1
|
Li Y, Ye Y, Zhu X, Li S, Rihan N, Yao Z, Sun Z, Gao P, Zhao Y, Lai Q. Polystyrene nanoplastics induce apoptosis, histopathological damage, and glutathione metabolism disorder in the intestine of juvenile East Asian river prawns (Macrobrachium nipponense). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176718. [PMID: 39366565 DOI: 10.1016/j.scitotenv.2024.176718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/06/2024]
Abstract
Nanoplastics (NPs) are widely distributed in the aquatic environment and have become a global concern as a new type of pollutant. Many researchers have studied the physiological effects of NPs on aquatic organisms, but relatively little is known about their effects on intestinal immune function in crustaceans. Therefore, we used NPs concentrations of 0, 5, 10, 20, 40 mg/L for 28 days of stress, evaluated the effects of NPs exposure on intestinal cell apoptosis, histopathological damage, and glutathione (GSH) metabolism of juvenile East Asian river prawns (Macrobrachium nipponense). As NPs concentration increased, the contents of total GSH and oxidized glutathione decreased gradually (P < 0.05), the concentration of GSH first increased and then decreased (P < 0.05), and the activities of lysozyme, acid phosphatase, phenoloxidase, and alkaline phosphatase first increased and then decreased (P < 0.05). Additionally, intestinal tissue structure was damaged, and the apoptosis rate significantly increased (P < 0.05). The expression of intestinal autophagy genes (CTL, ALF, Crustin, ATG8, and BCL-2) increased at first and then decreased, the expression levels of TNF and Wnt4 significantly decreased, and the expression of Beclin significantly increased with increasing NPs concentration. We also found that AP-1 and PTEN were highly expressed in the hepatopancreas and were involved in intestinal immune responses. Our results showed that exposure to NPs may induce apoptosis of intestinal tissue cells, induce autophagy, and inhibit GSH metabolism, thereby reducing intestinal immune function of M. nipponense. These findings provide a reference for healthy aquaculture and ecological risk assessment of prawns.
Collapse
Affiliation(s)
- Yiming Li
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Yucong Ye
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Xiaoyi Zhu
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Siwen Li
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Na Rihan
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Zongli Yao
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Zhen Sun
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Pengcheng Gao
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Yunlong Zhao
- School of Life Science, East China Normal University, Shanghai 200241, China.
| | - Qifang Lai
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China.
| |
Collapse
|
2
|
Priya PS, Vaishnavi S, Sreekutty AR, Sudhakaran G, Arshad A, Arockiaraj J. White feces syndrome in shrimp: Comprehensive understanding of immune system responses. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109704. [PMID: 38880362 DOI: 10.1016/j.fsi.2024.109704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
White feces syndrome (WFS) is a multifactorial disease that affects global shrimp production. The diagnostic approach to identify WFS involves traditional and molecular scientific methods by examining histopathology, bioassays, PCR (polymerase chain reaction), and calorimetric estimation. The pathogenesis of WFS is closely associated with Vibrio spp., intestinal microbiota (IM) dysbiosis, and Enterocytozoon hepatopenaei (EHP). It also has caused over 10-15 % loss in the aquaculture industry and is also known to cause retardation, lethargy and slowly leading to high mortality in shrimp farms. Therefore, it is necessary to understand the molecular mechanisms processed under the association of IM dysbiosis, Vibrio spp., and EHP to analyze the impact of disease on the innate immune system of shrimp. However, only very few reviews have described the molecular pathways involved in WFS. Hence, this review aims to elucidate an in-depth analysis of molecular pathways involved in the innate immune system of shrimp and their response to pathogens. The analysis and understanding of the impact of shrimp's innate immune system on WFS would help in developing treatments to prevent the spread of disease, thereby improving the economic condition of shrimp farms worldwide.
Collapse
Affiliation(s)
- P Snega Priya
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Faculty of Science and Humanities, Kattankulatur, 603203, Chengalpattu District, Tamil Nadu, India
| | - S Vaishnavi
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Faculty of Science and Humanities, Kattankulatur, 603203, Chengalpattu District, Tamil Nadu, India
| | - A R Sreekutty
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Faculty of Science and Humanities, Kattankulatur, 603203, Chengalpattu District, Tamil Nadu, India
| | - Gokul Sudhakaran
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, 600105, Tamil Nadu, India
| | - Aziz Arshad
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Faculty of Science and Humanities, Kattankulatur, 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
3
|
Hu J, Li S, Miao M, Li F. Characterization of the antibacterial and opsonic functions of the antimicrobial peptide LvCrustinVI from Litopenaeus vannamei. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 154:105146. [PMID: 38316231 DOI: 10.1016/j.dci.2024.105146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 02/07/2024]
Abstract
Microbial drug resistance is becoming increasingly severe due to antibiotic abuse. The development and utilization of antimicrobial peptides is one of the important ways to solve this difficult problem. Crustins are a family of antimicrobial peptides that play important roles in the innate immune system of crustaceans. Several types of crustins exist in shrimp and their activities vary greatly. In the present study, we studied the immune function of one newly identified crustin and found that the type VI crustin encoding gene in Litopenaeus vannamei (LvCrustinVI) was mainly expressed in gills. Its expression was significantly up-regulated after Vibrio parahaemolyticus infection and knockdown of the gene promoted Vibrio proliferation in the hepatopancreas of shrimp, indicating that LvCrustinVI was involved in pathogens infection. The recombinant LvCrustinVI (rLvCrustinVI) showed strong inhibitory activities against both Gram-negative and Gram-positive bacteria, and exhibited binding activities with the bacteria and bacterial polysaccharides including Glu, LPS and PGN. In the presence of Ca2+, rLvCrustinVI showed a strong agglutination effect on V. parahaemolyticus and could significantly enhance the phagocytic ability of shrimp hemocytes against V. parahaemolyticus. In conclusion, LvCrustinVI played important roles as antimicrobial peptide and opsonin in the innate immune defense of L. vannamei. The study enriched our understanding of the functional activity of Crustin and provides an important basis for the development and utilization of antimicrobial peptides.
Collapse
Affiliation(s)
- Jie Hu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Shihao Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Wuhan, 430072, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
| | - Miao Miao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Fuhua Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Wuhan, 430072, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
| |
Collapse
|
4
|
Patkaew S, Direkbusarakom S, Hirono I, Wuthisuthimethavee S, Powtongsook S, Pooljun C. Effect of supersaturated dissolved oxygen on growth-, survival-, and immune-related gene expression of Pacific white shrimp ( Litopenaeus vannamei). Vet World 2024; 17:50-58. [PMID: 38406361 PMCID: PMC10884578 DOI: 10.14202/vetworld.2024.50-58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/11/2023] [Indexed: 02/27/2024] Open
Abstract
Background and Aim Oxygen concentration is an essential water quality parameter for aquaculture systems. Recently, supersaturated dissolved oxygen (DO) has been widely used in aquaculture systems to prevent oxygen depletion; however, the long-term effects of supersaturated DO exposure on aquatic animals have not been studied. In this study, we examined the effects of supersaturated DO on the growth, survival, and gene expression of Pacific white shrimp (Litopenaeus vannamei). Materials and Methods Specific pathogen-free shrimp with a body weight of 8.22 ± 0.03 g were randomly assigned to two groups with four replicates at a density of 15 shrimps per tank. Shrimp were cultivated in recirculating tanks containing 50 L of 15 ppt seawater in each replicate. Oxygen was supplied at 5 mg/L to the control tanks using an air microbubble generator and at 15 mg/L to the treatment tanks using a pure oxygen microbubble generator. Shrimp were fed commercial feed pellets containing 39% protein at 4% of their body weight per day for 30 days. Average daily growth (ADG) and feed conversion ratio (FCR) were determined on days 15 and 30. Shrimp molting was measured every day. Individual hemolymph samples were obtained and analyzed for total hemocyte count, differential hemocyte count, and expression of growth- and immune-related genes at the end of the experiment. Results Long-term exposure to supersaturated DO significantly affected shrimp growth. After 30 days of supersaturated DO treatment, the final weight and ADG were 14.73 ± 0.16 g and 0.22 ± 0.04, respectively. Shrimp treated with normal aeration showed significantly lower weight (12.13 ± 0.13 g) and ADG (0.13 ± 0.00) compared with the control group. FCR was 1.55 ± 0.04 in the treatment group and 2.51 ± 0.09 in the control group. Notably, the shrimp molting count was 1.55-fold higher in the supersaturated DO treatment than in the supersaturated DO treatment. The expression of growth-related genes, such as alpha-amylase, cathepsin L, and chitotriosidase, was 1.40-, 1.48-, and 1.35-fold higher, respectively, after supersaturated DO treatment. Moreover, the treatment increased the expression of anti-lipopolysaccharide factor, crustin, penaeidin3, and heat shock protein 70 genes by 1.23-, 2.07-, 4.20-, and 679.04-fold, respectively, compared to the controls. Conclusion Supersaturated DO increased growth and ADG production and decreased FCR. Furthermore, enhanced immune-related gene expression by supersaturated DO may improve shrimp health and reduce disease risk during cultivation.
Collapse
Affiliation(s)
- Songwut Patkaew
- Center of Excellence for Aquaculture Technology and Innovation, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat, Thailand
| | - Sataporn Direkbusarakom
- Center of Excellence for Aquaculture Technology and Innovation, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat, Thailand
| | - Ikuo Hirono
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo 108-8477, Japan
| | - Suwit Wuthisuthimethavee
- Center of Excellence for Aquaculture Technology and Innovation, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat, Thailand
| | - Sorawit Powtongsook
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
- Department of Marine Science, Center of Excellence for Marine Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Chettupon Pooljun
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat, Thailand
- Research Center on One Health, Walailak University, Nakhon Si Thammarat, Thailand
| |
Collapse
|
5
|
Anirudhan A, Iryani MTM, Andriani Y, Sorgeloos P, Tan MP, Wong LL, Mok WJ, Ming W, Yantao L, Lau CC, Sung YY. The effects of Pandanus tectorius leaf extract on the resistance of White-leg shrimp Penaeus vannamei towards pathogenic Vibrio parahaemolyticus. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2023; 4:100101. [PMID: 37397801 PMCID: PMC10313901 DOI: 10.1016/j.fsirep.2023.100101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/08/2023] [Accepted: 06/03/2023] [Indexed: 07/04/2023] Open
Abstract
Pandanus tectorius leaf extract effect on the White-leg shrimp Penaeus vannamei tolerance against Vibrio parahaemolyticus were investigated in this study. Thirty shrimp post-larvae measured at approximately 1 cm were exposed for 24 h to 0.5, 1, 2, 3, 4, 5 and 6 g/L leaf extract and subsequently observed for survival and immune-related genes expression (Hsp70, ProPO, peroxinectin, penaeidin, crustin and transglutaminase), followed by determination of their tolerance and histological tissue profiles upon Vibrio challenge. Survival of shrimps treated with 6 g/L of leaf extract improved by up to 95% to controls. Hsp70, crustin, and prophenoloxidase mRNA levels were observed to be 8.5, 10.4, and 1.5-fold higher, respectively. Histopathological analysis of the hepatopancreas and the muscle tissues revealed major tissue degeneration in Vibrio-challenged shrimps but not in shrimps primed with P. tectorius leaf extract. Of all the dose examined, the best pathogen resistance results were obtained with a 24 h incubation of shrimp in 6 g/L P. tectorius methanolic leaf extract. The tolerance towards V. parahaemolyticus might be associated with the increased regulation of Hsp70, prophenoloxidase and crustin upon exposure to the extract, all immune-related proteins essential for pathogen elimination in Penaeid shrimp. The present study primarily demonstrated that P. tectorius leaf extract is a viable alternative for enhancing P. vannamei post-larvae resistance against V. parahaemolyticus, a major bacterial pathogen in aquaculture.
