1
|
Libisch B, Sándor ZJ, Keresztény T, Ozoaduche CL, Papp PP, Posta K, Biró J, Stojkov V, Banjac V, Adányi N, Berki M, Lengyel-Kónya É, Tömösközi-Farkas R, Olasz F. Effects of Short-Term Feeding with Diets Containing Insect Meal on the Gut Microbiota of African Catfish Hybrids. Animals (Basel) 2025; 15:1338. [PMID: 40362153 PMCID: PMC12071142 DOI: 10.3390/ani15091338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/25/2025] [Accepted: 04/30/2025] [Indexed: 05/15/2025] Open
Abstract
The impact of short-term feeding of three distinct diets containing insect meals on the intestinal microbiota of African catfish hybrid (Clarias gariepinus × Heterobranchus longifilis) juveniles was examined. The animals received experimental diets containing 30% insect meals derived from black soldier-fly larvae (BSL) (Hermetia illucens), yellow mealworm (Tenebrio molitor) or blue bottle-fly larvae (Calliphora vicina) for 18 days. The relative abundance of the Bacillaceae, the Planococcaceae and other bacteria significantly increased (p < 0.05) in the intestinal microbiota of the BSL group and also in the pooled group of the three catfish groups that received insect meals. Several strains of the Bacillales cultured from BSL feed had higher (p < 0.05) abundance in the intestinal microbiota of the BSL group compared to those of the control group. Among these Bacillales strains, a single fosB antibiotic resistance gene was identified. In the gut resistomes of both the BSL and the control catfish groups, the tetA(P), tetB(P) and lnu(C) antibiotic-resistance determinants were detected, while fosB was detected only in the BSL group. Overall, the study showed that a short-term shift to diets containing insect meals can induce significant (q < 0.05) changes in the gut microbiota of the African catfish without the development of reduced α-diversity and without the overgrowth of bacteria pathogenic to fish.
Collapse
Affiliation(s)
- Balázs Libisch
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary; (T.K.); or (C.L.O.); (P.P.P.); (K.P.); (F.O.)
| | - Zsuzsanna J. Sándor
- Research Center for Fisheries and Aquaculture, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, 5540 Szarvas, Hungary;
| | - Tibor Keresztény
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary; (T.K.); or (C.L.O.); (P.P.P.); (K.P.); (F.O.)
- Doctoral School of Biology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
| | - Chioma Lilian Ozoaduche
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary; (T.K.); or (C.L.O.); (P.P.P.); (K.P.); (F.O.)
- Doctoral School of Biology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
- Sustainable Environment Development Initiative (SEDI), Benin City 300102, Nigeria
| | - Péter P. Papp
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary; (T.K.); or (C.L.O.); (P.P.P.); (K.P.); (F.O.)
| | - Katalin Posta
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary; (T.K.); or (C.L.O.); (P.P.P.); (K.P.); (F.O.)
| | - Janka Biró
- Research Center for Fisheries and Aquaculture, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, 5540 Szarvas, Hungary;
| | - Viktor Stojkov
- Institute of Food Technology, University of Novi Sad, 21000 Novi Sad, Serbia; (V.S.); (V.B.)
| | - Vojislav Banjac
- Institute of Food Technology, University of Novi Sad, 21000 Novi Sad, Serbia; (V.S.); (V.B.)
| | - Nóra Adányi
- Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary; (N.A.); (M.B.); (É.L.-K.); (R.T.-F.)
| | - Mária Berki
- Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary; (N.A.); (M.B.); (É.L.-K.); (R.T.-F.)
| | - Éva Lengyel-Kónya
- Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary; (N.A.); (M.B.); (É.L.-K.); (R.T.-F.)
| | - Rita Tömösközi-Farkas
- Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary; (N.A.); (M.B.); (É.L.-K.); (R.T.-F.)
| | - Ferenc Olasz
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary; (T.K.); or (C.L.O.); (P.P.P.); (K.P.); (F.O.)
| |
Collapse
|
2
|
Abdu SMN, Abdalla IM, Zhen Y, Zhang C, Xi Z, Ma J, Zhong Y, Lin J, Ali R, Wang M. Gastric Infusion of Short-Chain Fatty Acids Improves Health via Enhance Liver and Intestinal Immune Response and Antioxidant Capacity in Goats. Vet Sci 2025; 12:395. [PMID: 40431488 PMCID: PMC12115894 DOI: 10.3390/vetsci12050395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/17/2025] [Accepted: 04/04/2025] [Indexed: 05/29/2025] Open
Abstract
In the present study, we comprehensively investigated the impacts of the infusion of three short-chain fatty acids (SCFAs), sodium acetate (SA), propionate (SP), and butyrate (SB), to examine their respective roles in the gastrointestinal tract (GIT) health and innate immunity of twenty adult Guanzhong milk goats of 1.5 years of age. Infusion of SCFAs resulted in upregulating the activity of certain antioxidant enzymes in comparison with the control group. The SA group significantly (p < 0.05) increased the activity of the catalase (CAT) in the liver, glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) in the colon, and maleic dialdehyde (MDA) in the jejunum. SP significantly (p < 0.05) upregulated the activity of the total antioxidant capacity (T-AOC) in the ileum, CAT and MDA in the jejunum, CAT in the colon, and SOD in the liver. SB was significantly (p < 0.05) upregulated the activity of the T-AOC in the ileum, CAT in the jejunum, and T-AOC, CAT, SOD, and GSH-Px in the colon. Infusion of SCFAs resulted in significant (p < 0.05) increases in pro-inflammatory and anti-inflammatory cytokines in the intestine compared to the control group. We found that the SA group significantly (p < 0.05) upregulated the level of interleukin-1 beta (IL-1β) in the ileum and jejunum, as well as the levels of IL-6 and TNF-α in the colon, while the SP group significantly (p < 0.05) increased the level of IL-1β in the jejunum and the level of interleukin-10 (IL-10) in the colon. Furthermore, the SB group significantly (p < 0.05) upregulated levels of IL-1β in the jejunum, interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α) in the colon, and IL-10 in the cecum. Furthermore, some intestinal tight-junction proteins were significantly increased by SCFA infusion. SA significantly (p < 0.05) increased the claudin level in the ileum and occludin in the colon, while the SP group significantly (p < 0.05) upregulated the level of occludin in the jejunum and the claudin level in the ileum. Moreover, SB significantly (p < 0.05) increased the occludin level in the jejunum, claudin level in the ileum, and zonula occludens-1 (ZO-1) level in the colon and cecum. There are many positive associations among antioxidant, inflammatory cytokine, and tight-junction protein indexes in the liver and intestine. In conclusion, our results suggest that the gastric infusion of SA, SP, and SB might improve goat intestinal health through the positive influence on the antioxidant capacity, pro-inflammatory and anti-inflammatory cytokines, and tight-junction proteins.
Collapse
Affiliation(s)
- Shaima Mohmed Nasr Abdu
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (S.M.N.A.); (Y.Z.); (C.Z.); (Z.X.); (J.M.); (Y.Z.); (J.L.); (R.A.)
| | | | - Yongkang Zhen
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (S.M.N.A.); (Y.Z.); (C.Z.); (Z.X.); (J.M.); (Y.Z.); (J.L.); (R.A.)
| | - Chong Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (S.M.N.A.); (Y.Z.); (C.Z.); (Z.X.); (J.M.); (Y.Z.); (J.L.); (R.A.)
| | - Zanna Xi
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (S.M.N.A.); (Y.Z.); (C.Z.); (Z.X.); (J.M.); (Y.Z.); (J.L.); (R.A.)
| | - Jianjun Ma
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (S.M.N.A.); (Y.Z.); (C.Z.); (Z.X.); (J.M.); (Y.Z.); (J.L.); (R.A.)
| | - Yuhong Zhong
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (S.M.N.A.); (Y.Z.); (C.Z.); (Z.X.); (J.M.); (Y.Z.); (J.L.); (R.A.)
| | - Jiaqi Lin
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (S.M.N.A.); (Y.Z.); (C.Z.); (Z.X.); (J.M.); (Y.Z.); (J.L.); (R.A.)
| | - Rahmat Ali
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (S.M.N.A.); (Y.Z.); (C.Z.); (Z.X.); (J.M.); (Y.Z.); (J.L.); (R.A.)
| | - Mengzhi Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (S.M.N.A.); (Y.Z.); (C.Z.); (Z.X.); (J.M.); (Y.Z.); (J.L.); (R.A.)
| |
Collapse
|
3
|
Moreira AP, Lima JJF, Oliveira FCD, Levy-Pereira N, Chagas EC, Fernandes CE, Ferraz ALJ, Campos CMD. Dietary supplementation with Ocimum gratissimum essential oil improves the intestinal bacterial populations of Piaractus mesopotamicus. BRAZ J BIOL 2025; 85:e283524. [PMID: 40105663 DOI: 10.1590/1519-6984.283524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 12/01/2024] [Indexed: 03/20/2025] Open
Abstract
The aim of this study was to evaluate the effects of the dietary supplementation Ocimum gratissimum essential oil (EO) on pacu (Piaractus mesopotamicus) intestinal microbiota and morphometry. In this study, juveniles of P. mesopotamicus were fed with diets supplemented with 0.5 and 1% of Ocimum gratissimum EO for 30 days. At the end of this period, the intestinal microbiota of the pacus was relatively quantified through qPCR, and the intestinal morphometry was evaluated using histometric methods. O. gratissimum EO feeding supplementation at 1% significantly altered the intestinal microbiota of juvenile pacus, resulting in higher relative quantification of bacteria from the genera Enterococcus and Bacillus when compared to 0.5% and control groups. O. gratissimum EO feeding supplementation presented no effects in intestinal morphometry. Our results suggest that the feeding supplementation of P. mesopotamicus with O. gratissimum at 1% concentration during 30 days modulates the intestinal bacterial populations but do not cause any changes in intestinal morphometry.
Collapse
Affiliation(s)
- A P Moreira
- Universidade Estadual de Mato Grosso do Sul, Graduação em Zootecnia, Aquidauana, MS, Brasil
| | - J J F Lima
- Universidade Estadual de Mato Grosso do Sul, Graduação em Zootecnia, Aquidauana, MS, Brasil
| | - F C de Oliveira
- Universidade Federal de Mato Grosso do Sul, Faculdade de Medicina Veterinária e Zootecnia, Programa de Pós-graduação em Ciência Animal, Campo Grande, MS, Brasil
| | - N Levy-Pereira
- Universidade de São Paulo, Faculdade de Zootecnia e Engenharia de Alimentos, Laboratório de Higiene Zootécnica, Pirassununga, SP, Brasil
| | - E C Chagas
- Empresa Brasileira de Pesquisa Agropecuária - Embrapa Amazônia Ocidental, Manaus, AM, Brasil
| | - C E Fernandes
- Universidade Federal de Mato Grosso do Sul, Faculdade de Medicina Veterinária e Zootecnia, Programa de Pós-graduação em Ciência Animal, Campo Grande, MS, Brasil
| | - A L J Ferraz
- Universidade Estadual de Mato Grosso do Sul, Graduação em Zootecnia, Aquidauana, MS, Brasil
- Universidade Estadual de Mato Grosso do Sul, Programa de Pós-graduação em Zootecnia, Aquidauana, MS, Brasil
| | - C M de Campos
- Universidade Estadual de Mato Grosso do Sul, Graduação em Zootecnia, Aquidauana, MS, Brasil
- Universidade Federal de Mato Grosso do Sul, Faculdade de Medicina Veterinária e Zootecnia, Programa de Pós-graduação em Ciência Animal, Campo Grande, MS, Brasil
- Universidade Estadual de Mato Grosso do Sul, Programa de Pós-graduação em Zootecnia, Aquidauana, MS, Brasil
| |
Collapse
|
4
|
Hew SY, Tan PY, Zhao K, Tan HY. Enhancing Growth and Modulation of Gut Microbiota in Red Hybrid Tilapia (Oreochromis sp.) with Host-Associated Leuconostoc lactis as Feed Additive. Curr Microbiol 2025; 82:175. [PMID: 40053104 DOI: 10.1007/s00284-025-04137-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 02/13/2025] [Indexed: 03/20/2025]
Abstract
Economic sustainability and the emergence of infectious diseases remain critical challenges in tilapia aquaculture. Lactic acid bacteria (LAB) are well-known feed additives with probiotic effects in improving overall performance of livestock. This study evaluated the effects of host-associated probiotic, Leuconostoc lactis TARicum AI2, on growth performance, antioxidant, immune responses, and gut microbiota of red hybrid tilapia (Oreochromis sp.) by conducting an 86-day feeding trial. The probiotic, previously characterised for its beneficial traits, was coated on commercial feed at a concentration of 109 CFU g-1. Results showed tilapia fed with probiotic had significant improvement in feed conversion ratio (FCR) and protein efficiency ratio (PER) compared to the control group. Upregulation of cytokine expressions was observed in the probiotic group. Gut microbiota analysis revealed an increased abundance of the genera Clostridium and Leuconostoc in the probiotic-fed tilapia. Beta-diversity indices proved exclusive groups of bacteria present in specific diet only. In conclusion, L. lactis strain TARicum AI2 is a potential probiotic candidate in promoting growth in tilapia as the results suggested it could improve FCR and PER. Feed with lower FCR and higher PER could help tilapia farmers in reducing feed cost, which accounted for the major portion of their production cost. This further enables them to achieve cost-effective, enhanced productivity and economic sustainability in a long run.
Collapse
Affiliation(s)
- S Y Hew
- Faculty of Applied Sciences, Tunku Abdul Rahman University of Management and Technology, 53000, Kuala Lumpur, Malaysia
| | - P Y Tan
- Faculty of Applied Sciences, Tunku Abdul Rahman University of Management and Technology, 53000, Kuala Lumpur, Malaysia
| | - K Zhao
- Zhejiang-Malaysia Joint Laboratory for Bioactive Materials and Applied Microbiology, School of Life Sciences, Taizhou University, Taizhou, 318000, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou Key Laboratory of Biomedicine and Advanced Dosage Forms, School of Life Sciences, Taizhou University, Taizhou, 318000, Zhejiang, China
| | - H Y Tan
- Faculty of Applied Sciences, Tunku Abdul Rahman University of Management and Technology, 53000, Kuala Lumpur, Malaysia.
- Zhejiang-Malaysia Joint Laboratory for Bioactive Materials and Applied Microbiology, School of Life Sciences, Taizhou University, Taizhou, 318000, Zhejiang, China.
| |
Collapse
|
5
|
Li Z, Tran NT, Zhang M, Li Z, Yang W, Wang S, Hu Z, Li S. Isolation and Evaluation of Potential Use of Prebiotics-Utilizing Butyrate-Producing Bacteria in Nibea coibor. AQUACULTURE NUTRITION 2025; 2025:4679037. [PMID: 39830087 PMCID: PMC11742079 DOI: 10.1155/anu/4679037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 12/14/2024] [Indexed: 01/22/2025]
Abstract
Butyrate-producing bacteria (BPB) benefit the health of aquatic animals. This current study aimed to isolate BPB from the intestines of Nibea coibor and assess their probiotic potential. The results showed that nine isolates were obtained in vitro from the gut of N. coibor, including six Clostridium butyricum, two Proteocatella sphenisci, and one Fusobacterium varium. The representative bacteria, C. butyricum CG-3 and P. sphenisci DG-1, which produce high butyrate levels, were further studied for short-chain fatty acid (SCFA) production and antibiotic susceptibility. The effects of BPB singly (CB: basal diet + CG-3 and PS: basal diet + DG-1, at 107 CFU/g) or in combination with galactooligosaccharides (GOS) (0.5%) and inulin (0.5%) (CBIG) or D-sorbitol (0.5%) (PSGS) on the growth and health status of N. coibor were investigated. Results showed an increase in growth parameters in the CB, CBIG, and PSGS groups, except for the PS group. Alterations in intestinal microbiota (including diversity, abundance, and function) were observed in four experimental groups (CB, CBIG, PS, and PSGS groups). SCFA contents increased in treated groups; butyrate production was positively related to bacterial abundance. Compared to control, levels of complement C3, complement C4, immunoglobulin M (IgM), transforming growth factor-β (TGF-β), interleukin (IL)-10, IL-1β, and lysozyme (LZM) increased, while malondialdehyde (MDA) decreased in treated groups. Contents of IL-6 (PS and PSGS groups), tumor necrosis factor-alpha (TNF-α) (CB, PS, and PSGS groups), total antioxidant capacity (T-AOC) (CB and PS groups), total superoxide dismutase (T-SOD) (PS group), catalase (CAT) (CB and PSGS groups), and activities of amylase (PS and PSGS groups), trypsin (CB group), and lipase (CBIG group) were increased. Our results suggested the potential use of C. butyricum CG-1 or P. sphenisci DG-1 singly or in combination with prebiotics improved growth and health conditions in N. coibor.
