zhou W, Qin Z, Zhang H. Size-dependent toxicological effects of polystyrene microplastics in the shrimp Litopenaeus vannamei using a histomorphology, microbiome, and metabolic approach. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120635. [PMID: 36370970 DOI: 10.1016/j.envpol.2022.120635] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Due to the wide application of plastic products in human life, microplastic pollution in water has recently attracted more attention. Many studies have revealed the size-dependent toxicity of microplastics. Here, we investigated the toxicological effects of polystyrene microplastics (PS-MPs) on the white leg shrimp, Litopenaeus vannamei, a profitable aquaculture species, using a comprehensive histomorphological, microbiome, and metabolomic approach to verify whether smaller particles are more toxic than larger particles. L. vannamei were experimentally exposed to water containing PS-MPs of four sizes (0.1, 1.0, 5.0, and 20.0 μm) for 24 h at 10 mg/L (acute experiment) and 12 d at 1 mg/L (subchronic experiment). After 24 h of acute exposure, PS-MP accumulation in shrimp indicated that the ingestion and egestion of PS-MPs had a size-dependent effect, and smaller particles were more bioavailable. The tissue morphological results of subchronic experiments showed that, for the guts and gills, the smaller sizes of the PS-MPs exhibited greater damage. In addition, 16 S rRNA gene amplicon sequencing showed that the alpha diversity was higher under larger PS-MP exposure. Correlated with changes in intestinal bacteria, we found a greater enrichment of metabolic pathways in hemolymph proteins and metabolites in larger PS-MP groups, such as "arginine and proline metabolism", "protein digestion and absorption", "lysine degradation". Interestingly, the activity or content of biomarkers of oxidative stress showed a peak at 1 μm and 5 μm. Under specific sizes of PS-MPs, the abundance of the pathogen Vibrio and probiotic bacteria Rhodobacter (5-μm) and Bacillus and Halomonas (1-μm) were simultaneously enriched. Our results indicated that PS-MP exposure can cause size-dependent damage to shrimp, yet specific particle size can be influential differently in regard to some research indicators. Therefore, it can enhance our comprehensive understanding of the impacts of microplastics on shrimp health and suggests that specific particle size should be considered when assessing the size-dependent toxicity of microplastics.
Collapse
Affiliation(s)
- Ningjia Zhou
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, Guangdong, China; College of Education for the Future, Beijing Normal University, Zhuhai, 519087, Guangdong, China; Faculty of Art and Science, Beijing Normal University, Zhuhai, 519087, Guangdong, China
| | - Zhiwei Wang
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, Guangdong, China; College of Education for the Future, Beijing Normal University, Zhuhai, 519087, Guangdong, China; Faculty of Art and Science, Beijing Normal University, Zhuhai, 519087, Guangdong, China
| | - Lifeng Yang
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, Guangdong, China; College of Education for the Future, Beijing Normal University, Zhuhai, 519087, Guangdong, China; Faculty of Art and Science, Beijing Normal University, Zhuhai, 519087, Guangdong, China
| | - Wenyao Zhou
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, Guangdong, China; College of Education for the Future, Beijing Normal University, Zhuhai, 519087, Guangdong, China; Faculty of Art and Science, Beijing Normal University, Zhuhai, 519087, Guangdong, China
| | - Zhiwei Qin
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, Guangdong, China
| | - Heqian Zhang
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, Guangdong, China; College of Education for the Future, Beijing Normal University, Zhuhai, 519087, Guangdong, China; Faculty of Art and Science, Beijing Normal University, Zhuhai, 519087, Guangdong, China.
| |
Collapse
|
14
|
He X, Ye G, Xu S, Chen X, He X, Gong Z. Effects of three different probiotics of Tibetan sheep origin and their complex probiotics on intestinal damage, immunity, and immune signaling pathways of mice infected with Clostridium perfringens type C. Front Microbiol 2023; 14:1177232. [PMID: 37138630 PMCID: PMC10149710 DOI: 10.3389/fmicb.2023.1177232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/31/2023] [Indexed: 05/05/2023] Open
Abstract
Tibetan sheep have unique intestinal microorganisms in their intestines that are adapted to the highland alpine and anoxic environment. To further clarify the probiotic properties of Tibetan sheep-derived probiotics, we selected three Tibetan sheep-derived probiotic isolates (Enterococcus faecalis EF1-mh, Bacillus subtilis BS1-ql, and Lactobacillus sakei LS-ql) to investigate the protective mechanisms of monocultures and their complex strains against Clostridium perfringens type C infection in mice. We established a model of C. perfringens type C infection and used histology and molecular biology to analyze the effects and mechanisms of different probiotic treatments on mice after C. perfringens type C infection. After supplementation with either probiotics or complex probiotics, mice were improved in terms of weight reduction and reduced the levels of cytokines in serum and increased the levels of intestinal sIgA, and supplementation with complex probiotics was effective. In addition, both probiotic and complex probiotic supplementation effectively improved the damage of intestinal mucosa and spleen tissue. The relative expressions of Muc 2, Claudin-1, and Occludin genes were increased in the ileum. The three probiotics and the compound probiotics treatment significantly reduced the relative mRNA expression of toll-like/MyD88/NF-κB/MAPK. The effect of probiotic treatment was similar to the results of engramycin treatment, but the effect of engramycin treatment on intestinal sIgA was not significant. Our results clarify the immunomodulatory effects of the three probiotic isolates and the complex probiotics on C. perfringens infection, and the repair of the intestinal mucosal barrier.
Collapse
|
15
|
Le B, Kim DG, Phuoc NN, Linh NTH, Yang SH. Dietary supplementation with Pediococcus pentosaceus enhances the innate immune response in and promotes growth of Litopenaeus vannamei shrimp. JOURNAL OF FISH DISEASES 2022; 45:1343-1354. [PMID: 35675520 DOI: 10.1111/jfd.13666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
To reach the sustainable development goals on health management in Litopenaeus vannamei shrimp culture, Pediococcus pentosaceus AB01 was supplemented in shrimp diet. In this study, the control diet and three experimental diets containing P. pentosaceus AB01 (108 , 109 , 1010 CFU/g) were separately introduced to L. vannamei for a 28 days feeding trial. After the feeding trial, percent weight gain, feeding efficiency, and feed conversion ratio (FCR) were significantly elevated in L. vannamei administered with P. pentosaceus AB01 at 109 and 1010 colony-forming unit (CFU)/g. Protease, amylase, and trypsin were found at higher levels in the probiotic-supplied groups. The feeding of shrimps with P. pentosaceus AB01 significantly increased innate immune response and levels of related biochemical parameters in the haemolymph. After the white spot syndrome virus (WSSV) challenge, supplementation of P. pentosaceus AB01 had significant positive effects (p < .05) on survival rate, compared to that of the control diet. The higher resistance of L. vannamei to WSSV might have been due to alterations in the gut microbiome composition and upregulation of the Toll-Like Receptor (TLR) signalling pathway. Hence, P. pentosaceus AB01 may be a promising alternative feed to promote growth rate, modulate microbiota composition, and enhance immunity in L. vannamei shrimp.