Collapse
Affiliation(s)
- Anupa Anirudhan
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia
| | - Mat Taib Mimi Iryani
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia
| | - Yosie Andriani
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia
| | - Patrick Sorgeloos
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia
- Laboratory of Aquaculture and Artemia Reference Center, Department of Animal Sciences and Aquatic Ecology, Campus Coupure - Blok F, Ghent University, Coupure Links 653, Gent B-9000, Belgium
| | - Min Pau Tan
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia
| | - Li Lian Wong
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia
- UMT-OUC Joint Academic Center for Marine Studies, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia
| | - Wen Jye Mok
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia
- UMT-OUC Joint Academic Center for Marine Studies, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia
| | - Wang Ming
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- UMT-OUC Joint Academic Center for Marine Studies, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia
| | - Liang Yantao
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- UMT-OUC Joint Academic Center for Marine Studies, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia
| | - Cher Chien Lau
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia
| | - Yeong Yik Sung
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia
- Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia
- UMT-OUC Joint Academic Center for Marine Studies, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia
| |
Collapse
|
6
|
Wang H, Xiao B, Chen S, He J, Li C. Identification of an Ortholog of MALT1 from Shrimp That Induces NF-κB-Mediated Antiviral Immunity. Viruses 2023; 15:2361. [PMID: 38140602 PMCID: PMC10748089 DOI: 10.3390/v15122361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
MALT1 (mucosa-associated lymphoid tissue lymphoma translocation protein 1) serves as a pivotal mediator for NF-κB activation in response to a wide spectrum of transmembrane receptor stimuli. In the present study, a homolog of MALT1, named LvMALT1, is cloned from the Pacific white shrimp (Litopenaeus vannamei) and its potential function in shrimp innate immunity is explored. The open reading frame of LvMALT1 is 2364 bp that encodes 787 amino acids. The predicted LvMALT1 protein structure comprises a death domain, three immunoglobulin domains, and a caspase-like domain, exhibiting remarkable similarity to other homologs. LvMALT1 is a cytoplasmic-localized protein and could interact with LvTRAF6. Overexpression of LvMALT1 induces the activation of promoter elements governing the expression of several key antimicrobial peptides (AMPs), including penaeidins (PENs) and crustins (CRUs). Conversely, silencing of LvMALT1 leads to a reduction in the phosphorylation levels of Dorsal and Relish, along with a concomitant decline in the in vivo expression levels of multiple AMPs. Furthermore, LvMALT1 is prominently upregulated in response to a challenge by the white spot syndrome virus (WSSV), facilitating the NF-κB-mediated expression of AMPs as a defense against viral infection. Taken together, we identified a MALT1 homolog from the shrimp L. vannamei, which plays a positive role in the TRAF6/NF-κB/AMPs axis-mediated innate immunity.
Collapse
Affiliation(s)
- Haiyang Wang
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Bang Xiao
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Shihan Chen
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jianguo He
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China
- China-ASEAN Belt and Road Joint Laboratory on Marine Aquaculture Technology, Guangzhou 510275, China
| | - Chaozheng Li
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China
- China-ASEAN Belt and Road Joint Laboratory on Marine Aquaculture Technology, Guangzhou 510275, China
| |
Collapse
|
7
|
Zhong Y, He Z, Long X, Hou D, Hu X, Sun C. Transcriptome analysis of Fenneropenaeus merguiensis in response to Vibrio proteolyticus infection. JOURNAL OF FISH DISEASES 2023; 46:1207-1224. [PMID: 37589383 DOI: 10.1111/jfd.13840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/10/2023] [Accepted: 07/18/2023] [Indexed: 08/18/2023]
Abstract
In recent years, due to the destruction of the culture environment and serious ecological pressure, especially in the process of culture, residual bait, faeces and fishery drug abuse will lead to the accumulation of harmful metabolites such as ammonia nitrogen and nitrite, and biological denitrification is the most economical and effective method to remove the single. Therefore, in this study, a nitrite removal strain XA19 was isolated and screened from a shrimp biofloc culture pond. This strain was identified as a clade of Vibrio proteolyticus because the homology between XA19 and V. proteolyticus WDVP was as high as 99.86% by using 16S rDNA gene sequence analysis and NCBI database comparison. Scanning electron microscopy images showed that V. proteolyticus is short-rod-shaped with a curved body and no budding spores, pods and flagella. Antimicrobial susceptibility test proved that V. proteolyticus was resistant to ampicillin, oxacillin, penicillin, vancomycin and clindamycin. In the median lethal concentration 50 (LC50 ) test, at 7-day post-infection (dpi), LC50 of V. proteolyticus for Fenneropenaeus merguiensis was 1.69 × 104 CFU/mL. Transcriptome sequencing analysis was carried out on hepatopancreas of F. merguiensis at 24 and 48 hpi. A total of 176 differentially expressed genes (DEGs) were screened at 24 hpi, including 104 up-regulated DEGs and 72 down-regulated DEGs, and a total of 52 DEGs were screened at 48 hpi, including 32 up-regulated DEGs and 20 down-regulated DEGs. In the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of DEGs, many immune-related signalling pathways were significantly enriched, including Hippo signalling pathway, phagosome, Toll and Imd signalling pathways and Wnt signalling pathway. In addition, some pathways related to Warburg effect were also enriched, including Glycolysis/Gluconeogenesis, Biosynthesis of amino acids, amino sugar and nucleotide sugar metabolism and so on. In this study, the toxicity and drug sensitivity of V. proteolyticus were systematically studied, and the immune response of hepatopancreas of F. merguiensis to V. proteolyticus infection was preliminarily revealed from the molecular level. The results may provide a reference for the prevention and control of V. proteolyticus.
Collapse
Affiliation(s)
- Yunqi Zhong
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Zihao He
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Xinxin Long
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Danqing Hou
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Xianye Hu
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Chengbo Sun
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
| |
Collapse
|
8
|
Huang P, Cao L, Du J, Gao J, Zhang Y, Sun Y, Li Q, Nie Z, Xu G. Effects of Prometryn Exposure on Hepatopancreas Oxidative Stress and Intestinal Flora in Eriocheir sinensis (Crustacea: Decapoda). Antioxidants (Basel) 2023; 12:1548. [PMID: 37627543 PMCID: PMC10451815 DOI: 10.3390/antiox12081548] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
There is growing evidence that long-term exposure to prometryn (a widely used herbicide) can induce toxicity in bony fish and shrimp. Our previous study demonstrated its 96 h acute toxicity on the crab Eriocheir sinensis. However, studies on whether longer exposure to prometryn with a lower dose induces toxicity in E. sinensis are scarce. Therefore, we conducted a 20 d exposure experiment to investigate its effects on the hepatopancreas and intestine of E. sinensi. Prometryn reduce the activities of antioxidant enzymes, increase the level of lipid peroxidation and cause oxidative stress. Moreover, long-term exposure resulted in immune and detoxification fatigue, while short-term exposure to prometryn could upregulate the expression of genes related to immunity, inflammation and detoxification. Prometryn altered the morphological structure of the hepatopancreas (swollen lumen) and intestine (shorter intestinal villi, thinner muscle layer and thicker peritrophic membrane). In addition, prometryn changed the species composition of the intestinal flora. In particular, Bacteroidota and Proteobacteria showed a dose-dependent decrease accompanied by a dose-dependent increase in Firmicutes at the phylum level. At the genus level, all exposure groups significantly increased the abundance of Zoogloea and a Firmicutes bacterium ZOR0006, but decreased Shewanella abundance. Interestingly, Pearson correlation analysis indicated a potential association between differential flora and hepatopancreatic disorder. Phenotypic abundance analysis indicated that changes in the gut flora decreased the intestinal organ's resistance to stress and increased the potential for opportunistic infection. In summary, our research provides new insights into the prevention and defense strategies in response to external adverse environments and contributes to the sustainable development of E. sinensis culture.
Collapse
Affiliation(s)
- Peng Huang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (P.H.); (L.C.); (J.D.); (Y.Z.)
| | - Liping Cao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (P.H.); (L.C.); (J.D.); (Y.Z.)
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (J.G.)
| | - Jinliang Du
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (P.H.); (L.C.); (J.D.); (Y.Z.)
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (J.G.)
| | - Jiancao Gao
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (J.G.)
| | - Yuning Zhang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (P.H.); (L.C.); (J.D.); (Y.Z.)
| | - Yi Sun
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (J.G.)
| | - Quanjie Li
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (J.G.)
| | - Zhijuan Nie
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (P.H.); (L.C.); (J.D.); (Y.Z.)
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (J.G.)
| | - Gangchun Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (P.H.); (L.C.); (J.D.); (Y.Z.)
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (J.G.)
| |
Collapse
|
9
|
Robinson NA, Robledo D, Sveen L, Daniels RR, Krasnov A, Coates A, Jin YH, Barrett LT, Lillehammer M, Kettunen AH, Phillips BL, Dempster T, Doeschl‐Wilson A, Samsing F, Difford G, Salisbury S, Gjerde B, Haugen J, Burgerhout E, Dagnachew BS, Kurian D, Fast MD, Rye M, Salazar M, Bron JE, Monaghan SJ, Jacq C, Birkett M, Browman HI, Skiftesvik AB, Fields DM, Selander E, Bui S, Sonesson A, Skugor S, Østbye TK, Houston RD. Applying genetic technologies to combat infectious diseases in aquaculture. REVIEWS IN AQUACULTURE 2023; 15:491-535. [PMID: 38504717 PMCID: PMC10946606 DOI: 10.1111/raq.12733] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/24/2022] [Accepted: 08/16/2022] [Indexed: 03/21/2024]
Abstract
Disease and parasitism cause major welfare, environmental and economic concerns for global aquaculture. In this review, we examine the status and potential of technologies that exploit genetic variation in host resistance to tackle this problem. We argue that there is an urgent need to improve understanding of the genetic mechanisms involved, leading to the development of tools that can be applied to boost host resistance and reduce the disease burden. We draw on two pressing global disease problems as case studies-sea lice infestations in salmonids and white spot syndrome in shrimp. We review how the latest genetic technologies can be capitalised upon to determine the mechanisms underlying inter- and intra-species variation in pathogen/parasite resistance, and how the derived knowledge could be applied to boost disease resistance using selective breeding, gene editing and/or with targeted feed treatments and vaccines. Gene editing brings novel opportunities, but also implementation and dissemination challenges, and necessitates new protocols to integrate the technology into aquaculture breeding programmes. There is also an ongoing need to minimise risks of disease agents evolving to overcome genetic improvements to host resistance, and insights from epidemiological and evolutionary models of pathogen infestation in wild and cultured host populations are explored. Ethical issues around the different approaches for achieving genetic resistance are discussed. Application of genetic technologies and approaches has potential to improve fundamental knowledge of mechanisms affecting genetic resistance and provide effective pathways for implementation that could lead to more resistant aquaculture stocks, transforming global aquaculture.
