1
|
Krivošija S, Nastić N, Karadžić Banjac M, Kovačević S, Podunavac-Kuzmanović S, Vidović S. Supercritical Extraction and Compound Profiling of Diverse Edible Mushroom Species. Foods 2025; 14:107. [PMID: 39796397 PMCID: PMC11720195 DOI: 10.3390/foods14010107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/26/2024] [Accepted: 01/01/2025] [Indexed: 01/13/2025] Open
Abstract
Mushrooms are a raw material rich in many nutritional compounds, and that is why a number of them are widely known as functional food. They contain fatty acids, carbohydrates, lycopene, sterols, lovastatin, trace elements, and other valuable compounds that show a wide range of properties, such as hepatoprotective, anticancer, antiviral, etc. For more efficient utilisation of mushrooms' biologically active substances, widespread supercritical carbon dioxide extraction (Sc-CO2) was used as an efficient way to isolate the high-value phytoconstituents from this type of raw material. Using Sc-CO2, the extracts of five types of edible mushrooms-Lycoperdon saccatum, Pleurotus ostreatus, Craterellus cornucopioides, Russula Cyanoxantha and Cantharellus cibarius-were obtained. During the Sc-CO2 process, the extraction time was reduced to 4 h compared to the prolonged process time applied in the typical traditional techniques (6-24 h). The extraction pressure (30 MPa) and temperature (40 °C) were constant. Fatty acids and the compounds of steroid structures were determined in the obtained extracts using GC-MS and GC-FID methods of analysis. The dominant compounds identified in the lipid extracts were fatty acids (linoleic, oleic, palmitic and stearic) and sterols (ergosterol, 7,22-ergostadienone and 7,22-ergostadienol). For complete insight into the process and to obtain the value of the extracts, chemometric analysis is provided. Principal component analysis (PCA) and hierarchical cluster analysis (HCA), as well as k-means clustering, showed that Craterellus cornucopioides was distinguished based on the extraction yield results.
Collapse
Affiliation(s)
| | | | | | | | | | - Senka Vidović
- Faculty of Technology Novi Sad, University of Novi Sad, Boulevard cara Lazara 1, 21000 Novi Sad, Serbia; (S.K.); (N.N.); (M.K.B.); (S.K.); (S.P.-K.)
| |
Collapse
|
2
|
Hanna DH, Al-Atmani AK, AlRashidi AA, Shafee EE. Camellia sinensis methanolic leaves extract: Phytochemical analysis and anticancer activity against human liver cancer cells. PLoS One 2024; 19:e0309795. [PMID: 39541389 PMCID: PMC11563400 DOI: 10.1371/journal.pone.0309795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 08/19/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND The study's primary goal is to ascertain whether there is a relationship between the processed green tea methanolic extract's (GTME) phytochemical components and its potential effectiveness against human liver cancer cells. The GTME's phytochemical composition was identified using gas chromatography-mass spectrometry, and the extract's capacity to lower cellular proliferation and cause apoptosis in HepG2 cancerous liver cell lines was checked. RESULTS The findings of the gas chromatography-mass chromatogram showed that GTME included bioactive antioxidants and anticancer substances. Additionally, utilizing the MTT, comet assay, and acridine assay, GTME revealed a selective cytotoxic impact with a significant IC50 value (27.3 µg/ml) on HepG2 cells without any harmful effects on WI-38 healthy cells. Also, compared to untreated cells, the extract-treated HepG2 cells had an upsurge in the proportion of cells that have undergone apoptosis and displayed a comet nucleus, which is a sign of DNA damage. In addition, HepG2 cells treated with GTME revealed a stop in the G1 phase and sub-G1 apoptotic cells (37.32%) in a flow cytometry analysis. Furthermore, reactive oxygen species were shown to be responsible for HepG2 apoptosis, and the tested extract significantly reduced their levels in the treated cells. Lastly, compared to untreated cells in treated HepG2 cells, GTME significantly changed protein expression levels linked with cell cycle arrest in the G1 phase and apoptosis. CONCLUSION These findings provided information about the processes through which the GTME inhibited the growth of HepG2. Therefore, it has potential as an effective natural therapy for the treatment of human liver cancer. However, to validate these findings, animal models must be used for in vivo studies.