Collapse
Affiliation(s)
- Bao Le
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Dong-Geun Kim
- Department of Biotechnology, Chonnam National University, Yeosu, Korea
| | - Nguyen Ngoc Phuoc
- Faculty of Fisheries, University of Agriculture and Forestry, Hue University, Hue City, Viet Nam
| | - Nguyen Thi Hue Linh
- Faculty of Fisheries, University of Agriculture and Forestry, Hue University, Hue City, Viet Nam
| | - Seung-Hwan Yang
- Department of Biotechnology, Chonnam National University, Yeosu, Korea
| |
Collapse
|
16
|
Huynh-Phuoc V, Ly TQ, Purbiantoro W, Ngo HVT, Afonso F, Vu NU, Cheng TC. Bacillus safensis isolated from white-leg shrimp, Penaeus vannamei in Taiwan with antagonistic activity against common Vibrio pathogens. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
17
|
Kim S, Jeon H, Bai SC, Hur JW, Han HS. Evaluation of Salipiger thiooxidans and Exiguobacterium aestuarii from the Saemangeum Reservoir as Potential Probiotics for Pacific White Shrimp (Litopenaeus vannamei). Microorganisms 2022; 10:microorganisms10061113. [PMID: 35744631 PMCID: PMC9230058 DOI: 10.3390/microorganisms10061113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 11/21/2022] Open
Abstract
In this study, two bacterial species, Salipiger thiooxidans and Exiguobacterium aestuarii, were extracted and screened from the Saemangeum Reservoir. This study examined these species’ suitability as a probiotic by confirming the effects of S. thiooxidans and E. aestuarii added to rearing water for L. vannamei. Three experimental groups were evaluated for 6 weeks: (1) a control group reared in natural (i.e., untreated) water (CON), (2) an experimental group in which S. thiooxidans was added to natural water (SMG-A), and (3) natural water inoculated with E. aestuarii (SMG-B). The SMG-B group inoculated with E. aestuarii showed significantly higher final body weight, weight gain, specific growth rates, and feed efficiency than the control group. The SMG-B group inoculated with E. aestuarii exhibited significantly higher levels of serum lysozyme, and ACP and ALP activity than the control and SMG-A groups. The SMG-A and SMG-B groups inoculated with probiotics showed significantly lower total ammonia nitrogen and nitrite than the control group. Our findings suggest that S. thiooxidans and E. aestuarii extracted from the Saemangeum Reservoir can improve the water quality of aquaculture water, and, in particular, E. aestuarii is a potential probiotic for L. vannamei.
Collapse
Affiliation(s)
- Soohwan Kim
- Faculty of Marine Applied Biosciences, Kunsan National University, Gunsan 54150, Korea;
| | - Hyuncheol Jeon
- Department of Marine Bio-Material & Aquaculture, Pukyong National University, Busan 48513, Korea;
| | - Sungchul Charles Bai
- Feeds & Foods Nutrition Research Center, Pukyong National University, Busan 48547, Korea;
- FAO World Fisheries University Pilot Program, Busan 48547, Korea
| | - Jun-Wook Hur
- Faculty of Marine Applied Biosciences, Kunsan National University, Gunsan 54150, Korea;
- Correspondence: (J.-W.H.); (H.-S.H.); Tel.: +82-63-469-1838 (J.-W.H.); +82-63-469-1834 (H.-S.H.)
| | - Hyon-Sob Han
- Faculty of Marine Applied Biosciences, Kunsan National University, Gunsan 54150, Korea;
- Correspondence: (J.-W.H.); (H.-S.H.); Tel.: +82-63-469-1838 (J.-W.H.); +82-63-469-1834 (H.-S.H.)
| |
Collapse
|
18
|
Wang M, Lv C, Chen Y, Bi X, Yang D, Zhao J. Effects of the potential probiotic Bacillus subtilis D1-2 on growth, digestion, immunity and intestinal flora in juvenile sea cucumber, Apostichopus japonicus. FISH & SHELLFISH IMMUNOLOGY 2022; 124:12-20. [PMID: 35367627 DOI: 10.1016/j.fsi.2022.03.043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
In the present study, a potential probiotic Bacillus subtilis D1-2 with antibacterial activity was isolated from the gut of Apostichopus japonicus. The purpose of this experiment was to assess the effect of B. subtilis D1-2 at different concentrations (C: 0 CFU/g, BL: 105 CFU/g, BM: 107 CFU/g and BH: 109 CFU/g) on the growth performance, digestive enzyme activity, immune ability and intestinal flora of A. japonicus. After the 56-day feeding trial, the final body weight and weight gain rate of juvenile sea cucumber A. japonicus fed B. subtilis D1-2 were significantly increased, especially in the BM group. Additionally, the lipase activity of the intestine was significantly increased in the BM and BH groups. Enhanced immunity was also found in sea cucumbers supplemented with B. subtilis D1-2. Alpha diversity indices showed that the B. subtilis D1-2-supplemented groups had higher intestinal microbial richness and diversity than the control group. The beta diversity analysis indicated that the bacterial communities in the B. subtilis D1-2-supplemented groups were quite similar but different from the bacterial communities in the control group. Dietary supplementation with B. subtilis D1-2 increased the relative abundance of some potential probiotic-related genera, including Lactobacillus, Clostridium, Lactococcus, Bifidobacterium and Streptococcus. In conclusion, dietary addition of B. subtilis D1-2 could effectively promote the growth of A. japonicus, improve its digestion and immunity capacity to a certain extent, and actively regulate the intestinal microflora of A. japonicus.
Collapse
Affiliation(s)
- Mengmei Wang
- School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China
| | - Chengjie Lv
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Yuying Chen
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Xiujuan Bi
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Dinglong Yang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China.
| | - Jianmin Zhao
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Center for Ocean Mega-science, Chinese Academy of Sciences, Qingdao Shandong, 266071, PR China
| |
Collapse
|
19
|
Lai X, Chen J, Liang S, Chen H, Liu S, Gao H. Effects of the Probiotic Psychrobacter sp. B6 on the Growth, Digestive Enzymes, Antioxidant Capacity, Immunity, and Resistance of Exopalaemon carinicauda to Aeromonas hydrophila. Probiotics Antimicrob Proteins 2022:10.1007/s12602-022-09919-3. [PMID: 35175515 DOI: 10.1007/s12602-022-09919-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2022] [Indexed: 11/30/2022]
Abstract
Probiotics, known to improve the water quality and the host's intestinal microbial balance, has gained more and more attention in recent years. The effects of Psychrobacter sp. B6 on the growth and immunity of Exopalaemon carinicauda were investigated in this study. Psychrobacter sp. B6 was sprayed to the basal diet with four different levels (0 [basal diet], 5 × 105, 5 × 107, and 5 × 109 CFU/100 g diet) and were fed to E. carinicauda (average weight 1.15 ± 0.04 g) for 30 days. At the end of the feeding trial, shrimps were immersed in seawater contaminated with 106 CFU/mL pathogenic Aeromonas hydrophila for 2 h and then the cumulative mortality was calculated after 14 days observation. The results showed that the weight gain rate, survival rate, and specific growth rate of E. carinicauda were significantly increased with the increasing dietary level of Psychrobacter sp. B6. The activities of digestive enzymes (α-amylase and chymotrypsin) were significantly increased (P < 0.05) in the groups fed with Psychrobacter sp. B6, and the highest activities of digestive enzymes were detected in the 5 × 109 CFU/100 g diet group. The activities of antioxidant enzymes (catalase, peroxidase, and superoxide dismutase) in probiotics treated shrimp were significantly higher than those in the control shrimp, with the highest activity in 5 × 109 and 5 × 107 CFU/100 g diet group separately. At the same time, the activities of immune-related enzymes (alkaline phosphatase and lysozyme) were significantly affected by the dietary B6 content, and the highest activity of immune-related enzymes was found in shrimps fed with 5 × 107 CFU/100 g diet. The relative expression levels of CTL (C-type lectin), MBL (mannose-binding lectin), SPI (serine protease inhibitor), and ProPo (prophenoloxidase) in hepatopancreas of E. carinicauda with 5 × 109 CFU/100 g diet were significantly higher than those in the control. Moreover, cumulative mortality (22.22%) post-challenge with A. hydrophila was the lowest in 5 × 109 CFU/100 g diet. The results suggested that Psychrobacter sp. B6 could effectively promote the growth, immunity, antioxidant capacity, and disease resistance of E. carinicauda. This study provided a reference for the study on the artificial breeding of E. carinicauda.