Collapse
Affiliation(s)
- Nicholas A. Robinson
- Nofima ASTromsøNorway
- Sustainable Aquaculture Laboratory—Temperate and Tropical (SALTT)School of BioSciences, The University of MelbourneMelbourneVictoriaAustralia
| | - Diego Robledo
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | | | - Rose Ruiz Daniels
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | | | - Andrew Coates
- Sustainable Aquaculture Laboratory—Temperate and Tropical (SALTT)School of BioSciences, The University of MelbourneMelbourneVictoriaAustralia
| | - Ye Hwa Jin
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | - Luke T. Barrett
- Sustainable Aquaculture Laboratory—Temperate and Tropical (SALTT)School of BioSciences, The University of MelbourneMelbourneVictoriaAustralia
- Institute of Marine Research, Matre Research StationMatredalNorway
| | | | | | - Ben L. Phillips
- Sustainable Aquaculture Laboratory—Temperate and Tropical (SALTT)School of BioSciences, The University of MelbourneMelbourneVictoriaAustralia
| | - Tim Dempster
- Sustainable Aquaculture Laboratory—Temperate and Tropical (SALTT)School of BioSciences, The University of MelbourneMelbourneVictoriaAustralia
| | - Andrea Doeschl‐Wilson
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | - Francisca Samsing
- Sydney School of Veterinary ScienceThe University of SydneyCamdenAustralia
| | | | - Sarah Salisbury
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | | | | | | | | | - Dominic Kurian
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | - Mark D. Fast
- Atlantic Veterinary CollegeThe University of Prince Edward IslandCharlottetownPrince Edward IslandCanada
| | | | | | - James E. Bron
- Institute of AquacultureUniversity of StirlingStirlingScotlandUK
| | - Sean J. Monaghan
- Institute of AquacultureUniversity of StirlingStirlingScotlandUK
| | - Celeste Jacq
- Blue Analytics, Kong Christian Frederiks Plass 3BergenNorway
| | | | - Howard I. Browman
- Institute of Marine Research, Austevoll Research Station, Ecosystem Acoustics GroupTromsøNorway
| | - Anne Berit Skiftesvik
- Institute of Marine Research, Austevoll Research Station, Ecosystem Acoustics GroupTromsøNorway
| | | | - Erik Selander
- Department of Marine SciencesUniversity of GothenburgGothenburgSweden
| | - Samantha Bui
- Institute of Marine Research, Matre Research StationMatredalNorway
| | | | | | | | | |
Collapse
|
10
|
Yuan Y, Guan H, Huang Y, Luo J, Jian J, Cai S, Yang S. Involvement of Nrf2 in the immune regulation of Litopenaeus vannamei against Vibrio harveyi infection. FISH & SHELLFISH IMMUNOLOGY 2023; 133:108547. [PMID: 36646337 DOI: 10.1016/j.fsi.2023.108547] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
NF-E2-related factor-like-2 (Nrf2) is a transcription factor that belongs to the Cap'n'Collar transcription factor family and plays a role in regulating inflammation, autophagy, metabolism, proteostasis, and cancer prevention. However, its influence on Vibrio spp infection in L. vannamei remains uncertain. In this study, the effects of Nrf2 on the immune response in Vibrio spp infection was determined by RT-PCR and histopathological analysis. The results showed that RNAi of Nrf2 significantly decreased the expression of antioxidant-related genes (CAT, SOD and GST; p < 0.05), and significantly up-regulated inflammation-related genes (IMD, pro-PO, P38, Toll, Hsp70, NFκB and RAB6A; p < 0.05) and the apoptosis gene (caspase3). Under the infection of V. harveyi, histopathological analysis showed that after RNAi of Nrf2, the hepatopancreas of shrimp has an abnormal arrangement of hepatic tubules and vacuolization of hepatocyte; The basement membrane is peeled off and the epithelial cells are massively necrotic. Compared with the RNAi of Nrf2 group, the tissue damage in the SFN group was much lessened, and there were fewer apoptosis signals in the TUNEL assay. In conclusion, this experiment indicated that Nrf2 is involved in the regulation of inflammatory response, oxidative stress,and apoptosis induced by V. harveyi in L. vannamei.
Collapse
Affiliation(s)
- Yunhao Yuan
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524088, China
| | - Haoxiang Guan
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524088, China
| | - Yongxiong Huang
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524088, China
| | - Junliang Luo
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524088, China
| | - Jichang Jian
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524088, China
| | - Shuanghu Cai
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524088, China
| | - Shiping Yang
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524088, China.
| |
Collapse
|
11
|
Pooljun C, Jariyapong P, Wongtawan T, Hirono I, Wuthisuthimethavee S. Effect of feeding different types of β-glucans derived from two marine diatoms (Chaetoceros muelleri and Thalassiosira weissflogii) on growth performance and immunity of banana shrimp (Penaeus merguiensis). FISH & SHELLFISH IMMUNOLOGY 2022; 130:512-519. [PMID: 36154889 DOI: 10.1016/j.fsi.2022.09.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/15/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
β-glucans are produced by many organisms and could be used as supplementary feed to enhance immunity and growth in some aquatic animals. This study aimed to compare the effectiveness of β-glucans derived from two marine diatoms (Chaetoceros muelleri and Thalassiosira weissflogii) as growth promoters and immunity enhancers in banana shrimp (Penaeus merguiensis). Shrimp were divided into 3 groups: the control group was fed without β-glucan; the second and the third group were fed with 2 g kg-1 of β-glucan derived from C. muelleri and T. weissflogii, respectively. Shrimp were fed over a 30-day period to determine growth performance (final weight, weight gain, average daily gain (ADG), and feed conversion ratio (FCR)) at day 15 and day 30, respectively. The immune parameters determined were total hemocyte count (THC), phenoloxidase activity (PO) and immune gene expression. Survival rates were measured after 14 days of the feeding trial and Vibrio parahaemolyticus infection (6, 24, 48 h post infection). There was no significant difference (P > 0.05) for growth stimulation of shrimps between the two types of β-glucans (C. muelleri or T. weissflogii). Notably, shrimps fed with β-glucans had a higher final weight, weight gain, and ADG (P < 0.05) than shrimps fed with the control diet, while FCR of shrimps fed with both β-glucans was lower when compared to the control diet. Immune parameters, THC, PO, and gene expression of anti-lipopolysaccharide factor (ALF) and crustin were significantly higher (P < 0.05) in shrimps fed with β-glucans, especially with β-glucans from C. muelleri than the control group both before and after V. parahaemolyticus infection. Expression of penaeidin 3 and peroxiredoxin genes was significantly higher in shrimps fed with β-glucans after bacterial infection. Histopathology of hepatopancreas revealed an increase in blasenzellen hepatopancreatic epithelial cells (B cells) after 14 days of feeding which remained higher following infection with V. parahaemolyticus. The survival rate of shrimps fed with the diet containing β-glucan derived from either C. muelleri (82.2%) or T. weissflogii (77.8%) after V. parahaemolyticus infection was significantly higher than for the control group (51.1%) (P < 0.05). In conclusion, we propose that feeding banana shrimps with β-glucans derived from marine diatoms either C. muelleri or T. weissflogii at a 2 g kg-1 diet can significantly improve their growth performance and immunity.
Collapse
Affiliation(s)
- Chettupon Pooljun
- Akkhraratchakumari Veterinary College, Walailak University, Thasala District, Nakhon Si Thammarat, 80160, Thailand; Center of Excellence for Aquaculture Technology and Innovation, School of Agricultural Technology and Food Industry, Walailak University, Thasala District, Nakhon Si Thammarat, 80160, Thailand
| | - Pitchanee Jariyapong
- Center of Excellence for Aquaculture Technology and Innovation, School of Agricultural Technology and Food Industry, Walailak University, Thasala District, Nakhon Si Thammarat, 80160, Thailand; Department of Medicine Science, School of Medicine, Walailak University, Thasala District, Nakhon Si Thammarat, 80160, Thailand
| | - Tuempong Wongtawan
- Akkhraratchakumari Veterinary College, Walailak University, Thasala District, Nakhon Si Thammarat, 80160, Thailand; Research Center on One Health, Walailak University, Thasala District, Nakhon Si Thammarat, 80160, Thailand
| | - Ikuo Hirono
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo, 108-8477, Japan
| | - Suwit Wuthisuthimethavee
- Center of Excellence for Aquaculture Technology and Innovation, School of Agricultural Technology and Food Industry, Walailak University, Thasala District, Nakhon Si Thammarat, 80160, Thailand.
| |
Collapse
|
12
|
Yan P, Lin C, He M, Zhang Z, Zhao Q, Li E. Immune regulation mediated by JAK/STAT signaling pathway in hemocytes of Pacific white shrimps, Litopenaeus vannamei stimulated by lipopolysaccharide. FISH & SHELLFISH IMMUNOLOGY 2022; 130:141-154. [PMID: 35932985 DOI: 10.1016/j.fsi.2022.07.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/12/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
To understand the regulatory mechanism of Janus kinase/Signal Transducers and Activators of Transcription (JAK/STAT) signaling pathway on the immune system of the Pacific white shrimp, Litopenaeus vannamei, RNA interference technique was used to investigate the effects of JAK/STAT signaling pathway on the immune response of hemocyte in Litopenaeus vannamei stimulated by lipopolysaccharide (LPS). The results showed that 1) after 6 h of LPS stimulation, the expression levels of immune genes in hemocyte were significantly up-regulated (P < 0.05), the immune defense ability (hemocyte number, phagocytosis rate, hemagglutination activity, bacteriolytic activity, antibacterial activity, prophenoloxidase system activity) and the hemocyte antioxidant ability were significantly higher than the control group, especially at 12 h. 2) After 48 h of STAT gene interference, the expression levels of immune genes in hemocytes were significantly down-regulated, and the immune defense ability (hemocyte count, phagocytosis rate, plasma agglutination activity, lysozyme activity, antibacterial activity, proPO system activity) and the antioxidant ability were reduced and significantly lower than control. Concurrently, after LPS stimulation, the immune indexes were significantly up-regulated at 12 h to the maximum but was still lower the undisturbed LPS group. These results indicate that JAK/STAT signaling pathway is involved in the immune regulation mechanism of L. vannamei against LPS stimulation through positive regulation of cellular immune and humoral immune. These results provide a basis for further research on the role and status of JAK/STAT signaling pathway in the immune defense of crustaceans.
Collapse
Affiliation(s)
- Peiyu Yan
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan, 570228, China
| | - Cheng Lin
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan, 570228, China
| | - Meng He
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan, 570228, China
| | - Zhuofan Zhang
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan, 570228, China
| | - Qun Zhao
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan, 570228, China.
| | - Erchao Li
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan, 570228, China.
| |
Collapse
|
13
|
Amparyup P, Sungkaew S, Charoensapsri W, Chumtong P, Yocawibun P, Tapaneeyaworawong P, Wongpanya R, Imjongjirak C. RNA-seq transcriptome analysis and identification of the theromacin antimicrobial peptide of the copepod Apocyclops royi. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 135:104464. [PMID: 35691054 DOI: 10.1016/j.dci.2022.104464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/01/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Copepods, including Apocyclops royi, are small aquatic crustaceans and one of the important foods for fish and shellfish larvae. However, studies of the host-pathogen interactions and understanding of infectious disease in copepods are still very limited, yet they are likely to be a significant factor in the sustainable development of copepod aquaculture. In the present study, we performed de novo RNA sequence analysis of A. royi-TH (a Thai isolate of A. royi), which yielded 4.80 Gb bases of clean data and a total of 29,786 unigenes. Annotation was then performed by comparison against seven functional databases, yielding 17,617 (NR: 59.15%), 2,969 (NT: 9.97%), 15,023 (SwissProt: 50.44%), 14,543 (KOG: 48.82%), 15,077 (KEGG: 50.62%), 6,763(GO: 22.71%), and 15,841 (InterPro: 53.18%) unigenes. In comparison to the components of the shrimp Toll pathway, LGBP, Spätzle, Toll receptors, MyD88, Pelle, TRAF6, Dorsal, and Cactus homologs were successfully identified in A. royi-TH. Additionally, a novel antimicrobial peptide (Theromacin-like) was characterized in A. royi (ArTM-like). The ArTM-like ORF was 279 bp and predicted to encode for 92 amino acid residues, with a mature peptide of 75 amino acids and a molecular mass of 8.56 kDa. The genomic organization of the ArTM-like gene consisted of three exons and two introns. Expression analysis indicated that ArTM-like mRNA was abundantly expressed in copepodid and adult stages as an immune responsive gene after infection with the pathogenic Vibrio parahaemolyticus-(AHPND)-causing strain. Altogether, the knowledge obtained in this study will provide a basis for future functional studies of the molecular mechanisms in copepod immunity that may eventually be applied for disease prevention in copepod aquaculture.