Collapse
Affiliation(s)
- Zhongzhen Li
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China
- Institute of Marine Sciences, Shantou University, Shantou 515063, China
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
- Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Jinan University, Zhuhai 519000, China
- Guangdong Provincial Key Laboratory for Green Agricultural Production and Intelligent Equipment, College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Ngoc Tuan Tran
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China
- Institute of Marine Sciences, Shantou University, Shantou 515063, China
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Ming Zhang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China
- Institute of Marine Sciences, Shantou University, Shantou 515063, China
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Zhaoxi Li
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China
- Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Wanying Yang
- Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Jinan University, Zhuhai 519000, China
| | - Shuqi Wang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China
- Institute of Marine Sciences, Shantou University, Shantou 515063, China
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Zhong Hu
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China
- Institute of Marine Sciences, Shantou University, Shantou 515063, China
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Shengkang Li
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China
- Institute of Marine Sciences, Shantou University, Shantou 515063, China
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| |
Collapse
|
6
|
Martiniuc C, Taveira I, Abreu F, Cabral AS, Paranhos R, Seldin L, Jurelevicius D. Insights into the dynamics and evolution of Rummeliibacillus stabekisii prophages in extreme environments: from Antarctic soil to spacecraft floors. Extremophiles 2024; 29:10. [PMID: 39708135 DOI: 10.1007/s00792-024-01377-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 12/10/2024] [Indexed: 12/23/2024]
Abstract
Since prophages can play a multifaceted role in bacterial evolution, this study aims to characterize the virome of Rummeliibacillus stabekisii, a bacterium isolated from different environments, including Antarctic soil and NASA spacecraft floors. From the analyses, it was found that the Antarctic strain, PP9, had the largest number of prophages, including intact ones, indicating potential benefits for survival in adverse conditions. In contrast, other strains harbored predominantly degenerate prophages, suggesting a dynamic process of gene gain and loss during evolution. Furthermore, strain PP9 exhibited polylysogeny, a strategy capable of increasing its competitive advantage by providing a broader spectrum of defensive mechanisms. In addition, evidence demonstrates that prophage regions in PP9 act as hotspots for recombination events, favoring the insertion of different phages and possible antimicrobial resistance genes. Finally, lytic cycle induction experiments revealed at least two intact prophages active in PP9. In this way, understanding the interaction between viruses and bacteria can provide valuable information about microbial evolution and adaptation in extreme environments, such as Antarctica.
Collapse
Affiliation(s)
- Caroline Martiniuc
- Laboratório de Ecologia E Biotecnologia Microbiana, Instituto de Microbiologia Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal Do Rio de Janeiro (UFRJ), Bloco I, Rio de Janeiro (RJ), Brazil
| | - Igor Taveira
- Laboratório de Ecologia E Biotecnologia Microbiana, Instituto de Microbiologia Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal Do Rio de Janeiro (UFRJ), Bloco I, Rio de Janeiro (RJ), Brazil
| | - Fernanda Abreu
- Laboratório de Ecologia E Biotecnologia Microbiana, Instituto de Microbiologia Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal Do Rio de Janeiro (UFRJ), Bloco I, Rio de Janeiro (RJ), Brazil
| | - Anderson S Cabral
- Laboratório de Ecologia E Biotecnologia Microbiana, Instituto de Microbiologia Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal Do Rio de Janeiro (UFRJ), Bloco I, Rio de Janeiro (RJ), Brazil
- Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Rodolfo Paranhos
- Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Lucy Seldin
- Laboratório de Ecologia E Biotecnologia Microbiana, Instituto de Microbiologia Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal Do Rio de Janeiro (UFRJ), Bloco I, Rio de Janeiro (RJ), Brazil
| | - Diogo Jurelevicius
- Laboratório de Ecologia E Biotecnologia Microbiana, Instituto de Microbiologia Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal Do Rio de Janeiro (UFRJ), Bloco I, Rio de Janeiro (RJ), Brazil.
| |
Collapse
|
7
|
Zhang B, Yang H, Cai G, Nie Q, Sun Y. The interactions between the host immunity and intestinal microorganisms in fish. Appl Microbiol Biotechnol 2024; 108:30. [PMID: 38170313 DOI: 10.1007/s00253-023-12934-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 01/05/2024]
Abstract
There is a huge quantity of microorganisms in the gut of fish, which exert pivotal roles in maintaining host intestinal and general health. The fish immunity can sense and shape the intestinal microbiota and maintain the intestinal homeostasis. In the meantime, the intestinal commensal microbes regulate the fish immunity, control the extravagant proliferation of pathogenic microorganisms, and ensure the intestinal health of the host. This review summarizes developments and progress on the known interactions between host immunity and intestinal microorganisms in fish, focusing on the recent advances in zebrafish (Danio rerio) showing the host immunity senses and shapes intestinal microbiota, and intestinal microorganisms tune host immunity. This review will offer theoretical references for the development, application, and commercialization of intestinal functional microorganisms in fish. KEY POINTS: • The interactions between the intestinal microorganisms and host immunity in zebrafish • Fish immunity senses and shapes the microbiota • Intestinal microbes tune host immunity in fish.
Collapse
Affiliation(s)
- Biyun Zhang
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, Fujian, China
| | - Hongling Yang
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, Fujian, China
| | - Guohe Cai
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, Fujian, China
| | - Qingjie Nie
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, Fujian, China
| | - Yunzhang Sun
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, Fujian, China.
| |
Collapse
|
8
|
Chan CH, Chen LH, Chen KY, Chen IH, Lee KT, Lai LC, Tsai MH, Chuang EY, Lin MT, Yan TR. Single-strain probiotics enhance growth, anti-pathogen immunity, and resistance to Nocardia seriolae in grey mullet (Mugil cephalus) via gut microbiota modulation. Anim Microbiome 2024; 6:67. [PMID: 39563419 PMCID: PMC11575433 DOI: 10.1186/s42523-024-00353-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 11/03/2024] [Indexed: 11/21/2024] Open
Abstract
Grey mullet (Mugil cephalus) aquaculture is economically vital due to the high value of its roe. However, it faces significant risks from disease outbreaks, particularly from Nocardia seriolae. Current reliance on antibiotics has drawbacks, highlighting the potential of probiotics as a promising alternative. Despite this, no studies have focused on the effects and mechanisms of probiotics in disease prevention and treatment in grey mullet. This study, therefore, investigates the efficacy of probiotics in enhancing disease resistance and promoting growth in grey mullet. Three strains of probiotics, Lacticaseibacillus rhamnosus FS3051, Limosilactobacillus reuteri FS3052, and Bacillus subtilis natto NTU-18, were selected to evaluate their anti-N. seriolae activity and hydrolytic enzyme secretion in vitro. Then, 144 grey mullet were randomly divided into four groups: control, L. rhamnosus FS3051, L. reuteri FS3052, and B. subtilis natto NTU-18. After being fed the corresponding diet for 28 days, fish were measured for immune gene expression and short-term growth followed by challenge of N. seriolae. Survival rates were recorded for 35 days post challenge. Additionally, the gut microbiota of the control and probiotic groups with effects on both growth and protection against N. seriolae were analyzed to investigate the potential role of gut microbiota. Results demonstrated that L. rhamnosus FS3051 and L. reuteri FS3052 inhibited N. seriolae, while B. subtilis natto NTU-18 did not inhibited N. seriolae. Probiotics also had the ability to secrete hydrolytic enzymes. Probiotic-fed grey mullet showed significant improvements in weight gain ratio, feed efficiency, and specific growth rate, particularly in the B. subtilis natto NTU-18 group. Immune gene expression was enhanced by probiotics, especially L. rhamnosus, FS3051, which induced IL-8, IL-1β, TNF-α, IFN-γ, and MHCI. Survival rates post-N. seriolae challenge improved significantly for L. rhamnosus FS3051-fed fish. L. rhamnosus FS3051 also altered the gut microbiota, enriching beneficial genera like Lactobacillus, which correlated positively with immune responses and growth, while reducing Mycoplasma and Rhodobacter, which were negatively correlated with immune responses. This study underscores the potential of probiotics in enhancing disease resistance and growth via regulating gut microbiota in grey mullet.
Collapse
Affiliation(s)
- Ching-Hung Chan
- Department of Chemical Engineering and Biotechnology, College of Engineering, Tatung University, Taipei, Taiwan
- Institute of Fisheries Science, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Li-Han Chen
- Institute of Fisheries Science, College of Life Science, National Taiwan University, Taipei, Taiwan.
- Department of Life Science, College of Life Science, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 106319, Taiwan.
| | - Kuang-Yu Chen
- Institute of Fisheries Science, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - I-Hung Chen
- Institute of Fisheries Science, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Kung-Ta Lee
- Department of Biochemical Science & Technology, College of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| | - Liang-Chuan Lai
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Bioinformatics and Biostatistics Core, Center of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan
| | - Mong-Hsun Tsai
- Bioinformatics and Biostatistics Core, Center of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Eric Y Chuang
- Bioinformatics and Biostatistics Core, Center of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Ming-Tse Lin
- Department of Chemical Engineering and Biotechnology, College of Engineering, Tatung University, Taipei, Taiwan
| | - Tsong-Rong Yan
- Department of Chemical Engineering and Biotechnology, College of Engineering, Tatung University, Taipei, Taiwan
| |
Collapse
|
9
|
Paritova A, Nurgaliyev A, Nurgaliyeva G, Abekeshev N, Abuova A, Zakirova F, Zwierzchowski G, Kuanchaleyev Z, Issabekova S, Kizatova M, Sayakova Z, Zhanabayeva D, Kukhar Y, Stozhkov R, Aitkozhina B, Mayer Y, Bayantassova S, Satbek A, Andruchshak A, Kushaliyev K. The dietary effects of two strain probiotics (Leuconostoc mesenteroides, Lactococcus lactis) on growth performance, immune response and gut microbiota in Nile tilapia (Oreochromis niloticus). PLoS One 2024; 19:e0312580. [PMID: 39446799 PMCID: PMC11500904 DOI: 10.1371/journal.pone.0312580] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
The aquaculture industry has been growing rapidly over the past few decades to meet future animal protein demands. However, intensive aquaculture industry faces challenges such as growth abnormalities, high mortality rates, water quality and intestinal health deterioration. Administering probiotics can serve as a nutritional strategy to enhance the immune system and growth performance of fish influxes of gut microbiota. This study aimed to evaluate the impact of two dietary probiotic strains L. mesenteroides and L. lactis on the growth performance, immunity, and gut microbiota of Nile tilapia (Oreochromis niloticus). Fish were fed with basal and experimental diet supplemented by both L. mesenteroides and L. lactis bacteria at 106 cell/g for 8 weeks. Feeding a combination of L. mesenteroides and L. lactis resulted in significant improvements in feed utilization parameters (PER and FER) (P < 0.001), alternative complement pathway activity, intestinal lactic acid bacteria count (P < 0.012), mucus secretion (P < 0.002) and peroxidase activity (P < 0.001) compared to the control groups. Serum lysozyme activity also exhibited a significant increase in the L. mesenteroides and L. lactis dietary group (P < 0.011) compared to the control and single probiotic supplemented diet groups. Furthermore, Nile tilapia fed the L. mesenteroides and L. lactis supplemented diet showed enhanced growth performance metrics (weight gain, final weight and specific growth rate) compared to those fed control and single probiotic supplemented diets (P < 0.022). Additionally, superoxide dismutase activity was significantly elevated in the L.mesenteroides and L. lactis supplemented diet groups compared to the control and single L.mesenteroides supplemented diet groups (P < 0.017). These findings strongly indicate that a dietary combination of L. mesenteroides and L. lactis probiotics could function as a beneficial immunostimulant feed supplement in Nile tilapia aquaculture.
Collapse
Affiliation(s)
- Assel Paritova
- Saken Seifullin Kazakh Agrotechnical University, Astana, Kazakhstan
| | - Akylbek Nurgaliyev
- Zhangir Khan West Kazakhstan Agrarian–Technical University, Uralsk, Kazakhstan
| | | | - Nurzhan Abekeshev
- Zhangir Khan West Kazakhstan Agrarian–Technical University, Uralsk, Kazakhstan
| | - Altynay Abuova
- International Engineering and Technological University, Almaty, Kazakhstan
| | - Faruza Zakirova
- Zhangir Khan West Kazakhstan Agrarian–Technical University, Uralsk, Kazakhstan
| | | | | | | | - Maigul Kizatova
- S.D. Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
| | - Zaure Sayakova
- Kazakh Scientific Veterinary Research Institute, Almaty, Kazakhstan
| | | | - Yelena Kukhar
- Saken Seifullin Kazakh Agrotechnical University, Astana, Kazakhstan
| | - Ruslan Stozhkov
- Saken Seifullin Kazakh Agrotechnical University, Astana, Kazakhstan
| | | | - Yevgeniy Mayer
- Saken Seifullin Kazakh Agrotechnical University, Astana, Kazakhstan
| | | | - Angsar Satbek
- Saken Seifullin Kazakh Agrotechnical University, Astana, Kazakhstan
| | | | - Kaissar Kushaliyev
- Zhangir Khan West Kazakhstan Agrarian–Technical University, Uralsk, Kazakhstan
| |
Collapse
|
10
|
Sun S, Lv J, Lei K, Wang Z, Wang W, Li Z, Li M, Zhou J. Correlation Analysis of the Transcriptome and Gut Microbiota in Salmo trutta Resistance to Aeromonas salmonicida. Microorganisms 2024; 12:1983. [PMID: 39458292 PMCID: PMC11509326 DOI: 10.3390/microorganisms12101983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Aeromonas salmonicida is a major pathogenic bacterium that poses a significant threat to salmonid fish. Yadong County, located in the Xizang Autonomous Region, is renowned for its characteristic industry of Salmo trutta aquaculture. In recent years, the outbreak of Bacterial Gill Disease (BGD) has led to substantial economic losses for S. trutta farmers. Our prior research identified A. salmonicida as one of the primary culprits behind BGD. To mitigate the impact of A. salmonicida on S. trutta, we conducted a comprehensive study aimed at identifying genes associated with resistance to A. salmonicida. This involved transcriptome sequencing and 16S rRNA sequencing of intestinal flora, providing valuable insights for the study of disease resistance in S. trutta. In this study, we identified 324 genera with 5171 ASVs in the susceptible group and 293 genera with 5669 ASVs in the resistant group. Notably, Methylobacterium and Sphingomonas were common bacteria present in the salmon's gut, and their proportions remained relatively stable before and after infection. Shewanella, with its antagonistic relationship with Aeromonas, may play a crucial role in the salmon's defense against A. salmonicida. Several related genes were identified, including angptl4, cipcb, grasp, ccr9a, sulf1, mtmr11, B3GNT3, mt2, PLXDC1, and ank1b.
Collapse
Affiliation(s)
- Shuaijie Sun
- Institute of Fisheries Science, Xizang Academy of Agriculture and Animal Husbandry Sciences, Lhasa 850032, China; (S.S.); (K.L.); (Z.W.); (W.W.)
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Z.L.); (M.L.)
- Henan Academy of Fishery Sciences, Henan Academy of Agricultural Sciences, Zhengzhou 450044, China;
| | - Jun Lv
- Henan Academy of Fishery Sciences, Henan Academy of Agricultural Sciences, Zhengzhou 450044, China;
| | - Kuankuan Lei
- Institute of Fisheries Science, Xizang Academy of Agriculture and Animal Husbandry Sciences, Lhasa 850032, China; (S.S.); (K.L.); (Z.W.); (W.W.)
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Z.L.); (M.L.)
| | - Zhuangzhuang Wang
- Institute of Fisheries Science, Xizang Academy of Agriculture and Animal Husbandry Sciences, Lhasa 850032, China; (S.S.); (K.L.); (Z.W.); (W.W.)
| | - Wanliang Wang
- Institute of Fisheries Science, Xizang Academy of Agriculture and Animal Husbandry Sciences, Lhasa 850032, China; (S.S.); (K.L.); (Z.W.); (W.W.)
| | - Zhichao Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Z.L.); (M.L.)
| | - Ming Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Z.L.); (M.L.)
| | - Jianshe Zhou
- Institute of Fisheries Science, Xizang Academy of Agriculture and Animal Husbandry Sciences, Lhasa 850032, China; (S.S.); (K.L.); (Z.W.); (W.W.)
| |
Collapse
|
11
|
Zhang M, Feng Y, Zhong Z, Du Q, Yu W, Wu J, Huang X, Huang Z, Xie G, Shu H. Host Gut-Derived Probiotic, Exiguobacterium acetylicum G1-33, Improves Growth, Immunity, and Resistance to Vibrio harveyi in Hybrid Grouper ( Epinephelus fuscoguttatus ♀ × Epinephelus lanceolatus ♂). Microorganisms 2024; 12:1688. [PMID: 39203530 PMCID: PMC11357496 DOI: 10.3390/microorganisms12081688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
Several exogenous probiotics are applicable in fish culture; however, challenges in isolation and verification have hindered the full utilization of numerous host probiotics. Therefore, this study aimed to apply the host probiotic Exiguobacterium acetylicum G1-33 to hybrid grouper (Epinephelus fuscoguttatus ♀ × Epinephelus lanceolatus ♂) cultures and explore its mechanism of action. In total, 360 hybrid grouper were divided into four groups, which were fed the following for 60 days: three received commercial feed with varying concentrations of E. acetylicum G1-33 (106, 108, and 1010 CFU/g), while a control group received commercial feed. The results showed that supplementation with 106 and 108 CFU/g of E. acetylicum G1-33 enhanced gut morphology, upregulated growth-related genes (ghr1, igf-2, s6k1, tor), and promoted growth, with supplementation with 108 CFU/g resulting in the most notable enhancement. However, supplementation with 1010 CFU/g inhibited growth, possibly because of changes in intestinal morphology. Additionally, supplementation with E. acetylicum G1-33 upregulated the expression of immune-related genes (c3, myd88, Cu/Zn-sod, tlr3, and tnf2) in the liver and head kidney but led to an increase in malondialdehyde content, as well as a decrease in alkaline phosphatase and acid phosphatase activities, in the liver and serum, indicating increased oxidative stress. Moreover, supplementation with 106 and 108 CFU/g E. acetylicum G1-33 enhanced the widespread expression of immune-related genes in the head kidney and liver, respectively, and improved resistance to Vibrio harveyi, whereas supplementation with 1010 CFU/g weakened this resistance. In conclusion, E. acetylicum G1-33, particularly at 108 CFU/g, emerged as an effective probiotic, optimizing growth performance and immunity in hybrid grouper. This research is pioneering in its application of E. acetylicum in mariculture, potentially broadening the range of probiotic strategies in aquaculture.
