1
|
Nagar N, Gulati K, Poluri KM. Selection Pressure Regulates the Evolution-Structure-Function Paradigm of Monocyte Chemoattractant Protein Family. J Mol Evol 2025:10.1007/s00239-025-10235-x. [PMID: 39907741 DOI: 10.1007/s00239-025-10235-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 01/19/2025] [Indexed: 02/06/2025]
Abstract
Monocyte chemoattractant proteins (MCPs) are involved in monocyte trafficking during severe inflammation by modulating the chemokine-glycosaminoglycan-receptor signaling axis. MCPs comprise a family of four chemokines (CCL2, CCL7, CCL8, and CCL13/12) that exhibit differential expression patterns in mammals, functional diversity, and receptor/glycosaminoglycan (GAG) binding promiscuity. In this context, the evolution-structure-function paradigm of MCP chemokines in mammals was established by assessing phylogeny, functional divergence, selection pressure, and coevolution in correlation with structural and surface characteristics. Comprehensive analyses were performed using an array of evolutionary and structural bioinformatic methods including molecular dynamics simulations. Our findings demonstrate that substitutions in receptor/GAG-interacting residues mediate episodic diversification and functional diversity in MCP chemokines. Additionally, a balanced interplay of selection pressures has driven the functional changes observed among MCP paralogs, with positive selection at various receptor/GAG-binding sites contributing to their promiscuous receptor/GAG interactions. Meanwhile, processes like purifying selection and coevolution maintain the classical chemokine structure and preserve the ancestral functions of MCP chemokines. Overall, this study suggests that selection pressure on sites within the N-terminal region [N-loop and 310-helix] and 40S loop of MCP chemokines alters surface properties to fine-tune the molecular interactions and functional characteristics without altering the overall chemokine structure.
Collapse
Affiliation(s)
- Nupur Nagar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Khushboo Gulati
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
| |
Collapse
|
2
|
Zhang MJ, Xue TT, Fei XY, Zhang Y, Luo Y, Ru Y, Jiang JS, Song JK, Kuai L, Luo Y, Wang RP, Li B. Identification of angiogenesis-related genes and molecular subtypes for psoriasis based on random forest algorithm. Clin Exp Immunol 2024; 218:199-212. [PMID: 38938103 PMCID: PMC11482546 DOI: 10.1093/cei/uxae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 03/13/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024] Open
Abstract
Psoriasis is a chronic immune-mediated recurrent skin disease causing systemic damage. Increased angiogenesis has been reported to participate in the progression of psoriasis. However, angiogenesis-related genes (ARGs) in psoriasis have not been systematically elucidated. Therefore, we aim to identify potential biomarkers and subtypes using two algorithmsr. Transcriptome sequencing data of patients with psoriasis were obtained, in which differentially expressed genes were assessed by principal component analysis. A diagnostic model was developed using random forest algorithm and validated by receiver operating characteristic (ROC) curves. Subsequently, we performed consensus clustering to calculate angiogenesis-associated molecular subtypes of psoriasis. Additionally, a correlation analysis was conducted between ARGs and immune cell infiltration. Finally, validation of potential ARG genes was performed by quantitative real-time PCR (qRT-PCR). We identified 29 differentially expressed ARGs, including 13 increased and 16 decreased. Ten ARGs, CXCL8, ANG, EGF, HTATIP2, ANGPTL4, TNFSF12, RHOB, PML, FOXO4, and EMCN were subsequently sifted by the diagnostic model based on a random forest algorithm. Analysis of the ROC curve (area under the curve [AUC] = 1.0) indicated high diagnostic performance in internal validation. The correlation analysis suggested that CXCL8 has a high positive correlation with neutrophil (R =0.8, P < 0.0001) and interleukins pathway (R = 0.79, P < 0.0001). Furthermore, two ARG-mediated subtypes were obtained, indicating potential heterogeneity. Finally, the qRT-PCR demonstrated that the mRNA expression levels of CXCL8 and ANGPTL4 were elevated in psoriasis patients, with a reduced expression of EMCN observed. The current paper indicated potential ARG-related biomarkers of psoriasis, including CXCL8, ANGPTL4, and EMCN, with two molecular subtypes.
Collapse
Affiliation(s)
- Meng-Jie Zhang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Ting-Ting Xue
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Xiao-Ya Fei
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai 200443, China
| | - Ying Zhang
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai 200443, China
| | - Ying Luo
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yi Ru
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jing-Si Jiang
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai 200443, China
| | - Jian-Kun Song
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai 200443, China
| | - Le Kuai
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yue Luo
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai 200443, China
| | - Rui-Ping Wang
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai 200443, China
| | - Bin Li
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai 200443, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
3
|
Wang Q, Zhao Z, Sun R, Shi Z, Zhang Y, Wang B, Zhang X, Ji W. Bioinformatics characteristics and expression analysis of IL-8 and IL-10 in largemouth bass (Micropterus salmoides) upon Nocardia seriolae infection. FISH & SHELLFISH IMMUNOLOGY 2024; 148:109465. [PMID: 38408547 DOI: 10.1016/j.fsi.2024.109465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/21/2024] [Accepted: 02/24/2024] [Indexed: 02/28/2024]
Abstract
IL-8 and IL-10 are crucial inflammatory cytokines that participate in defending host cells against infections. To demonstrate the function of the two interleukin genes in largemouth bass (Micropterus salmoides), we initially cloned and identified the cDNA sequences of il-8 and il-10 in largemouth bass, referred to as Msil-8 and Msil-10, respectively. The open reading frame (ORF) of Msil-8 was 324 bp in length, encoding 107 amino acids, while the ORF of Msil-10 consisted of 726 bp and encoded 241 amino acids. Furthermore, the functional domains of the SCY domain in MsIL-8 and the IL-10 family signature motif in MsIL-10 were highly conserved across vertebrates. Additionally, both MsIL-8 and MsIL-10 showed close relationships with M. dolomieu. Constitutive expression of Msil-8 and Msil-10 was observed in various tissues, with the highest level found in the head kidney. Subsequently, largemouth bass were infected with Nocardia seriolae via intraperitoneal injection to gain a further understanding of the function of these two genes. Bacterial loads were initially detected in the foregut, followed by the midgut, hindgut, and liver. The mRNA expression of Msil-8 was significantly down-regulated after infection, especially at 2 days post-infection (DPI), with a similar expression to Msil-10. In contrast, the expression of Msil-8 and Msil-10 was significantly upregulated in the foregut at 14 DPI. Taken together, these results reveal that the function of IL-8 and IL-10 was likely hindered by N. seriolae, which promoted bacterial proliferation and intercellular diffusion.