Collapse
Affiliation(s)
- Xiaofang Lai
- College of Marine Science and Fisheries, Key Laboratory of Marine Biological Resources and Environment of Jiangsu Province, Jiangsu Ocean University, Lianyungang, 222005, China.,Jiangsu Marine Biological Industry Technology Collaborative Innovation Center, Lianyungang, 222005, China.,Marine Resource Development Institute of Jiangsu (Lianyungang), Lianyungang, 222005, Jiangsu, China
| | - Jing Chen
- College of Marine Science and Fisheries, Key Laboratory of Marine Biological Resources and Environment of Jiangsu Province, Jiangsu Ocean University, Lianyungang, 222005, China. .,Jiangsu Marine Biological Industry Technology Collaborative Innovation Center, Lianyungang, 222005, China. .,Marine Resource Development Institute of Jiangsu (Lianyungang), Lianyungang, 222005, Jiangsu, China.
| | - Shenyuan Liang
- College of Marine Science and Fisheries, Key Laboratory of Marine Biological Resources and Environment of Jiangsu Province, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Hao Chen
- College of Marine Science and Fisheries, Key Laboratory of Marine Biological Resources and Environment of Jiangsu Province, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Sen Liu
- College of Marine Science and Fisheries, Key Laboratory of Marine Biological Resources and Environment of Jiangsu Province, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Huan Gao
- College of Marine Science and Fisheries, Key Laboratory of Marine Biological Resources and Environment of Jiangsu Province, Jiangsu Ocean University, Lianyungang, 222005, China.,Marine Resource Development Institute of Jiangsu (Lianyungang), Lianyungang, 222005, Jiangsu, China.,Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, 210014, China
| |
Collapse
|
20
|
Ma Q, Li Y, Xue J, Cheng D, Li Z. Effects of Turning Frequency on Ammonia Emission during the Composting of Chicken Manure and Soybean Straw. Molecules 2022; 27:472. [PMID: 35056787 PMCID: PMC8777752 DOI: 10.3390/molecules27020472] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 01/04/2023] Open
Abstract
Here, we investigated the impact of different turning frequency (TF) on dynamic changes of N fractions, NH3 emission and bacterial/archaeal community during chicken manure composting. Compared to higher TF (i.e., turning every 1 or 3 days in CMS1 or CMS3 treatments, respectively), lower TF (i.e., turning every 5 or 7 days in CMS5 or CMS7 treatments, respectively) decreased NH3 emission by 11.42-18.95%. Compared with CMS1, CMS3 and CMS7 treatments, the total nitrogen loss of CMS5 decreased by 38.03%, 17.06% and 24.76%, respectively. Ammonia oxidizing bacterial/archaeal (AOB/AOA) communities analysis revealed that the relative abundance of Nitrosospira and Nitrososphaera was higher in lower TF treatment during the thermophilic and cooling stages, which could contribute to the reduction of NH3 emission. Thus, different TF had a great influence on NH3 emission and microbial community during composting. It is practically feasible to increase the abundance of AOB/AOA through adjusting TF and reduce NH3 emission the loss of nitrogen during chicken manure composting.
Collapse
Affiliation(s)
- Qianqian Ma
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.M.); (Y.L.)
- China-New Zealand Joint Laboratory for Soil Molecular Ecology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yanli Li
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.M.); (Y.L.)
- China-New Zealand Joint Laboratory for Soil Molecular Ecology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianming Xue
- SCION, Private Bag 29237, Christchurch 8440, New Zealand;
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Dengmiao Cheng
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China;
| | - Zhaojun Li
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.M.); (Y.L.)
- China-New Zealand Joint Laboratory for Soil Molecular Ecology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
21
|
Liu L, Cai X, Ai Y, Li J, Long H, Ren W, Huang A, Zhang X, Xie ZY. Effects of Lactobacillus pentosus combined with Arthrospira platensis on the growth performance, immune response, and intestinal microbiota of Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2022; 120:345-352. [PMID: 34883257 DOI: 10.1016/j.fsi.2021.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/30/2021] [Accepted: 12/05/2021] [Indexed: 06/13/2023]
Abstract
Litopenaeus vannamei is one of the most productive shrimp species in the world. However, shrimp farming is suffering from adverse environmental conditions and disease outbreaks. Typically, Lactobacillus pentosus and Arthrospira platensis are used as substitutes for some antibiotics. In the present study, we assessed the effects of dietary supplements along with living bacteria or cell-free extracts of L. pentosus combined with A. platensis on the growth performance, immune response, intestinal microbiota, and disease resistance of L. vannamei against Vibrio alginolyticus. Shrimp fed L. pentosus live bacteria combined with A. platensis showed the best growth performance and lowest feed conversion rate. The supplementation diet with L. pentosus live bacteria and A. platensis could significantly enhance the trypsin activity in shrimp after the feeding trial. Given the lowest feed conversion rate in shrimp fed L. pentosus live bacteria combined with A. platensis, we reasonably speculated that the decrease in feed conversion rate may be related to the increase in trypsin activity. In addition, dietary cell-free extracts of L. pentosus combined with A. platensis enhanced the expression of immune-related genes after the feeding trial or challenge test. Moreover, results of the bacterial challenge test indicated that the shrimp fed cell-free extracts of L. pentosus combined with A. platensis diet resulted in the highest survival rate, which suggested that cell-free extracts of L. pentosus and A. platensis could improve the disease resistance against V. alginolyticus by up-regulating the expressions of immune-related genes. Dietary L.pentosus or A. platensis, or their combination, reduced the abundance of harmful bacteria, including Proteobacteria in shrimp intestine, which suggested that L. pentosus and A. platensis could improve the growth performance and health of shrimp by regulating the structure of the intestinal microbiota. The findings of this study demonstrated that L. pentosus live bacteria and A. platensis exerted synergistic effects on the growth performance and digestion in shrimp, while cell-free extracts of L. pentosus and A. platensis showed synergistic effects on the immune response and disease resistance of shrimp against V. alginolyticus.
Collapse
Affiliation(s)
- Lei Liu
- College of Marine Sciences, Hainan University, Haikou, 570228, Hainan Province, PR China
| | - Xiaoni Cai
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, 570228, Hainan Province, PR China; Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou, 570228, Hainan Province, PR China; Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Haikou, 570228, Hainan Province, PR China; College of Marine Sciences, Hainan University, Haikou, 570228, Hainan Province, PR China.
| | - Yu Ai
- College of Marine Sciences, Hainan University, Haikou, 570228, Hainan Province, PR China
| | - Juan Li
- College of Marine Sciences, Hainan University, Haikou, 570228, Hainan Province, PR China
| | - Hao Long
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, 570228, Hainan Province, PR China; Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou, 570228, Hainan Province, PR China
| | - Wei Ren
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, 570228, Hainan Province, PR China; Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou, 570228, Hainan Province, PR China; Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Haikou, 570228, Hainan Province, PR China; College of Marine Sciences, Hainan University, Haikou, 570228, Hainan Province, PR China
| | - Aiyou Huang
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, 570228, Hainan Province, PR China; Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou, 570228, Hainan Province, PR China; Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Haikou, 570228, Hainan Province, PR China; College of Marine Sciences, Hainan University, Haikou, 570228, Hainan Province, PR China
| | - Xiang Zhang
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, 570228, Hainan Province, PR China; Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou, 570228, Hainan Province, PR China; Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Haikou, 570228, Hainan Province, PR China; College of Marine Sciences, Hainan University, Haikou, 570228, Hainan Province, PR China
| | - Zhen-Yu Xie
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, 570228, Hainan Province, PR China; Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou, 570228, Hainan Province, PR China; Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Haikou, 570228, Hainan Province, PR China; College of Marine Sciences, Hainan University, Haikou, 570228, Hainan Province, PR China.
| |
Collapse
|
22
|
Du S, Chen W, Yao Z, Huang X, Chen C, Guo H, Zhang D. Enterococcus faecium are associated with the modification of gut microbiota and shrimp post-larvae survival. Anim Microbiome 2021; 3:88. [PMID: 34952650 PMCID: PMC8710032 DOI: 10.1186/s42523-021-00152-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 12/13/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Probiotics are widely used to promote host health. Compared to mammals and terrestrial invertebrates, little is known the role of probiotics in aquatic invertebrates. In this study, eighteen tanks with eight hundred of shrimp post-larvae individuals each were randomly grouped into three groups, one is shrimps administered with E. faecium as probiotic (Tre) and others are shrimps without probiotic-treatment (CK1: blank control, CK2: medium control). We investigated the correlations between a kind of commercial Enterococcus faecium (E. faecium) powder and microbiota composition with function potentials in shrimp post-larvae gut. RESULTS We sequenced the 16S rRNA gene (V4) of gut samples to assess diversity and composition of the shrimp gut microbiome and used differential abundance and Tax4Fun2 analyses to identify the differences of taxonomy and predicted function between different treatment groups. The ingested probiotic bacteria (E. faecium) were tracked in gut microbiota of Tre and the shrimps here showed the best growth performance especially in survival ratio (SR). The distribution of SR across samples was similar to that in PCoA plot based on Bray-Curits and two subgroups generated (SL: SR < 70%, SH: SR ≥ 70%). The gut microbiota structure and predicted function were correlated with both treatment and SR, and SR was a far more important factor driving taxonomic and functional differences than treatment. Both Tre and SH showed a low and uneven community species and shorted phylogenetic distance. We detected a shift in composition profile at phylum and genus level and further identified ten OTUs as relevant taxa that both closely associated with treatment and SR. The partial least squares path model further supported the important role of relevant taxa related to shrimp survival ratio. CONCLUSIONS Overall, we found gut microbiota correlated to both shrimp survival and ingested probiotic bacteria (E. faecium). These correlations should not be dismissed without merit and will uncover a promising strategy for developing novel probiotics through certain consortium of gut microbiota.