Collapse
Affiliation(s)
- Piti Amparyup
- Marine Biotechnology Research Team, Integrative Aquaculture Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani, 12120, Thailand; Center of Excellence for Marine Biotechnology, Department of Marine Science, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok, 10330, Thailand.
| | - Supakarn Sungkaew
- Department of Food Technology, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok, 10330, Thailand
| | - Walaiporn Charoensapsri
- Marine Biotechnology Research Team, Integrative Aquaculture Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani, 12120, Thailand; Center of Excellence for Marine Biotechnology, Department of Marine Science, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok, 10330, Thailand
| | - Parichat Chumtong
- Marine Biotechnology Research Team, Integrative Aquaculture Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani, 12120, Thailand; Center of Excellence for Marine Biotechnology, Department of Marine Science, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok, 10330, Thailand
| | - Patchari Yocawibun
- Marine Biotechnology Research Team, Integrative Aquaculture Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani, 12120, Thailand; Center of Excellence for Marine Biotechnology, Department of Marine Science, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok, 10330, Thailand
| | - Paveena Tapaneeyaworawong
- Marine Biotechnology Research Team, Integrative Aquaculture Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani, 12120, Thailand; Center of Excellence for Marine Biotechnology, Department of Marine Science, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok, 10330, Thailand
| | - Ratree Wongpanya
- Department of Biochemistry, Faculty of Science, Kasetsart University, 50 Ngamwongwan Road, Bangkok, 10900, Thailand
| | - Chanprapa Imjongjirak
- Department of Food Technology, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok, 10330, Thailand.
| |
Collapse
|
14
|
Zhang Y, Ni M, Zhang P, Bai Y, Zhou B, Zheng J, Cui Z. Identification and functional characterization of C-type lectins and crustins provide new insights into the immune response of Portunus trituberculatus. FISH & SHELLFISH IMMUNOLOGY 2022; 129:170-181. [PMID: 36057429 DOI: 10.1016/j.fsi.2022.08.070] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
A meticulous understanding of the immune characteristics of aquaculture animals is the basis for developing precise disease prevention and control strategies. In this study, four novel C-type lectins (PtCTL-5, PtCTL-6, PtCTL-7 and PtCTL-8) including a single carbohydrate-recognition domain (CRD), and four novel crustins (Ptcrustin-1, Ptcrustin-2, Ptcrustin-3 and Ptcrustin-4) with a single whey acidic protein (WAP) domain were identified from the swimming crab Portunus trituberculatus. Tissue distribution analysis indicated that most of the target genes were predominantly expressed in the hepatopancreas in all examined tissues, except for Ptcrustin-1 which were mainly expressed in the gills. Our results showed that the eight genes displayed various transcriptional profiles across different tissues. In hemocytes, the PtCTL-7 responded quickly to Vibrio alginolyticus and exhibited much more strongly up-regulation than other three PtCTLs. The Ptcrustin-1 rapidly responded to V. alginolyticus within 3 h in all the three tested tissues. Furthermore, recombinant proteins of PtCTL-5 and PtCTL-8 were successfully obtained, and both of them displayed bacterial binding activities toward V. alginolyticus, V. harveyi and Staphylococcus aureus, and only showed antibacterial activity against V. harveyi. These findings provided new insights into the diverse immune response of P. trituberculatus and laid theoretical foundations for the development of precise disease prevention and control strategies in P. trituberculatus farming. Moreover, the specific anti-V. harveyi activities exhibited by rPtCTL-5 and rPtCTL-8 suggested their promising application prospects for controlling diseases caused by V. harveyi.
Collapse
Affiliation(s)
- Yi Zhang
- School of Marine Sciences, Ningbo University, Ningbo, 315832, China
| | - Mengqi Ni
- School of Marine Sciences, Ningbo University, Ningbo, 315832, China
| | - Peng Zhang
- School of Marine Sciences, Ningbo University, Ningbo, 315832, China
| | - Yunhui Bai
- School of Marine Sciences, Ningbo University, Ningbo, 315832, China
| | - Bin Zhou
- School of Marine Sciences, Ningbo University, Ningbo, 315832, China
| | - Jinbin Zheng
- School of Marine Sciences, Ningbo University, Ningbo, 315832, China.
| | - Zhaoxia Cui
- School of Marine Sciences, Ningbo University, Ningbo, 315832, China; Laboratory for Marine Biology and Biotechnology, Pilot Qingdao National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266071, China
| |
Collapse
|
15
|
Cui C, Tang X, Xing J, Sheng X, Chi H, Zhan W. Single-cell RNA-seq uncovered hemocyte functional subtypes and their differentiational characteristics and connectivity with morphological subpopulations in Litopenaeus vannamei. Front Immunol 2022; 13:980021. [PMID: 36177045 PMCID: PMC9513592 DOI: 10.3389/fimmu.2022.980021] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/22/2022] [Indexed: 12/01/2022] Open
Abstract
Hemocytes play central roles in shrimp immune system, whereas whose subclasses have not yet been completely defined. At present, the morphological classification of hemocytes is inadequate to classify the complete hemocyte repertoire and elucidate the functions and differentiation and maturation processes. Based on single-cell RNA sequencing (scRNA-seq) of hemocytes in healthy Litopenaeus vannamei, combined with RNA-FISH and flow cytometric sorting, we identified three hemocyte clusters including TGase+ cells, CTL+ cells and Crustin+ cells, and further determined their functional properties, potential differentiation trajectory and correspondence with morphological subpopulations. The TGase+ cells were mainly responsible for the coagulation, exhibiting distinguishable characteristics of hyalinocyte, and appeared to be developmentally arrested at an early stage of hemocyte differentiation. The CTL+ cells and Crustin+ cells arrested at terminal stages of differentiation mainly participated in recognizing foreign pathogens and initiating immune defense responses, owning distinctive features of granule-containing hemocytes. Furthermore, we have revealed the functional sub-clusters of three hemocyte clusters and their potential differentiation pathways according to the expression of genes involved in cell cycle, cell differentiation and immune response, and the successive differentiation and maturation of hyalinocytes to granule-containing hemocytes have also mapped. The results revealed the diversity of shrimp hemocytes and provide new theoretical rationale for hemocyte classification, which also facilitate systematic research on crustacean immunity.
Collapse
Affiliation(s)
- Chuang Cui
- Laboratory of Pathology and Immunology of Aquatic Animals, The Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, The Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, The Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, The Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, The Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, The Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
16
|
Nie X, Dai X, Zhao Y, Xu H, Han Z, Jia R, Ren Q, Huang X. Identification of three novel Spätzle genes in Eriocheir sinensis and their roles during white spot syndrome virus infection. FISH & SHELLFISH IMMUNOLOGY 2022; 128:168-180. [PMID: 35921935 DOI: 10.1016/j.fsi.2022.07.065] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Proteins of Spätzle family play an essential role in innate immunity in invertebrates by activating the Toll pathway to induce the expression of antimicrobial peptides. However, little is known about the function of Spätzle in in the immune response of the Chinese mitten crab. In the present study, three novel Spätzle genes (named as EsSpz1, EsSpz2, and EsSpz3) were identified from Eriocheir sinensis. The genome structure of EsSpz1 contains two exons and an intron. Three Spätzle proteins all contain a Pfam Spaetzle domain. In the evolution, EsSpz1-3 cluster with other Spätzle proteins from crustaceans. EsSpz1-3 were widely distributed in multiple immune tissues. The expression levels of EsSpz1-3 in the intestine were remarkably upregulated after white spot syndrome virus (WSSV) challenge. The knockdown of EsSpz1-3 remarkably decreased the expressions of crustins and anti-lipopolysaccharide factors during WSSV infection. Moreover, EsSpz1-3 silencing remarkably increased the expression of WSSV envelope protein VP28. These findings suggest that new-found EsSpz1-3 in E. sinensis could promote the synthesis of antimicrobial peptides and inhibit the expression of VP28 during WSSV infection. Our study indicates that EsSpz1-3 in E. sinensis may participate in the innate immune defenses against WSSV by inducing the expression of antimicrobial peptides. This study provides new knowledge for the function of Spätzle in the antiviral immune defense in crustacean.
Collapse
Affiliation(s)
- Ximei Nie
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Xiaoling Dai
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Yuqi Zhao
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Hao Xu
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Zhengxiao Han
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Rui Jia
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Qian Ren
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China.
| | - Xin Huang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China.
| |
Collapse
|
17
|
Saucedo-Vázquez JP, Gushque F, Vispo NS, Rodriguez J, Gudiño-Gomezjurado ME, Albericio F, Tellkamp MP, Alexis F. Marine Arthropods as a Source of Antimicrobial Peptides. Mar Drugs 2022; 20:501. [PMID: 36005504 PMCID: PMC9409781 DOI: 10.3390/md20080501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 11/30/2022] Open
Abstract
Peptide therapeutics play a key role in the development of new medical treatments. The traditional focus on endogenous peptides has shifted from first discovering other natural sources of these molecules, to later synthesizing those with unique bioactivities. This review provides concise information concerning antimicrobial peptides derived from marine crustaceans for the development of new therapeutics. Marine arthropods do not have an adaptive immune system, and therefore, they depend on the innate immune system to eliminate pathogens. In this context, antimicrobial peptides (AMPs) with unique characteristics are a pivotal part of the defense systems of these organisms. This review covers topics such as the diversity and distribution of peptides in marine arthropods (crustacea and chelicerata), with a focus on penaeid shrimps. The following aspects are covered: the defense system; classes of AMPs; molecular characteristics of AMPs; AMP synthesis; the role of penaeidins, anti-lipopolysaccharide factors, crustins, and stylicins against microorganisms; and the use of AMPs as therapeutic drugs. This review seeks to provide a useful compilation of the most recent information regarding AMPs from marine crustaceans, and describes the future potential applications of these molecules.