Collapse
Affiliation(s)
- Qin Wang
- Department of Aquatic Animal Medicines, College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhangchun Zhao
- Department of Aquatic Animal Medicines, College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ruhan Sun
- Department of Aquatic Animal Medicines, College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zechao Shi
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Yaqian Zhang
- Department of Aquatic Animal Medicines, College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bingchao Wang
- Department of Aquatic Animal Medicines, College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xuezhen Zhang
- Department of Aquatic Animal Medicines, College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wei Ji
- Department of Aquatic Animal Medicines, College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
4
|
Kawasaki K, Ohta Y, Castro CD, Flajnik MF. The immunoglobulin J chain is an evolutionarily co-opted chemokine. Proc Natl Acad Sci U S A 2024; 121:e2318995121. [PMID: 38215184 PMCID: PMC10801876 DOI: 10.1073/pnas.2318995121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/12/2023] [Indexed: 01/14/2024] Open
Abstract
The joining (J) chain regulates polymerization of multimeric Immunoglobulin(Ig)M and IgA, forming a disulfide bond to the C termini of their Ig heavy chains, and it controls IgM/IgA transport across mucosal epithelia. Like Ig itself and human-like adaptive immunity, J chain emerged in jawed vertebrates (gnathostomes), but its origin has remained mysterious since its discovery over 50 y ago. Here, we show unexpectedly that J chain is a member of the CXCL chemokine family. The J chain gene (JCHAIN) is linked to clustered CXCL chemokine loci in all gnathostomes except actinopterygians that lost JCHAIN. JCHAIN and most CXCL genes have four exons with the same intron phases, including the same cleavage site for the signal peptide/mature protein. The second exon of both genes encodes a CXC motif at the same position, and the lengths of exons 1 to 3 are similar. No other gene in the human secretome shares all of these characteristics. In contrast, intrachain disulfide bonds of the two proteins are completely different, likely due to modifications in J chain to direct Ig polymerization and mucosal transport. Crystal structures of CXCL8 and J chain share a conserved beta-strand core but diverge otherwise due to different intrachain disulfide bonds and extension of the J chain C terminus. Identification of this ancestral affiliation between J chain and CXCL chemokines addresses an age-old problem in immunology.
Collapse
Affiliation(s)
- Kazuhiko Kawasaki
- Department of Anthropology, Pennsylvania State University, University Park, PA16802
| | - Yuko Ohta
- Department of Microbiology and Immunology, University of Maryland, Baltimore, MD21201
| | - Caitlin D. Castro
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL60637
| | - Martin F. Flajnik
- Department of Microbiology and Immunology, University of Maryland, Baltimore, MD21201
| |
Collapse
|
5
|
Ding C, Xiao T, Deng Y, Yang H, Xu B, Li J, Lv Z. The Teleost CXCL13-CXCR5 Axis Induces Inflammatory Cytokine Expression through the Akt-NF-κB, p38-AP-1, and p38-NF-κB Pathways. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:317-334. [PMID: 38054894 DOI: 10.4049/jimmunol.2300237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 11/08/2023] [Indexed: 12/07/2023]
Abstract
The ancestors of chemokines originate in the most primitive of vertebrates, which has recently attracted great interest in the immune functions and the underlying mechanisms of fish chemokines. In the current study, we identified an evolutionarily conserved chemokine, CiCXCL13, from a teleost fish, grass carp. CiCXCL13 was characterized by a typical SCY (small cytokine CXC) domain and four cysteine residues (C34, C36, C61, C77), with the first two cysteines separated by a random amino acid residue, although it shared 24.2-54.8% identity with the counterparts from other vertebrates. CiCXCL13 was an inducible chemokine, whose expression was significantly upregulated in the immune tissues of grass carps after grass carp reovirus infection. CiCXCL13 could bind to the membrane of grass carp head kidney leukocytes and promote cell migration, NO release, and the expression of >15 inflammatory cytokines, including IL-1β, TNF-α, IL-10 and TGF-β1, thus regulating the inflammatory response. Mechanistically, CiCXCL13 interacted with its evolutionarily conserved receptor CiCXCR5 and activated the Akt-NF-κB and p38-AP-1 pathways, as well as a previously unrevealed p38-NF-κB pathway, to efficiently induce inflammatory cytokine expression, which was distinct from that reported in mammals. Zebrafish CXCL13 induced inflammatory cytokine expression through Akt, p38, NF-κB, and AP-1 as CiCXCL13. Meanwhile, the CiCXCL13-CiCXCR5 axis-mediated inflammatory activity was negatively shaped by grass carp atypical chemokine receptor 2 (CiACKR2). The present study is, to our knowledge, the first to comprehensively define the immune function of CXCL13 in inflammatory regulation and the underlying mechanism in teleosts, and it provides a valuable perspective on the evolution and biology of fish chemokines.
Collapse
Affiliation(s)
- Chunhua Ding
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, China; and Fisheries College, Hunan Agricultural University, Changsha, China
| | - Tiaoyi Xiao
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, China; and Fisheries College, Hunan Agricultural University, Changsha, China
| | - Yadong Deng
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, China; and Fisheries College, Hunan Agricultural University, Changsha, China
| | - Hong Yang
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, China; and Fisheries College, Hunan Agricultural University, Changsha, China
| | - Baohong Xu
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, China; and Fisheries College, Hunan Agricultural University, Changsha, China
| | - Junhua Li
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, China; and Fisheries College, Hunan Agricultural University, Changsha, China
| | - Zhao Lv
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, China; and Fisheries College, Hunan Agricultural University, Changsha, China
| |
Collapse
|
6
|
Li X, Jiang B, Zhang Z, Huang M, Feng J, Huang Y, Amoah K, Huang Y, Jian J. Interleukin-8 involved in Nile Tilapia (Oreochromis niloticus) against bacterial infection. FISH & SHELLFISH IMMUNOLOGY 2023; 141:109004. [PMID: 37598734 DOI: 10.1016/j.fsi.2023.109004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/30/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
Interleukin 8 (IL8) is vital in promoting inflammation and is a crucial mediator in various physiopathological processes while influencing immunological function. The effect of IL8 on the immunological response to acute bacterial infections in Nile tilapia (Oreochromis niloticus) remains unknown. This work found an IL8 gene from Nile tilapia (On-IL8). It includes a 285 bp open reading frame and codes for 94 amino acids. The transcript levels of On-IL8 were highest in the head-kidney tissue and sharply induced by Streptococcus agalactiae and Aeromonas hydrophila. Besides, in vitro experiments revealed that On-IL8 regulated a variety of immunological processes and promoted inflammatory responses. Moreover, On-IL8 suppressed the NF-κB signaling pathway, consistent with in vitro results. These significant findings serve as the basis for further investigation into how IL8 confers protection to bony fish in opposition to bacterial infections.