Collapse
Affiliation(s)
- Shicong Du
- State Key Laboratory for Managing Biotic and Chemical Threats To the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211, China.,School of Marine Sciences, Ningbo University, Ningbo, 315211, China.,School of Energy and Environment, City University of Hong Kong, Hong Kong, SAR, China
| | - Wei Chen
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Zhiyuan Yao
- State Key Laboratory for Managing Biotic and Chemical Threats To the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211, China. .,School of Civil and Environmental Engineering, Ningbo University, Ningbo, 315211, China.
| | - Xiaolin Huang
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China.,Zhejiang Mariculture Research Institute, Wenzhou, 325099, China
| | - Chen Chen
- Zhejiang Mariculture Research Institute, Wenzhou, 325099, China
| | - Haipeng Guo
- State Key Laboratory for Managing Biotic and Chemical Threats To the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211, China.,School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Demin Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats To the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211, China. .,School of Marine Sciences, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
23
|
Zhang T, Zhang Y, Xu J, Yan Z, Sun Q, Huang Y, Wang S, Li S, Sun B. Toxic effects of ammonia on the intestine of the Asian clam (Corbicula fluminea). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117617. [PMID: 34174666 DOI: 10.1016/j.envpol.2021.117617] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/09/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
Intestines contain a large number of microorganisms that collectively play a vital role in regulating physiological and biochemical processes, including digestion, water balance, and immune function. In this study, we explored the effects of ammonia stress on intestinal inflammation, the antioxidant system, and the microbiome of the Asian clam (Corbicula fluminea). Exposure to varying ammonia concentrations (10 and 25 mg N/L) and exposure times (7 and 14 days) resulted in damage to C. fluminea intestinal tissue, according to histological analysis. Furthermore, intestinal inflammatory responses and damage to the antioxidant system were revealed through qPCR, ELISA, and biochemical analysis experiments. Inflammatory responses were more severe in the treatment group exposed to a lower concentration of ammonia. High-throughput 16S rDNA sequencing showed that ammonia stress under different conditions altered intestinal bacterial diversity and microbial community composition, particularly impacting the dominant phylum Proteobacteria and genus Aeromonas. These results indicate that ammonia stress can activate intestinal inflammatory reactions, damage the intestinal antioxidant system, and alter intestinal microbial composition, thereby impeding intestinal physiological function and seriously threatening the health of C. fluminea.
Collapse
Affiliation(s)
- Tianxu Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China.
| | - Yan Zhang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, PR China.
| | - Jiayun Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China.
| | - Zhenguang Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China.
| | - Qianhang Sun
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China.
| | - Yi Huang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China.
| | - Shuping Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China.
| | - Shuo Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, PR China.
| | - Binbin Sun
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China.
| |
Collapse
|
24
|
Yao W, Li X, Zhang C, Wang J, Cai Y, Leng X. Effects of dietary synbiotics supplementation methods on growth, intestinal health, non-specific immunity and disease resistance of Pacific white shrimp, Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2021; 112:46-55. [PMID: 33609702 DOI: 10.1016/j.fsi.2021.02.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/02/2020] [Accepted: 02/14/2021] [Indexed: 06/12/2023]
Abstract
The present study aims to investigate the effects of dietary synbiotics supplementation methods on growth, feed utilization, hepatopancreas and intestinal histology, non-specific immunity and microbiota community of Pacific white shrimp (Litopenaeus vannamei). A control diet was designed to contain 18% fish meal (CON), and then 3 g kg-1 synbiotics (Bioture, consisting of Bacillus subtilis, Saccharomyces cerevisiae, β-glucan and mannan oligosaccharide, etc) was supplemented to the control diet with three methods, directly adding in diets for pelleting (DAP), spraying diets after pelleting at once (SDA), spraying diets before feeding every day (SDE). Shrimp with initial body weight of 1.5 ± 0.12 g were fed one of the four diets for 56 days. The results showed that dietary synbiotics significantly increased the weight gain (WG), apparent digestibility coefficient (ADC) of crude protein (CP) and dry matter (DM), hepatopancreatic protease activity and decreased feed conversion ratio (FCR) (P < 0.05). Among the three synbiotics-added diets, SDE group showed the best growth with significantly higher WG than DAP group (P < 0.05). Serum activities of total superoxide dismutase, catalase, acid phosphatase, lysozyme and alkaline phosphatase of synbiotics-added groups were significantly higher, and serum malondialdehyde level was significantly lower than those of the control (P < 0.05). The intestinal villus width and villus number were also increased by the supplementation of synbiotics. The cumulative mortality was reduced in the three synbiotics-added groups after challenging with Vibrio parahaemolyticus (P < 0.05), and SDE group showed a significantly lower mortality than the control and DAP groups (P < 0.05). In intestinal microbiota composition, the abundance of Lactococcus tended to increase and Vibro tended to decreased in SDA and SDE groups. In conclusion, dietary synbiotics improved the growth, feed utilization, intestine health and non-specific immunity of Pacific white shrimp, and spraying synbiotics on diet presented better performance than adding synbiotics in diet for pelleting.
Collapse
Affiliation(s)
- Wenxiang Yao
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiaoqin Li
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Chunyan Zhang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Jing Wang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Youwang Cai
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiangjun Leng
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China; Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
25
|
Kwoji ID, Aiyegoro OA, Okpeku M, Adeleke MA. Multi-Strain Probiotics: Synergy among Isolates Enhances Biological Activities. BIOLOGY 2021; 10:322. [PMID: 33924344 PMCID: PMC8070017 DOI: 10.3390/biology10040322] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/19/2021] [Accepted: 02/09/2021] [Indexed: 12/13/2022]
Abstract
The use of probiotics for health benefits is becoming popular because of the quest for safer products with protective and therapeutic effects against diseases and infectious agents. The emergence and spread of antimicrobial resistance among pathogens had prompted restrictions over the non-therapeutic use of antibiotics for prophylaxis and growth promotion, especially in animal husbandry. While single-strain probiotics are beneficial to health, multi-strain probiotics might be more helpful because of synergy and additive effects among the individual isolates. This article documents the mechanisms by which multi-strain probiotics exert their effects in managing infectious and non-infectious diseases, inhibiting antibiotic-resistant pathogens and health improvement. The administration of multi-strain probiotics was revealed to effectively alleviate bowel tract conditions, such as irritable bowel syndrome, inhibition of pathogens and modulation of the immune system and gut microbiota. Finally, while most of the current research focuses on comparing the effects of multi-strain and single-strain probiotics, there is a dearth of information on the molecular mechanisms of synergy among multi-strain probiotics isolates. This forms a basis for future research in the development of multi-strain probiotics for enhanced health benefits.