Collapse
Affiliation(s)
- Demiana H. Hanna
- Faculty of Science, Department of Chemistry, Cairo University, Giza, Egypt
| | - Ahlam K. Al-Atmani
- Faculty of Science, Department of Chemistry, Cairo University, Giza, Egypt
| | | | - E. El. Shafee
- Faculty of Science, Department of Chemistry, Cairo University, Giza, Egypt
| |
Collapse
|
3
|
Mohammed FA, Abu-Hussien SH, Dougdoug NKE, Koutb N, Korayem AS. Streptomyces fradiae Mitigates the Impact of Potato Virus Y by Inducing Systemic Resistance in Two Egyptian Potato (Solanum tuberosum L.) Cultivars. MICROBIAL ECOLOGY 2024; 87:131. [PMID: 39419884 PMCID: PMC11486777 DOI: 10.1007/s00248-024-02437-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024]
Abstract
In this study, the impact of culture media filtrate of QD3 actinobacterial isolate on two potato cultivars, Spunta and Diamond, infected with potato virus Y (PVY) was investigated. Various parameters, including infection percentage, PVY virus infectivity, disease severity scoring, PVY optical density, photosynthetic and defense-related biochemical markers, enzymatic profiling, phenolic compounds, proline content, salicylic acid levels, and growth and yield parameters, were assessed to elucidate the potential of the QD3 actinobacterial isolate culture filtrate in mitigating PVY-induced damage. The physiological and biochemical characteristics of the QD3 actinobacterial isolate, including its salinity tolerance, pH preferences, and metabolic traits, were investigated. Molecular identification via 16S rRNA gene sequencing confirmed its classification as Streptomyces fradiae QD3, and it was deposited in GenBank with the gene accession number MN160630. Distinct responses between Spunta and Diamond cultivars, with Spunta displaying greater resistance to PVY infection. Notably, pre-infection foliar application of the QD3 filtrate significantly reduced disease symptoms and virus infection in both cultivars. For post-PVY infection, the QD3 filtrate effectively mitigated disease severity and the PVY optical density. Furthermore, the QD3 filtrate positively influenced photosynthetic pigments, enzymatic antioxidant activities, and key biochemical components associated with plant defense mechanisms. Gas chromatography‒mass spectrometry (GC‒MS) analysis revealed palmitic acid (hexadecanoic acid, methyl ester) and oleic acid (9-octadecanoic acid, methyl ester) as the most prominent compounds, with retention times of 23.23 min and 26.41 min, representing 53.27% and 23.25%, respectively, of the total peak area as primary unsaturated fatty acids and demonstrating antiviral effects against plant viruses. Cytotoxicity assays on normal human skin fibroblasts (HSFs) revealed the safety of QD3 metabolites, with low discernible toxicity at high concentrations, reinforcing their potential as safe and effective interventions. The phytotoxicity results indicate that all the seeds presented high germination rates of approximately 95-98%, suggesting that the treatment conditions had no phytotoxic effect on the Brassica oleracea (broccoli) seeds, Lactuca sativa (lettuce) seeds, and Eruca sativa (arugula or rocket) seeds. Overall, the results of this study suggest that the S. fradiae filtrate has promising anti-PVY properties, influencing various physiological, biochemical, and molecular aspects in potato cultivars. These findings provide valuable insights into potential strategies for managing PVY infections in potato crops, emphasizing the importance of Streptomyces-derived interventions in enhancing plant health and crop protection.
Collapse
Affiliation(s)
- Fafy A Mohammed
- Botany Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, 11757, Egypt
| | - Samah H Abu-Hussien
- Agricultural Microbiology Department, Faculty of Agriculture, Ain Shams University, Cairo, 11241, Egypt.