Collapse
Affiliation(s)
- Juan Pablo Saucedo-Vázquez
- CATS Research Group, School of Chemical Sciences & Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, Urcuquí 100119, Ecuador;
| | - Fernando Gushque
- School of Biological Sciences & Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, Urcuquí 100119, Ecuador; (F.G.); (N.S.V.)
| | - Nelson Santiago Vispo
- School of Biological Sciences & Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, Urcuquí 100119, Ecuador; (F.G.); (N.S.V.)
| | - Jenny Rodriguez
- Escuela Superior Politécnica del Litoral (ESPOL), Centro Nacional de Acuicultura e Investigaciones Marinas (CENAIM), Campus Gustavo Galindo Km 30.5 Vía Perimetral, Guayaquil 090211, Ecuador;
- Facultad de Ciencias de la Vida (FCV), Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil 090708, Ecuador
| | - Marco Esteban Gudiño-Gomezjurado
- School of Biological Sciences & Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, Urcuquí 100119, Ecuador; (F.G.); (N.S.V.)
| | - Fernando Albericio
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa;
- Networking Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Department of Organic Chemistry, University of Barcelona, 08028 Barcelona, Spain
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain
| | - Markus P. Tellkamp
- School of Biological Sciences & Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, Urcuquí 100119, Ecuador; (F.G.); (N.S.V.)
| | - Frank Alexis
- Politecnico, Universidad San Francisco de Quito USFQ, Quito 170901, Ecuador
| |
Collapse
|
18
|
Zhou Y, Song Q, Liu Y, Sun Y, Zhang J. A novel type I Crustin from Exopalaemon carinicauda: Antimicrobial ability related to conserved cysteine. FISH & SHELLFISH IMMUNOLOGY 2022; 127:948-955. [PMID: 35661815 DOI: 10.1016/j.fsi.2022.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Crustins are a kind of antibacterial peptides (AMP) existing in crustaceans, and their antibacterial abilities are considered to be related to the conserved WAP domain. In this study, a novel type I Crustin gene was identified in Exopalaemon carinicauda, named EcCru. The deduced amino acid sequence revealed that the conserved cysteine at position 7 in the WAP domain was replaced by aspartic acid. The gene is 405 bp in length, encoding 134 amino acids, and is mainly distributed in gills and hepatopancreas. After Vibrio parahaemolyticus and Aeromonas hydrophila stimulation, the expression of EcCru was significantly up-regulated within 12 h, and then returned to normal levels. The recombinant protein was obtained using the Pichia pastoris expression system, and the recombinant protein had neither antibacterial activity against gram-positive or gram-negative bacteria. But the antibacterial ability emerged when Asp101 was mutated to Cys. Notably, we also obtained a mutant that had a deletion at the 6 th conserved Cys in the WAP domain, and this mutant had antibacterial ability against gram-positive bacteria Bacillus subtilis and B. cereus. This indicates that the conserved cysteine with different positions in WAP domain can have different effects on the antibacterial ability of Crustins.
Collapse
Affiliation(s)
- Yongzhao Zhou
- School of Life Sciences, Institute of Life Sciences and Green Development, Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Hebei University, Baoding, 071002, China
| | - Qinghua Song
- School of Life Sciences, Institute of Life Sciences and Green Development, Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Hebei University, Baoding, 071002, China; Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Hebei University, Baoding, 071002, China
| | - Yujie Liu
- School of Life Sciences, Institute of Life Sciences and Green Development, Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Hebei University, Baoding, 071002, China
| | - Yuying Sun
- School of Life Sciences, Institute of Life Sciences and Green Development, Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Hebei University, Baoding, 071002, China; Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Hebei University, Baoding, 071002, China.
| | - Jiquan Zhang
- School of Life Sciences, Institute of Life Sciences and Green Development, Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Hebei University, Baoding, 071002, China.
| |
Collapse
|
19
|
Zhao C, Wen H, Huang S, Weng S, He J. A Novel Disease (Water Bubble Disease) of the Giant Freshwater Prawn Macrobrachium rosenbergii Caused by Citrobacter freundii: Antibiotic Treatment and Effects on the Antioxidant Enzyme Activity and Immune Responses. Antioxidants (Basel) 2022; 11:1491. [PMID: 36009210 PMCID: PMC9405353 DOI: 10.3390/antiox11081491] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/23/2022] [Accepted: 07/26/2022] [Indexed: 12/10/2022] Open
Abstract
The giant freshwater prawn, Macrobrachium rosenbergii, is an important and economical aquaculture species widely farmed in tropical and subtropical areas of the world. A new disease, "water bubble disease (WBD)", has emerged and resulted in a large loss of M. rosenbergii cultured in China. A water bubble with a diameter of about 7 mm under the carapace represents the main clinical sign of diseased prawns. In the present study, Citrobacter freundii was isolated and identified from the water bubble. The optimum temperature, pH, and salinity of the C. freundii were 32 °C, 6, and 1%, respectively. A challenging experiment showed that C. freundii caused the same typical signs of WBD in prawns. Median lethal dose of the C. freundii to prawn was 104.94 CFU/g. According to the antibiogram tests of C. freundii, florfenicol and ofloxacin were selected to evaluate their therapeutic effects against C. freundii in prawn. After the challenge with C. freundii, 86.67% and 72.22% survival of protective effects against C. freundii were evaluated in the oral florfenicol pellets and oral ofloxacin pellets feding prawns, respectively, whereas the mortality of prawns without fed antibiotics was 93%. After antibiotic treatment and C. freundii infection, the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione S-transferase (GST), malondialdehyde (MDA), acid phosphatase (ACP), alkaline phosphatase (ALP), and lysozyme (LZM) in the hemolymph and hepatopancreas of the prawns and the immune-related gene expression levels of Cu/Zn-SOD, CAT, GPx, GST, LZM, ACP, anti-lipopolysaccharide factor, crustin, cyclophilin A, and C-type lectin in hepatopancreas were all significantly changed, indicating that innate immune responses were induced by C. freundii. These results can be beneficial for the prevention and control of C. freundii in prawns.
Collapse
Affiliation(s)
- Caiyuan Zhao
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-sen University, No.132 Waihuan Dong Road, Higher Education Mega Center, Guangzhou 510006, China;
| | - Huagen Wen
- Southtern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Science, Sun Yat-sen University, No.132 Waihuan Dong Road, Higher Education Mega Center, Guangzhou 510006, China; (H.W.); (S.H.); (S.W.)
| | - Shengsheng Huang
- Southtern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Science, Sun Yat-sen University, No.132 Waihuan Dong Road, Higher Education Mega Center, Guangzhou 510006, China; (H.W.); (S.H.); (S.W.)
| | - Shaoping Weng
- Southtern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Science, Sun Yat-sen University, No.132 Waihuan Dong Road, Higher Education Mega Center, Guangzhou 510006, China; (H.W.); (S.H.); (S.W.)
| | - Jianguo He
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-sen University, No.132 Waihuan Dong Road, Higher Education Mega Center, Guangzhou 510006, China;
- Southtern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Science, Sun Yat-sen University, No.132 Waihuan Dong Road, Higher Education Mega Center, Guangzhou 510006, China; (H.W.); (S.H.); (S.W.)
| |
Collapse
|
20
|
Jiang M, Chen R, Chen F, Zhu X, Wang KJ. A New Crustin Gene Homolog SpCrus8 Identified in Scylla paramamosain Exerting In Vivo Protection Through Opsonization and Immunomodulation. Front Immunol 2022; 13:946227. [PMID: 35874773 PMCID: PMC9305162 DOI: 10.3389/fimmu.2022.946227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
Crustins are the most abundant class of antimicrobial peptides in crustaceans and are essential for protecting animals from infection. Among them, type II crustins usually exhibit potent antimicrobial activity. Interestingly, in this study, a newly identified type II crustin gene homolog (named SpCrus8) from mud crab Scylla paramamosain, the recombinant proteins of which (rSpCrus8 and rTrx-SpCrus8) showed no obvious antibacterial effects, but could significantly reduce the bacterial load in crab hemolymph and improve the survival rate of crabs infected with Vibrio alginolyticus. The immune-related function of SpCrus8 and the underlying mechanism deserve further investigation. It was found that the SpCrus8 gene was widely distributed in various tissues of adult crabs. In the hepatopancreas of crabs infected with V. alginolyticus or Staphylococcus aureus, transcripts of the SpCrus8 gene were remarkably induced, indicating that the SpCrus8 gene was involved in the immune response to bacterial infection in vivo. In addition, rSpCrus8 and rTrx-SpCrus8 had strong binding activity not only to microbial surface components (lipopolysaccharide, lipoteichoic acid, peptidoglycan, and glucan), but also to the tested bacteria (S. aureus, Pseudomonas aeruginosa and V. alginolyticus). Notably, rSpCrus8 and rTrx-SpCrus8 could significantly promote hemocyte phagocytosis. After rSpCrus8 and rTrx-SpCrus8 treatment, a large number of fluorescent microspheres were observed to aggregate into clusters and be phagocytosed by multiple hemocytes, while hemocytes in the control group phagocytosed only individual microspheres, indicating that SpCrus8 played an important role in opsonization. When the SpCrus8 gene was knocked down, the expression levels of the key phagocytosis-related genes SpRab5 and SpRab7 were significantly downregulated, as well as the IMD signaling pathway genes SpIKKβ and SpRelish, and another crustin gene SpCrus5. Correspondingly, all the SpIKKβ, SpRelish and SpCrus5 genes were significantly upregulated after rSpCrus8 treatment, suggesting that SpCrus8 might be involved in the immunomodulation of S. paramamosain. Taken together, this study revealed the immune-related functions of the SpCrus8 gene in opsonization and regulation, which will help us further understand the role of the crustin gene family in the immune system of mud crabs and provide new insights into the function of type II crutins.
Collapse
Affiliation(s)
- Manyu Jiang
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, China
| | - Roushi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, China
| | - Fangyi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, China
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen, China
- Fujian Innovation Research Institute for Marine Biological Antimicrobial Peptide Industrial Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen, China
- *Correspondence: Fangyi Chen,
| | - Xuewu Zhu
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, China
| | - Ke-Jian Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, China
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen, China
- Fujian Innovation Research Institute for Marine Biological Antimicrobial Peptide Industrial Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
21
|
Characterization of the Dual Functions of LvCrustinVII from Litopenaeus vannamei as Antimicrobial Peptide and Opsonin. Mar Drugs 2022; 20:md20030157. [PMID: 35323456 PMCID: PMC8951635 DOI: 10.3390/md20030157] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/18/2022] [Accepted: 02/20/2022] [Indexed: 02/04/2023] Open
Abstract
Crustin are a family of antimicrobial peptides that play an important role in protecting against pathogens infection in the innate immune system of crustaceans. Previously, we identified several novel types of crustins, including type VI and type VII crustins. However, their immune functions were still unclear. In the present study, the immune function of type VII crustin LvCrustinVII were investigated in Litopenaeus vannamei. LvCrustinVII was wildly expressed in all tested tissues, with relatively high expression levels in hepatopancreas, epidermis and lymphoid organ. Upon Vibrio parahaemolyticus infection, LvCrustinVII was significantly upregulated in hepatopancreas. Recombinant LvCrustinVII (rLvCrustinVII) showed strong inhibitory activities against Gram-negative bacteria Vibrio harveyi and V. parahaemolyticus, while weak activities against the Gram-positive bacteria Staphylococcus aureus. Binding assay showed that rLvCrustinVII could bind strongly to V. harveyi and V. parahaemolyticus, as well as the cell wall components Glu, LPS and PGN. In the presence of Ca2+, rLvCrustinVII could agglutinate V. parahaemolyticus and enhance hemocyte phagocytosis. The present data partially illustrate the immune function of LvCrustinVII, which enrich our understanding on the functional mechanisms of crustins and provide useful information for application of this kind of antimicrobial peptides.