Collapse
Affiliation(s)
- Xing Li
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Baijian Jiang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Zhiqiang Zhang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Meiling Huang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Jiamin Feng
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Yongxiong Huang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Kwaku Amoah
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Yu Huang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China.
| | - Jichang Jian
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China.
| |
Collapse
|
7
|
Xu J, Qin C, Xie J, Wang J, He Y, Tan J, Shi X. Transcriptome analysis of Chinese sucker (Myxocyprinus asiaticus) head kidney and discovery of key immune-related genes to cold stress after swimming fatigue. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 47:101104. [PMID: 37390763 DOI: 10.1016/j.cbd.2023.101104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/11/2023] [Accepted: 06/13/2023] [Indexed: 07/02/2023]
Abstract
For Chinese sucker (Myxocyprinus asiaticus), passing through a dam with fast flow and cold water are always unavoidable, and this process can cause stress, disease or even death. In this study, comparative transcriptome analysis was conducted to investigate the potential immune mechanism in head kidney of M. asiaticus with swimming fatigue stress and cold stress after fatigue. In general, a total of 181,781 unigenes were generated, and 38,545 differentially expressed genes (DEGs) were identified. In these DEGs, 22,593, 7286 and 8666 DEGs were identified among groups of fatigue vs. cold, control vs. cold, and control vs. fatigue, respectively. Enrichment analysis revealed these DEGs were involved in coagulation cascades and complement, natural killer cell mediated cytotoxicity, antigen processing and presentation, Toll-like receptor signaling pathways, and chemokine signaling pathway. Notably, immune genes including heat shock protein 4a (HSP4a), HSP70 and HSP90α genes were significantly up-regulated in fishes with cold stress after fatigue. Differently, more immune genes in control vs. cold compared with that in control vs. fatigue were significantly down-regulated expression, such as claudin-15-like, Toll-like receptor 13, antimicrobial peptide (hepcidin), immunoglobulin, CXCR4 chemokine receptor, T-cell receptor, complement factor B/C2-A3, and interleukin 8. In this study, the number of DEGs in the head kidney was less than that our previous study in the spleen, which we speculated was more sensitive to changes in water temperature than the head kidney. In summary, lots of immune-related genes in the head kidney were down-regulated under cold stress after fatigue, suggesting that M. asiaticus might have experienced severe immunosuppression in the process of passing through the dam.
Collapse
Affiliation(s)
- Jing Xu
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang 641000, China
| | - Chuanjie Qin
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang 641000, China.
| | - Jiang Xie
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang 641000, China
| | - Jun Wang
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang 641000, China
| | - Yang He
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang 641000, China
| | - Junjun Tan
- Hubei International Science and Technology Cooperation Base of Fish Passage, China Three Gorges University, Yichang 443002, China
| | - Xiaotao Shi
- Hubei International Science and Technology Cooperation Base of Fish Passage, China Three Gorges University, Yichang 443002, China.
| |
Collapse
|
8
|
Ishimoto N, Park JH, Kawakami K, Tajiri M, Mizutani K, Akashi S, Tame JRH, Inoue A, Park SY. Structural basis of CXC chemokine receptor 1 ligand binding and activation. Nat Commun 2023; 14:4107. [PMID: 37433790 PMCID: PMC10336096 DOI: 10.1038/s41467-023-39799-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/29/2023] [Indexed: 07/13/2023] Open
Abstract
Neutrophil granulocytes play key roles in innate immunity and shaping adaptive immune responses. They are attracted by chemokines to sites of infection and tissue damage, where they kill and phagocytose bacteria. The chemokine CXCL8 (also known as interleukin-8, abbreviated IL-8) and its G-protein-coupled receptors CXCR1 and CXCR2 are crucial elements in this process, and also the development of many cancers. These GPCRs have therefore been the target of many drug development campaigns and structural studies. Here, we solve the structure of CXCR1 complexed with CXCL8 and cognate G-proteins using cryo-EM, showing the detailed interactions between the receptor, the chemokine and Gαi protein. Unlike the closely related CXCR2, CXCR1 strongly prefers to bind CXCL8 in its monomeric form. The model shows that steric clashes would form between dimeric CXCL8 and extracellular loop 2 (ECL2) of CXCR1. Consistently, transplanting ECL2 of CXCR2 onto CXCR1 abolishes the selectivity for the monomeric chemokine. Our model and functional analysis of various CXCR1 mutants will assist efforts in structure-based drug design targeting specific CXC chemokine receptor subtypes.
Collapse
Affiliation(s)
- Naito Ishimoto
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Tsurumi, Yokohama, 230-0045, Japan
| | - Jae-Hyun Park
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Tsurumi, Yokohama, 230-0045, Japan
| | - Kouki Kawakami
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Michiko Tajiri
- Structural Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama City University, Tsurumi, Yokohama, 230-0045, Japan
| | - Kenji Mizutani
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Tsurumi, Yokohama, 230-0045, Japan
| | - Satoko Akashi
- Structural Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama City University, Tsurumi, Yokohama, 230-0045, Japan
| | - Jeremy R H Tame
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Tsurumi, Yokohama, 230-0045, Japan
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Sam-Yong Park
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Tsurumi, Yokohama, 230-0045, Japan.
| |
Collapse
|
9
|
Li H, Li H, Liu Y, Zheng Y, Zhang M, Wang X, Cui H, Wang H, Zhao X, Chen X, Cheng H, Xu J, Ding Z. Molecular characterization and expression patterns of CXCL8 gene from blunt snout bream (Megalobrama amblycephala) and its chemotactic effects on macrophages and neutrophils. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 142:104658. [PMID: 36758661 DOI: 10.1016/j.dci.2023.104658] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/16/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
CXCL8 is a typical CXC-type chemokine, which mediates the migration of immune cells from blood vessels to the site of inflammation or injury to clear pathogenic microorganisms and repair damaged tissues. In this study, Megalobrama amblycephala CXCL8 (MaCXCL8) gene was identified and characterized. Sequence analysis showed that the deduced MaCXCL8 protein possessed the typical structure of CXCL8 from other species, with the characteristic CXC cysteine residues in the N-terminal and accompanied by a DLR motif (Asp-Leu-Arg motif). Phylogenetic analysis revealed that MaCXCL8 was homologous to that of Ctenopharyngodon idella and other cyprinid fishes. MaCXCL8 gene was expressed in all detected healthy tissues, with the highest expression levels in the spleen, and its expression was significantly up-regulated upon the challenge of Aeromonas hydrophila and Lipopolysaccharide (LPS) both in juvenile M. amblycephala tissues and primary macrophages. The immunohistochemical assay showed that MaCXCL8 was mainly distributed in the nucleus and cytoplasm, and its expression levels increased observably with the prolongation of bacterial infection. In addition, recombinant MaCXCL8 protein exhibited significant chemotactic effects on neutrophils and macrophages. In conclusion, MaCXCL8 is involved in the immune response of M. amblycephala, and these findings will be helpful to understand the biological roles of MaCXCL8 and provide a theoretical basis for the prevention and control of fish bacterial diseases.