Collapse
Affiliation(s)
- Iliya D. Kwoji
- Discipline of Genetics, School of Life Sciences, Westville Campus, University of KwaZulu-Natal, Durban 4000, South Africa; (I.D.K.); (M.O.)
| | - Olayinka A. Aiyegoro
- Gastrointestinal Microbiology and Biotechnology Unit, Agricultural Research Council-Animal Production, Irene 0062, South Africa;
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2520, South Africa
| | - Moses Okpeku
- Discipline of Genetics, School of Life Sciences, Westville Campus, University of KwaZulu-Natal, Durban 4000, South Africa; (I.D.K.); (M.O.)
| | - Matthew A. Adeleke
- Discipline of Genetics, School of Life Sciences, Westville Campus, University of KwaZulu-Natal, Durban 4000, South Africa; (I.D.K.); (M.O.)
| |
Collapse
|
26
|
Hasan MT, Jang WJ, Lee BJ, Hur SW, Lim SG, Kim KW, Han HS, Lee EW, Bai SC, Kong IS. Dietary Supplementation of Bacillus sp. SJ-10 and Lactobacillus plantarum KCCM 11322 Combinations Enhance Growth and Cellular and Humoral Immunity in Olive Flounder (Paralichthys olivaceus). Probiotics Antimicrob Proteins 2021; 13:1277-1291. [PMID: 33713023 DOI: 10.1007/s12602-021-09749-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2021] [Indexed: 12/31/2022]
Abstract
Experiments were conducted to identify different ratios of Bacillus sp. SJ-10 and Lactobacillus plantarum KCCM 11322 mixtures at a concentration of 1 × 108 CFU/g diet; the effects on growth and cellular and humoral immune responses and the characteristics of disease protection in olive flounder (Paralichthys olivaceus). Flounder were divided into six groups and fed control diet D-1 (without Bacillus sp. SJ-10 and L. plantarum KCCM 11322), positive control diets D-2 (Bacillus sp. SJ-10 at 1 × 108 CFU/g feed) and D-3 (L. plantarum KCCM 11322 at 1 × 108 CFU/g feed); or treatment diets D-4 (3:1 Bacillus sp. SJ-10 and L. plantarum KCCM 11322 at 0.75 + 0.25 × 108 CFU/g feed), D-5 (1:1 Bacillus sp. SJ-10 and L. plantarum KCCM 11322 at 0.50 + 0.50 × 108 CFU/g feed), or D-6 (1:3 Bacillus sp. SJ-10 and L. plantarum KCCM 11322 at 0.25 + 0.75 × 108 CFU/g feed) for 8 weeks. Group D-4 demonstrated better growth and feed utilization (P < 0.05) compared with the controls and positive controls. Similar modulation was also observed in respiratory burst for all treatments and in the expression levels of TNF-α, IL-1β, IL-6, and IL-10 in different organs in D-4. D-4 and D-5 increased respiratory burst, superoxide dismutase, lysozyme, and myeloperoxidase activities compared with the controls, and only D-4 increased microvilli length. When challenged with 1 × 108 CFU/mL Streptococcus iniae, the fish in the D-4 and D-5 groups survived up to 14 days, whereas the fish in the other groups reached 100% mortality at 11.50 days. Collectively, a ratio-specific Bacillus sp. SJ-10 and L. plantarum KCCM 11322 mixture (3:1) was associated with elevated growth, innate immunity, and streptococcosis resistance (3:1 and 1:1) compared with the control and single probiotic diets.
Collapse
Affiliation(s)
- Md Tawheed Hasan
- Department of Biotechnology, Pukyong National University, Busan, 608-737, Republic of Korea.,Department of Aquaculture, Sylhet Agricultural University, Sylhet-3100, Bangladesh
| | - Won Je Jang
- Department of Biotechnology, Pukyong National University, Busan, 608-737, Republic of Korea
| | - Bong-Joo Lee
- Aquafeed Research Center, NIFS, Pohang, 791-923, Republic of Korea
| | - Sang Woo Hur
- Aquafeed Research Center, NIFS, Pohang, 791-923, Republic of Korea
| | - Sang Gu Lim
- Aquafeed Research Center, NIFS, Pohang, 791-923, Republic of Korea
| | - Kang Woong Kim
- Aquafeed Research Center, NIFS, Pohang, 791-923, Republic of Korea.,Aquaculture Management Division, NIFS, Busan, 46083, Republic of Korea
| | - Hyon-Sob Han
- Faculty of Marine Applied Bioscience, Kunsan National University, Kunsan, 54150, Republic of Korea
| | - Eun-Woo Lee
- Biopharmaceutical Engineering Major, Division of Applied Bioengineering, Dong-Eui University, Busan, 47340, Republic of Korea
| | - Sungchul C Bai
- Department of Marine Bio-Materials and Aquaculture, Pukyong National University, Busan, 608-737, Republic of Korea.
| | - In-Soo Kong
- Department of Biotechnology, Pukyong National University, Busan, 608-737, Republic of Korea.
| |
Collapse
|
27
|
He Y, Peng X, Liu Y, Wu Q, Zhou Q, Hu L, Fang Z, Lin Y, Xu S, Feng B, Li J, Zhuo Y, Wu D, Che L. Effects of Maternal Fiber Intake on Intestinal Morphology, Bacterial Profile and Proteome of Newborns Using Pig as Model. Nutrients 2020; 13:E42. [PMID: 33375592 PMCID: PMC7823571 DOI: 10.3390/nu13010042] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/14/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023] Open
Abstract
Dietary fiber intake during pregnancy may improve offspring intestinal development. The aim of this study was to evaluate the effect of maternal high fiber intake during late gestation on intestinal morphology, microbiota, and intestinal proteome of newborn piglets. Sixteen sows were randomly allocated into two groups receiving the control diet (CD) and high-fiber diet (HFD) from day 90 of gestation to farrowing. Newborn piglets were selected from each litter, named as CON and Fiber group, respectively. Maternal high fiber intake did not markedly improve the birth weight, but increased the body length, the ileal crypt depth and colonic acetate level. In addition, maternal high fiber intake increased the -diversity indices (Observed species, Simpson, and ACE), and the abundance of Acidobacteria and Bacteroidetes at phylum level, significantly increased the abundance of Bradyrhizobium and Phyllobacterium at genus level in the colon of newborn piglets. Moreover, maternal high fiber intake markedly altered the ileal proteome, increasing the abundances of proteins associated with oxidative status, energy metabolism, and immune and inflammatory responses, and decreasing abundances of proteins related to cellular apoptosis, cell structure, and motility. These findings indicated that maternal high fiber intake could alter intestinal morphology, along with the altered intestinal microbiota composition and proteome of offspring.
Collapse
Affiliation(s)
- Ying He
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Y.H.); (X.P.); (Y.L.); (Q.W.); (Q.Z.); (Z.F.); (Y.L.); (S.X.); (B.F.); (J.L.); (Y.Z.); (D.W.)
| | - Xie Peng
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Y.H.); (X.P.); (Y.L.); (Q.W.); (Q.Z.); (Z.F.); (Y.L.); (S.X.); (B.F.); (J.L.); (Y.Z.); (D.W.)
| | - Yang Liu
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Y.H.); (X.P.); (Y.L.); (Q.W.); (Q.Z.); (Z.F.); (Y.L.); (S.X.); (B.F.); (J.L.); (Y.Z.); (D.W.)
| | - Qing Wu
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Y.H.); (X.P.); (Y.L.); (Q.W.); (Q.Z.); (Z.F.); (Y.L.); (S.X.); (B.F.); (J.L.); (Y.Z.); (D.W.)
| | - Qiang Zhou
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Y.H.); (X.P.); (Y.L.); (Q.W.); (Q.Z.); (Z.F.); (Y.L.); (S.X.); (B.F.); (J.L.); (Y.Z.); (D.W.)
| | - Liang Hu
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China;
| | - Zhengfeng Fang
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Y.H.); (X.P.); (Y.L.); (Q.W.); (Q.Z.); (Z.F.); (Y.L.); (S.X.); (B.F.); (J.L.); (Y.Z.); (D.W.)
| | - Yan Lin
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Y.H.); (X.P.); (Y.L.); (Q.W.); (Q.Z.); (Z.F.); (Y.L.); (S.X.); (B.F.); (J.L.); (Y.Z.); (D.W.)
| | - Shengyu Xu
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Y.H.); (X.P.); (Y.L.); (Q.W.); (Q.Z.); (Z.F.); (Y.L.); (S.X.); (B.F.); (J.L.); (Y.Z.); (D.W.)
| | - Bin Feng
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Y.H.); (X.P.); (Y.L.); (Q.W.); (Q.Z.); (Z.F.); (Y.L.); (S.X.); (B.F.); (J.L.); (Y.Z.); (D.W.)