Collapse
Affiliation(s)
- Mingqing Zhang
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China; (M.Z.); (Y.F.); (Z.Z.); (Q.D.); (G.X.)
- School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yuwei Feng
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China; (M.Z.); (Y.F.); (Z.Z.); (Q.D.); (G.X.)
| | - Zhongxuan Zhong
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China; (M.Z.); (Y.F.); (Z.Z.); (Q.D.); (G.X.)
| | - Qianping Du
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China; (M.Z.); (Y.F.); (Z.Z.); (Q.D.); (G.X.)
| | - Wei Yu
- Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518121, China; (W.Y.); (X.H.); (Z.H.)
- Sanya Tropical Fisheries Research Institute, Sanya 572018, China
| | - Jinhui Wu
- Agro-Tech Extension Center of Guangdong Province, Guangzhou 510500, China;
| | - Xiaolin Huang
- Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518121, China; (W.Y.); (X.H.); (Z.H.)
| | - Zhong Huang
- Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518121, China; (W.Y.); (X.H.); (Z.H.)
| | - Guangting Xie
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China; (M.Z.); (Y.F.); (Z.Z.); (Q.D.); (G.X.)
| | - Hu Shu
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China; (M.Z.); (Y.F.); (Z.Z.); (Q.D.); (G.X.)
| |
Collapse
|
12
|
Ferrarezi JVS, Owatari MS, Martins MA, de Souza Sá L, Dutra SAP, de Oliveira HM, Soligo T, Martins ML, Mouriño JLP. Effects of a multi-strain Bacillus probiotic on the intestinal microbiome, haemato-immunology, and growth performance of Nile tilapia. Vet Res Commun 2024; 48:2357-2368. [PMID: 38775898 DOI: 10.1007/s11259-024-10412-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/10/2024] [Indexed: 08/10/2024]
Abstract
The study evaluated dietary supplementation with a feed additive composed of multi-strain Bacillus for Nile tilapia Oreochromis niloticus. In vitro and in vivo assays employing culture-based microbiological methods and metagenomics were performed. Additionally, the study assessed the haemato-immunology, intestinal microbiome, and growth performance of the animals. For this, 30 juvenile Nile tilapia were used in the in vitro assay and 180 (60 + 120) in the in vivo assays. In the in vitro assay, we found evidence of adhesion of the probiotic bacteria to the intestinal mucus of fish, corroborated in the 15-day in vivo assay, in which the count of B. licheniformis was significantly higher in fish fed with probiotic when compared to fish of the control group. Furthermore, in the 50-day in vivo trial, a metagenomic analysis provided evidence for the modulation of the intestine microbiome of Nile tilapia by dietary supplementation of the probiotic. In addition, there was an increase in species richness, higher abundance of potentially probiotic autochthonous species and a lower abundance of Aeromonas sp. when the animals were fed the supplemented diet. Finally, no significant differences were observed in growth performance and haemato-immunological analyses, suggesting no harm to fish health when the product was supplemented for 15 and 50 days. The in vitro results indicate that the multi-strain probiotics were able to adhere to the intestinal mucus of Nile tilapia. Additionally, a modulation of the intestinal microbiome was evidenced in the in vivo assay.
Collapse
Affiliation(s)
- José Victor Safadi Ferrarezi
- AQUOS-Aquatic Organisms Health Laboratory, Aquaculture Department, Center of Agrarian Sciences (CCA), Federal University of Santa Catarina (UFSC), Rodovia Admar Gonzaga, 1346, CEP 88034-000, Florianópolis, SC, Brazil
| | - Marco Shizuo Owatari
- AQUOS-Aquatic Organisms Health Laboratory, Aquaculture Department, Center of Agrarian Sciences (CCA), Federal University of Santa Catarina (UFSC), Rodovia Admar Gonzaga, 1346, CEP 88034-000, Florianópolis, SC, Brazil.
| | - Mateus Aranha Martins
- LCM - Marine Shrimp Laboratory, Aquaculture Department, Federal University of Santa Catarina (UFSC), Serv. Beco dos Coroas, 503, CEP 88061-600, Florianópolis, SC, Brazil
| | - Lúvia de Souza Sá
- AQUOS-Aquatic Organisms Health Laboratory, Aquaculture Department, Center of Agrarian Sciences (CCA), Federal University of Santa Catarina (UFSC), Rodovia Admar Gonzaga, 1346, CEP 88034-000, Florianópolis, SC, Brazil
| | - Scheila Anelise Pereira Dutra
- LCM - Marine Shrimp Laboratory, Aquaculture Department, Federal University of Santa Catarina (UFSC), Serv. Beco dos Coroas, 503, CEP 88061-600, Florianópolis, SC, Brazil
| | - Hugo Mendes de Oliveira
- AQUOS-Aquatic Organisms Health Laboratory, Aquaculture Department, Center of Agrarian Sciences (CCA), Federal University of Santa Catarina (UFSC), Rodovia Admar Gonzaga, 1346, CEP 88034-000, Florianópolis, SC, Brazil
| | - Thiago Soligo
- DSM - Nutritional Products Costa Rica, Industrial Park Z, Santo Domingo de Heredia, 40301, Heredia, Costa Rica
| | - Maurício Laterça Martins
- AQUOS-Aquatic Organisms Health Laboratory, Aquaculture Department, Center of Agrarian Sciences (CCA), Federal University of Santa Catarina (UFSC), Rodovia Admar Gonzaga, 1346, CEP 88034-000, Florianópolis, SC, Brazil
| | - José Luiz Pedreira Mouriño
- AQUOS-Aquatic Organisms Health Laboratory, Aquaculture Department, Center of Agrarian Sciences (CCA), Federal University of Santa Catarina (UFSC), Rodovia Admar Gonzaga, 1346, CEP 88034-000, Florianópolis, SC, Brazil
| |
Collapse
|
13
|
Xie G, Chen X, Feng Y, Yu Z, Lu Q, Li M, Ye Z, Lin H, Yu W, Shu H. Effects of Dietary Multi-Strain Probiotics on Growth Performance, Antioxidant Status, Immune Response, and Intestinal Microbiota of Hybrid Groupers ( Epinephelus fuscoguttatus ♀ × E. lanceolatus ♂). Microorganisms 2024; 12:1358. [PMID: 39065126 PMCID: PMC11278587 DOI: 10.3390/microorganisms12071358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
This study aims to examine the effects of the mixture of Bacillus cereus G1-11 and Exiguobacterium acetylicum G1-33, isolated from the gut of hybrid groupers (Epinephelus fuscoguttatus ♀ × E. lanceolatus ♂), on the host. The hybrid groupers were divided into a control (C, without any probiotics), B. cereus (BC, 1010 cfu/g), E. acetylicum (EA, 108 cfu/g), compound (mix, a 1:1 mixture of B. cereus and E. acetylicum), and positive reference group (P, Lactobacillus acidophilus, 5 × 108 cfu/L). Each group had four replicates, with 30 fish per replicate (53.30 ± 0.50 g), and were fed for 60 days. The results showed that adding probiotics to the feed significantly improved the weight gain, weight growth rate, specific growth rate, and digestive enzyme activities of hybrid groupers compared to the C group. The compound group was the most significant. In addition, composite probiotics added to feed significantly upregulated the expression levels of several growth-related genes in the liver and muscles. The activities of alkaline phosphatase, catalase, glutathione peroxidase, glutathione transferase, lysozyme, and total antioxidant capacity in the serum and liver were significantly influenced through mixed probiotic feeding. Moreover, the expression levels of several immune-related genes in the liver, spleen, and head kidney were significantly enhanced by adding single and mixed probiotics to feed, with the synergy of mixed probiotics being the best. An analysis of the gut microbiota showed that adding composite bacteria enhanced the richness and diversity of the gut microbiota, significantly increasing the relative abundance of potential probiotics (Cetobacterium and Microbacterium) while decreasing the presence of potential pathogens (Mycoplasma). Overall, our findings highlighted the efficacy of mixed probiotics (B. cereus and E. acetylicum) in enhancing growth performance, nutritional value of hybrid grouper feed, antioxidant capacity, immune response, and intestinal health, in finding the best combination of functional feed additives.
Collapse
Affiliation(s)
- Guangting Xie
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China; (G.X.); (X.C.); (Y.F.); (Z.Y.); (Q.L.); (M.L.); (Z.Y.)
| | - Xiaoying Chen
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China; (G.X.); (X.C.); (Y.F.); (Z.Y.); (Q.L.); (M.L.); (Z.Y.)
| | - Yuwei Feng
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China; (G.X.); (X.C.); (Y.F.); (Z.Y.); (Q.L.); (M.L.); (Z.Y.)
| | - Zhide Yu
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China; (G.X.); (X.C.); (Y.F.); (Z.Y.); (Q.L.); (M.L.); (Z.Y.)
| | - Qiuqin Lu
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China; (G.X.); (X.C.); (Y.F.); (Z.Y.); (Q.L.); (M.L.); (Z.Y.)
| | - Manfeng Li
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China; (G.X.); (X.C.); (Y.F.); (Z.Y.); (Q.L.); (M.L.); (Z.Y.)
| | - Ziqi Ye
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China; (G.X.); (X.C.); (Y.F.); (Z.Y.); (Q.L.); (M.L.); (Z.Y.)
| | - Heizhao Lin
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China;
- Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518121, China
| | - Wei Yu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China;
- Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518121, China
| | - Hu Shu
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China; (G.X.); (X.C.); (Y.F.); (Z.Y.); (Q.L.); (M.L.); (Z.Y.)
| |
Collapse
|
14
|
Aini N, Putri DSYR, Achhlam DH, Fatimah F, Andriyono S, Hariani D, Do HDK, Wahyuningsih SPA. Supplementation of Bacillus subtilis and Lactobacillus casei to increase growth performance and immune system of catfish ( Clarias gariepinus) due to Aeromonas hydrophila infection. Vet World 2024; 17:602-611. [PMID: 38680146 PMCID: PMC11045519 DOI: 10.14202/vetworld.2024.602-611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/16/2024] [Indexed: 05/01/2024] Open
Abstract
Background and Aim Catfish has a high economic value and is popular among consumers. To ensure well-stocked catfish stocks, good fisheries management must also be ensured. The high demand for catfish must be supplemented by preventive measures against pathogenic bacterial infections using probiotics with high potential for Lactobacillus casei and Bacillus subtilis. The aim of this study was to determine the effect of probiotic supplementation consisting of a combination of L. casei and B. subtilis probiotics on the growth, immune system, water quality, proximate value of feed, and body composition of catfish infected with Aeromonas hydrophila. Materials and Methods This study used a completely randomized study with eight treatments and three replications. The manipulated factor was the probiotic concentration [0% (A), 0.5% (B), 10% (C), and 15% (D)] in groups of catfish infected and uninfected with A. hydrophila. Combination of B. subtilis, and L. casei that were used in a 1:1 ratio of 108 colony forming unit/mL. The study lasted for 42 days. On the 35th day, A. hydrophila was infected by intramuscular injection into fish. The Statistical Package for the Social Sciences (SPSS) software version 23.0 (IBM SPSS Statistics) was used to analyze data on growth, immune system, and water quality. Results Providing probiotics in feed can increase the nutritional value of feed based on proximate test results. There were significant differences in average daily gain (ADG), feed conversion ratio (FCR), and survival rate (SR) parameters in the group of catfish infected with A. hydrophila (p > 0.05); however, there were no significant differences in final body weight, specific growth rate (SGR), and percentage weight gain. Interleukin-1β (IL-1β) levels were significantly different between treatments C and D. The tumor necrosis factor (TNF) α parameters were significantly different between treatments A and C, whereas the phagocytic activity of treatment A was significantly different from that of treatment D. There was a significant difference (p > 0.05) in the growth parameters of SGR, ADG, and FCR in the group of fish that were not infected with A. hydrophila, with the best treatment being a probiotic concentration of 15%, but there was no significant difference in the SR parameters. IL-1β and TNF-α levels significantly differed between E and E0 (15% probiotics) but were not significantly different in terms of phagocytosis parameters. Conclusion Based on the results of this study, it can be concluded that using a combination of probiotics L. casei and B. subtilis can improve the growth, immune system, water quality, proximate value of feed, and body composition of catfish infected with A. hydrophila.
Collapse
Affiliation(s)
- Nurul Aini
- Doctoral Mathematics and Natural Sciences Study Program, Faculty of Science and Technology, Universitas Airlangga, Surabaya, Indonesia
- Department of Agricultural Technology, KH University. A. Wahab Hasbullah, Jombang, Indonesia
| | | | - Divany Hunaimatul Achhlam
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, Indonesia
| | - Fatimah Fatimah
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, Indonesia
- University Center of Excellence Research Center for Bio-Molecule Engineering, Universitas Airlangga, Surabaya, Indonesia
| | - Sapto Andriyono
- Department of Marine, Faculty of Fisheries and Marine Sciences, Universitas Airlangga, Surabaya, Indonesia
| | - Dyah Hariani
- Department of Biology, Faculty of Mathematics and Natural Sciences, Surabaya State University, Surabaya, Indonesia
| | - Hoang Dang Khoa Do
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | | |
Collapse
|
15
|
Baranova MN, Pilipenko EA, Gabibov AG, Terekhov SS, Smirnov IV. Animal Microbiomes as a Source of Novel Antibiotic-Producing Strains. Int J Mol Sci 2023; 25:537. [PMID: 38203702 PMCID: PMC10779147 DOI: 10.3390/ijms25010537] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/25/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Natural compounds continue to serve as the most fruitful source of new antimicrobials. Analysis of bacterial genomes have revealed that the biosynthetic potential of antibiotic producers by far exceeds the number of already discovered structures. However, due to the repeated discovery of known substances, it has become necessary to change both approaches to the search for antibiotics and the sources of producer strains. The pressure of natural selection and the diversity of interactions in symbiotic communities make animal microbiomes promising sources of novel substances. Here, microorganisms associated with various animals were examined in terms of their antimicrobial agents. The application of alternative cultivation techniques, ultrahigh-throughput screening, and genomic analysis facilitated the investigation of compounds produced by unique representatives of the animal microbiota. We believe that new strategies of antipathogen defense will be discovered by precisely studying cell-cell and host-microbe interactions in microbiomes in the wild.
Collapse
Affiliation(s)
- Margarita N. Baranova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (M.N.B.); (A.G.G.)
| | - Ekaterina A. Pilipenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (M.N.B.); (A.G.G.)
| | - Alexander G. Gabibov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (M.N.B.); (A.G.G.)
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Stanislav S. Terekhov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (M.N.B.); (A.G.G.)
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Ivan V. Smirnov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (M.N.B.); (A.G.G.)
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
16
|
Zhang J, Luo Z, Li N, Yu Y, Cai M, Zheng L, Zhu F, Huang F, K Tomberlin J, Rehman KU, Yu Z, Zhang J. Cellulose-degrading bacteria improve conversion efficiency in the co-digestion of dairy and chicken manure by black soldier fly larvae. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119156. [PMID: 37837764 DOI: 10.1016/j.jenvman.2023.119156] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/14/2023] [Accepted: 09/24/2023] [Indexed: 10/16/2023]
Abstract
Black soldier fly larvae (BSFL) have potential utility in converting livestock manure into larval biomass as a protein source for livestock feed. However, BSFL have limited ability to convert dairy manure (DM) rich in lignocellulose. Our previous research demonstrated that feeding BSFL with mixtures of 40% dairy manure and 60% chicken manure (DM40) provides a novel strategy for significantly improving their efficiency in converting DM. However, the mechanisms underlying the efficient conversion of DM40 by BSFL are unclear. In this study, we conducted a holistic study on the taxonomic stucture and potential functions of microbiota in the larval gut and manure during the DM and DM40 conversion by BSFL, as well as the effects of BSFL on cellulosic biodegradation and biomass production. Results showed that BSFL can consume cellulose and other nutrients more effectively and harvest more biomass in a shorter conversion cycle in the DM40 system. The larval gut in the DM40 system yielded a higher microbiota complexity. Bacillus and Amphibacillus in the BSFL gut were strongly correlated with the larval cellulose degradation capacity. Furthermore, in vitro screening results for culturable cellulolytic microbes from the larval guts showed that the DM40 system isolated more cellulolytic microbes. A key bacterial strain (DM40L-LB110; Bacillus subtilis) with high cellulase activity from the larval gut of DM40 was validated for potential industrial applications. Therefore, mixing an appropriate proportion of chicken manure into DM increased the abundance of intestinal bacteria (Bacillus and Amphibacillus) producing cellulase and improved the digestion ability (particularly cellulose degradation) of BSFL to cellulose-rich manure through changes in microbial communities composition in intestine. This study reveals the microecological mechanisms underlying the high-efficiency conversion of cellulose-rich manure by BSFL and provide potential applications for the large-scale cellulose-rich wastes conversion by intestinal microbes combined with BSFL.