Collapse
Affiliation(s)
- Hongping Li
- College of Marine Life and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China; Jiangsu Marine Resources Development Institute, Lianyungang, 222005, China
| | - Hong Li
- Hunan Fisheries Science Institute, Hunan, 410153, China
| | - Yunlong Liu
- College of Marine Life and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China; Jiangsu Marine Resources Development Institute, Lianyungang, 222005, China
| | - Yancui Zheng
- College of Marine Life and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China; Jiangsu Marine Resources Development Institute, Lianyungang, 222005, China
| | - Minying Zhang
- College of Marine Life and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China; Jiangsu Marine Resources Development Institute, Lianyungang, 222005, China
| | - Xu Wang
- College of Marine Life and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China; Jiangsu Marine Resources Development Institute, Lianyungang, 222005, China
| | - Hujun Cui
- College of Marine Life and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China; Jiangsu Marine Resources Development Institute, Lianyungang, 222005, China
| | - Haotong Wang
- College of Marine Life and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China; Jiangsu Marine Resources Development Institute, Lianyungang, 222005, China
| | - Xiaoheng Zhao
- College of Marine Life and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China; Jiangsu Marine Resources Development Institute, Lianyungang, 222005, China
| | - Xiangning Chen
- College of Marine Life and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China; Jiangsu Marine Resources Development Institute, Lianyungang, 222005, China
| | - Hanliang Cheng
- College of Marine Life and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China; Jiangsu Marine Resources Development Institute, Lianyungang, 222005, China
| | - Jianhe Xu
- College of Marine Life and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China; Jiangsu Marine Resources Development Institute, Lianyungang, 222005, China
| | - Zhujin Ding
- College of Marine Life and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China; Jiangsu Marine Resources Development Institute, Lianyungang, 222005, China.
| |
Collapse
|
10
|
Fu Q, Hu J, Zhang P, Li Y, Zhao S, Cao M, Yang N, Li C. CC and CXC chemokines in turbot (Scophthalmus maximus L.): Identification, evolutionary analyses, and expression profiling after Aeromonas salmonicida infection. FISH & SHELLFISH IMMUNOLOGY 2022; 127:82-98. [PMID: 35690275 DOI: 10.1016/j.fsi.2022.06.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 05/06/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
Chemokines are a superfamily of structurally related cytokines, which exert essential roles in guiding cell migration in development, homeostasis, and immunity. CC and CXC chemokines are the two major subfamilies in teleost species. In this study, a total of seventeen CC and CXC chemokines, with inclusion of twelve CC and five CXC chemokines, were systematically identified from the turbot genome, making turbot the teleost harboring the least number of CC and CXC chemokines among all teleost species ever reported. Phylogeny, synteny, and genomic organization analyses were performed to annotate these genes, and multiple chemokine genes were identified in the turbot genome, due to the tandem duplications (CCL19 and CCL20), the whole genome duplications (CCL20, CCL25, and CXCL12), and the teleost-specific members (CCL34-36, CCL44, and CXCL18). In addition, chemokines were ubiquitously expressed in nine examined healthy tissues, with high expression levels observed in liver, gill, and spleen. Moreover, most chemokines were significantly differentially expressed in gill and spleen after Aeromonas salmonicida infection, and exhibited tissue-specific and time-dependent manner. Finally, protein-protein interaction network (PPI) analysis indicated that turbot chemokines interacted with a few immune-related genes such as interleukins, cathepsins, stats, and TLRs. These results should be valuable for comparative immunological studies and provide insights for further functional characterization of chemokines in teleost.
Collapse
Affiliation(s)
- Qiang Fu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jie Hu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Pei Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yuqing Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shoucong Zhao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Min Cao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ning Yang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
11
|
LcCCL28-25, Derived from Piscine Chemokine, Exhibits Antimicrobial Activity against Gram-Negative and Gram-Positive Bacteria In Vitro and In Vivo. Microbiol Spectr 2022; 10:e0251521. [PMID: 35616397 PMCID: PMC9241943 DOI: 10.1128/spectrum.02515-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Antimicrobial peptides (AMPs) are currently recognized as potentially promising antibiotic substitutes. Fish are an important seawater/freshwater medicinal biological resource, and the antimicrobial peptides and proteins that are key components of their innate immune systems are potential candidates for the development of novel antibacterial agents. The rainbow trout Oncorhynchus mykiss chemokine CK11 (omCK11), classified in the C-C motif chemokine ligand 27/28 (CCL27/28) family, is the only CC-type chemokine reported to play a direct antibacterial role in the immune response; however, its antibacterial domain remains unknown. In this study, we analyzed the structure-activity relationship of omCK11 and identified the antibacterial C-terminal domain. Additionally, we performed structure-function analyses of CCL27/28 proteins from different, representative freshwater and seawater fishes, revealing their shared C-terminal antibacterial domains. Surprisingly, a synthesized cationic peptide (named lcCCL28-25), derived from the large yellow croaker Larimichthys crocea CCL28, exhibited broad-spectrum and the most acceptable bactericidal activity, as well as antibiofilm activity and negligible hemolytic and cytotoxic activity in vitro. Additionally, lcCCL28-25 conferred a protective effect in the thighs of neutropenic mice infected with Staphylococcus aureus. SYTOX green fluorescence and electron microscopy experiments revealed that lcCCL28-25 was capable of rapidly destroying the integrity and permeability of the bacterial cell membrane. Overall, this study aided in the advancement of antibacterial CC-type chemokine research and also suggested a new strategy for exploring novel AMPs. Additionally, the efficacy of lcCCL28-25 in in vivo antibacterial activity in a mammalian model revealed that this compound could be a promising agent for the development of peptide-based antibacterial therapeutics. IMPORTANCE The primary function of chemokines has been described as recruiting and activating leukocytes to participate in the immune response. Some chemokines are also broad-spectrum antibacterial proteins in mammals. The Oncorhynchus mykiss chemokine CK11 (omCK11) is the first reported and currently the only CC-type antibacterial chemokine. The present study identified the antibacterial domain of omCK11. Structure-function analysis of various fish CCL27/28 proteins identified a novel antibacterial peptide (lcCCL28-25) from Larimichthys crocea CCL28 that exhibited broad-spectrum and the most acceptable bactericidal activity in vitro, as well as a protective effect in a Staphylococcus aureus infection mouse model. The antibacterial mechanisms included membrane disruption and permeation. This study advanced the field of antibacterial chemokine research in fish and also suggested a new strategy for exploring novel AMPs. The novel peptide lcCCL28-25 may prove to be an effective antibacterial agent.