Collapse
|
22
|
Zhang W, Xu X, Zhang J, Ye T, Zhou Q, Xu Y, Li W, Hu Z, Shang C. Discovery and Characterization of a New Crustin Antimicrobial Peptide from Amphibalanus amphitrite. Pharmaceutics 2022; 14:413. [PMID: 35214145 PMCID: PMC8877177 DOI: 10.3390/pharmaceutics14020413] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/05/2022] [Accepted: 02/11/2022] [Indexed: 02/01/2023] Open
Abstract
Crustins are an antimicrobial peptide (AMP) family that plays an important role in innate immunity in crustaceans. It is important to discover new AMPs from natural sources to expand the current database. Here, we identified and characterized a new crustin family member, named AaCrus1, from Amphibalanus amphitrite. AaCrus1 shares high identity (48.10%) with PvCrus, a Type I crustin of Penaeus vannamei that possesses a whey acidic protein (WAP) domain. AaCrus1 contains 237 amino acids and eight cysteine residues forming conserved 'four-disulfide core' structure. Our recombinant AaCrus1 (rAaCrus 1) could inhibit the growth of two Gram-positive bacteria (Staphylococcus aureus, Bacillus sp. T2) and four Gram-negative bacteria (Vibrio parahaemolyticus, Vibrio harveyi, Vibrio anguillarum, Vibrio alginolyticus) with a minimum inhibitory concentration of 3.5-28 μM. It can further induce agglutination of both Gram-positive and Gram-negative bacteria. rAaCrus1 can bind to bacteria and damage bacterial cell membranes. Furthermore, rAaCrus1 disrupted biofilm development of S. aureus and V. parahaemolyticus. Our discovery and characterization of this new crustin can be further optimized as a good alternative to antibiotics.
Collapse
Affiliation(s)
- Wei Zhang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (W.Z.); (X.X.); (T.Y.); (Q.Z.); (Y.X.); (Z.H.)
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xiaohang Xu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (W.Z.); (X.X.); (T.Y.); (Q.Z.); (Y.X.); (Z.H.)
| | - Jun Zhang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China;
| | - Ting Ye
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (W.Z.); (X.X.); (T.Y.); (Q.Z.); (Y.X.); (Z.H.)
| | - Qiao Zhou
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (W.Z.); (X.X.); (T.Y.); (Q.Z.); (Y.X.); (Z.H.)
| | - Ying Xu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (W.Z.); (X.X.); (T.Y.); (Q.Z.); (Y.X.); (Z.H.)
| | - Wenyi Li
- The Bio21 Institute of Molecular Science and Biotechnology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Zhangli Hu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (W.Z.); (X.X.); (T.Y.); (Q.Z.); (Y.X.); (Z.H.)
| | - Chenjing Shang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (W.Z.); (X.X.); (T.Y.); (Q.Z.); (Y.X.); (Z.H.)
| |
Collapse
|
23
|
A Novel Antimicrobial Peptide Sparanegtin Identified in Scylla paramamosain Showing Antimicrobial Activity and Immunoprotective Role In Vitro and Vivo. Int J Mol Sci 2021; 23:ijms23010015. [PMID: 35008449 PMCID: PMC8744658 DOI: 10.3390/ijms23010015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 12/04/2022] Open
Abstract
The abuse of antibiotics in aquaculture and livestock no doubt has exacerbated the increase in antibiotic-resistant bacteria, which imposes serious threats to animal and human health. The exploration of substitutes for antibiotics from marine animals has become a promising area of research, and antimicrobial peptides (AMPs) are worth investigating and considering as potential alternatives to antibiotics. In the study, we identified a novel AMP gene from the mud crab Scylla paramamosain and named it Sparanegtin. Sparanegtin transcripts were most abundant in the testis of male crabs and significantly expressed with the challenge of lipopolysaccharide (LPS) or Vibrio alginolyticus. The recombinant Sparanegtin (rSparanegtin) was expressed in Escherichia coli and purified. rSparanegtin exhibited activity against Gram-positive and Gram-negative bacteria and had potent binding affinity with several polysaccharides. In addition, rSparanegtin exerted damaging activity on the cell walls and surfaces of P. aeruginosa with rougher and fragmented appearance. Interestingly, although rSparanegtin did not show activity against V. alginolyticus in vitro, it played an immunoprotective role in S. paramamosain and exerted an immunomodulatory effect by modulating several immune-related genes against V. alginolyticus infection through significantly reducing the bacterial load in the gills and hepatopancreas and increasing the survival rate of crabs.
Collapse
|
24
|
Zhang S, Hou C, Xiao B, Yao Y, Xiao W, Li C, Shi L. Identification and function of an Arasin-like peptide from Litopenaeus vannamei. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 125:104174. [PMID: 34324899 DOI: 10.1016/j.dci.2021.104174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/12/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
Antimicrobial peptides (AMPs) play an important role in the host defense system of shrimps. In this study, an Arasin-like peptide, named as LvArasin-like, was identified from the hemocytes of the pacific white shrimp, Litopenaeus vannamei. The complete open reading frame (ORF) of LvArasin-like was 213 bp, encoding 70 amino acid residues with a predicted molecular mass of 5.68 kDa and a theoretical isoelectric point (pI) of 6.73. The predicted peptide consisted of a signal peptide, an N-terminal Pro/Arg-rich domain, and a C-terminal cysteine-rich domain. LvArasin-like expression was most abundant in the gills and was up-regulated in hemocytes after LPS or Poly I:C injection as well as challenges by Vibrio parahaemolyticus or Staphylococcus aureus infection. In the heterologous expression system, LvArasin-like protein (rLvArasin-like) was recombinantly expressed in the forms of a dimer or both a monomer and dimer. The rLvArasin-like could directly bind to gram-positive and gram-negative bacteria and exhibited broad-spectrum antimicrobial activity towards them, with 50 % of minimal inhibitory concentrations (MIC50) of 6.25-50 μM. Moreover, dsRNA-mediated knockdown of LvArasin-like enhanced the susceptibility of shrimp to V. parahaemolyticus. In addition, the transcriptional level of LvArasin-like was downregulated when silencing of the transcription factors LvDorsal and LvRelish using RNAi in vivo. All of these results suggest that LvArasin-like is involved in host defense against bacterial infection. Therefore, it is a potential therapeutic agent for disease control in shrimp aquaculture.
Collapse
Affiliation(s)
- Shuang Zhang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, PR China
| | - Cuihong Hou
- College of Fisheries, Guangdong Ocean University, Zhanjiang, PR China
| | - Bang Xiao
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)/ State Key Laboratory of Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/ Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Yuanmao Yao
- College of Fisheries, Guangdong Ocean University, Zhanjiang, PR China
| | - Wei Xiao
- College of Fisheries, Guangdong Ocean University, Zhanjiang, PR China
| | - Chaozheng Li
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)/ State Key Laboratory of Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/ Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China.
| | - Lili Shi
- College of Fisheries, Guangdong Ocean University, Zhanjiang, PR China.
| |
Collapse
|
25
|
Zhang Y, Xiao C, Zhu F. Effects of dietary quercetin on the innate immune response and resistance to white spot syndrome virus in Procambarusclarkii. FISH & SHELLFISH IMMUNOLOGY 2021; 118:205-212. [PMID: 34517138 DOI: 10.1016/j.fsi.2021.09.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
In recent years, the use of natural products with immune-stimulating and antimicrobial properties has attracted increasing attention in aquaculture researches. In our study, the effect of diet supplemented with quercetin, a flavonoid commonly found in some types of plants substance on the innate immune response and disease resistance in crayfish (Procambarus clarkii) against white spot syndrome virus (WSSV) is reported. It was found that dietary 40 mg/kg quercetin significantly reduced the mortality of crayfish and WSSV copy number after WSSV challenge. Dietary quercetin increased catalase (CAT), and lysozyme (LZM) activity in crayfish. Dietary quercetin increased the expression of NF-κB, anti-lipopolysaccharide factor (ALF) and toll-like receptor (TLR) genes in crayfish. The apoptosis rate of hemocyte was increased by quercetin supplement in crayfish. Our results suggest that dietary quercetin may affect the innate immunity of crayfish and protect crayfish from WSSV infection.
Collapse
Affiliation(s)
- Yunfei Zhang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China
| | - Chongyang Xiao
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China
| | - Fei Zhu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China.
| |
Collapse
|
26
|
Wang Y, Zhang C, Fang WH, Ma HY, Li XC. SpCrus2 Glycine-Rich Region Contributes Largely to the Antiviral Activity of the Whole-Protein Molecule by Interacting with VP26, a WSSV Structural Protein. Mar Drugs 2021; 19:md19100544. [PMID: 34677443 PMCID: PMC8537896 DOI: 10.3390/md19100544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/21/2021] [Accepted: 09/25/2021] [Indexed: 11/24/2022] Open
Abstract
Crustins are cysteine-rich cationic antimicrobial peptides with diverse biological functions including antimicrobial and proteinase inhibitory activities in crustaceans. Although a few crustins reportedly respond to white spot syndrome virus (WSSV) infection, the detailed antiviral mechanisms of crustins remain largely unknown. Our previous research has shown that SpCrus2, from mud crab Scylla paramamosain, is a type II crustin containing a glycine-rich region (GRR) and a cysteine-rich region (CRR). In the present study, we found that SpCrus2 was upregulated in gills after WSSV challenge. Knockdown of SpCrus2 by injecting double-stranded RNA (dsSpCrus2) resulted in remarkably increased virus copies in mud crabs after infection with WSSV. These results suggested that SpCrus2 played a critical role in the antiviral immunity of mud crab. A GST pull-down assay showed that recombinant SpCrus2 interacted specifically with WSSV structural protein VP26, and this result was further confirmed by a co-immunoprecipitation assay with Drosophila S2 cells. As the signature sequence of type II crustin, SpCrus2 GRR is a glycine-rich cationic polypeptide with amphipathic properties. Our study demonstrated that the GRR and CRR of SpCrus2 exhibited binding activities to VP26, with the former displaying more potent binding ability than the latter. Interestingly, pre-incubating WSSV particles with recombinant SpCrus2 (rSpCrus2), rGRR, or rCRR inhibited virus proliferation in vivo; moreover, rSpCrus2 and rGRR possessed similar antiviral abilities, which were much stronger than those of rCRR. These findings indicated that SpCrus2 GRR contributed largely to the antiviral ability of SpCrus2, and that the stronger antiviral ability of GRR might result from its stronger binding activity to the viral structural protein. Overall, this study provided new insights into the antiviral mechanism of SpCrus2 and the development of new antiviral drugs.
Collapse
Affiliation(s)
- Yue Wang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China;
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China;
- Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus 21030, Malaysia
| | - Chao Zhang
- Chongqing Three Gorges Vocational College, Wanzhou, Chongqing 404155, China;
| | - Wen-Hong Fang
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China;
| | - Hong-Yu Ma
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China;
- Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus 21030, Malaysia
- Correspondence: (H.-Y.M.); (X.-C.L.)
| | - Xin-Cang Li
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China;
- Correspondence: (H.-Y.M.); (X.-C.L.)
| |
Collapse
|
27
|
He Z, Zhao J, Chen X, Liao M, Xue Y, Zhou J, Chen H, Chen G, Zhang S, Sun C. The Molecular Mechanism of Hemocyte Immune Response in Marsupenaeus japonicus Infected With Decapod Iridescent Virus 1. Front Microbiol 2021; 12:710845. [PMID: 34512588 PMCID: PMC8427283 DOI: 10.3389/fmicb.2021.710845] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/28/2021] [Indexed: 11/13/2022] Open
Abstract
As a new type of shrimp lethal virus, decapod iridescent virus 1 (DIV1) has caused huge economic losses to shrimp farmers in China. Up to now, DIV1 has been detected in a variety of shrimps, but there is no report in Marsupenaeus japonicus. In the current study, we calculated the LC50 to evaluate the toxicity of DIV1 to M. japonicus and determined through nested PCR that M. japonicus can be the host of DIV1. Through enzyme activity study, it was found that DIV1 can inhibit the activities of superoxide dismutase, catalase, lysozyme, and phenoloxidase, which could be a way for DIV1 to achieve immune evasion. In a comprehensive study on the transcriptomic changes of M. japonicus in response to DIV1 infection, a total of 52,287 unigenes were de novo assembled, and 20,342 SSR markers associated with these unigenes were obtained. Through a comparative transcriptomic analysis, 6,900 differentially expressed genes were identified, including 3,882 upregulated genes and 3,018 downregulated genes. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that some GO terms related to virus invasion, replication, and host antiviral infection were promoted under DIV1 infection, such as carbohydrate binding, chitin binding, chitin metabolic process, and DNA replication initiation, and some KEGG pathways related to immune response were significantly influenced by DIV1 infection, including Toll and IMD signaling pathway, JAK-STAT signaling pathway, IL-17 signaling pathway, C-type lectin receptor signaling pathway, complement and coagulation cascades, antigen processing and presentation, necroptosis, apoptosis, NOD-like receptor signaling pathway, apoptosis-multiple species, and TNF signaling pathway. Further analysis showed that STAT, Dorsal, Relish, heat shock protein 70 (HSP70), C-type lectins, and caspase play an important role in DIV1 infection. This is the first detailed study of DIV1 infection in M. japonicus, which initially reveals the molecular mechanism of DIV1 infection in M. japonicus by using the transcriptome analysis of hemocytes combined with enzyme activity study.