Collapse
Affiliation(s)
- Jia Zhang
- National Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, China
| | - Zhijun Luo
- National Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, China
| | - Nan Li
- National Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, China
| | - Yongqiang Yu
- National Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, China
| | - Minmin Cai
- National Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, China
| | - Longyu Zheng
- National Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, China
| | - Fengling Zhu
- National Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, China
| | - Feng Huang
- National Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, China.
| | | | - Kashif Ur Rehman
- Department of Microbiology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Punjab, Pakistan
| | - Ziniu Yu
- National Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, China
| | - Jibin Zhang
- National Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
17
|
Basak C, Chakraborty R. Gut-immunity modulation in Lepidocephalichthys guntea during Aeromonas hydrophila-infection and recovery assessed with transcriptome data. Heliyon 2023; 9:e22936. [PMID: 38130423 PMCID: PMC10735050 DOI: 10.1016/j.heliyon.2023.e22936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
The fish immune system, which consists of innate and adaptive immunologic processes, defends against viruses, bacteria, fungi, and parasites. The gut immunity is an integral part of the host immune system that controls immunological homeostasis, hosts' interactions with their microbiomes, and provides defence against a number of intestinal infections. Lepidocephalichthys guntea, a facultative air-breathing fish, was experimentally infected with Aeromonas hydrophila using intraperitoneal injection followed by bath challenge, and transcriptome data were used to examine the gut immune responses during disease progression and recovery from the diseased state without the use of medication. For the control or uninfected fish (FGC) and the infected fish that were kept for seven days (FGE1) and fifteen days (FGE2), separate water tanks were set up. Coding DNA sequences (CDS) for FGC and FGE1, FGC and FGE2, and FGE1 and FGE2 were analyzed for differential gene expression (DGE). The presence and expression of genes involved in the T cell receptor (TCR) signalling pathway, natural killer (NK) cell-mediated cytotoxicity pathway, and complement-mediated pathway, along with a large number of other immune-related proteins, and heat shock protein (HSPs) under various experimental conditions and its relationship to immune modulation of the fish gut was the primary focus of this study. Significant up-and-down regulation of these pathways shows that, in FGE1, the fish's innate immune system was engaged, whereas in FGE2, the majority of innate immune mechanisms were repressed, and adaptive immunity was activated. Expression of genes related to the immune system and heat-shock proteins was induced during this host's immunological response, and this information was then used to build a thorough network relating to immunity and the heat-shock response. This is the first study to examine the relationship between pathogenic bacterial infection, disease reversal, and modification of innate and adaptive immunity as well as heat shock response.
Collapse
Affiliation(s)
- Chandana Basak
- OMICS Laboratory, Department of Biotechnology, University of North Bengal, Siliguri-734013, West Bengal, India
| | - Ranadhir Chakraborty
- OMICS Laboratory, Department of Biotechnology, University of North Bengal, Siliguri-734013, West Bengal, India
| |
Collapse
|
18
|
Lee SJ, Kim SH, Noh DI, Lee YS, Kim TR, Hasan MT, Lee EW, Jang WJ. Combination of Host-Associated Rummeliibacillus sp. and Microbacterium sp. Positively Modulated the Growth, Feed Utilization, and Intestinal Microbial Population of Olive Flounder ( Paralichthys olivaceus). BIOLOGY 2023; 12:1443. [PMID: 37998042 PMCID: PMC10669097 DOI: 10.3390/biology12111443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/15/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023]
Abstract
Two novel strains of Rummeliibacillus sp. and Microbacterium sp. were identified from the intestine of olive flounder (Paralichthys olivaceus) and characterized in vitro as potential probiotics. Feeds without probiotic and with a 50:50 mixture of these two strains (1 × 108 CFU/g feed) were denoted as the control and Pro diets, respectively. Three randomly selected tanks (20 flounders/tank, ~11.4 g each) were used for each diet replication. After 8 weeks of feeding, the growth and feed utilization of the flounder in the Pro group improved (p < 0.05) compared to the control. Among four immune parameters, only myeloperoxidase activity was elevated in the Pro group. Serum biochemistry, intestinal microbial richness (Chao1), and diversity (Shannon index) remained unchanged (p ≥ 0.05), but phylogenetic diversity was enriched in the Pro fish intestine. Significantly lower Firmicutes and higher Proteobacteria were found in the Pro diet; the genus abundance in the control and Pro was as follows: Staphylococcus > Lactobacillus > Corynebacterium and Lactobacillus > Staphylococcus > Corynebacterium, respectively. Microbial linear discriminant scores and a cladogram analysis showed significant modulation. Therefore, the combination of two host-associated probiotics improved the growth and intestinal microbial population of flounder and could be supplemented in the Korean flounder industry.
Collapse
Affiliation(s)
- Su-Jeong Lee
- Biopharmaceutical Engineering Major, Dong-Eui University, Busan 47340, Republic of Korea
| | - So Hee Kim
- Southeast Sea Fisheries Research Institute, National Institute of Fisheries Science, Tongyeong 53085, Republic of Korea
| | - Da-In Noh
- Biopharmaceutical Engineering Major, Dong-Eui University, Busan 47340, Republic of Korea
| | - Young-Sun Lee
- Biopharmaceutical Engineering Major, Dong-Eui University, Busan 47340, Republic of Korea
| | - Tae-Rim Kim
- Biopharmaceutical Engineering Major, Dong-Eui University, Busan 47340, Republic of Korea
| | - Md Tawheed Hasan
- Department of Aquaculture, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Eun-Woo Lee
- Biopharmaceutical Engineering Major, Dong-Eui University, Busan 47340, Republic of Korea
- Core-Facility Center for Tissue Regeneration, Dong-Eui University, Busan 47340, Republic of Korea
| | - Won Je Jang
- Biopharmaceutical Engineering Major, Dong-Eui University, Busan 47340, Republic of Korea
- Core-Facility Center for Tissue Regeneration, Dong-Eui University, Busan 47340, Republic of Korea
| |
Collapse
|
19
|
Martinez-Porchas M, Preciado-Álvarez A, Vargas-Albores F, Gracia-Valenzuela MH, Cicala F, Martinez-Cordova LR, Medina-Félix D, Garibay-Valdez E. Microbiota plasticity in tilapia gut revealed by meta-analysis evaluating the effect of probiotics, prebiotics, and biofloc. PeerJ 2023; 11:e16213. [PMID: 37842054 PMCID: PMC10576497 DOI: 10.7717/peerj.16213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/10/2023] [Indexed: 10/17/2023] Open
Abstract
Tilapia species are among the most cultivated fish worldwide due to their biological advantages but face several challenges, including environmental impact and disease outbreaks. Feed additives, such as probiotics, prebiotics, and other microorganisms, have emerged as strategies to protect against pathogens and promote immune system activation and other host responses, with consequent reductions in antibiotic use. Because these additives also influence tilapia's gut microbiota and positively affect the tilapia culture, we assume it is a flexible annex organ capable of being subject to significant modifications without affecting the biological performance of the host. Therefore, we evaluated the effect of probiotics and other additives ingested by tilapia on its gut microbiota through a meta-analysis of several bioprojects studying the tilapia gut microbiota exposed to feed additives (probiotic, prebiotic, biofloc). A total of 221 tilapia gut microbiota samples from 14 bioprojects were evaluated. Alpha and beta diversity metrics showed no differentiation patterns in relation to the control group, either comparing additives as a group or individually. Results also revealed a control group with a wide dispersion pattern even when these fish did not receive additives. After concatenating the information, the tilapia gut core microbiota was represented by four enriched phyla including Proteobacteria (31%), Fusobacteria (23%), Actinobacteria (19%), and Firmicutes (16%), and seven minor phyla Planctomycetes (1%), Chlamydiae (1%), Chloroflexi (1%), Cyanobacteria (1%), Spirochaetes (1%), Deinococcus Thermus (1%), and Verrucomicrobia (1%). Finally, results suggest that the tilapia gut microbiota is a dynamic microbial community that can plastically respond to feed additives exposure with the potential to influence its taxonomic profile allowing a considerable optimal range of variation, probably guaranteeing its physiological function under different circumstances.
Collapse
Affiliation(s)
- Marcel Martinez-Porchas
- Biología de Organismos Acuáticos, Centro de Investigación en Alimentación y Desarrollo, Hermosillo, Sonora, Mexico
| | - Aranza Preciado-Álvarez
- Biología de Organismos Acuáticos, Centro de Investigación en Alimentación y Desarrollo, Hermosillo, Sonora, Mexico
| | - Francisco Vargas-Albores
- Biología de Organismos Acuáticos, Centro de Investigación en Alimentación y Desarrollo, Hermosillo, Sonora, Mexico
| | | | - Francesco Cicala
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Province of Padua, Italy
| | | | - Diana Medina-Félix
- Departamento de Ecología, Universidad Estatal de Sonora, Hermosillo, Sonora, Mexico
| | - Estefania Garibay-Valdez
- Biología de Organismos Acuáticos, Centro de Investigación en Alimentación y Desarrollo, Hermosillo, Sonora, Mexico
| |
Collapse
|
20
|
Melo-Bolívar JF, Ruiz Pardo RY, Quintanilla-Carvajal MX, Díaz LE, Alzate JF, Junca H, Rodríguez Orjuela JA, Villamil Diaz LM. Evaluation of dietary single probiotic isolates and probiotic multistrain consortia in growth performance, gut histology, gut microbiota, immune regulation, and infection resistance of Nile tilapia, Oreochromis niloticus, shows superior monostrain performance. FISH & SHELLFISH IMMUNOLOGY 2023; 140:108928. [PMID: 37423403 DOI: 10.1016/j.fsi.2023.108928] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 05/15/2023] [Accepted: 07/03/2023] [Indexed: 07/11/2023]
Abstract
The probiotic potential of a designed bacterial consortia isolated from a competitive exclusion culture originally obtained from the intestinal contents of tilapia juveniles were evaluated on Nile tilapia alevins. The growth performance, intestinal histology, microbiota effects, resistance to Streptococcus agalactiae challenge, and immune response were assessed. In addition, the following treatments were included in a commercial feed: A12+M4+M10 (Lactococcus lactis A12, Priestia megaterium M4, and Priestia sp. M10), M4+M10 (P. megaterium M4, and Priestia sp. M10) and the single bacteria as controls; A12 (L. lactis A12), M4 (P. megaterium M4), M10 (Priestia sp. M10), also a commercial feed without any probiotic addition was included as a control. The results showed that all probiotic treatments improved the growth performance, intestinal histology, and resistance during experimental infection with S. agalactiae in comparison to the control fish. Also, the administration of probiotics resulted in the modulation of genes associated with the innate and adaptive immune systems that were non-dependent on microbial colonization. Surprisingly, L. lactis A12 alone induced benefits in fish compared to the microbial consortia, showing the highest increase in growth rate, survival during experimental infection with S. agalactiae, increased intestinal fold length, and the number of differentially expressed genes. Lastly, we conclude that a competitive exclusion culture is a reliable source of probiotics, and monostrain L. lactis A12 has comparable or even greater probiotic potential than the bacterial consortia.
Collapse
Affiliation(s)
- Javier Fernando Melo-Bolívar
- Universidad de La Sabana, Doctorado en Biociencias, Campus del Puente del Común, Km. 7, Autopista Norte de Bogotá, Chía, Cundinamarca, Colombia
| | - Ruth Yolanda Ruiz Pardo
- Universidad de La Sabana, Doctorado en Biociencias, Campus del Puente del Común, Km. 7, Autopista Norte de Bogotá, Chía, Cundinamarca, Colombia
| | - María Ximena Quintanilla-Carvajal
- Universidad de La Sabana, Doctorado en Biociencias, Campus del Puente del Común, Km. 7, Autopista Norte de Bogotá, Chía, Cundinamarca, Colombia
| | - Luis Eduardo Díaz
- Universidad de La Sabana, Doctorado en Biociencias, Campus del Puente del Común, Km. 7, Autopista Norte de Bogotá, Chía, Cundinamarca, Colombia
| | - Juan F Alzate
- Centro Nacional de Secuenciación Genómica- CNSG, Sede de Investigación Universitaria SIU, Grupo Pediaciencias, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Howard Junca
- Microbiomas Foundation, Div. Ecogenomics & Holobionts, RG Microbial Ecology: Metabolism, Genomics & Evolution, Chía, Colombia
| | - Jorge Alberto Rodríguez Orjuela
- Universidad de La Sabana, Doctorado en Biociencias, Campus del Puente del Común, Km. 7, Autopista Norte de Bogotá, Chía, Cundinamarca, Colombia
| | - Luisa Marcela Villamil Diaz
- Universidad de La Sabana, Doctorado en Biociencias, Campus del Puente del Común, Km. 7, Autopista Norte de Bogotá, Chía, Cundinamarca, Colombia.
| |
Collapse
|
21
|
Shahzad MM, Hussain SM, Hussain M, Ahmad N, Tahir L, Akhtar K. Effect of eco-friendly probiotics-supplemented rapeseed meal-based diet on the performance of Catla catla fingerlings. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:99219-99230. [PMID: 36045184 DOI: 10.1007/s11356-022-22738-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Ever-increasing human population compels the researchers to search for alternative food sources such as fish meat. For increase of fish growth and proper feed utilization, probiotics were added in rapeseed meal-based diet in current trial for proper digestion and absorption of nutrients in fish and ultimately higher growth with lower aquatic pollution. Fish gut microbiota is important for the feed utilization and absorption in body for higher growth. A 70-day study was conducted to investigate the effects of probiotics-supplemented rapeseed meal-based diet on growth performance, digestibility of nutrients, and absorption of minerals in Catla catla fingerlings with lowering water pollution level. Six test diets were prepared by using different levels of multi-strain probiotics i.e. 0, 1, 2, 3, 4 and 5 g/kg (0.0-0.5%) in rapeseed meal-based diet. At the rate of 4% of live wet weight, Catla fingerlings were fed two times a day and faeces samples from each tank were collected. According to the results, it was observed that probiotics supplementation (@2 g/kg) in rapeseed meal-based diet resulted with improvement in nutrient digestibility (CP, 72%; fat, 75% and GE, 70%), mineral absorption (Ca, 72%; Na, 76%; K, 70% and P, 70%), specific growth rate (SGR, 1.55), improved feed conversion ratio (FCR, 1.22) and weight gain percentage (WG%, 303%) of fingerlings. It was also noticed that probiotics supplementation decreased the discharge of minerals and nutrient through faeces, as compared to control diet; hence, it plays a significant role in reducing water pollution. On the basis of these results, it was concluded that probiotics inclusion at level of 2 g/kg was useful to formulate the cost effective and eco-friendly fish feed with the maximum improvement in growth and fish health by using rapeseed meal-based diet, as compared to control and other test diets.
Collapse
Affiliation(s)
- Muhammad Mudassar Shahzad
- Division of Science and Technology, Department of Zoology, University of Education, Township, Lahore, Pakistan.
| | | | - Majid Hussain
- Department of Zoology, University of Okara, Okara, Pakistan
| | - Naveed Ahmad
- Department of Zoology, University of Education, Vehari Campus, Vehari, Pakistan
| | - Laraib Tahir
- Division of Science and Technology, Department of Zoology, University of Education, Township, Lahore, Pakistan
| | - Kalsoom Akhtar
- Division of Science and Technology, Department of Zoology, University of Education, Township, Lahore, Pakistan
| |
Collapse
|
22
|
Ratvaj M, Maruščáková IC, Popelka P, Fečkaninová A, Koščová J, Chomová N, Mareš J, Malý O, Žitňan R, Faldyna M, Mudroňová D. Feeding-Regime-Dependent Intestinal Response of Rainbow Trout after Administration of a Novel Probiotic Feed. Animals (Basel) 2023; 13:1892. [PMID: 37370408 DOI: 10.3390/ani13121892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Intensive fish farming is associated with a high level of stress, causing immunosuppression. Immunomodulators of natural origin, such as probiotics or phytoadditives, represent a promising alternative for increasing the immune function of fish. In this study, we tested the autochthonous trout probiotic strain L. plantarum R2 in a newly developed, low-cost application form ensuring the rapid revitalization of bacteria. We tested continuous and cyclic feeding regimes with regard to their effect on the intestinal immune response and microbiota of rainbow trout. We found that during the continuous application of probiotic feed, the immune system adapts to the immunomodulator and there is no substantial stimulation of the intestinal immune response. During the cyclic treatment, after a 3-week break in probiotic feeding and the reintroduction of probiotics, there was a significant stimulation of the gene expression of molecules associated with both cellular and humoral immunity (CD8, TGF-β, IL8, TLR9), without affecting the gene expression for IL1 and TNF-α. We can conclude that, in aquaculture, this probiotic feed can be used with a continuous application, which does not cause excessive immunostimulation, or with a cyclic application, which provides the opportunity to stimulate the immunity of trout, for example, in periods of stress.