Collapse
|
12
|
Zhao Z, Peng H, Han T, Jiang Z, Yuan J, Liu X, Wang X, Zhang Y, Wang T. Pharmacological characterization and biological function of the interleukin-8 receptor, CXCR2, in largemouth bass (Micropterus salmoides). FISH & SHELLFISH IMMUNOLOGY 2022; 120:441-450. [PMID: 34933090 DOI: 10.1016/j.fsi.2021.12.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 11/16/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Interleukin-8 (IL-8 or C-X-C motif chemokine ligand 8, CXCL8) is a cytokine secreted by numerous cell types and is best known for its functional roles in inflammatory response by binding to specific receptors (the interleukin-8 receptors, IL-8Rs). From the transcriptomic data of largemouth bass (Micropterus salmoides), we identified an IL-8R that is highly homologous to the functionally validated teleost IL-8Rs. The M. salmoides IL-8 receptor (MsCXCR2) was further compared with the C-X-C motif chemokine receptor 2 subfamily by phylogenetic analysis. Briefly, the full-length CDS sequence of MsCXCR2 was cloned into the pEGFP-N1 plasmid, and the membrane localization of fusion expressing MsCXCR2-EGFP was revealed in HEK293 cells. To determine the functional interaction between IL-8 and MsCXCR2, secretory expressed Larimichthys crocea IL-8 (LcIL-8) was used to stimulate MsCXCR2 expressing cells. MsCXCR2 was demonstrated to be activated by LcIL-8, leading to receptor internalization, which was further revealed by the detection of extracellular regulated protein kinase (ERK) phosphorylation. Quantitative real-time PCR was used to evaluate the expressional distribution and variation of MsCXCR2 in healthy and Nocardia seriolae infected fish. Based on our findings, MsCXCR2 was constitutively expressed in all examined tissues, despite at different levels. Furthermore, gene expression was found to be significantly upregulated in the liver and head kidney of diseased fish. Collectively, our findings reveal the molecular activity of MsCXCR2 and indicate the functional involvement of this IL-8R in the immune response induced by N. seriolae in M. salmoides.
Collapse
Affiliation(s)
- Zihao Zhao
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, PR China
| | - Hao Peng
- Department of Life Science and Engineering, Jining University, Jining, Shandong, 273155, PR China
| | - Tao Han
- Department of Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, PR China
| | - Zhijing Jiang
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, PR China
| | - Jieyi Yuan
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, PR China
| | - Xue Liu
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, PR China
| | - Xiaoqian Wang
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, PR China
| | - Yuexing Zhang
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, PR China.
| | - Tianming Wang
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, PR China.
| |
Collapse
|
13
|
Sáenz-Martínez DE, Santana PA, Aróstica M, Forero JC, Guzmán F, Mercado L. Immunodetection of rainbow trout IL-8 cleaved-peptide: Tissue bioavailability and potential antibacterial activity in a bacterial infection context. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 124:104182. [PMID: 34166719 DOI: 10.1016/j.dci.2021.104182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/20/2021] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
Chemokines such as IL-8 are part of an important group of proinflammatory response molecules, as well as cell recruitment. However, it has been described in both higher vertebrates and fish that IL-8 has an additional functional role by acting as an antimicrobial effector, either directly or by cleavage of a peptide derived from its C-terminal end. Nevertheless, it is still unknown whether this fragment is released in the context of infection by bacterial pathogens and if it could be immunodetected in tissues of infected salmonids. Therefore, the objective of this research was to demonstrate that the C-terminal end of IL-8 from Oncorhynchus mykiss is cleaved, retaining its antibacterial properties, and that is detectable in tissues of infected rainbow trout. SDS-PAGE and mass spectrometry demonstrated the cleavage of a fragment of about 2 kDa when the recombinant IL-8 was subjected to acidic conditions. By chemical synthesis, it was possible to synthesize this fragment called omIL-8α80-97 peptide, which has antibacterial activity against Gram-negative and Gram-positive bacteria at concentrations over 10 μM. Besides, by fluorescence microscopy, it was possible to locate the omIL-8α80-97 peptide both on the cell surface and in the cytoplasm of the bacteria, as well as inside the monocyte/macrophage-like cell. Finally, by indirect ELISA, Western blot, and mass spectrometry, the presence of the fragment derived from the C-terminal end of IL-8 was detected in the spleen of trout infected with Piscirickettsia salmonis. The results reported in this work present the first evidence about the immunodetection of an antibacterial, and probably cell-penetrating peptide cleaved from the C-terminal end of IL-8 in monocyte/macrophage-like cell and tissue of infected rainbow trout.
Collapse
Affiliation(s)
- Daniel E Sáenz-Martínez
- Doctorado en Biotecnología, Pontificia Universidad Católica de Valparaíso, Universidad Técnico Federico Santa María, Valparaíso, Chile.
| | - Paula A Santana
- Instituto de Ciencias Químicas Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, El Llano Subercaseaux 2801, San Miguel, Santiago 8910060, Chile.
| | - Mónica Aróstica
- Doctorado en Biotecnología, Pontificia Universidad Católica de Valparaíso, Universidad Técnico Federico Santa María, Valparaíso, Chile.
| | - Juan C Forero
- Núcleo Biotecnología Curauma (NBC), Pontificia Universidad Católica de Valparaíso, Avenida Universidad #330, 2373223,Valparaíso, Chile.
| | - Fanny Guzmán
- Núcleo Biotecnología Curauma (NBC), Pontificia Universidad Católica de Valparaíso, Avenida Universidad #330, 2373223,Valparaíso, Chile.
| | - Luis Mercado
- Núcleo Biotecnología Curauma (NBC), Pontificia Universidad Católica de Valparaíso, Avenida Universidad #330, 2373223,Valparaíso, Chile; Grupo de Marcadores Inmunológicos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Avenida Universidad #330, 2373223,Valparaíso, Chile.