| | - Noha K El Dougdoug
- Department of Botany and Microbiology, Faculty of Science, Benha University, Benha, Egypt
| | - Neima Koutb
- Genetics Department, Faculty of Agriculture, Ain Shams University, Cairo, 11241, Egypt
| | - Abdalla S Korayem
- Agricultural Microbiology Department, Faculty of Agriculture, Ain Shams University, Cairo, 11241, Egypt
| |
Collapse
|
4
|
Liu Q, Chen Z, Zhang J, Pan S, Zhou Y, Tang Y, Wu C, Wang H, Zhao Z, Li Y, Mai K, Ai Q. Involvement of mitochondrial fatty acid β-oxidation in the antiviral innate immune response in head kidney macrophages of large yellow croaker (Larimichthys crocea). FISH & SHELLFISH IMMUNOLOGY 2024; 153:109829. [PMID: 39142373 DOI: 10.1016/j.fsi.2024.109829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/03/2024] [Accepted: 08/12/2024] [Indexed: 08/16/2024]
Abstract
As a vital pathway for cellular energy production, mitochondrial fatty acid β-oxidation (FAO) is essential in regulating immune responses to bacterial pathogens and maintaining intracellular homeostasis in vertebrates. However, the specific role of FAO in antiviral innate immune response in macrophages remains insufficiently understood. In this study, virus infection simulated by poly(I:C) inhibited FAO, as indicated by the reduced expression of FAO-related genes and proteins in the head kidney of large yellow croaker, with similar results observed in poly(I:C)-stimulated macrophages. Then, inhibition of FAO by supplementary mildronate in vivo and etomoxir treatment in vitro revealed varying increases in the mRNA expression of antiviral innate immune response genes after stimulated by poly(I:C) in the head kidney and macrophages. Notably, etomoxir significantly facilitated the transcriptional up-regulation of the IFNh promoter by IRF3. Moreover, inhibiting FAO by knockdown of cpt1b promoted antiviral innate immune response triggered by poly(I:C) in macrophages. Conversely, activating FAO through overexpression of cpt1b or cpt2 significantly reduced the mRNA levels of antiviral response genes in macrophages stimulated by poly(I:C). Unlike etomoxir, cpt1b overexpression inhibited the transcriptional up-regulation of the IFNh promoter by IRF3. Furthermore, in vivo dietary palm oil feeding and in vitro exposure to palmitic acid inhibited the antiviral innate immune response triggered by poly(I:C) in the head kidney and macrophages, respectively. These effects were partly associated with FAO activation, as evidenced by etomoxir. In summary, this study elucidates FAO's critical role in regulating antiviral innate immune response in head kidney macrophages. These findings not only deepen insights into the interaction between metabolic remodeling and host immune responses, but also offer valuable guidance for developing nutritional strategies to improve antiviral immunity in aquaculture.
Collapse
Affiliation(s)
- Qiangde Liu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, People's Republic of China
| | - Zhiwei Chen
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, People's Republic of China
| | - Jinze Zhang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, People's Republic of China
| | - Shijie Pan
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, People's Republic of China
| | - Yan Zhou
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, People's Republic of China
| | - Yuhang Tang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, People's Republic of China
| | - Caixia Wu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, People's Republic of China
| | - Haoran Wang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, People's Republic of China
| | - Zengqi Zhao
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, People's Republic of China
| | - Yueru Li
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, People's Republic of China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, People's Republic of China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, People's Republic of China.
| |
Collapse
|
5
|
Khalifa HA, Sharawy E, Younis EM, Abdelwarith AA, Ibrahim RE, Amer SA, Davies SJ, Abo-Elmaaty AMA. The therapeutic role of Azadirachta indica leaves ethanolic extract against detrimental effects of Aeromonas veronii infection in Nile tilapia, Oreochromis niloticus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:1445-1460. [PMID: 38795269 DOI: 10.1007/s10695-024-01349-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 04/18/2024] [Indexed: 05/27/2024]
Abstract
Bacterial pathogens cause high fish mortalities and in turn economic losses in fish farms. Innovative strategies should be applied to control bacterial infections instead of antibiotics to avoid the resistance problem. Consequently, the present investigation studied the curative potential of Azadirachta indica leave ethanolic extract (AILEE) on Aeromonas veronii infection in Oreochromis niloticus. A preliminary trial was assessed to evaluate the curative dose of AILEE which was found to be 2.5 mg/L. One hundred and sixty fish were divided into equal four groups in four replications, where group 1 and group 2 were non-challenged and treated with 0- and 2.5-mg/L AILEE, respectively. Group 3 and group 4 were challenged with A. veronii and treated with 0- and 2.5-mg/L AILEE, respectively for 10 days. A. veronii infection produced severe clinical manifestations and a high mortality rate in the infected fish. Furthermore, the infected fish exhibited a significant rise in the hepatorenal indices (aspartate aminotransferase, alanine aminotransferase, and creatinine), the oxidant biomarker (malondialdehyde), and the stress indicators (glucose and cortisol). A significant reduction in the protein profile and antioxidant/immune parameters (catalase, immunoglobulin M, lysozyme, nitric oxide, and phagocytic activity) was observed in the infected fish. Water application of the infected group to 2.5-mg/L AILEE notably ameliorated the hepatorenal indices, the oxidant biomarker, and the stress indicators. Furthermore, AILEE improved the antioxidant/immune indices. Water application of 2.5-mg/L AILEE could be useful against A. veronii infection in O. niloticus culture.