Collapse
Affiliation(s)
- Zihao He
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Jichen Zhao
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Xieyan Chen
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Minze Liao
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Yuan Xue
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Jianing Zhou
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Haozhen Chen
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Guoliang Chen
- Haimao Seed Technology Group Co., Ltd., Zhanjiang, China
| | - Shuang Zhang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China.,Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, China
| | - Chengbo Sun
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China.,Guangdong Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang, China.,Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, China
| |
Collapse
|
28
|
Jiang Q, Ao S, Ji P, Zhou Y, Tang H, Zhou L, Zhang X. Assessment of deltamethrin toxicity in Macrobrachium nipponense based on histopathology, oxidative stress and immunity damage. Comp Biochem Physiol C Toxicol Pharmacol 2021; 246:109040. [PMID: 33862233 DOI: 10.1016/j.cbpc.2021.109040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/29/2021] [Accepted: 04/01/2021] [Indexed: 02/02/2023]
Abstract
Deltamethrin (Del), a commonly used broad-spectrum insecticide, has been reported to have a toxic effect on aquatic animals, but knowledge in freshwater prawns is limited. This study revealed that Del is highly toxic to Macrobrachium nipponens with the 24 h, 48 h, 72 h, and 96 h LC50 values to be 0.268, 0.165, 0.104, and 0.066 μg/L, respectively. To further investigate the toxic effect of Del in M. nipponense and the reversibility of damage, prawns were exposed to 0.05 μg/L Del for four days and then transferred into fresh water for seven days. Histopathological examination, oxidative stress, hepatopancreas function, respiration system, and immune system were analyzed through multiple biomarkers. Results showed that Del exposure caused severe histopathological damage to hepatopancreas and gill in M. nipponense, and the prominent decrease of acid phosphatase (ACP) and alkaline phosphatase (AKP) activity further enhanced the hepatopancreas damage; the accumulation of malonaldehyde (MDA) and hydrogen peroxide (H2O2), and the decrease of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activity, indicated severe oxidative stress caused by Del. Besides, Del exposure also induced remarkably increased lactic acid (LD) level, decreased lactate dehydrogenase (LDH) activity, and decreased expression of immune-related genes, which demonstrated the respiration disruption and immunosuppression caused by Del. After 7-day decontamination in freshwater, the indicator of hepatopancreas function (ACP and AKP activity) and respiration (LD level and LDH activity) improved to the control group level. However, the histopathological damage and the biomarker in oxidative stress and immune system did not recover to the initial level.
Collapse
Affiliation(s)
- Qun Jiang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Shiqi Ao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Peng Ji
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yifan Zhou
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Huanyu Tang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Liying Zhou
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xiaojun Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
29
|
Gianazza E, Eberini I, Palazzolo L, Miller I. Hemolymph proteins: An overview across marine arthropods and molluscs. J Proteomics 2021; 245:104294. [PMID: 34091091 DOI: 10.1016/j.jprot.2021.104294] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 05/10/2021] [Accepted: 05/30/2021] [Indexed: 12/18/2022]
Abstract
In this compilation we collect information about the main protein components in hemolymph and stress the continued interest in their study. The reasons for such an attention span several areas of biological, veterinarian and medical applications: from the notions for better dealing with the species - belonging to phylum Arthropoda, subphylum Crustacea, and to phylum Mollusca - of economic interest, to the development of 'marine drugs' from the peptides that, in invertebrates, act as antimicrobial, antifungal, antiprotozoal, and/or antiviral agents. Overall, the topic most often on focus is that of innate immunity operated by classes of pattern-recognition proteins. SIGNIFICANCE: The immune response in invertebrates relies on innate rather than on adaptive/acquired effectors. At a difference from the soluble and membrane-bound immunoglobulins and receptors in vertebrates, the antimicrobial, antifungal, antiprotozoal and/or antiviral agents in invertebrates interact with non-self material by targeting some common (rather than some highly specific) structural motifs. Developing this paradigm into (semi) synthetic pharmaceuticals, possibly optimized through the modeling opportunities offered by computational biochemistry, is one of the lessons today's science may learn from the study of marine invertebrates, and specifically of the proteins and peptides in their hemolymph.
Collapse
Affiliation(s)
- Elisabetta Gianazza
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, I-20133 Milano, Italy
| | - Ivano Eberini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, I-20133 Milano, Italy
| | - Luca Palazzolo
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, I-20133 Milano, Italy
| | - Ingrid Miller
- Institut für Medizinische Biochemie, Veterinärmedizinische Universität Wien, Veterinärplatz 1, A-1210 Wien, Austria.
| |
Collapse
|
30
|
Jiang Q, Jiang Z, Ao S, Gao X, Zhu X, Zhang Z, Zhang X. Multi-biomarker assessment in the giant freshwater prawn Macrobrachium rosenbergii after deltamethrin exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 214:112067. [PMID: 33640724 DOI: 10.1016/j.ecoenv.2021.112067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/07/2021] [Accepted: 02/12/2021] [Indexed: 06/12/2023]
Abstract
Deltamethrin (DM) is a synthetic pyrethroid used for agricultural purposes to control insects. However, its extensive use contaminates the aquatic environment and results in serious health problems in aquatic organisms. Knowledge about the toxic effect of DM in freshwater prawns is limited; therefore, this study aims to assess the toxicity of DM in Macrobrachium rosenbergii based on multiple biomarkers. Four-day acute toxicity tests showed that DM was highly toxic to M. rosenbergii with the 24 h, 48 h, 72 h and 96 h LC50 values to be 1.919, 0.603, 0.539, and 0.449 μg/L, respectively. According to 96 h LC50, prawns were exposed to DM at three concentrations (0.02, 0.08, and 0.32 μg/L) for 4 days, and then moved into fresh water for decontamination to investigate the toxic effect of DM in M. rosenbergii. At low concentration (0.02 μg/L and 0.08 μg/L), DM did not cause obvious histopathological damage to hepatopancreas and gill tissue, while at high concentration (0.32 μg/L), the histopathological harm was serious and the damage did not recover to the initial level after 7-day decontamination. 0.02 μg/L DM exposure did not induce significant changes in most of the biomarkers except the increased lactate dehydrogenase (LDH) activity, lactic acid (LD) level, and the first increased then decreased mRNA expression of immune-related genes, indicating the stimulation of DM on energy production and immunity. 0.08 μg/L and 0.32 μg/L DM exposure resulted in varying degrees of damage on prawns, but overall, their toxic effects showed similar trends based on the biomarkers. Increase in malonaldehyde (MDA) and hydrogen peroxide (H2O2) content and decrease in superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activity after DM exposure demonstrated the oxidative stress caused by DM. The significantly increased acid phosphatase (ACP), alkaline phosphatase (AKP), LDH activity and LD level indicated hepatopancreatic dysfunction and respiration disruption. The first increased and then decreased expression pattern of immune-related genes indicated the immunosuppression caused by DM. After 7-day decontamination in freshwater, the activity/level of the biomarkers partly recovered. This study revealed the severe toxic effect of DM on Macrobrachium rosenbergii based on multiple biomarkers, providing fundamental knowledge for the establishment of DM toxicity assessment system with proper parameters in freshwater crustaceans.
Collapse
Affiliation(s)
- Qun Jiang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009 Jiangsu, China
| | - Ziyan Jiang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009 Jiangsu, China
| | - Shiqi Ao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009 Jiangsu, China
| | - Xiaojian Gao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009 Jiangsu, China
| | - Xinhai Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009 Jiangsu, China
| | - Zirui Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009 Jiangsu, China
| | - Xiaojun Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009 Jiangsu, China.
| |
Collapse
|
31
|
Gao RL, Liu LK, Guo LM, Wang KJ, Liu HP. CqPP2A inhibits white spot syndrome virus infection by up-regulating antimicrobial substances expression in red claw crayfish Cherax quadricarinatus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 116:103913. [PMID: 33137394 DOI: 10.1016/j.dci.2020.103913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 06/11/2023]
Abstract
Protein phosphatase 2A (PP2A) is an important serine/threonine phosphatase, a highly conserved enzyme widely expressed in eukaryotic cells, which accounts for a majority of the serine/threonine phosphatase activity in cells implicated in regulation of immune signaling pathways and antiviral response. However, most of studies about PP2A have been conducted in mammals but few in crustaceans. In this study, two subunits of PP2A (named as CqPP2Ab and CqPP2Ac) were characterized to be involved in white spot syndrome virus (WSSV) infection in the haematopoietic tissue (Hpt) cells from red claw crayfish Cherax quadricarinatus. The open reading frame (ORF) of CqPP2Ab was 1341 bp encoding 446 amino acids with seven WD40 domains, and the ORF of CqPP2Ac was 930 bp encoding 309 amino acids with a PP2Ac domain. Tissue distribution analysis showed that the mRNA transcript of CqPP2Ab and CqPP2Ac were both widely expressed in all the tested tissues with the highest expression in hemocyte, followed by high expression in Hpt. The gene expressions of CqPP2Ab and CqPP2Ac were both significantly down-regulated at 6 h post WSSV infection (6 hpi) in Hpt cells. Importantly, the expression of viral immediate early gene IE1 and late viral gene envelope protein VP28 were both significantly increased post WSSV infection after gene silencing of CqPP2Ab or CqPP2Ac in Hpt cells, suggesting that CqPP2Ab and CqPP2Ac could inhibit WSSV infection in Hpt cells, probably by increasing the antimicrobial substances expression in consideration to the significantly reduced expression of anti-lipopolysaccharide factor, crustin, and lysozyme after gene silencing of CqPP2Ab or CqPP2Ac, respectively. These findings provide a new light on the mechanism of WSSV infection and the antiviral response in crustaceans.