Collapse
Affiliation(s)
- Marek Ratvaj
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, 04181 Košice, Slovakia
| | - Ivana Cingeľová Maruščáková
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, 04181 Košice, Slovakia
| | - Peter Popelka
- Department of Food Hygiene, Technology, and Safety, University of Veterinary Medicine and Pharmacy, 04181 Košice, Slovakia
| | - Adriána Fečkaninová
- Department of Pharmaceutical Technology, Pharmacognosy and Botany, University of Veterinary Medicine and Pharmacy, 04181 Košice, Slovakia
| | - Jana Koščová
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, 04181 Košice, Slovakia
| | - Natália Chomová
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, 04181 Košice, Slovakia
| | - Jan Mareš
- Department of Zoology, Fisheries, Hydrobiology and Apiculture, Mendel University, 61300 Brno, Czech Republic
| | - Ondřej Malý
- Department of Zoology, Fisheries, Hydrobiology and Apiculture, Mendel University, 61300 Brno, Czech Republic
| | - Rudolf Žitňan
- Research Institute for Animal Production Nitra, National Agricultural and Food Center, 95141 Lužianky, Slovakia
| | - Martin Faldyna
- Veterinary Research Institute, 62100 Brno, Czech Republic
| | - Dagmar Mudroňová
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, 04181 Košice, Slovakia
| |
Collapse
|
23
|
Chen W, Du L, Cai C, Huang L, Zheng Q, Chen J, Wang L, Zhang X, Fang X, Wang L, Zhong Q, Zhong W, Wang J, Liao Z. Take chicks as an example: Rummeliibacillus stabekisii CY2 enhances immunity and regulates intestinal microbiota by degrading LPS to promote organism growth and development. J Funct Foods 2023; 105:105583. [DOI: 10.1016/j.jff.2023.105583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
|
24
|
Yu Z, Hao Q, Liu SB, Zhang QS, Chen XY, Li SH, Ran C, Yang YL, Teame T, Zhang Z, Zhou ZG. The positive effects of postbiotic (SWF concentration®) supplemented diet on skin mucus, liver, gut health, the structure and function of gut microbiota of common carp (Cyprinus carpio) fed with high-fat diet. FISH & SHELLFISH IMMUNOLOGY 2023; 135:108681. [PMID: 36921883 DOI: 10.1016/j.fsi.2023.108681] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/25/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
Postbiotics are an emerging research interest in recent years, which shows that metabolites, lysate extracts, cell wall components and even culture supernatants of probiotics can also exhibit significant prebiotic effects. In this study postbiotic stress worry free concentration® (SWFC) were prepared from the composition of culture supernatant of Cetobacterium somerae and Lactococcus lactis. The positive effects of SWFC supplemented diets on the growth performance, skin mucus, liver and gut health, and intestinal microbiota profile of Cyprinus carpio fed with high fat diets were investigated. 180 C. carpio with an average body weight of (3.01 ± 0.01) g were selected and randomly divided into three groups. They were fed with one of the three experimental diets supplemented with SWFC of 0 (control), 0.2 and 0.3 g/kg for 98 days, afterwards indexes were detected. The results revealed that, addition of SWFC had no significant effect on growth performance of C. carpio, while it can improve the health of the fish remarkably. In addition, SWFC improved mucosal C3, T-AOC, SOD activities, and decreased lipid peroxidation product MDA level, which were notably better than those in the control group (P < 0.05). In terms of the liver health systems, C. carpio fed on the diet supplemented with 0.2 g/kg of SWFC, showed significant improvement of the liver injured by HFD and reduce the contents of serum ALT and AST, and liver TAG (P < 0.05; P < 0.01). The expression of inflammation-related and lipid synthesis genes revealed that SWFC0.2 group could noteworthy enhance antioxidant capacity, reduced the expression of pro-inflammatory factors (TNF-α, IL-1β) and lipid synthesis genes (ACC, FAS, PPAR-β, PPAR-γ), and up-regulated the expression of anti-inflammatory factors (TGF-β). Additionally, intestinal morphology arose inflammatory cell infiltration, while intestinal integrity was better in SWFC groups compared with the control. Furthermore, the contents of serum LPS and LBP were remarkably lower in the SWFC0.2 group compared with the control (P < 0.01). The mRNA expression of genes related to gut health indicated that SWFC supplementation noteworthy up-regulated the expression of antioxidant (Nrf2, CAT, GPX), immune (Hepcidin, IL-10) and tight junction protein-related (ZO-1, Occludin). Simultaneously, the results of GF-zebrafish showed that the relative expression of anti-inflammatory genes (IL-1β, TGF-β) and antioxidant related genes (Nrf2, HO-1) were significantly up-regulated in SWFC groups. Data on intestinal microbiota profile verified that, at the phylum level, the abundance of Fusobacteria was remarkably elevated in the SWFC groups (P < 0.05), whereas the abundance of Firmicutes was declined noteworthy in SWFC0.2 and SWFC0.3 compared to the control group (P < 0.05; P < 0.01) respectively. At the genus level, the abundance of Cetobacterium in the SWFC groups were notably higher than those in the control group (P < 0.05), while the Vibrio content in the SWFC groups was significantly decreased (P < 0.05). PCoA result indicated that the intestinal microflora of SWFC0.2 group was abundant and diverse. Our results elucidate that dietary supplementation of SWFC protects C. carpio from HFD induced inflammatory response and oxidative stress, ameliorate skin mucus, liver and gut health, and improve the gut microbiota balance. Therefore, SWFC could be considered as an improving-fish-health additive, when supplemented to aquatic animal feed. With regards to how SWFC regulates the immunity and inflammatory responses and which signal transductions are involved remains unclear and more scientific evidences are needed to address these issues.
Collapse
Affiliation(s)
- Zhe Yu
- Sino-Norway Fish Gut Microbiota Joint Lab, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qiang Hao
- Sino-Norway Fish Gut Microbiota Joint Lab, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shu-Bin Liu
- Sino-Norway Fish Gut Microbiota Joint Lab, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qing-Shuang Zhang
- Sino-Norway Fish Gut Microbiota Joint Lab, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xing-Yu Chen
- Sino-Norway Fish Gut Microbiota Joint Lab, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Sheng-Hui Li
- Sino-Norway Fish Gut Microbiota Joint Lab, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chao Ran
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ya-Lin Yang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Tsegay Teame
- Sino-Norway Fish Gut Microbiota Joint Lab, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Tigray Agricultural Research Institute, Mekelle, Tigray, Ethiopia
| | - Zhen Zhang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Zhi-Gang Zhou
- Sino-Norway Fish Gut Microbiota Joint Lab, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
25
|
Pan PK, Wang KT, Wu TM, Chen YY, Nan FH, Wu YS. Heat inactive Bacillus subtilis var. natto regulate Nile tilapia (Oreochromis niloticus) intestine microbiota and metabolites involved in the intestine phagosome response. FISH & SHELLFISH IMMUNOLOGY 2023; 134:108567. [PMID: 36731811 DOI: 10.1016/j.fsi.2023.108567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 12/15/2022] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
In this study, we evaluated the intestinal microbiota, intestinal and fecal metabolites production and the intestinal RNA-seq analysis of the Nile tilapia intestine after feeding with 105and 107 of the inactive Bacillus subtilis var. natto. First, we assessed the influence of heat inactive Bacillus subtilis var. natto on the growth performance, biochemical blood analysis, and evaluated the liver/body, spleen/body and intestine/body ratio. This evidence was known feeding with inactive Bacillus subtilis var. natto was able to improve the growth performance after 4 weeks, but not to affect the inflammatory biochemical blood parametres total protein (T-pro), albumin (Alb), Alb/T-pro ratio, creatine-phospho-kinase (CPK) and lactate dehydrogenase (LDH). Further, in the intestine microbiota, the Lactobacillaceae, Firmicutes, Chromatiales, and Rhodobacteria, was significantly higher than the control and the Firmicutes/Bacteroidetes ratio (F/B), which was indicated with a significantly increased. The intestine tissue metabolites OPLS-DA analysis indicated that the prominent bioactive metabolites changed. The peonidin-3-glucoside, l-Tyrosine, 1-Deoxy-1-(N6-lysino)-d-fructose was significantly increased. The feces metabolite OPLS-DA analysis indicated that the palmitelaidic acid, 5-KETE, tangeritin was significantly increased. In the transcriptome, the Gene Ontology (GO) analysis was found to enhance the intestine intestinal immune network. Combine of these evidence, feeding of the heat inactive Bacillus subtilis var. natto exactly improved the O. niloticus growth performance and regulation of the microbiota to promote the metabolites. In the transcriptome analysis, it was found to involve in the intestine immune phagosome response. Summarized of this study, the heat inactive Bacillus subtilis var. natto was reported to affect Nile tilapia intestine microbiota, and could positively regulate the intestine and fecal metabolites production to improve the intestine immune network.
Collapse
Affiliation(s)
- Po-Kai Pan
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, 912301, Taiwan
| | - Kuang-Teng Wang
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, 912301, Taiwan
| | - Tsung-Meng Wu
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, 912301, Taiwan
| | - Yin-Yu Chen
- Department of Aquaculture, National Taiwan Ocean University, Keelung, 202301, Taiwan
| | - Fan-Hua Nan
- Department of Aquaculture, National Taiwan Ocean University, Keelung, 202301, Taiwan
| | - Yu-Sheng Wu
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, 912301, Taiwan.
| |
Collapse
|
26
|
Ghaly F, Hussein SH, Awad SM, EL-Makhzangy AA. Growth promoter, immune response, and histopathological change of prebiotic, probiotic and synbiotic bacteria on Nile tilapia. Saudi J Biol Sci 2023; 30:103539. [PMID: 36590747 PMCID: PMC9800631 DOI: 10.1016/j.sjbs.2022.103539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/10/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
This study aimed at determining the influence of prebiotic, probiotic, and synbiotic supplemented diets on Oreochromis niloticus. Fish with initial body weight (25.8 ± 1.2) g and length range from (13.5 ± 1.5) cm were collected and randomized to four dietary treatments for 60 days. Furthermore, fish were divided into three groups in triplicate; A0 control (-ve), A1 control (+ve) infected with V.anguillarium, and a third non-treated group. Moreover, the third group further separated into two groups, A and B. Group (A) was treated with prebiotic, probiotic, and symbiotic (A2, A3, and A4), while group (B) was infected with V.anguillarium then treated with prebiotic, probiotic and symbiotic (A5, A6, and A7). The results revealed that all treatments supplemented with synbiotics represented highly significant increase (p ≤ 0.05) in (SGR), BWG percentage, relative growth rate (%), lysozyme activity, IMG, SOD, and CAT. At the same time, they exhibited a significant decrease in MAD and FCR. Besides, fish that feed dietary supplementation with prebiotics, probiotics, and synbiotics revealed a significant increase in RBCs, WBCs, and Hb. In contrast, they showed a significant decrease in ALT, AST, albumin, total protein, globulin, creatinine, and urea compared with control. Additionally, high survival rates were recorded in groups that received a diet supplemented with probiotics, followed by prebiotics and synbiotics.
Collapse
Affiliation(s)
- F.M Ghaly
- Department of Botany and Microbiology, Faculty of Sciences, Zagazig University, Sharkia Governorate, Zagazig, Egypt
| | - Shahira H.M Hussein
- Chief Research of Pharmacology, Pharmacology Department, Animal Health Research Institute, Zagazig Branch, Agriculture Research Center, Sharkia Governorate, Zagazig, Egypt
| | - Somayah M. Awad
- Chief Research of Fish health and Management Department, Central Laboratory for Aquaculture Research, Abassa, Abu-Hammad, Sharkia, Agriculture Research Center, Sharkia Governorate, Zagazig Egypt
| | - Abeer A. EL-Makhzangy
- Department of Botany and Microbiology, Faculty of Sciences, Zagazig University, Sharkia Governorate, Zagazig, Egypt
| |
Collapse
|
27
|
Liu L, Xie Y, Zhong X, Deng Q, Shao Q, Cai Z, Huang X. Facilitating effects of the reductive soil disinfestation process combined with Paenibacillus sp. amendment on soil health and physiological properties of Momordica charantia. FRONTIERS IN PLANT SCIENCE 2023; 13:1095656. [PMID: 36733598 PMCID: PMC9888761 DOI: 10.3389/fpls.2022.1095656] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/22/2022] [Indexed: 06/18/2023]
Abstract
Reductive soil disinfestation (RSD) is an anaerobic and facultative anaerobic microbial-mediated soil management process. The extent of improvement of diseased soil properties by RSD relative to comparable healthy soil is, however, not well characterized. Importantly, how to promote the colonization efficiency of these facultative anaerobic functional species to ensure soil and plant health remain unknown. Here, Fusarium wilt-diseased soil of Momordica charantia grown under a plastic-shed field (PS-CK) was used to conduct molasses-RSD (MO-RSD) along with Paenibacillus sp. (a model of facultative anaerobic species) (MOPA-RSD) treatment, and the soil from a nearby open-air paddy field was considered comparable healthy soil (OA-CK). Both RSD treatments significantly improved the properties of PS-CK soil, and the extent of improvement of soil pH, Fusarium oxysporum reduction efficiency (98.36%~99.56%), and microbial community and functional composition were higher than that achieved for OA-CK soil, which indicated that RSD-regulated most soil properties outperformed those of the comparable healthy soil. The disease incidence and ascorbic acid content of M. charantia in MO-RSD- and MOPA-RSD-treated soils were considerably decreased, while the weight and soluble protein contents were correspondingly increased, as compared to those of M. charantia in PS-CK soil. Specifically, the changes in these physiological properties of M. charantia in MOPA-RSD soil performed well than that in MO-RSD soil. The relative abundances of Cohnella, Effusibacillus, Rummeliibacillus, Oxobacter, Thermicanus, and Penicillium enriched in both RSD-treated soils were positively correlated with Paenibacillus and negatively correlated with F. oxysporum population and disease incidence (P < 0.05). Notably, the relative abundances of these potential probiotics were considerably higher in MOPA-RSD-treated soil than in MO-RSD alone-treated soil. These results show that the RSD process with inoculation of Paenibacillus sp. could promote the colonization of this species and simultaneously stimulate the proliferation of other probiotic consortia to further enhance soil health and plant disease resistance.
Collapse
Affiliation(s)
- Liangliang Liu
- Engineering Technology Research Center of Jiangxi Universities and Colleges for Selenium Agriculture, College of Life Science and Environmental Resources, Yichun University, Yichun, China
- School of Geography, Nanjing Normal University, Nanjing, China
| | - Yi Xie
- Engineering Technology Research Center of Jiangxi Universities and Colleges for Selenium Agriculture, College of Life Science and Environmental Resources, Yichun University, Yichun, China
- School of Geography, Nanjing Normal University, Nanjing, China
| | - Xin Zhong
- Engineering Technology Research Center of Jiangxi Universities and Colleges for Selenium Agriculture, College of Life Science and Environmental Resources, Yichun University, Yichun, China
| | - Quanquan Deng
- Engineering Technology Research Center of Jiangxi Universities and Colleges for Selenium Agriculture, College of Life Science and Environmental Resources, Yichun University, Yichun, China
| | - Qin Shao
- Engineering Technology Research Center of Jiangxi Universities and Colleges for Selenium Agriculture, College of Life Science and Environmental Resources, Yichun University, Yichun, China
| | - Zucong Cai
- School of Geography, Nanjing Normal University, Nanjing, China
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing, China
| | - Xinqi Huang
- School of Geography, Nanjing Normal University, Nanjing, China
- Jiangsu Engineering Research Center for Soil Utilization & Sustainable Agriculture, Nanjing Normal University, Nanjing, China
| |
Collapse
|
28
|
Luo M, Feng G, Ke H. Role of Clostridium butyricum, Bacillus subtilis, and algae-sourced β-1,3 glucan on health in grass turtle. FISH & SHELLFISH IMMUNOLOGY 2022; 131:244-256. [PMID: 36182025 DOI: 10.1016/j.fsi.2022.09.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/25/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
This study investigated the effects of two probiotics namely Clostridium butyricum and Bacillus subtilis, and one prebiotic known as algae-sourced β-1,3 glucan, on the overall performances of grass turtles (Chinemys reevesii) juveniles. Growth performance, immune responses, enzymatic antioxidant activities, intestinal histomorphology, and disease resistance against the challenge with Aeromonas veronii were assessed. Two hundred and sixteen (216) juvenile turtles with an average initial weight of 106.35 ± 0.03 g were divided into four groups, each containing three replicates with 18 turtles per each replicate, which were fed a basic diet (control group, GD) and a basal diet supplemented with C. butyricum 1.0 × 108 CFU per kg (GA group), or with B. subtilis 1.0 × 108 CFU per kg (GB group) and with algal-sourced β-1,3-glucan 50 mg per kg (GC group), respectively. After the turtles had been fed for 60 d, 90 d, and 120 d of the experimental period, the growth performance and survival rate (SR), intestinal digestive enzyme, hepatic and intestinal antioxidant capacity, serum biochemical indexes, and immune performance were measured. The results showed that the weight gain rate and SR were significantly enhanced (P < 0.05) after fed probiotics and algae-sourced β-1,3-glucan in all test times;The pepsin, amylase, acid phosphatase, total antioxidant capacity, triglyceride, alkaline phosphatase, urea nitrogen, cholesterol, total protein, IgA, IgG, IgM at 120 d were significantly enhanced (P<0.05) after fed C. butyricum. The intestinal villi heights, widths, and the thickness of the muscle layer were significantly higher in groups GA, GB, and GC than those reared within the GD control group (P < 0.05). After injecting the challenge by A. veronii the survival rate of grass turtles in the GA group (75%) was significantly higher than the other three groups (P<0.05), while there was no significant difference between the GB and GC groups compared with the control GD group, respectively (P>0.05). Overall, these results indicated that dietary supplementation with probiotics or algae-sourced β-1,3 glucan, exhibited positive effects on C. reevesii. In particular, C. butyricum, showed the greatest improvements relating to growth, immune response, antioxidant activity, intestinal health, and disease resistance.