Collapse
Affiliation(s)
- Hesham A Khalifa
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| | - Esraa Sharawy
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| | - Elsayed M Younis
- Department of Zoology, College of Science, King Saud University, PO Box 2455, 11451, Riyadh, Saudi Arabia
| | - Abdelwahab A Abdelwarith
- Department of Zoology, College of Science, King Saud University, PO Box 2455, 11451, Riyadh, Saudi Arabia
| | - Rowida E Ibrahim
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, P.O. Box 44511, Zagazig, Sharkia, Egypt.
| | - Shimaa A Amer
- Departments of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| | - Simon J Davies
- Aquaculture Nutrition Research Unit ANRU, College of Science and Engineering, Carna Research Station, Ryan Institute, University of Galway, Galway, H91V8Y1, Ireland
| | - Azza M A Abo-Elmaaty
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| |
Collapse
|
6
|
Helmy KG, Abu-Hussien SH. Root Rot Management in Common Bean (Phaseolus vulgaris L.) Through Integrated Biocontrol Strategies using Metabolites from Trichoderma harzianum, Serratia marcescens, and Vermicompost Tea. MICROBIAL ECOLOGY 2024; 87:94. [PMID: 39008061 PMCID: PMC11249416 DOI: 10.1007/s00248-024-02400-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/11/2024] [Indexed: 07/16/2024]
Abstract
Common bean (Phaseolus vulgaris L.) is an essential food staple and source of income for small-holder farmers across Africa. However, yields are greatly threatened by fungal diseases like root rot induced by Rhizoctonia solani. This study aimed to evaluate an integrated approach utilizing vermicompost tea (VCT) and antagonistic microbes for effective and sustainable management of R. solani root rot in common beans. Fourteen fungal strains were first isolated from infected common bean plants collected across three Egyptian governorates, with R. solani being the most virulent isolate with 50% dominance. Subsequently, the antagonistic potential of vermicompost tea (VCT), Serratia sp., and Trichoderma sp. was assessed against this destructive pathogen. Combinations of 10% VCT and the biocontrol agent isolates displayed potent inhibition of R. solani growth in vitro, prompting in planta testing. Under greenhouse conditions, integrated applications of 5 or 10% VCT with Serratia marcescens, Trichoderma harzianum, or effective microorganisms (EM1) afforded up to 95% protection against pre- and post-emergence damping-off induced by R. solani in common bean cv. Giza 6. Similarly, under field conditions, combining VCT with EM1 (VCT + EM1) or Trichoderma harzianum (VCT + Trichoderma harzianum) substantially suppressed disease severity by 65.6% and 64.34%, respectively, relative to untreated plants. These treatments also elicited defense enzyme activity and distinctly improved growth parameters including 136.68% and 132.49% increases in pod weight per plant over control plants. GC-MS profiling of Trichoderma harzianum, Serratia marcescens, and vermicompost tea (VCT) extracts revealed unique compounds dominated by cyclic pregnane, fatty acid methyl esters, linoleic acid derivatives, and free fatty acids like oleic, palmitic, and stearic acids with confirmed biocontrol and plant growth-promoting activities. The results verify VCT-mediated delivery of synergistic microbial consortia as a sustainable platform for integrated management of debilitating soil-borne diseases, enhancing productivity and incomes for smallholder bean farmers through regeneration of soil health. Further large-scale validation can pave the adoption of this climate-resilient approach for securing food and nutrition security.