| |
Collapse
|
14
|
Li Y, Zhang P, Gao C, Cao M, Yang N, Li X, Li C, Fu Q. CXC chemokines and their receptors in black rockfish (Sebastes schlegelii): Characterization, evolution analyses, and expression pattern after Aeromonas salmonicida infection. Int J Biol Macromol 2021; 186:109-124. [PMID: 34242645 DOI: 10.1016/j.ijbiomac.2021.07.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/02/2021] [Accepted: 07/02/2021] [Indexed: 10/20/2022]
Abstract
Chemokines are crucial regulators of cell mobilization for development, homeostasis, and immunity. Chemokines signal through binding to chemokine receptors, a superfamily of seven-transmembrane domain G-coupled receptors. In the present study, seventeen CXC chemokine ligands (SsCXCLs) and nine CXC chemokine receptors (SsCXCRs) were systematically identified from Sebastes schlegelii genome. Phylogeny, synteny, and evolutionary analyses were performed to annotate these genes, indicating that the tandem duplications (CXCL8, CXCL11, CXCL32, CXCR2, and CXCR3), the whole genome duplications (CXCL8, CXCL12, CXCL18, and CXCR4), and the teleost-specific members (CXCL18, CXCL19, and CXCL32) led to the expansion of SsCXCLs and SsCXCRs. In addition, SsCXCLs and SsCXCRs were ubiquitously expressed in nine examined healthy tissues, with high expression levels observed in head kidney, liver, gill and spleen. Moreover, most SsCXCLs and SsCXCRs were significantly differentially expressed in head kidney, liver, and gill after Aeromonas salmonicida infection, and exhibited tissue-specific and time-dependent manner. Finally, protein-protein interaction network (PPI) analysis indicated that SsCXCLs and SsCXCRs interacted with a few immune-related genes such as interleukins, cathepsins, CD genes, and TLRs, etc. These results should be valuable for comparative immunological studies and provide insights for further functional characterization of chemokines and receptors in teleost.
Collapse
Affiliation(s)
- Yuqing Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Pei Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Chengbin Gao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Min Cao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Ning Yang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Xingchun Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Qiang Fu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
15
|
Zhao B, Diao J, Li L, Kondo H, Li L, Hirono I. Molecular characterization and expression analysis of Japanese flounder (Paralichthys olivaceus) chemokine receptor CXCR2 in comparison with CXCR1. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 120:104047. [PMID: 33647308 DOI: 10.1016/j.dci.2021.104047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
Chemokines are categorized into five families; one of the families is the CXC chemokines, which are critical in the pro-inflammatory process. CXC chemokines transmit signals and mediate a cell's biological activities by binding to cell surface receptors known as chemokine receptors (CXCRs). In this study, the CXCR2 from Japanese flounder (Paralichthys olivaceus) (JfCXCR2) was identified and characterized at the molecular level. The JfCXCR2 gene has a 1077 bp open reading frame that encodes a protein of 359 amino acid residues with seven transmembrane domains. Phylogenetic analysis of JfCXCR2 revealed that it belonged to the fish CXCR2 subfamily. Furthermore, JfCXCR2 was compared with the previously identified Japanese flounder CXCR1 (JfCXCR1). The expression analysis of uninfected Japanese flounder showed that JfCXCR1 and JfCXCR2 were expressed in all the tissues and organs tested but mainly in immune-related organs, including the kidney and spleen. Infection by Streptococcus iniae significantly increased the level of JfCXCR1 and JfCXCR2 mRNA in the kidney at days 1 and 3 post-infection. On the other hand, VHSV (viral hemorrhagic septicemia virus) and Edwardsiella tarda infection significantly increased JfCXCR2 mRNA levels in the kidney at days 3 and 6 post-infection, respectively. Conversely, JfCXCR1 expression was not significantly changed by either E. tarda or VHSV infection. Additionally, the peripheral blood leukocytes (PBLs) stimulated by recombinant proteins rCXCL8_L1a and rCXCL8_L1b were found to have significantly increased levels of JfCXCR1 and JfCXCR2 mRNA. Interestingly, even higher levels of JfCXCR1 and JfCXCR2 expression were observed in PBLs stimulated with rCXCL8_L1a and rCXCL8_L1b than in PBLs stimulated with either recombinant protein. These data suggest that bacterial infections may activate JfCXCR1. By contrast, JfCXCR2 may be activated by both bacterial and viral infection to mediate the immune response. These data can contribute to further understanding the functions of CXCR1 and CXCR2 in the fish immune system.
Collapse
Affiliation(s)
- Beibei Zhao
- Laboratory of Healthy and Safe Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China; Shandong Key Laboratory of Disease Control in Mariculture, Qingdao, 266104, China.
| | - Jing Diao
- Marine Biology Institute of Shandong Province, Qingdao, 266104, China; Shandong Key Laboratory of Disease Control in Mariculture, Qingdao, 266104, China
| | - Le Li
- Marine Biology Institute of Shandong Province, Qingdao, 266104, China; Shandong Key Laboratory of Disease Control in Mariculture, Qingdao, 266104, China
| | - Hidehiro Kondo
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo, 108-8477, Japan
| | - Lei Li
- Laboratory of Healthy and Safe Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China
| | - Ikuo Hirono
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo, 108-8477, Japan
| |
Collapse
|
16
|
Sun Z, Qin Y, Liu D, Wang B, Jia Z, Wang J, Gao Q, Zou J, Pang Y. The evolution and functional characterization of CXC chemokines and receptors in lamprey. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 116:103905. [PMID: 33164777 DOI: 10.1016/j.dci.2020.103905] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/19/2020] [Accepted: 10/19/2020] [Indexed: 05/20/2023]
Abstract
Chemokines are a large family of soluble peptides guiding cell migration in development and immune defense. They interact with chemokine receptors and are essential for the coordination of cell migration in diverse physiological processes. The CXC subfamily is one of the largest groups in the chemokine family and consists of multiple members. In this study, we identified homologues of three chemokine ligands (CXCL8, CXCL_F5 and CXCL12) and two CXC receptor like molecules (CXCR_L1 and CXCR_L2) in lamprey. Sequence analysis revealed that they share the same genomic organization with their counterparts in jawed vertebrates but synteny was not conserved. Lamprey CXCL8 and CXCL12 have four conserved cysteine residues whilst the CXCL_F5 has two additional cysteine residues. In addition, CXCL_F5 is evolutionarily related to the fish specific CXC chemokine groups previously identified and contains multiple cationic aa residues in the extended C- terminal region. The two CXCRs possess seven transmembrane domains and conserved structural elements for receptor activation and signaling, including the DRYXXI(V)Y motif in TM2, the disulphide bond connecting ECL2 and TM3, the WXP motif in TM6 and NPXXY motif in TM7. The identified CXC chemokines and receptors were constitutively expressed in tissues including the liver, kidney, intestine, heart, gills, supraneural body and primary leukocytes, but exhibited distinct expression patterns. Relatively high expression was detected in the gills for CXCL8, CXCL_F5 and CXCR_L1 and in the supraneural body for CXCL12 and CXCR_L2. All the genes except CXCL12 were upregulated by stimulation with LPS, pokeweed and bacterial infection, and the CXCL8 and CXCL_F5 was induced by poly (I:C). Functional analysis showed that the CXCL8 and CXCL_F5 specifically interacted with CXCR_L1 and CXCR_L2, respectively. Our results demonstrate that the CXC chemokine system had diversified in jawless fish.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Chemokines, CXC/chemistry
- Chemokines, CXC/genetics
- Chemokines, CXC/immunology
- Evolution, Molecular
- Fish Diseases/genetics
- Fish Diseases/immunology
- Fish Diseases/microbiology
- Fish Proteins/classification
- Fish Proteins/genetics
- Fish Proteins/immunology
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/immunology
- Host-Pathogen Interactions/immunology
- Lampreys/genetics
- Lampreys/immunology
- Lampreys/microbiology
- Models, Molecular
- Phylogeny
- Poly I-C/pharmacology
- Protein Conformation
- Receptors, CXCR/chemistry
- Receptors, CXCR/genetics
- Receptors, CXCR/immunology
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Staphylococcus aureus/immunology
- Staphylococcus aureus/physiology
- Vibrio/immunology
- Vibrio/physiology
Collapse
Affiliation(s)
- Zhaosheng Sun
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Yuting Qin
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Danjie Liu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Bangjie Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Zhao Jia
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Junya Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Qian Gao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Jun Zou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Yue Pang
- Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China.