Collapse
Affiliation(s)
- Meng Luo
- Aquatic Disease Research Laboratory, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510000, China; College of Aquatic and Life Sciences, Shanghai Ocean University, Shanghai, 201306, China
| | - Guoqing Feng
- Aquatic Disease Research Laboratory, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510000, China; Guangdong Scientific Observation Experimental Station of Veterinary Drugs and Diagnostic Technology, Ministry of Agriculture and Rural Affairs, Guangzhou, 510000, China
| | - Hao Ke
- Aquatic Disease Research Laboratory, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510000, China; Guangdong Scientific Observation Experimental Station of Veterinary Drugs and Diagnostic Technology, Ministry of Agriculture and Rural Affairs, Guangzhou, 510000, China; Key Laboratory of Animal and Poultry Disease Control Research, Guangdong Province, Guangzhou, 510000, China.
| |
Collapse
|
29
|
Zhang Z, Fan Z, Yi M, Liu Z, Ke X, Gao F, Cao J, Wang M, Chen G, Lu M. Characterization of the core gut microbiota of Nile tilapia (Oreochromis niloticus): indication of a putative novel Cetobacterium species and analysis of its potential function on nutrition. Arch Microbiol 2022; 204:690. [DOI: 10.1007/s00203-022-03301-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/27/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
|
30
|
Zhu C, Liu G, Gu X, Zhang T, Xia A, Zheng Y, Yin J, Han M, Jiang Q. Effects of Quercetin on the Intestinal Microflora of Freshwater Dark Sleeper Odontobutis potamophila. Antioxidants (Basel) 2022; 11:antiox11102015. [PMID: 36290739 PMCID: PMC9598073 DOI: 10.3390/antiox11102015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 09/29/2022] [Accepted: 10/08/2022] [Indexed: 11/16/2022] Open
Abstract
Flavonoids have antimicrobial and anti-oxidation properties. The effects of the flavonoid quercetin on the intestinal microflora of freshwater dark sleeper Odontobutis potamophila were tested for the first time. Odontobutis potamophila juveniles were treated with quercetin for 21 days at one of three concentrations (2.5, 5.0, or 10.0 mg/L) and compared with a control group that was not treated with quercetin. Quercetin improved the stability of the intestinal flora in O. potamophila and the probiotic bacteria Bacillus spp. and Lactobacillus spp. increased in species abundance after the low concentration quercetin treatments. Furthermore, the abundance of pathogenic bacteria Plesiomonas spp., Aeromonas spp., and Shewanella spp. decreased after the fish had been exposed to quercetin. Activity of hepatic antioxidant enzymes (superoxide dismutase, SOD), (glutathione S-transferase, GST), (glutathione peroxidase, GSH-Px), and (total antioxidant capacity, T-AOC) increased in the livers of O. potamophila treated with quercetin, thereby increasing their hepatic antioxidant capacity and their ability to scavenge free radicals.
Collapse
Affiliation(s)
- Chenxi Zhu
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China
- Geography Section, School of Humanities, Universiti Sains Malaysia, Minden 11800, Malaysia
| | - Guoxing Liu
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xiankun Gu
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China
| | - Tongqing Zhang
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China
| | - Aijun Xia
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China
| | - You Zheng
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China
| | - Jiawen Yin
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China
| | - Mingming Han
- Biology Program, School of Distance Education, Universiti Sains Malaysia, Minden 11800, Malaysia
| | - Qichen Jiang
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China
- Correspondence:
| |
Collapse
|
31
|
Pereira WA, Mendonça CMN, Urquiza AV, Marteinsson VÞ, LeBlanc JG, Cotter PD, Villalobos EF, Romero J, Oliveira RPS. Use of Probiotic Bacteria and Bacteriocins as an Alternative to Antibiotics in Aquaculture. Microorganisms 2022; 10:microorganisms10091705. [PMID: 36144306 PMCID: PMC9503917 DOI: 10.3390/microorganisms10091705] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 11/18/2022] Open
Abstract
In addition to their use in human medicine, antimicrobials are also used in food animals and aquaculture, and their use can be categorized as therapeutic against bacterial infections. The use of antimicrobials in aquaculture may involve a broad environmental application that affects a wide variety of bacteria, promoting the spread of bacterial resistance genes. Probiotics and bacteriocins, antimicrobial peptides produced by some types of lactic acid bacteria (LAB), have been successfully tested in aquatic animals as alternatives to control bacterial infections. Supplementation might have beneficial impacts on the intestinal microbiota, immune response, development, and/or weight gain, without the issues associated with antibiotic use. Thus, probiotics and bacteriocins represent feasible alternatives to antibiotics. Here, we provide an update with respect to the relevance of aquaculture in the animal protein production sector, as well as the present and future challenges generated by outbreaks and antimicrobial resistance, while highlighting the potential role of probiotics and bacteriocins to address these challenges. In addition, we conducted data analysis using a simple linear regression model to determine whether a linear relationship exists between probiotic dose added to feed and three variables of interest selected, including specific growth rate, feed conversion ratio, and lysozyme activity.
Collapse
Affiliation(s)
- Wellison Amorim Pereira
- Microbial Biomolecules Laboratory, Faculty of Pharmaceutical Sciences, São Paulo University, Rua do Lago 250, Cidade Universitária, São Paulo 05508-000, SP, Brazil
| | - Carlos Miguel N. Mendonça
- Microbial Biomolecules Laboratory, Faculty of Pharmaceutical Sciences, São Paulo University, Rua do Lago 250, Cidade Universitária, São Paulo 05508-000, SP, Brazil
| | | | | | - Jean Guy LeBlanc
- Centro de Referencia para Lactobacilos (CERELA-CONICET), San Miguel de Tucuman T4000, Argentina
| | - Paul D. Cotter
- Teagasc Food Research Centre, Moorepark, APC Microbiome Ireland, T12 K8AF Cork, Ireland
| | - Elías Figueroa Villalobos
- Nucleus of Research in Food Production, Faculty of Natural Resources, Catholic University of Temuco, Temuco 4780000, Chile
- Correspondence:
| | - Jaime Romero
- Laboratorio de Biotecnología de Alimentos, Instituto de Nutricion y Tecnologia de los Alimentos (INTA), Universidad de Chile, El Libano 5524, Santiago 783090, Chile
| | - Ricardo P. S. Oliveira
- Microbial Biomolecules Laboratory, Faculty of Pharmaceutical Sciences, São Paulo University, Rua do Lago 250, Cidade Universitária, São Paulo 05508-000, SP, Brazil
| |
Collapse
|
32
|
Sumon MAA, Sumon TA, Hussain MA, Lee SJ, Jang WJ, Sharifuzzaman SM, Brown CL, Lee EW, Hasan MT. Single and Multi-Strain Probiotics Supplementation in Commercially Prominent Finfish Aquaculture: Review of the Current Knowledge. J Microbiol Biotechnol 2022; 32:681-698. [PMID: 35722672 PMCID: PMC9628892 DOI: 10.4014/jmb.2202.02032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/03/2022] [Accepted: 06/03/2022] [Indexed: 12/15/2022]
Abstract
The Nile tilapia Oreochromis niloticus, Atlantic salmon Salmo salar, rainbow trout Oncorhynchus mykiss, olive flounder Paralichthys olivaceus, common carp Cyprinus carpio, grass carp Ctenopharyngodon idella and rohu carp Labeo rohita are farmed commercially worldwide. Production of these important finfishes is rapidly expanding, and intensive culture practices can lead to stress in fish, often reducing resistance to infectious diseases. Antibiotics and other drugs are routinely used for the treatment of diseases and sometimes applied preventatively to combat microbial pathogens. This strategy is responsible for the emergence and spread of antimicrobial resistance, mass killing of environmental/beneficial bacteria, and residual effects in humans. As an alternative, the administration of probiotics has gained acceptance for disease control in aquaculture. Probiotics have been found to improve growth, feed utilization, immunological status, disease resistance, and to promote transcriptomic profiles and internal microbial balance of host organisms. The present review discusses the effects of single and multi-strain probiotics on growth, immunity, heamato-biochemical parameters, and disease resistance of the above-mentioned finfishes. The application and outcome of probiotics in the field or open pond system, gaps in existing knowledge, and issues worthy of further research are also highlighted.
Collapse
Affiliation(s)
- Md Afsar Ahmed Sumon
- Department of Marine Biology, King Abdulaziz University, Jeddah-21589, Saudi Arabia
| | - Tofael Ahmed Sumon
- Department of Fish Health Management, Sylhet Agricultural University, Sylhet-3100, Bangladesh
| | - Md. Ashraf Hussain
- Department of Fisheries Technology and Quality Control, Sylhet Agricultural University, Sylhet-3100, Bangladesh
| | - Su-Jeong Lee
- Biopharmaceutical Engineering Major, Division of Applied Bioengineering, Dong-Eui University, Busan 47340, Republic of Korea
| | - Won Je Jang
- Biopharmaceutical Engineering Major, Division of Applied Bioengineering, Dong-Eui University, Busan 47340, Republic of Korea,Department of Biotechnology, Pukyong National University, Busan 48513, Republic of Korea
| | - S. M. Sharifuzzaman
- Institute of Marine Sciences, University of Chittagong, Chittagong 4331, Bangladesh
| | - Christopher L. Brown
- FAO World Fisheries University Pilot Programme, Pukyong National University, Busan 48513, Republic of Korea
| | - Eun-Woo Lee
- Biopharmaceutical Engineering Major, Division of Applied Bioengineering, Dong-Eui University, Busan 47340, Republic of Korea,Core-Facility Center for Tissue Regeneration, Dong-Eui University, Busan 47340, Republic of Korea
| | - Md. Tawheed Hasan
- Core-Facility Center for Tissue Regeneration, Dong-Eui University, Busan 47340, Republic of Korea,Department of Aquaculture, Sylhet Agricultural University, Sylhet-3100, Bangladesh,Corresponding author Phone: +880-821-761952 Fax: + 880-821-761980 E-mail:
| |
Collapse
|
33
|
Yang Y, Zhu Y, Liu H, Wei J, Yu H, Dong B. Cultivation of gut microorganisms of the marine ascidian Halocynthia roretzi reveals their potential roles in the environmental adaptation of their host. MARINE LIFE SCIENCE & TECHNOLOGY 2022; 4:201-207. [PMID: 37073224 PMCID: PMC10077266 DOI: 10.1007/s42995-022-00131-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 03/28/2022] [Indexed: 05/03/2023]
Abstract
It has long been known that abundant symbiotic bacteria exist in the tunic and gut of marine ascidians, and that these play crucial roles in host development, physiological metabolism, and environmental adaptation. However, the identity, roles and functions of these symbiotic bacteria are known for only a few strains. In this study, we isolated and cultivated 263 strains of microorganisms from the intestine of the marine ascidian Halocynthia roretzi through a combination of aerobic and anaerobic culture approaches. Most cultivated species, both aerobic and anaerobic, from ascidian stool samples belonged to the genus Bacillus based on 16S rDNA sequencing identification and phylogenetic assays. The distribution of cultured bacteria varied with seasonal changes in environmental conditions. To explore the functions of cultured bacteria, we screened out a strain of Serratia sp. whose extracts showed high antibacterial activity against aquatic pathogens. These findings revealed the potential roles of gut microorganisms in ascidian defense and environmental adaptation, thus providing insights into the interaction and co-evolution between gut bacteria and their hosts. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-022-00131-4.
Collapse
Affiliation(s)
- Yang Yang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
| | - Yuting Zhu
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
| | - Haiming Liu
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
| | - Jiankai Wei
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
| | - Haiyan Yu
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
| | - Bo Dong
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237 China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
| |
Collapse
|
34
|
Cui X, Zhang Q, Zhang Q, Zhang Y, Chen H, Liu G, Zhu L. Research Progress of the Gut Microbiome in Hybrid Fish. Microorganisms 2022; 10:891. [PMID: 35630336 PMCID: PMC9146865 DOI: 10.3390/microorganisms10050891] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 02/07/2023] Open
Abstract
Fish, including hybrid species, are essential components of aquaculture, and the gut microbiome plays a vital role in fish growth, behavior, digestion, and immune health. The gut microbiome can be affected by various internal and/or external factors, such as host development, diet, and environment. We reviewed the effects of diet and dietary supplements on intestinal microorganisms in hybrid fish and the difference in the gut microbiome between the hybrid and their hybrids that originate. Then, we summarized the role of the gut microbiome in the speciation and ecological invasion of hybrid fish. Finally, we discussed possible future studies on the gut microbiome in hybrid fish, including the potential interaction with environmental microbiomes, the effects of the gut microbiome on population expansion, and fish conservation and management.
Collapse
Affiliation(s)
- Xinyuan Cui
- College of Life Sciences, Nanjing Normal University, Nanjing 210046, China; (X.C.); (Q.Z.); (Q.Z.); (Y.Z.)
| | - Qinrong Zhang
- College of Life Sciences, Nanjing Normal University, Nanjing 210046, China; (X.C.); (Q.Z.); (Q.Z.); (Y.Z.)
| | - Qunde Zhang
- College of Life Sciences, Nanjing Normal University, Nanjing 210046, China; (X.C.); (Q.Z.); (Q.Z.); (Y.Z.)
| | - Yongyong Zhang
- College of Life Sciences, Nanjing Normal University, Nanjing 210046, China; (X.C.); (Q.Z.); (Q.Z.); (Y.Z.)
| | - Hua Chen
- Mingke Biotechnology, Hangzhou 310000, China; (H.C.); (G.L.)
| | - Guoqi Liu
- Mingke Biotechnology, Hangzhou 310000, China; (H.C.); (G.L.)
| | - Lifeng Zhu
- College of Life Sciences, Nanjing Normal University, Nanjing 210046, China; (X.C.); (Q.Z.); (Q.Z.); (Y.Z.)
| |
Collapse
|
35
|
Wen T, Mao C, Gao L. Analysis of the gut microbiota composition of myostatin mutant cattle prepared using CRISPR/Cas9. PLoS One 2022; 17:e0264849. [PMID: 35245313 PMCID: PMC8896723 DOI: 10.1371/journal.pone.0264849] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/17/2022] [Indexed: 12/12/2022] Open
Abstract
Myostatin (MSTN) negatively regulates muscle development and positively regulates metabolism through various pathways. Although MSTN function in cattle has been widely studied, the changes in the gut microbiota due to MSTN mutation, which contribute to host health by regulating its metabolism, remain unclear. Here, high-throughput sequencing of the 16S rRNA gene was conducted to analyze the gut microbiota of wild-type (WT) and MSTN mutant (MT) cattle. A total of 925 operational taxonomic units (OTUs) were obtained, which were classified into 11 phyla and 168 genera. Alpha diversity results showed no significant differences between MT and WT cattle. Beta diversity analyses suggested that the microbial composition of WT and MT cattle was different. Three dominant phyla and 21 dominant genera were identified. The most abundant bacterial genus had a significant relationship with the host metabolism. Moreover, various bacteria beneficial for health were found in the intestines of MT cattle. Analysis of the correlation between dominant gut bacteria and serum metabolic factors affected by MSTN mutation indicated that MSTN mutation affected the metabolism mainly by three metabolism-related bacteria, Ruminococcaceae_UCG-013, Clostridium_sensu_stricto_1, and Ruminococcaceae_UCG-010. This study provides further insight into MSTN mutation regulating the host metabolism by gut microbes and provides evidence for the safety of gene-edited animals.
Collapse
Affiliation(s)
- Tong Wen
- Faculty of Biological Science and Technology, Baotou Teachers’ College, Baotou, Inner Mongolia, China
| | - Chenyu Mao
- Faculty of Biological Science and Technology, Baotou Teachers’ College, Baotou, Inner Mongolia, China
| | - Li Gao
- Faculty of Biological Science and Technology, Baotou Teachers’ College, Baotou, Inner Mongolia, China
- * E-mail:
| |
Collapse
|
36
|
Li S, Heng X, Guo L, Lessing DJ, Chu W. SCFAs improve disease resistance via modulate gut microbiota, enhance immune response and increase antioxidative capacity in the host. FISH & SHELLFISH IMMUNOLOGY 2022; 120:560-568. [PMID: 34958920 DOI: 10.1016/j.fsi.2021.12.035] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
To evaluate the effects of dietary short chain fatty acids (SCFAs) on the intestinal health and innate immunity in crucian carp, a six-week feeding trial was carried out with following treatments: basal diet (BD), basal diet supplementation with 1% sodium acetate (BDSA), basal diet supplementation with 1% sodium propionate (BDSP) and basal diet supplementation with 1% sodium butyrate (BDSB). The results showed dietary BDSA, BDSP and BDSB could protect the host against oxidative stress by improving the activity of certain antioxidative enzymes (T-SOD, GSH-Px and CAT). Additionally, dietary SCFAs could enhance mucosal and humoral immune responses by improving certain innate immune parameters in serum and skin mucus productions (IgM, ACH50 and T-SOD). Furthermore, dietary BDSA and BDSP could up-regulate the expression of immune related genes (TNF-α, TGF-β and IL-8) and tight junction protein genes (occludin and ZO-1). Dietary BDSB could also elevate the expression of IL-8, TGF-β, ZO-1 and Occludin in the midgut. Although dietary differences of SCFAs didn't alter the α-diversity of the intestinal flora, they altered the core microbiota. Finally, the challenge trial showed that dietary basal diet supplementation with SCFAs could protect zebrafish against Aeromonas hydrophila. These results suggest that dietary SCFAs could improve innate immunity, modulate gut microbiota and increase disease resistance in the host, which indicated the potential of SCFAs as immunostimulants in aquaculture.