Collapse
Affiliation(s)
- Rui-Lin Gao
- State Key Laboratory of Marine Environmental Science, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Ling-Ke Liu
- State Key Laboratory of Marine Environmental Science, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Li-Mei Guo
- State Key Laboratory of Marine Environmental Science, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Ke-Jian Wang
- State Key Laboratory of Marine Environmental Science, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Hai-Peng Liu
- State Key Laboratory of Marine Environmental Science, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, Fujian, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
32
|
Dai X, Wang K, Zhang R, Zhang C, Cao X, Huang X, Zhang Y, Ren Q. Identification of two carcinin isoforms (MnCarc1 and MnCarc2) and their function in the antimicrobial immunity of Macrobrachium nipponense. FISH & SHELLFISH IMMUNOLOGY 2020; 106:205-217. [PMID: 32750545 DOI: 10.1016/j.fsi.2020.07.069] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 06/11/2023]
Abstract
Carcinin, a member of the crustin family, plays important roles in crustacean innate immunity. In this study, we identified two carcinin isoforms (MnCarc1 and MnCarc2) produced by alternative splicing from Macrobrachium nipponense. The full length of MnCarc1 and MnCarc2 cDNA are 1554 and 1495 bp with 687 and 609 bp open reading frame-encoding proteins that contain 228 and 202 amino acids, respectively. The genome of carcinin has nine exons and eight introns. MnCarc1 transcript contains all nine exons, whereas MnCarc2 only contains eight exons and lacks exon 4. MnCarc1 and MnCarc2 proteins contain a signal peptide, cysteine-rich regions, and a whey acidic protein domain. The phylogenetic tree shows that MnCarc1 and MnCarc2 are not grouped with other crustins and carcinins. MnCarc1 and MnCarc2 form a subgroup. MnCarc1 and MnCarc2 are widely distributed in various tissues. The expression of MnCarc1 and MnCarc2 were evidently upregulated at multiple time points in hemocytes and the intestine of M. nipponense after white spot syndrome virus, Vibrio parahaemolyticus, and Staphylococcus aureus challenges. Further studies showed that knockdown of MnDorsal or MnStat transcription factor could remarkably inhibit the upregulated expression of MnCarc1 and MnCarc2 caused by viral or bacterial challenges. In addition, recombinant MnCarc1 and MnCarc2 proteins could bind to various bacteria and polysaccharides and inhibit the growth of S. aureus and V. parahaemolyticus in vitro. This study indicated that carcinins from M. nipponense were involved in prawns innate immunity.
Collapse
Affiliation(s)
- Xiaoling Dai
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Kaiqiang Wang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Ruidong Zhang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Chao Zhang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Xueying Cao
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Xin Huang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China.
| | - Yufei Zhang
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Freshwater Aquaculture Genetic and Breeding of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, China.
| | - Qian Ren
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China; Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Freshwater Aquaculture Genetic and Breeding of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu Province, 222005, China.
| |
Collapse
|
33
|
Lv X, Li S, Yu Y, Zhang X, Li F. Characterization of a gill-abundant crustin with microbiota modulating function in Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2020; 105:393-404. [PMID: 32702477 DOI: 10.1016/j.fsi.2020.07.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/04/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
Gills as the respiratory tissue of crustacean encounter various threats in the environment. The immune defense in gills is essential to the health of shrimp. In the present study, we identified a novel gill-abundant crustin, LvCrustin Ⅱ-1, from the shrimp Litopenaeus vannamei. The full-length open reading frame of LvCrustin Ⅱ-1 is 522 bp, which encodes 173 amino acid residues. The amino acid sequence of LvCrustin Ⅱ-1 contained a signal peptide, a glycine rich region, a cysteine rich region and a whey acidic protein (WAP) domain. The expression level of LvCrustin Ⅱ-1 was significantly up-regulated at different time points after Vibrio parahaemolyticus immersion. When LvCrustin Ⅱ-1 was silenced by dsRNA interference, the count of bacteria colonies increased significantly in the hepatopancreas of shrimp after V. parahaemolyticus immersion, which indicated that the infection progress of pathogenic bacteria was accelerated after LvCrustin Ⅱ-1 knockdown. Compared with the microbiota of seawater, the lower proportion of aquatic bacteria and higher proportion of symbiont in the gills microbiota of shrimp indicated the bacterial colonization was modulated by the host. Knockdown of LvCrustin Ⅱ-1 changed the proportion of some potential pathogens and aquatic bacteria, which supported the idea that the new identified crustin in the gills played important roles in modulation of the microbiota community in shrimp. The present data provided new insights into the multiple functions of crustin in the immunity of shrimp.
Collapse
Affiliation(s)
- Xinjia Lv
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shihao Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
| | - Yang Yu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Xiaojun Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Fuhua Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, China.
| |
Collapse
|
34
|
Lv X, Li S, Yu Y, Xiang J, Li F. The immune function of a novel crustin with an atypical WAP domain in regulating intestinal microbiota homeostasis in Litopenaeus vannamei. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 111:103756. [PMID: 32485179 DOI: 10.1016/j.dci.2020.103756] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/26/2020] [Accepted: 05/26/2020] [Indexed: 06/11/2023]
Abstract
Crustins are a family of antimicrobial peptides (AMP) with multiple functions, including antimicrobial activity, capability of protease inhibition, phagocytosis promotion, and wound healing in crustaceans. Till present, several members of crustins have been identified and their activities were studied. However, there are still less investigations on how they play functions in vivo. Here, we identified a novel crustin with an atypical WAP domain, LvCrustin Ⅰ-1, which is mainly distributed in tissues, including intestine, gill, epidermis and stomach of the shrimp Litopenaeus vannamei. The expression level of LvCrustin Ⅰ-1 was significantly up-regulated at 3 h, 6 h, 12 h, and 24 h after Vibrio parahaemolyticus infection. Knockdown of LvCrustin Ⅰ-1 with dsRNA resulted in a significant increase of the bacteria number in hepatopancreas of shrimp upon V. parahaemolyticus infection, showing that LvCrustin Ⅰ-1 participated in pathogen infection process. Recombinant LvCrustin Ⅰ-1 protein showed microorganism-binding activity rather than antibacterial activity against tested bacteria. Furthermore, significant difference existed between the intestinal microbiota in shrimp before and after LvCrustin Ⅰ-1 knockdown based on the result of alpha and NMDS analyses. Knockdown of LvCrustin Ⅰ-1 increased the proportion of Demequina, Nautella, Propionibacterium, Anaerospora and decreased the proportion of Bacteroidia and Vibrio. These data suggest that LvCrustin Ⅰ-1 might perform its immunological function through modulation of the intestinal microbiota homeostasis rather than direct inhibition of bacterial growth in shrimp.
Collapse
Affiliation(s)
- Xinjia Lv
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Shihao Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
| | - Yang Yu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Jianhai Xiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Fuhua Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, China.
| |
Collapse
|
35
|
Jiang X, Jin W, Zhu F. Dietary Hizikia fusiforme enhance survival of white spot syndrome virus infected crayfish Procambarus clarkii. FISH & SHELLFISH IMMUNOLOGY 2020; 103:88-94. [PMID: 32348885 DOI: 10.1016/j.fsi.2020.04.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/17/2020] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
The sea vegetable Hizikia fusiforme is not only a good source of dietary fiber but also enhances immunity. In this study, we investigated the effects of H. fusiforme on innate immunity in invertebrates, using white spot syndrome virus (WSSV) challenge in the crayfish, Procambarus clarkii. Supplementation with H. fusiforme significantly reduced mortality caused by WSSV infection and also reduced copy numbers of the WSSV protein VP28. Quantitative reverse transcription-polymerase chain reaction showed that supplementation of feed with H. fusiforme increased the expression of immune-related genes, including NF-κB and crustin 1. Further analysis showed that supplementation with H. fusiforme also affected three immune parameters, total hemocyte count, and phenoloxidase and superoxide dismutase activity. H. fusiforme treatment significantly increased hemocyte apoptosis rates in both WSSV-infected and uninfected crayfish. H. fusiforme thus regulates the innate immunity of crayfish, and both delays and reduces mortality after WSSV challenge. Our study demonstrates the potential for the commercial use of H. fusiforme, either therapeutically or prophylactically, to regulate the innate immunity and protect crayfish against WSSV infection.
Collapse
Affiliation(s)
- Xinyue Jiang
- Jixian Honors College, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China
| | - Wenxin Jin
- Jixian Honors College, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China
| | - Fei Zhu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China.
| |
Collapse
|
36
|
Zhang XW, Yang CH, Xia XH, Pan XT, Jin ZY, Yu H, Zhang HW. A triple WAP domain containing protein acts in antibacterial immunity of weather loach, Misgurnus anguillicaudatus. FISH & SHELLFISH IMMUNOLOGY 2020; 103:277-284. [PMID: 32439510 DOI: 10.1016/j.fsi.2020.05.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/06/2020] [Accepted: 05/12/2020] [Indexed: 06/11/2023]
Abstract
Whey acidic protein domain (WAPD) occurs in a variety of proteins in animals and many of WAPD-containing proteins are involved in immunity. In the present study, a novel protein containing three WAPDs was identified from the weather loach, Misgurnus anguillicaudatus, designated as MaTWD. MaTWD share high identity with TWDs from fish but low identity with TWDs from other animal phyla. MaTWD transcripts mainly distributed in gills and head kidney responded to bacterial challenge with significant upregulation. In vitro assay with recombinant MaTWD protein revealed that MaTWD had antiprotease activity against bacterial proteases. Moreover, MaTWD exhibited bacterial binding capacity and antimicrobial activity. Most importantly, exogenous MaTWD protected loach against bacterial infection by reducing loach mortality. We infer that MaTWD participates in the antibacterial immunity of loach via its antiprotease and antimicrobial activities.
Collapse
Affiliation(s)
- Xiao-Wen Zhang
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Cong-Hui Yang
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Xiao-Hua Xia
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Xin-Tong Pan
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Ze-Yu Jin
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Hao Yu
- Department of Nature Resources, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China
| | - Hong-Wei Zhang
- Department of Nature Resources, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China.
| |
Collapse
|
37
|
Huang Y, Ren Q. Molecular cloning and functional analysis of three STAT isoforms in red swamp crayfish Procambarus clarkii. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 108:103670. [PMID: 32156508 DOI: 10.1016/j.dci.2020.103670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 06/10/2023]
Abstract
The Janus kinase (JAK)/signal transducers and activators of transcription (STAT) signaling pathway is associated with the innate immune system and plays crucial roles in the mediation of immune response to viral infections. In this study, three STAT isoform cDNAs were cloned from the red swamp crayfish Procambarus clarkii, and they were designated as PcSTATa, PcSTATb, and PcSTATc. PcSTATa and PcSTATb were generated through the alternative splicing of the last exon, and PcSTATc was produced by intron retention. PcSTATa, PcSTATb, and PcSTATc contained 2382, 2337, and 2274 bp open reading frames encoding proteins with 793, 778, and 757 amino acid residues, respectively. Domain prediction analysis revealed that three isoforms of PcSTATs contain a STAT interaction domain, a STAT all-alpha domain, a STAT DNA binding domain, and a Src-homology 2 domain. The mRNA transcripts of three PcSTAT isoforms were detected in all examined tissues of male and female crayfish. The expression levels of the three PcSTAT isoforms in the hemocytes, gills, and intestines significantly changed after the white spot syndrome virus (WSSV) challenge. PcSTAT silencing by dsRNA interference could positively regulate the expression levels of three anti-lipopolysaccharide factors (PcALF1, PcALF2, and PcALF6) and two crustins (PcCrus1 and PcCrus2) and negatively regulate the expression levels of three ALFs (PcALF3, PcALF4, and PcALF5) and two crustins (PcCrus3 and PcCrus4). These results suggest that all three PcSTAT isoforms are involved in the host defense against WSSV infection.
Collapse
Affiliation(s)
- Ying Huang
- College of Oceanography, Hohai University, 1 Xikang Road, Nanjing, Jiangsu, 210098, China; Postdoctoral Innovation Practice Base, Jiangsu Shuixian Industrial Company Limited, 40 Tonghu Road, Baoying, Yangzhou, Jiangsu, 225800, China
| | - Qian Ren
- Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu, 222005, China; College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, Jiangsu, 210023, China.
| |
Collapse
|