| |
Collapse
|
17
|
Gangele K, Gulati K, Joshi N, Kumar D, Poluri KM. Molecular insights into the differential structure-dynamics-stability features of interleukin-8 orthologs: Implications to functional specificity. Int J Biol Macromol 2020; 164:3221-3234. [PMID: 32853623 DOI: 10.1016/j.ijbiomac.2020.08.176] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 11/17/2022]
Abstract
Chemokines are a sub-group of chemotactic cytokines that regulate the leukocyte migration by binding to G-protein coupled receptors (GPCRs) and cell surface glycosaminoglycans (GAGs). Interleukin-8 (CXCL8/IL8) is one of the most essential CXC chemokine that has been reported to be involved in various pathophysiological conditions. Structure-function relationships of human IL8 have been studied extensively. However, no such detailed information is available on IL8 orthologs, although they exhibit significant functional divergence. In order to unravel the differential structure-dynamics-stability-function relationship of IL8 orthologs, comparative molecular analysis was performed on canine (laurasians) and human (primates) IL8 proteins using in-silico molecular evolutionary analysis and solution NMR spectroscopy methods. The residue level NMR studies suggested that, although the overall structural architecture of canine IL8 is similar to that of human IL8, systematic differences were observed in their backbone dynamics and low-energy excited states due to amino acid substitutions. Further, these substitutions also resulted in attenuation of stability and heparin binding affinity in the canine IL8 as compared to its human counterpart. Indeed, structural and sequence analysis evidenced for specificity of molecular interactions with cognate receptor (CXCR1) and glycosaminoglycan (heparin), thus providing evidence for a noticeable functional specificity and divergence between the two IL8 orthologs.
Collapse
Affiliation(s)
- Krishnakant Gangele
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Khushboo Gulati
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Nidhi Joshi
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Dinesh Kumar
- Centre of Biomedical Research, SGPGIMS Campus, Lucknow 226014, Uttar Pradesh, India
| | - Krishna Mohan Poluri
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India; Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| |
Collapse
|
18
|
Wedemeyer MJ, Mahn SA, Getschman AE, Crawford KS, Peterson FC, Marchese A, McCorvy JD, Volkman BF. The chemokine X-factor: Structure-function analysis of the CXC motif at CXCR4 and ACKR3. J Biol Chem 2020; 295:13927-13939. [PMID: 32788219 DOI: 10.1074/jbc.ra120.014244] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/31/2020] [Indexed: 11/06/2022] Open
Abstract
The human chemokine family consists of 46 protein ligands that induce chemotactic cell migration by activating a family of 23 G protein-coupled receptors. The two major chemokine subfamilies, CC and CXC, bind distinct receptor subsets. A sequence motif defining these families, the X position in the CXC motif, is not predicted to make significant contacts with the receptor, but instead links structural elements associated with binding and activation. Here, we use comparative analysis of chemokine NMR structures, structural modeling, and molecular dynamic simulations that suggested the X position reorients the chemokine N terminus. Using CXCL12 as a model CXC chemokine, deletion of the X residue (Pro-10) had little to no impact on the folded chemokine structure but diminished CXCR4 agonist activity as measured by ERK phosphorylation, chemotaxis, and Gi/o-mediated cAMP inhibition. Functional impairment was attributed to over 100-fold loss of CXCR4 binding affinity. Binding to the other CXCL12 receptor, ACKR3, was diminished nearly 500-fold. Deletion of Pro-10 had little effect on CXCL12 binding to the CXCR4 N terminus, a major component of the chemokine-GPCR interface. Replacement of the X residue with the most frequent amino acid at this position (P10Q) had an intermediate effect between WT and P10del in each assay, with ACKR3 having a higher tolerance for this mutation. This work shows that the X residue helps to position the CXCL12 N terminus for optimal docking into the orthosteric pocket of CXCR4 and suggests that the CC/CXC motif contributes directly to receptor selectivity by orienting the chemokine N terminus in a subfamily-specific direction.
Collapse
Affiliation(s)
- Michael J Wedemeyer
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Sarah A Mahn
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Anthony E Getschman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Kyler S Crawford
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Francis C Peterson
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Adriano Marchese
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - John D McCorvy
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Brian F Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| |
Collapse
|
19
|
Comparative Characterization of Two cxcl8 Homologs in Oplegnathus fasciatus: Genomic, Transcriptional and Functional Analyses. Biomolecules 2020; 10:biom10101382. [PMID: 32998424 PMCID: PMC7601086 DOI: 10.3390/biom10101382] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/08/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023] Open
Abstract
CXCL8 (interleukin-8, IL-8) is a CXC family chemokine that recruits specific target cells and mediates inflammation and wound healing. This study reports the identification and characterization of two cxcl8 homologs from rock bream, Oplegnathus fasciatus. Investigation of molecular signature, homology, phylogeny, and gene structure suggested that they belonged to lineages 1 (L1) and 3 (L3), and designated Ofcxcl8-L1 and Ofcxcl8-L3. While Ofcxcl8-L1 and Ofcxcl8-L3 revealed quadripartite and tripartite organization, in place of the mammalian ELR (Glu-Leu-Arg) motif, their peptides harbored EMH (Glu-Met-His) and NSH (Asn-Ser-His) motifs, respectively. Transcripts of Ofcxcl8s were constitutively detected by Quantitative Real-Time PCR (qPCR) in 11 tissues examined, however, at different levels. Ofcxcl8-L1 transcript robustly responded to treatments with stimulants, such as flagellin, concanavalin A, lipopolysaccharide, and poly(I:C), and pathogens, including Edwardsiella tarda, Streptococcus iniae, and rock bream iridovirus, when compared with Ofcxcl8-L3 mRNA. The differences in the putative promoter features may partly explain the differential transcriptional modulation of Ofcxcl8s. Purified recombinant OfCXCL8 (rOfCXCL8) proteins were used in in vitro chemotaxis and proliferation assays. Despite the lack of ELR motif, both rOfCXCL8s exhibited leukocyte chemotactic and proliferative functions, where the potency of rOfCXCL8-L1 was robust and significant compared to that of rOfCXCL8-L3. The results, taken together, are indicative of the crucial importance of Ofcxcl8s in inflammatory responses and immunoregulatory roles in rock bream immunity.