Collapse
Affiliation(s)
- Shipo Li
- Department of Microbiology, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Xing Heng
- Department of Microbiology, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Liyun Guo
- Nanjing Institute of Fisheries Science, Nanjing, 210036, China
| | - Duncan James Lessing
- Department of Microbiology, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Weihua Chu
- Department of Microbiology, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
37
|
Cano-Lozano JA, Villamil Diaz LM, Melo Bolivar JF, Hume ME, Ruiz Pardo RY. Probiotics in tilapia (Oreochromis niloticus) culture: Potential probiotic Lactococcus lactis culture conditions. J Biosci Bioeng 2021; 133:187-194. [PMID: 34920949 DOI: 10.1016/j.jbiosc.2021.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022]
Abstract
Tilapia is one of the most extensively farmed fish on a global scale. Lately, many studies have been carried out to select and produce probiotics for cultured fish. Bacteria from the genera Bacillus, Lactiplantibacillus (synonym: Lactobacillus), and Lactococcus are the most widely studied with respect to their probiotic potential. Among these microorganisms, Lactococcus lactis has outstanding prospects as a probiotic because it is generally recognized as safe (GRAS) and has previously been shown to exert its probiotic potential in aquaculture through different mechanisms, such as competitively excluding pathogenic bacteria, increasing food nutritional value, and enhancing the host immune response against pathogenic microorganisms. However, it is not sufficient to simply select a microorganism with significant probiotic potential for commercial probiotic development. There are additional challenges related to strategies involving the mass production of bacterial cultures, including the selection of production variables that positively influence microorganism metabolism. Over the last ten years, L. lactis production in batch and fed-batch processes has been studied to evaluate the effects of culture temperature and pH on bacterial growth. However, to gain a deeper understanding of the production processes, the effect of hydrodynamic stress on cells in bioreactor production and its influence on the probiotic potential post-manufacturing also need to be determined. This review explores the trends in tilapia culture, the probiotic mechanisms employed by L. lactis in aquaculture, and the essential parameters for the optimal scale-up of this probiotic.
Collapse
Affiliation(s)
- Juan Andrés Cano-Lozano
- School of Engineering, Maestría en diseño y gestión de procesos, Universidad de La Sabana, Campus del Puente del Común, Km. 7, Autopista Norte de Bogotá, Chía, 140 013, Colombia.
| | - Luisa Marcela Villamil Diaz
- School of Engineering, Doctoral program in Biosciences, Universidad de La Sabana, Campus del Puente del Común, Km. 7, Autopista Norte de Bogotá, Chía, 140 013, Colombia; Universidad de La Sabana, Faculty of Engineering, Grupo de Investigación en Procesos Agroindustriales, Campus Universitario del Puente del Común, Km 7 Autopista Norte de Bogotá, Chía, 140 013, Cundinamarca, Colombia.
| | - Javier Fernando Melo Bolivar
- School of Engineering, Doctoral program in Biosciences, Universidad de La Sabana, Campus del Puente del Común, Km. 7, Autopista Norte de Bogotá, Chía, 140 013, Colombia; Universidad de La Sabana, Faculty of Engineering, Grupo de Investigación en Procesos Agroindustriales, Campus Universitario del Puente del Común, Km 7 Autopista Norte de Bogotá, Chía, 140 013, Cundinamarca, Colombia.
| | - Michael E Hume
- United States Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, Food and Feed Safety Research Unit, College Station, TX 77845, USA.
| | - Ruth Yolanda Ruiz Pardo
- School of Engineering, Maestría en diseño y gestión de procesos, Universidad de La Sabana, Campus del Puente del Común, Km. 7, Autopista Norte de Bogotá, Chía, 140 013, Colombia; Universidad de La Sabana, Faculty of Engineering, Grupo de Investigación en Procesos Agroindustriales, Campus Universitario del Puente del Común, Km 7 Autopista Norte de Bogotá, Chía, 140 013, Cundinamarca, Colombia.
| |
Collapse
|
38
|
Liu C, Zhao LP, Shen YQ. A systematic review of advances in intestinal microflora of fish. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:2041-2053. [PMID: 34750711 DOI: 10.1007/s10695-021-01027-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 10/13/2021] [Indexed: 05/26/2023]
Abstract
Intestinal flora is closely related to the health of organisms and the occurrence and development of diseases. The study of intestinal flora will provide a reference for the research and treatment of disease pathogenesis. Upon hatching, fish begin to acquire a microbial community in the intestine. In response to the environment and the host itself, the fish gut eventually develops a unique set of microflora, with some microorganisms being common to different fish. The existence of intestinal microorganisms creates an excellent microecological environment for the host, while the fish symbiotically provides conditions for the growth and reproduction of intestinal microflora. The intestinal flora and the host are interdependent and mutually restrictive. This review mainly describes the formation of fish intestinal flora, the function of normal intestinal flora, factors affecting intestinal flora, and a series of fish models.
Collapse
Affiliation(s)
- Chang Liu
- Wuxi Medical School of Jiangnan University, Wuxi, China
| | - Li-Ping Zhao
- Wuxi Medical School of Jiangnan University, Wuxi, China
| | - Yan-Qin Shen
- Wuxi Medical School of Jiangnan University, Wuxi, China.
| |
Collapse
|
39
|
Wu PS, Liu CH, Hu SY. Probiotic Bacillus safensis NPUST1 Administration Improves Growth Performance, Gut Microbiota, and Innate Immunity against Streptococcus iniae in Nile tilapia ( Oreochromis niloticus). Microorganisms 2021; 9:2494. [PMID: 34946096 PMCID: PMC8703608 DOI: 10.3390/microorganisms9122494] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 12/14/2022] Open
Abstract
Probiotics are considered ecofriendly alternatives to antibiotics as immunostimulants against pathogen infections in aquaculture. In the present study, protease-, amylase-, cellulase-, and xylanase-producing Bacillus safensis NPUST1 were isolated from the gut of Nile tilapia, and the beneficial effects of B. safensis NPUST1 on growth, innate immunity, disease resistance and gut microbiota in Nile tilapia were evaluated by feeding tilapia a basal diet or basal diet containing 105 and 106-107 CFU/g for 8 weeks. The results showed that the weight gain, feed efficiency and specific growth rate were significantly increased in tilapia fed a diet containing 106 CFU/g and 107 CFU/g B. safensis NPUST1. Intestinal digestive enzymes, including protease, amylase and lipase, and hepatic mRNA expression of glucose metabolism and growth-related genes, such as GK, G6Pase, GHR and IGF-1, were also significantly increased in the 106 CFU/g and 107 CFU/g B. safensis NPUST1 treated groups. Immune parameters such as phagocytic activity, respiratory burst and superoxide dismutase activity in head kidney leukocytes, serum lysozyme, and the mRNA expression of IL-1β, IL-8, TNF-α and lysozyme genes were significantly induced in the head kidney and spleen of 106 CFU/g and 107 CFU/g B. safensis NPUST1 treated fish. The cumulative survival rate was significantly increased in fish fed a diet containing 106 CFU/g and 107 CFU/g B. safensis NPUST1 after challenge with Streptococcus iniae. Dietary supplementation with B. safensis NPUST1 improves the gut microbiota of Nile tilapia, which increases the abundance of potential probiotics and reduces the abundance of pathogenic pathogens. The present study is the first to report the use of B. safensis as a potential probiotic in aquaculture, and a diet containing 106 CFU/g B. safensis NPUST1 is adequate for providing beneficial effects on growth performance and health status in tilapia.
Collapse
Affiliation(s)
- Pei-Shan Wu
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 912, Taiwan;
| | - Chun-Hong Liu
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung 912, Taiwan;
- Research Center for Animal Biologics, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| | - Shao-Yang Hu
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 912, Taiwan;
- Research Center for Animal Biologics, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| |
Collapse
|
40
|
Zakariaee H, Sudagar M, Hosseini SS, Paknejad H, Baruah K. In vitro Selection of Synbiotics and in vivo Investigation of Growth Indices, Reproduction Performance, Survival, and Ovarian Cyp19α Gene Expression in Zebrafish Danio rerio. Front Microbiol 2021; 12:758758. [PMID: 34671338 PMCID: PMC8521104 DOI: 10.3389/fmicb.2021.758758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 09/06/2021] [Indexed: 12/14/2022] Open
Abstract
In this study, we tested the compatibility of two extracts from the plant Jerusalem artichokes and button mushrooms with two different Lactobacillus probiotics (Lactobacillus acidophilus; La and Lactobacillus delbrueckii subsp. Bulgaricus; Lb) to develop a synbiotic formulation to improve the growth, survival, and reproductive performances of farmed fishes. Initially, we employed in vitro approach to monitor the growth of the probiotic lactobacilli in the presence of the different doses of the plant-based prebiotics, with the aim of selecting interesting combination(s) for further verification under in vivo conditions using zebrafish as a model. Results from the in vitro screening assay in the broth showed that both the probiotic species showed a preference for 50% mushroom extract as a source of prebiotic. A synbiotic formulation, developed with the selected combination of L. acidophilus, L. bulgaricus, and 50% mushroom extract, showed a positive influence on the growth and reproductive performances of the zebrafish. Our findings also imply that the improvement in the reproductive indices was associated with the upregulation of a cyp19a gene. Overall results suggest that a combination of L. acidophilus, L. bulgaricus, and mushroom extract can be considered as a potential synbiotic for the successful production of aquaculture species.
Collapse
Affiliation(s)
- Hamideh Zakariaee
- Department of Aquaculture, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agriculture Sciences and Natural Resources, Gorgan, Iran
| | - Mohammad Sudagar
- Department of Aquaculture, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agriculture Sciences and Natural Resources, Gorgan, Iran
| | - Seyede Sedighe Hosseini
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran.,Department of Laboratory Sciences, Faculty of Paramedicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Hamed Paknejad
- Department of Aquaculture, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agriculture Sciences and Natural Resources, Gorgan, Iran
| | - Kartik Baruah
- Department of Animal Nutrition and Management, Aquaculture Nutraceuticals Research Group, Faculty of Veterinary Medicine and Animal Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
41
|
Investigating the Effect of an Oxytetracycline Treatment on the Gut Microbiome and Antimicrobial Resistance Gene Dynamics in Nile Tilapia ( Oreochromis niloticus). Antibiotics (Basel) 2021; 10:antibiotics10101213. [PMID: 34680794 PMCID: PMC8532870 DOI: 10.3390/antibiotics10101213] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/27/2021] [Accepted: 10/01/2021] [Indexed: 12/03/2022] Open
Abstract
Antibiotics play a vital role in aquaculture where they are commonly used to treat bacterial diseases. However, the impact of antibiotic treatment on the gut microbiome and the development of antimicrobial resistance in Nile tilapia (Oreochromis niloticus) over time remains to be fully understood. In this study, fish were fed a single treatment of oxytetracycline (100 mg/kg/day) for eight days, followed by a 14-day withdrawal period. Changes in the distal gut microbiome were measured using 16S rRNA sequencing. In addition, the abundance of antimicrobial resistance genes was quantified using real-time qPCR methods. Overall, the gut microbiome community diversity and structure of Nile tilapia was resilient to oxytetracycline treatment. However, antibiotic treatment was associated with an enrichment in Plesiomonas, accompanied by a decline in other bacteria taxa. Oxytetracycline treatment increased the proportion of tetA in the distal gut of fish and tank biofilms of the treated group. Furthermore, the abundance of tetA along with other tetracycline resistance genes was strongly correlated with a number of microbiome members, including Plesiomonas. The findings from this study demonstrate that antibiotic treatment can exert selective pressures on the gut microbiome of fish in favour of resistant populations, which may have long-term impacts on fish health.
Collapse
|
42
|
Mugwanya M, Dawood MAO, Kimera F, Sewilam H. Updating the Role of Probiotics, Prebiotics, and Synbiotics for Tilapia Aquaculture as Leading Candidates for Food Sustainability: a Review. Probiotics Antimicrob Proteins 2021; 14:130-157. [PMID: 34601712 DOI: 10.1007/s12602-021-09852-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2021] [Indexed: 11/25/2022]
Abstract
Tilapia production has significantly increased over the past few years due to the adoption of semi-intensive and intensive aquaculture technologies. However, these farming systems have subjected the fish to stressful conditions that suppress their immunity, hence exposing them to various pathogens. The application of antibiotics and therapeutics to enhance disease resistance, survival, and growth performance in aquaculture has been recently banned due to the emergence of antibiotic-resistant bacteria that pose a serious threat to the environment and consumers of aquatic organisms. Hence, the need for an alternative approach based on sustainable farming practices is warranted. Probiotic, prebiotic, and synbiotic use in tilapia production is considered a viable, safe, and environmentally friendly alternative that enhances growth performance, feed utilization, immunity, disease resistance, and fish survival against pathogens and environmental stress. Their inclusion in fish diets and or rearing water improves the general wellbeing of fish. Hence, this review aims at presenting research findings from the use of probiotics, prebiotics, and synbiotics and their effect on survival, growth, growth performance, gut morphology, microbial abundance, enzyme production, immunity, and disease resistance in tilapia aquaculture, while highlighting several hematological, blood biochemical parameters, and omics techniques that have been used to assess fish health. Furthermore, gaps in existing knowledge are addressed and future research studies have been recommended.
Collapse
Affiliation(s)
- Muziri Mugwanya
- Center for Applied Research On the Environment and Sustainability, The American University in Cairo, New Cairo, 11835, Egypt
| | - Mahmoud A O Dawood
- Center for Applied Research On the Environment and Sustainability, The American University in Cairo, New Cairo, 11835, Egypt. .,Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
| | - Fahad Kimera
- Center for Applied Research On the Environment and Sustainability, The American University in Cairo, New Cairo, 11835, Egypt
| | - Hani Sewilam
- Center for Applied Research On the Environment and Sustainability, The American University in Cairo, New Cairo, 11835, Egypt. .,Department of Engineering Hydrology, the RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
43
|
Tamang JP, Jeyaram K, Rai AK, Mukherjee PK. Diversity of beneficial microorganisms and their functionalities in community-specific ethnic fermented foods of the Eastern Himalayas. Food Res Int 2021; 148:110633. [PMID: 34507776 DOI: 10.1016/j.foodres.2021.110633] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 11/16/2022]
Abstract
The Eastern Himalayan regions of India, Nepal and Bhutan have more than 200 varieties of unsurpassed ethnic fermented foods and alcoholic beverages, which are lesser known outside the world. However, these ethnic foods are region- and community-specific, unique and some are exotic and rare, which include fermented vegetables, bamboo shoots, soybeans, cereals, milk (cow and yak), meats, fishes, and cereal-based alcoholic beverages and drinks. Ethnic communities living in the Eastern Himalayas have invented the indigenous knowledge of utilization of unseen microorganisms present in and around the environment for preservation and fermentation of perishable plant or animal substrates to obtain organoleptically desirable and culturally acceptable ethnic fermented food and alcoholic beverages. Some ethnic fermented products and traditionally prepared dry starters for production of alcoholic beverages of North Eastern states of India and Nepal were scientifically studied and reported till date, and however, limited publications are available on microbiological and nutritional aspects of ethnic fermented foods of Bhutan except on few products. Most of the beneficial microorganisms isolated from some ethnic fermented foods of the EH are listed in microbial food cultures (MFC) safe inventory. This study is aimed to review the updates on the beneficial importance of abundant microbiota and health-promoting benefits and functionalities of some ethnic fermented foods of the Eastern Himalayan regions of North East India, Nepal and Bhutan.
Collapse
Affiliation(s)
- Jyoti Prakash Tamang
- DAICENTER (DBT-AIST International Centre for Translational and Environmental Research) and Bioinformatics Centre, Department of Microbiology, Sikkim University, Science Building, Tadong, Gangtok 737102, Sikkim, India.
| | - Kumaraswamy Jeyaram
- Institute of Bioresources and Sustainable Development (IBSD), Takyelpat, Imphal 795001, Manipur, India
| | - Amit Kumar Rai
- Institute of Bioresources and Sustainable Development (IBSD), Takyelpat, Imphal 795001, Manipur, India
| | - Pulok K Mukherjee
- Institute of Bioresources and Sustainable Development (IBSD), Takyelpat, Imphal 795001, Manipur, India
| |
Collapse
|
44
|
Maulu S, Hasimuna OJ, Mphande J, Munang'andu HM. Prevention and Control of Streptococcosis in Tilapia Culture: A Systematic Review. JOURNAL OF AQUATIC ANIMAL HEALTH 2021; 33:162-177. [PMID: 34121243 DOI: 10.1002/aah.10132] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/01/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
Tilapia culture is a very promising industry within the aquaculture sector. However, disease outbreaks have continued to threaten the industry, causing serious economic losses among the producers. Streptococcosis has become the major bacterial disease affecting tilapia production in most regions of the world. To combat the disease and minimize its economic impact on fish producers, numerous preventive and control measures have been developed and reported over the years. This paper aims to systematically review the measures that could be used to manage the disease outbreaks and maintain fish health based on previously published scientific studies. Although numerous measures currently available have been highlighted, it is far better for the producers to maximize the preventive measures for management to be economically feasible. Among the currently available preventive measures, the use of vaccines has been shown to have the most promise, while the use of herbs has been demonstrated to be a more sustainable and economically affordable control measure. However, there are still a number of important gaps in existing literature that require further investigation. Overall, significant progress has been made in preventing and controlling streptococcosis in tilapia although, no single effective measure has been identified. Therefore, a combination of these measures may provide a more effective result.