| | - Jian Li
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Y.H.); (X.P.); (Y.L.); (Q.W.); (Q.Z.); (Z.F.); (Y.L.); (S.X.); (B.F.); (J.L.); (Y.Z.); (D.W.)
| | - Yong Zhuo
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Y.H.); (X.P.); (Y.L.); (Q.W.); (Q.Z.); (Z.F.); (Y.L.); (S.X.); (B.F.); (J.L.); (Y.Z.); (D.W.)
| | - De Wu
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Y.H.); (X.P.); (Y.L.); (Q.W.); (Q.Z.); (Z.F.); (Y.L.); (S.X.); (B.F.); (J.L.); (Y.Z.); (D.W.)
| | - Lianqiang Che
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Y.H.); (X.P.); (Y.L.); (Q.W.); (Q.Z.); (Z.F.); (Y.L.); (S.X.); (B.F.); (J.L.); (Y.Z.); (D.W.)
| |
Collapse
|
28
|
Chen M, Chen XQ, Tian LX, Liu YJ, Niu J. Improvement of growth, intestinal short-chain fatty acids, non-specific immunity and ammonia resistance in Pacific white shrimp (Litopenaeus vannamei) fed dietary water-soluble chitosan and mixed probiotics. Comp Biochem Physiol C Toxicol Pharmacol 2020; 236:108791. [PMID: 32413493 DOI: 10.1016/j.cbpc.2020.108791] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/28/2020] [Accepted: 05/10/2020] [Indexed: 11/18/2022]
Abstract
This study was to explore the impacts of water-soluble chitosan and mixed probiotics on growth performance, intestinal short-chain fatty acids (SCFAs) and immunity and ammonia resistance in Litopenaeus vannamei. Shrimp were fed one of four experimental diets including basal diet (CON), 0.10% water-soluble chitosan diet (WSC), 0.30% mixed probiotics (MP) and 0.10% water-soluble chitosan +0.30% mixed probiotics (SYN) for 8 weeks. Results showed shrimp fed with dietary MP and SYN diets could significantly improve growth performance and feed utilization in comparison with those of shrimp fed with CON diet (P < 0.05). Acetic acid content was significantly higher in shrimp fed with all supplemented diets compared to that in shrimp fed with CON diet (P < 0.05). Compared to shrimp fed with CON diet, dietary WSC and MP significantly influenced the contents and/or activities of aspartate aminotransferase (AST), total protein (TP), superoxide dismutase (SOD), lysozyme (LZM) in serum, SOD, malondialdehyde (MDA), acid phosphatase (ACP) in hepatopancreas and SOD and MDA in intestine. In addition, the gene expression levels of prophenoloxidase (proPO), penaiedin 3a (Pen-3a), crustin (Crustin), serine proteinase (SP), GPX and SOD in hepatopancreas, were significantly upregulated compared to those in CON diet at some time points (P < 0.05). Significantly higher survival rate in all supplemented diets were observed after ammonia challenge (P < 0.05). Therefore, the above results indicated dietary WSC and MP or SYN could enhance intestinal SCFAs content, stimulated antioxidant capacity and immune response, and increase the ammonia resistance of Litopenaeus vannamei. Besides, the growth performance was also improved by dietary MP and SYN.
Collapse
Affiliation(s)
- Ming Chen
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animal and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Science, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Xian-Quan Chen
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animal and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Science, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Li-Xia Tian
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animal and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Science, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Yong-Jian Liu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animal and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Science, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Jin Niu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animal and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Science, Sun Yat-sen University, Guangzhou 510275, PR China.
| |
Collapse
|
29
|
Effects of Chitosan-Gentamicin Conjugate Supplement on Non-Specific Immunity, Aquaculture Water, Intestinal Histology and Microbiota of Pacific White Shrimp ( Litopenaeus vannamei). Mar Drugs 2020; 18:md18080419. [PMID: 32785070 PMCID: PMC7460103 DOI: 10.3390/md18080419] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/07/2020] [Accepted: 08/07/2020] [Indexed: 12/17/2022] Open
Abstract
When the aquaculture water environment deteriorates or the temperature rises, shrimp are susceptible to viral or bacterial infections, causing a large number of deaths. This study comprehensively evaluated the effects of the oral administration of a chitosan-gentamicin conjugate (CS-GT) after Litopenaeus vannamei were infected with Vibrio parahaemolyticus, through nonspecific immunity parameter detection, intestinal morphology observation, and the assessment of microbial flora diversification by 16S rRNA gene sequencing. The results showed that the oral administration of CS-GT significantly increased total hemocyte counts and reduced hemocyte apoptosis in shrimp (p < 0.05). The parameters (including superoxide dismutase, glutathione peroxidase, glutathione, lysozyme, acid phosphatase, alkaline phosphatase, and phenoloxidase) were significantly increased (p < 0.05). The integrity of the intestinal epithelial cells and basement membrane were enhanced, which correspondingly alleviated intestinal injury. In terms of the microbiome, the abundances of Vibrio (Gram-negative bacteria and food-borne pathogens) in the water and gut were significantly reduced. The canonical correspondence analysis (CCA) showed that the abundances of Vibrio both in the water and gut were negatively correlated with CS-GT dosage. In conclusion, the oral administration of CS-GT can improve the immunity of shrimp against pathogenic bacteria and significantly reduce the relative abundances of Vibrio in aquaculture water and the gut of Litopenaeus vannamei.
Collapse
|
30
|
Growth Performance and Intestinal Microbiota Diversity in Pacific White Shrimp Litopenaeus vannamei Fed with a Probiotic Bacterium, Honey Prebiotic, and Synbiotic. Curr Microbiol 2020; 77:2982-2990. [PMID: 32683466 DOI: 10.1007/s00284-020-02117-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 07/06/2020] [Indexed: 12/16/2022]
Abstract
This study aimed to evaluate the growth performance and intestinal microbiota composition in Pacific white shrimp after probiotic, honey prebiotic, or synbiotic treatment. Pacific white shrimp were treated for 45 days with probiotic (1% (v/w) of Bacillus sp. NP5 RfR probiotic), prebiotic (0.5% (v/w) of honey prebiotic), synbiotic (1% (v/w) of probiotic and 0.5% (v/w) prebiotic), or control (without addition of probiotic and prebiotic). Next-generation sequencing (NGS) was used to assess the effects of these treatments on growth performance and intestinal microbial diversity. The administration of a probiotic, prebiotic, or synbiotic led to increases in specific growth rate, feed conversion ratio, and digestive enzyme activities of amylase, protease, and lipase in Pacific white shrimp. The prebiotic treatment demonstrated the greatest effect, with values of growth rate of 3.09 ± 0.02 (% day-1), feed conversion ratio of 1.45 ± 0.00, and enzyme activities of 1.388 ± 0.0211 IU mg-1 protein for amylase, 0.055 ± 0.0004 IU mg-1 protein for protease, and 0.152 ± 0.0025 IU mg-1 protein for lipase. Analysis of the intestinal microbiota diversity revealed that prebiotic administration caused dominance of the phylum Bacteroidetes, whereas the probiotic and synbiotic treatments caused dominance of the phylum Proteobacteria. Moreover, prebiotic treatment was able to increase the diversity of Microbacterium, Lactobacillus, and Neptunomonas, which are established probiotic candidates in aquaculture. The probiotic, prebiotic, and synbiotic treatments induced a number of operational taxonomic units (OTUs) significantly higher than control treatment, that is, 470, 480, 451, and 344 OTU, respectively.