Collapse
|
20
|
Joshi N, Kumar D, Poluri KM. Elucidating the Molecular Interactions of Chemokine CCL2 Orthologs with Flavonoid Baicalin. ACS OMEGA 2020; 5:22637-22651. [PMID: 32923824 PMCID: PMC7482410 DOI: 10.1021/acsomega.0c03428] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 08/14/2020] [Indexed: 05/03/2023]
Abstract
An integrated and controlled migration of leukocytes is necessary for the legitimate functioning and maintenance of the immune system. Chemokines and their receptors play a decisive role in regulating the leukocyte migration to the site of inflammation, a phenomena often referred to as chemotaxis. Chemokines and their receptors have become significant targets for therapeutic intervention considering their potential to regulate the immune system. Monocyte chemoattractant protein-1 (MCP-1/CCL2) is a preeminent member of CC chemokine family that facilitates crucial roles by orchestrating the recruitment of monocytes into inflamed tissues. Baicalin (BA), a major bioactive flavonoid, has been reported to attenuate chemokine-regulated leukocyte trafficking. However, no molecular details pertaining to its direct binding to chemokine(s)/receptor(s) are available till date. In the current study, using an array of monomers/dimers of human and murine CCL2 orthologs (hCCL2/mCCL2), we have shown that BA binds to the CCL2 protein specifically with nanomolar affinity (K d = 270 ± 20 nM). NMR-based studies established that BA binds CCL2 in a specific pocket involving the N-terminal, β1- and β3-sheets. Docking studies suggested that the residues T16, N17, R18, I20, R24, K49, E50, I51, and C52 are majorly involved in complex formation through a combination of H-bonds and hydrophobic interactions. As the residues R18, R24, and K49 of hCCL2 are crucial determinants of monocyte trafficking through receptor/glycosaminoglycans (GAG) binding in CCL2 human/murine orthologs, we propose that baicalin engaging these residues in complex formation will result in attenuation of CCL2 binding to the receptor/GAGs, thus inhibiting the chemokine-regulated leukocyte trafficking.
Collapse
Affiliation(s)
- Nidhi Joshi
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Dinesh Kumar
- Centre
of Biomedical Research, SGPGIMS Campus, Lucknow 226014, Uttar Pradesh, India
| | - Krishna Mohan Poluri
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
- , . Tel: +91-1332-284779
| |
Collapse
|
21
|
Zhu X, Zhang Z, Ren J, Jia L, Ding S, Pu J, Ma W, Tao Y, Zu Y, Li W, Zhang Q. Molecular Characterization and Chemotactic Function of CXCL8 in Northeast Chinese Lamprey ( Lethenteron morii). Front Immunol 2020; 11:1738. [PMID: 33013827 PMCID: PMC7461807 DOI: 10.3389/fimmu.2020.01738] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 06/29/2020] [Indexed: 12/29/2022] Open
Abstract
Chemokine-induced chemotaxis of leukocytes is an important part of the innate immunity and has been shown to mediate inflammation in all groups of jawed vertebrates. For jawless vertebrates, hagfish leukocytes are known to show chemotaxis toward mammalian complement anaphylotoxin and Gram-negative bacteria lipopolysaccharide. However, whether chemokines mediate chemotaxis of leukocytes in jawless vertebrates has not been conclusively examined. Here, we show C-X-C motif chemokine ligand 8 (CXCL8, also named interleukin 8) of the Northeast Chinese lamprey (Lethenteron morii) (designated as LmCXCL8) induces chemotaxis in its leukocytes. We identified LmCXCL8 and found it possesses the characteristic N-terminal cysteine residues and GGR (Gly-Gly-Arg) motif. The Lmcxcl8 gene was found to be expressed in all examined tissues, and its expression was inducible in the lamprey challenged by an infectious bacterium, Pseudomonas aeruginosa. A recombinant LmCXCL8 protein elicited concentration-dependent chemotaxis in peripheral blood leukocytes isolated from the Northeast Chinese lamprey. Based on these results, we conclude that LmCXCL8 is a constitutive and inducible acute-phase cytokine that mediates immune defense and trace the chemotactic function of chemokine to basal vertebrates.
Collapse
Affiliation(s)
- Xinyun Zhu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Zhe Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Jianfeng Ren
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Liang Jia
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Shaoqing Ding
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Jiafei Pu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Wenyuan Ma
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Yan Tao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yao Zu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Weiming Li
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, United States
| | - Qinghua Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
22
|
Dissecting the differential structural and dynamics features of CCL2 chemokine orthologs. Int J Biol Macromol 2020; 156:239-251. [PMID: 32289428 DOI: 10.1016/j.ijbiomac.2020.04.067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/26/2020] [Accepted: 04/08/2020] [Indexed: 12/29/2022]
Abstract
Chemokines are a sub-group of cytokines that regulate the leukocyte migration. Monocyte chemoattractant protein-1 (MCP/CCL2) is one of the essential CC chemokine that regulates the migration of monocytes into inflamed tissues. It has been observed that the primary sequences of CCL2 orthologs among rodents and primates vary significantly at the C-terminal region. However, no structural details are available for the rodentia family CCL2 proteins. The current study unravelled the structural, dynamics and in-silico functional characteristics of murine CCL2 chemokine using a comprehensive set of NMR spectroscopy techniques and evolutionary approaches. The study unravelled that the N-terminal portion of the murine CCL2 forms a canonical CC chemokine dimer similar to that of human CCL2. However, unlike human CCL2, the murine ortholog exhibits extensive dynamics in the μs-ms timescales. The presence of C-terminal region of the murine CCL2 protein/rodentia family is highly glycosylated, completely disordered, and inhibits the folding of the structured CCL2 regions. Further, it has been observed that the glycosaminoglycan binding surfaces of these orthologs proteins are greatly differed. In a nut shell, this comparative study provided the role of molecular evolution in generating orthologous proteins with differential structural and dynamics characteristics to engage them in specific molecular interactions.
Collapse
|