Collapse
Affiliation(s)
- Sahya Maulu
- Centre for Innovative Approach Zambia, Lusaka Central Business Area, Post Office Box 30135, Lusaka, Zambia
| | - Oliver J Hasimuna
- Ministry of Fisheries and Livestock, National Aquaculture Research and Development Centre, Post Office Box 22797, Mwekera, Kitwe, Zambia
- Department of Zoology and Aquatic Sciences, Copperbelt University, Post Office Box 21692, Kitwe, Zambia
| | - Joseph Mphande
- Ministry of Fisheries and Livestock, Department of Fisheries, Post Office Box 70416, Ndola, Zambia
| | - Hetron M Munang'andu
- Section of Aquatic Medicine and Nutrition, Faculty of Veterinary Medicine and Biosciences, Department of Basic Sciences and Aquatic Medicine, Norwegian University of Life Sciences, Adamstuen Campus, Post Office Box 369, Oslo, 0102, Norway
| |
Collapse
|
45
|
Probiotics in Fish Nutrition—Long-Standing Household Remedy or Native Nutraceuticals? WATER 2021. [DOI: 10.3390/w13101348] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Over the last decades, aquaculture production increased rapidly. The future development of the industry highly relies on the sustainable utilization of natural resources. The need for improving disease resistance, growth performance, food conversion, and product safety for human consumption has stimulated the application of probiotics in aquaculture. Probiotics increase growth and feed conversion, improve health status, raise disease resistance, decrease stress susceptibility, and improve general vigor. Currently, most probiotics still originate from terrestrial sources rather than fish. However, host-associated (autochthonous) probiotics are likely more persistent in the gastrointestinal tract of fish and may, therefore, exhibit longer-lasting effects on the host. Probiotic candidates are commonly screened in in vitro assays, but the transfer to in vivo assessment is often problematic. In conclusion, modulation of the host-associated microbiome by the use of complex probiotics is promising, but a solid understanding of the interactions involved is only in its infancy and requires further research. Probiotics could be used to explore novel ingredients such as chitin-rich insect meal, which cannot be digested by the fish host alone. Most importantly, probiotics offer the opportunity to improve stress and disease resistance, which is among the most pressing problems in aquaculture.
Collapse
|
46
|
Domínguez-Maqueda M, Cerezo IM, Tapia-Paniagua ST, De La Banda IG, Moreno-Ventas X, Moriñigo MÁ, Balebona MC. A Tentative Study of the Effects of Heat-Inactivation of the Probiotic Strain Shewanella putrefaciens Ppd11 on Senegalese Sole ( Solea senegalensis) Intestinal Microbiota and Immune Response. Microorganisms 2021; 9:microorganisms9040808. [PMID: 33921253 PMCID: PMC8070671 DOI: 10.3390/microorganisms9040808] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/02/2021] [Accepted: 04/09/2021] [Indexed: 12/02/2022] Open
Abstract
Concerns about safety, applicability and functionality associated with live probiotic cells have led to consideration of the use of non-viable microorganisms, known as paraprobiotics. The present study evaluated the effects of dietary administration of heat-inactivated cells of the probiotic strain Shewanella putrefaciens Ppd11 on the intestinal microbiota and immune gene transcription in Solea senegalensis. Results obtained were evaluated and compared to those described after feeding with viable Pdp11 cells. S. senegalensis specimens were fed with basal (control) diet or supplemented with live or heat inactivated (60 °C, 1 h) probiotics diets for 45 days. Growth improvement was observed in the group receiving live probiotics compared to the control group, but not after feeding with a probiotic heat-inactivated diet. Regarding immune gene transcription, no changes were observed for tnfα, il-6, lys-c1, c7, hsp70, and hsp90aa in the intestinal samples based on the diet. On the contrary, hsp90ab, gp96, cd4, cd8, il-1β, and c3 transcription were modulated after probiotic supplementation, though no differences between viable and heat-inactivated probiotic supplemented diets were observed. Modulation of intestinal microbiota showed remarkable differences based on the viability of the probiotics. Thus, higher diversity in fish fed with live probiotic cells, jointly with increased Mycoplasmataceae and Spirochaetaceae to the detriment of Brevinemataceae, was detected. However, microbiota of fish receiving heat-inactivated probiotic cells showed decreased Mycoplasmataceae and increased Brevinemataceae and Vibrio genus abundance. In short, the results obtained indicate that the viable state of Pdp11 probiotic cells affects growth performance and modulation of S. senegalensis intestinal microbiota. On the contrary, minor changes were detected in the intestinal immune response, being similar for fish receiving both, viable and inactivated probiotic cell supplemented diets, when compared to the control diet.
Collapse
Affiliation(s)
- Marta Domínguez-Maqueda
- Departamento de Química Inorgánica, Cristalografía y Mineralogía, Facultad de Ciencias, Campus de Teatinos s/n, Universidad de Málaga, 29071 Málaga, Spain; (I.M.C.); (S.T.T.-P.); (M.Á.M.); (M.C.B.)
- Correspondence:
| | - Isabel M. Cerezo
- Departamento de Química Inorgánica, Cristalografía y Mineralogía, Facultad de Ciencias, Campus de Teatinos s/n, Universidad de Málaga, 29071 Málaga, Spain; (I.M.C.); (S.T.T.-P.); (M.Á.M.); (M.C.B.)
| | - Silvana Teresa Tapia-Paniagua
- Departamento de Química Inorgánica, Cristalografía y Mineralogía, Facultad de Ciencias, Campus de Teatinos s/n, Universidad de Málaga, 29071 Málaga, Spain; (I.M.C.); (S.T.T.-P.); (M.Á.M.); (M.C.B.)
| | - Inés García De La Banda
- Spanish Institute of Oceanography, Oceanographic Center of Santander, 39080 Santander, Spain;
| | - Xabier Moreno-Ventas
- Ecological Area of Water and Environmental Sciences and Technics, University of Cantabria, 39005 Santander, Spain;
| | - Miguel Ángel Moriñigo
- Departamento de Química Inorgánica, Cristalografía y Mineralogía, Facultad de Ciencias, Campus de Teatinos s/n, Universidad de Málaga, 29071 Málaga, Spain; (I.M.C.); (S.T.T.-P.); (M.Á.M.); (M.C.B.)
| | - Maria Carmen Balebona
- Departamento de Química Inorgánica, Cristalografía y Mineralogía, Facultad de Ciencias, Campus de Teatinos s/n, Universidad de Málaga, 29071 Málaga, Spain; (I.M.C.); (S.T.T.-P.); (M.Á.M.); (M.C.B.)
| |
Collapse
|
47
|
Hasan MT, Jang WJ, Lee BJ, Hur SW, Lim SG, Kim KW, Han HS, Lee EW, Bai SC, Kong IS. Dietary Supplementation of Bacillus sp. SJ-10 and Lactobacillus plantarum KCCM 11322 Combinations Enhance Growth and Cellular and Humoral Immunity in Olive Flounder (Paralichthys olivaceus). Probiotics Antimicrob Proteins 2021; 13:1277-1291. [PMID: 33713023 DOI: 10.1007/s12602-021-09749-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2021] [Indexed: 12/31/2022]
Abstract
Experiments were conducted to identify different ratios of Bacillus sp. SJ-10 and Lactobacillus plantarum KCCM 11322 mixtures at a concentration of 1 × 108 CFU/g diet; the effects on growth and cellular and humoral immune responses and the characteristics of disease protection in olive flounder (Paralichthys olivaceus). Flounder were divided into six groups and fed control diet D-1 (without Bacillus sp. SJ-10 and L. plantarum KCCM 11322), positive control diets D-2 (Bacillus sp. SJ-10 at 1 × 108 CFU/g feed) and D-3 (L. plantarum KCCM 11322 at 1 × 108 CFU/g feed); or treatment diets D-4 (3:1 Bacillus sp. SJ-10 and L. plantarum KCCM 11322 at 0.75 + 0.25 × 108 CFU/g feed), D-5 (1:1 Bacillus sp. SJ-10 and L. plantarum KCCM 11322 at 0.50 + 0.50 × 108 CFU/g feed), or D-6 (1:3 Bacillus sp. SJ-10 and L. plantarum KCCM 11322 at 0.25 + 0.75 × 108 CFU/g feed) for 8 weeks. Group D-4 demonstrated better growth and feed utilization (P < 0.05) compared with the controls and positive controls. Similar modulation was also observed in respiratory burst for all treatments and in the expression levels of TNF-α, IL-1β, IL-6, and IL-10 in different organs in D-4. D-4 and D-5 increased respiratory burst, superoxide dismutase, lysozyme, and myeloperoxidase activities compared with the controls, and only D-4 increased microvilli length. When challenged with 1 × 108 CFU/mL Streptococcus iniae, the fish in the D-4 and D-5 groups survived up to 14 days, whereas the fish in the other groups reached 100% mortality at 11.50 days. Collectively, a ratio-specific Bacillus sp. SJ-10 and L. plantarum KCCM 11322 mixture (3:1) was associated with elevated growth, innate immunity, and streptococcosis resistance (3:1 and 1:1) compared with the control and single probiotic diets.
Collapse
Affiliation(s)
- Md Tawheed Hasan
- Department of Biotechnology, Pukyong National University, Busan, 608-737, Republic of Korea.,Department of Aquaculture, Sylhet Agricultural University, Sylhet-3100, Bangladesh
| | - Won Je Jang
- Department of Biotechnology, Pukyong National University, Busan, 608-737, Republic of Korea
| | - Bong-Joo Lee
- Aquafeed Research Center, NIFS, Pohang, 791-923, Republic of Korea
| | - Sang Woo Hur
- Aquafeed Research Center, NIFS, Pohang, 791-923, Republic of Korea
| | - Sang Gu Lim
- Aquafeed Research Center, NIFS, Pohang, 791-923, Republic of Korea
| | - Kang Woong Kim
- Aquafeed Research Center, NIFS, Pohang, 791-923, Republic of Korea.,Aquaculture Management Division, NIFS, Busan, 46083, Republic of Korea
| | - Hyon-Sob Han
- Faculty of Marine Applied Bioscience, Kunsan National University, Kunsan, 54150, Republic of Korea
| | - Eun-Woo Lee
- Biopharmaceutical Engineering Major, Division of Applied Bioengineering, Dong-Eui University, Busan, 47340, Republic of Korea
| | - Sungchul C Bai
- Department of Marine Bio-Materials and Aquaculture, Pukyong National University, Busan, 608-737, Republic of Korea.
| | - In-Soo Kong
- Department of Biotechnology, Pukyong National University, Busan, 608-737, Republic of Korea.
| |
Collapse
|
48
|
Dietary supplementation of Bacillus sp. DU106 activates innate immunity and regulates intestinal microbiota in mice. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
49
|
Saettone V, Biasato I, Radice E, Schiavone A, Bergero D, Meineri G. State-of-the-Art of the Nutritional Alternatives to the Use of Antibiotics in Humans and Monogastric Animals. Animals (Basel) 2020; 10:ani10122199. [PMID: 33255356 PMCID: PMC7759783 DOI: 10.3390/ani10122199] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Antibiotic resistance represents a worldwide recognized issue affecting both human and veterinary medicine, with a particular focus being directed towards monogastric animals destined for human consumption. This scenario is the result of frequent utilization of the antibiotics either for therapeutic purposes (humans and animals) or as growth promoters (farmed animals). Therefore, the search for nutritional alternatives has progressively been the object of significant efforts by the scientific community. So far, probiotics, prebiotics and postbiotics are considered the most promising products, as they are capable of preventing or treating gastrointestinal diseases as well as restoring a eubiosis condition after antibiotic-induced dysbiosis development. This review provides an updated state-of-the-art of these nutritional alternatives in both humans and monogastric animals. Abstract In recent years, the indiscriminate use of antibiotics has been perpetrated across human medicine, animals destined for zootechnical productions and companion animals. Apart from increasing the resistance rate of numerous microorganisms and generating multi-drug resistance (MDR), the nonrational administration of antibiotics causes sudden changes in the structure of the intestinal microbiota such as dysbiotic phenomena that can have a great clinical significance for both humans and animals. The aim of this review is to describe the state-of-the-art of alternative therapies to the use of antibiotics and their effectiveness in humans and monogastric animals (poultry, pigs, fish, rabbits, dogs and cats). In particular, those molecules (probiotics, prebiotics and postbiotics) which have a direct function on the gastrointestinal health are herein critically analysed in the prevention or treatment of gastrointestinal diseases or dysbiosis induced by the consumption of antibiotics.
Collapse
Affiliation(s)
- Vittorio Saettone
- Department of Veterinary Sciences, School of Agriculture and Veterinary Medicine, University of Turin, Grugliasco, Largo Braccini 2, 10095 Torino, Italy; (V.S.); (A.S.); (D.B.); (G.M.)
| | - Ilaria Biasato
- Department of Agricultural, Forestry and Food Sciences, School of Agriculture and Veterinary Medicine, University of Turin, Grugliasco, Largo Braccini 2, 10095 Torino, Italy
- Correspondence:
| | - Elisabetta Radice
- Department of Surgical Sciences, Medical School, University of Turin, Corso Dogliotti 14, 10126 Torino, Italy;
| | - Achille Schiavone
- Department of Veterinary Sciences, School of Agriculture and Veterinary Medicine, University of Turin, Grugliasco, Largo Braccini 2, 10095 Torino, Italy; (V.S.); (A.S.); (D.B.); (G.M.)
| | - Domenico Bergero
- Department of Veterinary Sciences, School of Agriculture and Veterinary Medicine, University of Turin, Grugliasco, Largo Braccini 2, 10095 Torino, Italy; (V.S.); (A.S.); (D.B.); (G.M.)
| | - Giorgia Meineri
- Department of Veterinary Sciences, School of Agriculture and Veterinary Medicine, University of Turin, Grugliasco, Largo Braccini 2, 10095 Torino, Italy; (V.S.); (A.S.); (D.B.); (G.M.)
| |
Collapse
|
50
|
Bhutia MO, Thapa N, Shangpliang HNJ, Tamang JP. High-throughput sequence analysis of bacterial communities and their predictive functionalities in traditionally preserved fish products of Sikkim, India. Food Res Int 2020; 143:109885. [PMID: 33992337 DOI: 10.1016/j.foodres.2020.109885] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 12/31/2022]
Abstract
Traditionally preserved fish products viz. suka ko maccha, a smoked fish product, sidra and sukuti, sun-dried fish products are commonly consumed in Sikkim state in India. Bacterial communities in these fish products were analysed by high-throughput sequence (HTS) method supported by bioinformatics tool. Metataxonomic of the overall bacterial communities in samples revealed the abundance of phylum Firmicutes followed by Proteobacteria. Psychrobacter was abundant genus in all traditionally preserved fish products of Sikkim, followed by Bacillus, Staphylococcus, Serratia, Clostridium, Enterobacter, Pseudomonas, Rummeliibacillus, Enterococcus, Photobacterium, Myroides, Peptostreptococcus, Plesiomonas and Achromobacter. Product-wise distribution showed that Bacillus was abundant in suka ko maacha and sidra samples, whereas Psychrobacter was abundant in sukuti samples. Unique genus to each product was observed on the basis of analysis of shared operational-taxonomic-unit (OTU) contents, Alpha diversity indices showed significantly differences among the samples, and also showed maximum coverage as per Good's coverage (0.99). Beta diversity showed clustering of bacterial compositions between suka ko maacha and sidra, whereas sukuti showed scattering pattern among the other samples, indicating a diverse population in suka ko maacha and sidra samples. Non-parametric analysis of abundant genera and predictive functionalities showed the complex bacterial inter-dependencies with predictive functionalities mostly in metabolism (79.88%).
Collapse
Affiliation(s)
- Meera Ongmu Bhutia
- DAICENTER (DBT-AIST International Centre for Translational and Environmental Research) and Bioinformatics Centre, Department of Microbiology, School of Life Sciences, Sikkim University, Gangtok 737102, Sikkim, India
| | - Namrata Thapa
- Biotech Hub, Department of Zoology, Nar Bahadur Bhandari Degree College, Sikkim University, Tadong 737102, Sikkim, India.
| | - H Nakibapher Jones Shangpliang
- DAICENTER (DBT-AIST International Centre for Translational and Environmental Research) and Bioinformatics Centre, Department of Microbiology, School of Life Sciences, Sikkim University, Gangtok 737102, Sikkim, India
| | - Jyoti Prakash Tamang
- DAICENTER (DBT-AIST International Centre for Translational and Environmental Research) and Bioinformatics Centre, Department of Microbiology, School of Life Sciences, Sikkim University, Gangtok 737102, Sikkim, India.
| |
Collapse
|