Collapse
|
31
|
Chen X, Xie J, Liu Z, Yin P, Chen M, Liu Y, Tian L, Niu J. Modulation of growth performance, non-specific immunity, intestinal morphology, the response to hypoxia stress and resistance to Aeromonas hydrophila of grass carp (Ctenopharyngodon idella) by dietary supplementation of a multi-strain probiotic. Comp Biochem Physiol C Toxicol Pharmacol 2020; 231:108724. [PMID: 32061958 DOI: 10.1016/j.cbpc.2020.108724] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/07/2020] [Accepted: 02/12/2020] [Indexed: 12/18/2022]
Abstract
The present study was conducted to evaluate a multi-strain probiotic (MP) on growth performance, immune and antioxidant function, response to hypoxia stress and resistance to Aeromonas hydrophila of grass carp (Ctenopharyngodon idella). Based on the viable cell counts of aerobic Bacillus spp., six experimental diets with MP supplemented at 0, 0.34, 1.68, 3.36, 6.72, 10.1 g kg-1 were formulated and 900 juveniles (7.30 ± 0.01 g) were equally distributed into 30 aquaria with respective diet for 60 days. Results showed that fish with 0.34-1.68 g kg-1 MP had better growth and feed utilization. Further, plasma total protein, albumin and high-density lipoprotein were remarkably increased with dietary MP at >1.68 g kg-1. Dietary MP supplementation at 6.72-10.1 g kg-1 strikingly elevated plasma myeloperoxidase activity and complement C3 content. For fish with MP at 1.68 and 6.72-10.1 g kg-1, their liver malondialdehyde and glutathione peroxidase were remarkably declined and promoted. After hypoxia stress, fish with 3.36-6.72 g kg-1 MP showed significantly higher respiratory burst activity. Challenge test by A. hydrophila confirmed the protection effects of MP through the decreased cumulative mortality rates. For intestinal histomorphology and enzymatic analyses, fish with 1.68 g kg-1 MP displayed significantly higher intestinal villi height, goblet cells and alkaline phosphatase activity. In conclusion, dietary MP supplementation at 1.68 g kg-1 could promote growth, intestinal morphology and antioxidant capacity, while enhancing host immunity requires higher dosages of MP. Broken-line analysis of weight gain revealed that 1.34 g kg-1 is the optimum dosage for the growth of grass carp.
Collapse
Affiliation(s)
- Xianquan Chen
- Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Jiajun Xie
- Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Zhenlu Liu
- Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Peng Yin
- Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Ming Chen
- Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Yongjian Liu
- Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Lixia Tian
- Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Jin Niu
- Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China.
| |
Collapse
|
32
|
Guo G, Li C, Xia B, Jiang S, Zhou S, Men X, Ren Y. The efficacy of lactic acid bacteria usage in turbot Scophthalmus maximus on intestinal microbiota and expression of the immune related genes. FISH & SHELLFISH IMMUNOLOGY 2020; 100:90-97. [PMID: 32145449 DOI: 10.1016/j.fsi.2020.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/29/2020] [Accepted: 03/03/2020] [Indexed: 06/10/2023]
Abstract
To understand the efficacy of lactic acid bacteria (LAB) as probiotics on the growth, immune response and intestinal microbiota of turbot Scophthalmus maximus, in this study, the Leuconostoc mesenteroides HY2 strain screened from wide caught fish was bath administrated for juvenile turbot with no bacteria administrated as control. The mRNA levels of toll-like receptors 3 (TLR3), interleukin 8 (IL-8) and interferon induced with helicase C domain 1 (IFIH1) in different organs (i.e. intestine, liver, spleen, kidney, brain and skin) were analyzed using RT-PCR technology. The intestinal microbiota was analyzed by 16S rRNA sequencing, in which principal co-ordinates analysis (PCoA) as well as cluster analysis was performed. The results showed that the specific growth rate of turbot in the LAB treatment was significantly higher than those of the control group (P < 0.05). The expression levels of TLR3, IL-8 and IFIH1 were significantly up-regulated in the organs of LAB treatment, except that IL-8 was slightly down-regulated in kidney. A total of 42 phyla in intestinal microbiota were identified. The composition of intestinal microbiota showed significant differences between LAB treatment and the control group. Shannon index in the LAB treatment was significantly increased while Simpson index significantly declined. The PCoA and cluster analysis exhibited significant differences in the composition and abundance between the two groups. Firmicutes, Proteobacteria, Bacteroidetes and Actinobacteria acted as biomarkers which may have effects to promote absorption and/or trigger the immune function. In conclusion, the administration of HY2 strain was capable of improving growth performance of turbot by enhancing immune response and optimizing structure and diversity of intestinal microbiota.
Collapse
Affiliation(s)
- Guangxin Guo
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Bin Xia
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Senhao Jiang
- Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, College of Ocean and Bioengineering, Yancheng Teachers University, Yancheng, 224051, China
| | - Shun Zhou
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xianhui Men
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yichao Ren
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
33
|
Holt CC, Bass D, Stentiford GD, van der Giezen M. Understanding the role of the shrimp gut microbiome in health and disease. J Invertebr Pathol 2020; 186:107387. [PMID: 32330478 DOI: 10.1016/j.jip.2020.107387] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 04/05/2020] [Accepted: 04/17/2020] [Indexed: 02/08/2023]
Abstract
With rapid increases in the global shrimp aquaculture sector, a focus on animal health during production becomes ever more important. Animal productivity is intimately linked to health, and the gut microbiome is becoming increasingly recognised as an important driver of cultivation success. The microbes that colonise the gut, commonly referred to as the gut microbiota or the gut microbiome, interact with their host and contribute to a number of key host processes, including digestion and immunity. Gut microbiome manipulation therefore represents an attractive proposition for aquaculture and has been suggested as a possible alternative to the use of broad-spectrum antibiotics in the management of disease, which is a major limitation of growth in this sector. Microbiota supplementation has also demonstrated positive effects on growth and survival of several different commercial species, including shrimp. Development of appropriate gut supplements, however, requires prior knowledge of the host microbiome. Little is known about the gut microbiota of the aquatic invertebrates, but penaeid shrimp are perhaps more studied than most. Here, we review current knowledge of information reported on the shrimp gut microbiota, highlighting the most frequently observed taxa and emphasizing the dominance of Proteobacteria within this community. We discuss involvement of the microbiome in the regulation of shrimp health and disease and describe how the gut microbiota changes with the introduction of several economically important shrimp pathogens. Finally, we explore evidence of microbiome supplementation and consider its role in the future of penaeid shrimp production.
Collapse
Affiliation(s)
- Corey C Holt
- International Centre of Excellence for Aquatic Animal Health Theme, Centre for Environment, Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth, Dorset DT4 8UB, United Kingdom; Biosciences, University of Exeter, Stocker Road, Exeter, United Kingdom; Centre for Sustainable Aquaculture Futures, University of Exeter, Stocker Road, Exeter, United Kingdom; Department of Botany, University of British Columbia, Vancouver, Canada.
| | - David Bass
- International Centre of Excellence for Aquatic Animal Health Theme, Centre for Environment, Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth, Dorset DT4 8UB, United Kingdom; Centre for Sustainable Aquaculture Futures, University of Exeter, Stocker Road, Exeter, United Kingdom
| | - Grant D Stentiford
- International Centre of Excellence for Aquatic Animal Health Theme, Centre for Environment, Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth, Dorset DT4 8UB, United Kingdom; Centre for Sustainable Aquaculture Futures, University of Exeter, Stocker Road, Exeter, United Kingdom
| | - Mark van der Giezen
- Biosciences, University of Exeter, Stocker Road, Exeter, United Kingdom; Centre for Sustainable Aquaculture Futures, University of Exeter, Stocker Road, Exeter, United Kingdom; Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, 4021 Stavanger, Norway.
| |
Collapse
|
34
|
Zou S, Gong L, Khan TA, Pan L, Yan L, Li D, Cao L, Li Y, Ding X, Yi G, Sun Y, Hu S, Xia L. Comparative analysis and gut bacterial community assemblages of grass carp and crucian carp in new lineages from the Dongting Lake area. Microbiologyopen 2020; 9:e996. [PMID: 32175674 PMCID: PMC7221430 DOI: 10.1002/mbo3.996] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/31/2019] [Accepted: 12/31/2019] [Indexed: 12/17/2022] Open
Abstract
Gut microbiota are known to play an important role in health and nutrition of the host and have been attracting an increasing attention. Farming of new lineages of grass carp and crucian carp has been developed rapidly as these species were found to outperform indigenous ones in terms of growth rate and susceptibility to diseases. Despite this rapid development, no studies have addressed the characteristics of their gut microbiota as a potential factor responsible for the improved characteristics. To reveal whether microbiomes of the new lineages are different from indigenous ones, and therefore could be responsible for improved growth features, intestinal microbiota from the new lineages were subjected to high-throughput sequencing. While the phyla Firmicutes, Fusobacteria and Proteobacteria were representing the core bacterial communities that comprised more than 75% in all fish intestinal samples, significant differences were found in the microbial community composition of the new linages versus indigenous fish populations, suggesting the possibility that results in the advantages of enhanced disease resistance and rapid growth for the new fish lineages. Bacterial composition was similar between herbivorous and omnivorous fish. The relative abundance of Bacteroidetes and Actinobacteria was significantly higher in omnivores compared to that of herbivores, whereas Cetobacterium_sp. was abundant in herbivores. We also found that the gut microbiota of freshwater fish in the Dongting lake area was distinct from those of other areas. Network graphs showed the reduced overall connectivity of gut bacteria in indigenous fish, whereas the bacteria of the new fish lineage groups showed hubs with more node degree. A phylogenetic investigation of communities by reconstruction of unobserved states inferred function profile showed several metabolic processes were more active in the new lineages compared to indigenous fish. Our findings suggest that differences in gut bacterial community composition may be an important factor contributing to the rapid growth and high disease resistance of the new fish lineages.
Collapse
Affiliation(s)
- Sheng Zou
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular BiologyCollege of Life ScienceHunan Normal UniversityChangshaChina
| | - Liang Gong
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular BiologyCollege of Life ScienceHunan Normal UniversityChangshaChina
| | - Tahir Ali Khan
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular BiologyCollege of Life ScienceHunan Normal UniversityChangshaChina
| | - Lifei Pan
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular BiologyCollege of Life ScienceHunan Normal UniversityChangshaChina
| | - Liang Yan
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular BiologyCollege of Life ScienceHunan Normal UniversityChangshaChina
| | - Dongjie Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular BiologyCollege of Life ScienceHunan Normal UniversityChangshaChina
| | - Lina Cao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular BiologyCollege of Life ScienceHunan Normal UniversityChangshaChina
| | - Yanping Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular BiologyCollege of Life ScienceHunan Normal UniversityChangshaChina
| | - Xuezhi Ding
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular BiologyCollege of Life ScienceHunan Normal UniversityChangshaChina
| | - Ganfeng Yi
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular BiologyCollege of Life ScienceHunan Normal UniversityChangshaChina
| | - Yunjun Sun
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular BiologyCollege of Life ScienceHunan Normal UniversityChangshaChina
| | - Shengbiao Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular BiologyCollege of Life ScienceHunan Normal UniversityChangshaChina
| | - Liqiu Xia
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular BiologyCollege of Life ScienceHunan Normal UniversityChangshaChina
| |
Collapse
|
35
|
Feng J, Cai Z, Chen Y, Zhu H, Chang X, Wang X, Liu Z, Zhang J, Nie G. Effects of an exopolysaccharide from Lactococcus lactis Z-2 on innate immune response, antioxidant activity, and disease resistance against Aeromonas hydrophila in Cyprinus carpio L. FISH & SHELLFISH IMMUNOLOGY 2020; 98:324-333. [PMID: 31981775 DOI: 10.1016/j.fsi.2020.01.037] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/04/2020] [Accepted: 01/19/2020] [Indexed: 05/16/2023]
Abstract
Microbial exopolysaccharides (EPS) from Lactococcus have been found to have an important role in the probiotic activity of this bacterium; however, the immunomodulatory and antioxidant activities have not been fully explored in aquaculture. In the present study, we investigated EPS-2 from Lactococcus lactis Z-2, isolated from healthy common carp, for its immunomodulatory and antioxidant effects and disease resistance against Aeromonas hydrophila in Cyprinus carpio L. We found that the molecular weight of EPS-2 was 18.65 KDa. The monosaccharide composition of this polymer was rhamnose, xylose, mannose, glucose, and galactose at a molar percentage of 13.3%, 14.1%, 18.5%, 27.4%, and 26.7%, respectively. EPS-2 treatment could modulate the immune responses in vitro and in vivo. In vitro tests showed that EPS-2 could significantly enhance the proliferation and phagocytosis activities (P < 0.05) as well as induce the production of nitic oxide (NO), pro-inflammatory cytokines (TNF-α, IL-1β, IL-6), and anti-inflammatory cytokines (IL-10, TGF-β) (P < 0.05) in head kidney cells. When the fish were gavaged with three different concentrations of EPS-2 (250, 500, 1000 μg/mL) for 7 days and infected with A. hydrophila, different expression patterns of the NO, cytokines, lysozyme (LZM), and alkaline phosphatase (AKP) in the serum and of antioxidants (T-AOC, SOD, CAT, GSH, GSH-Px and MDA) in hepatopancreas were observed. Before infection with A. hydrophila, EPS-2 supplementation significantly up-regulated the NO production, protein levels of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6), LZM and AKP activities, and levels of antioxidant molecules compared to those in the negative (G1) group (P < 0.05), whereas levels of NO and pro-inflammatory cytokines and LZM and AKP activities were significantly lower than those in the positive (G2) group after infection (P < 0.05). However, whether infected or not, the expression levels of anti-inflammatory cytokines (IL-10, TGF-β) were significantly increased in the EPS-2 treatment groups (P < 0.05). These results indicate that EPS-2 has immunomodulatory and antioxidant effects on common carp, both in vitro and/or in vivo, and can be applied as a common carp feed supplement to enhance fish immunity and disease resistance against A. hydrophila.
Collapse
Affiliation(s)
- Junchang Feng
- College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China; Department of Biological and Environmental Engineering, Changsha University, Changsha, 410003, PR China.
| | - Zhongliang Cai
- College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Yongyan Chen
- College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Haoyong Zhu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, PR China
| | - Xulu Chang
- College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Xianfeng Wang
- College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Zhen Liu
- Department of Biological and Environmental Engineering, Changsha University, Changsha, 410003, PR China
| | - Jianxin Zhang
- College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Guoxing Nie
- College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China.
| |
Collapse
|
36
|
Evaluation of Potential Probiotics Bacillus subtilis WB60, Pediococcus pentosaceus, and Lactococcus lactis on Growth Performance, Immune Response, Gut Histology and Immune-Related Genes in Whiteleg Shrimp, Litopenaeus vannamei. Microorganisms 2020; 8:microorganisms8020281. [PMID: 32092964 PMCID: PMC7074841 DOI: 10.3390/microorganisms8020281] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 11/17/2022] Open
Abstract
An eight-week feeding trial was conducted to evaluate the effects of different dietary probiotic supplements in juvenile whiteleg shrimp, Litopenaeus vannamei. A basal control diet without probiotics (CON), and five other diets by supplementing Bacillus subtilis at 107 CFU/g diet (BS7), B. subtilis (BS8), Pediococcus pentosaceus (PP8), and Lactococcus lactis (LL8) at 108 CFU/g diet, and oxytetracycline (OTC) at 4 g/kg diet were used. Whiteleg shrimp with initial body weights of 1.41 ± 0.05 g (mean ± SD) were fed with these diets. Growth of shrimp fed BS8 and LL8 diets was significantly higher than those of shrimp fed the CON diet (p < 0.05). Superoxide dismutase activity in shrimp fed PP8 and LL8 diets was significantly higher than that of shrimp fed the CON diet (p < 0.05). Lysozyme activity of shrimp fed probiotics and OTC diets significantly improved compared to those on the CON diet (p < 0.05). The intestinal histology showed healthier guts for shrimp fed the probiotic diets (p < 0.05). Immune-related gene expression in shrimp fed BS8, PP8 and LL8 diets was recorded as significantly higher than that of shrimp fed CON and OTC diets (p < 0.05). Also, results of the challenge test for 7 days and the digestive enzyme activity of shrimp fed BS8, PP8, and LL8 were significantly improved compared to those on the CON diet (p < 0.05). Therefore, these results indicated that L. lactis at 108 CFU/g could be an ideal probiotic for whiteleg shrimp, and also B. subtilis WB60 and P. pentosaceus at 108 CFU/g could improve the growth, immunity, histology, gene expression, digestive enzyme activity, and disease resistance, while replacing antibiotics.
Collapse
|
37
|
|