Collapse
Affiliation(s)
- Karima G Helmy
- Plant Pathology Department, Faculty of Agriculture, Ain Shams University, Cairo, 11241, Egypt
| | - Samah H Abu-Hussien
- Agricultural Microbiology Department, Faculty of Agriculture, Ain Shams University, Cairo, 11241, Egypt.
| |
Collapse
|
7
|
Belal SA, Lee J, Park J, Kang D, Shim K. The Effects of Oleic Acid and Palmitic Acid on Porcine Muscle Satellite Cells. Foods 2024; 13:2200. [PMID: 39063284 PMCID: PMC11276066 DOI: 10.3390/foods13142200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/12/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
We aimed to determine the effects of oleic acid (OA) and palmitic acid (PA), alone or in combination, on proliferation, differentiation, triacylglycerol (TAG) content, and gene expression in porcine muscle satellite cells (PMSCs). Results revealed that OA-alone- and PA + OA-treated PMSCs showed significantly increased viability than those in the control or PA-alone-treated groups. No significant effects on apoptosis were observed in all three treatments, whereas necrosis was significantly lower in OA-alone- and PA + OA-treated groups than in the control and PA-alone-treated groups. Myotube formation significantly increased in OA-alone and PA + OA-treated PMSCs than in the control and PA-alone-treated PMSCs. mRNA expression of the myogenesis-related genes MyoD1 and MyoG and of the adipogenesis-related genes PPARα, C/EBPα, PLIN1, FABP4, and FAS was significantly upregulated in OA-alone- and PA + OA-treated cells compared to control and PA-alone-treated cells, consistent with immunoblotting results for MyoD1 and MyoG. Supplementation of unsaturated fatty acid (OA) with/without saturated fatty acid (PA) significantly stimulated TAG accumulation in treated cells compared to the control and PA-alone-treated PMSCs. These results indicate that OA (alone and with PA) promotes proliferation by inhibiting necrosis and promoting myotube formation and TAG accumulation, likely upregulating myogenesis- and adipogenesis-related gene expression by modulating the effects of PA in PMSCs.
Collapse
Affiliation(s)
- Shah Ahmed Belal
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju 54896, Republic of Korea; (S.A.B.); (D.K.)
- Department of Poultry Science, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Jeongeun Lee
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea;
| | - Jinryong Park
- Food Processing Research Group, Korea Food Research Institute, Wanju 55365, Republic of Korea;
| | - Darae Kang
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju 54896, Republic of Korea; (S.A.B.); (D.K.)
| | - Kwanseob Shim
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju 54896, Republic of Korea; (S.A.B.); (D.K.)
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea;
| |
Collapse
|
8
|
Gjøen T, Ruyter B, Østbye TK. Effects of eicosapentaneoic acid on innate immune responses in an Atlantic salmon kidney cell line in vitro. PLoS One 2024; 19:e0302286. [PMID: 38805503 PMCID: PMC11132502 DOI: 10.1371/journal.pone.0302286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 04/02/2024] [Indexed: 05/30/2024] Open
Abstract
Studies of the interplay between metabolism and immunity, known as immunometabolism, is steadily transforming immunological research into new understandings of how environmental cues like diet are affecting innate and adaptive immune responses. The aim of this study was to explore antiviral transcriptomic responses under various levels of polyunsaturated fatty acid. Atlantic salmon kidney cells (ASK cell line) were incubated for one week in different levels of the unsaturated n-3 eicosapentaneoic acid (EPA) resulting in cellular levels ranging from 2-20% of total fatty acid. These cells were then stimulated with the viral mimic and interferon inducer poly I:C (30 ug/ml) for 24 hours before total RNA was isolated and sequenced for transcriptomic analyses. Up to 200 uM EPA had no detrimental effects on cell viability and induced very few transcriptional changes in these cells. However, in combination with poly I:C, our results shows that the level of EPA in the cellular membranes exert profound dose dependent effects of the transcriptional profiles induced by this treatment. Metabolic pathways like autophagy, apelin and VEGF signaling were attenuated by EPA whereas transcripts related to fatty acid metabolism, ferroptosis and the PPAR signaling pathways were upregulated. These results suggests that innate antiviral responses are heavily influenced by the fatty acid profile of salmonid cells and constitute another example of the strong linkage between general metabolic pathways and inflammatory responses.
Collapse
Affiliation(s)
- Tor Gjøen
- Department of Pharmacy, Section for Pharmacology and Pharmaceutical Biosciences, University of Oslo, Oslo, Norway
| | - Bente Ruyter
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), Ås, Norway
| | - Tone Kari Østbye
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), Ås, Norway
| |
Collapse
|
9
|
Hajab H, Anwar A, Nawaz H, Majeed MI, Alwadie N, Shabbir S, Amber A, Jilani MI, Nargis HF, Zohaib M, Ismail S, Kamal A, Imran M. Surface-enhanced Raman spectroscopy of the filtrate portions of the blood serum samples of breast cancer patients obtained by using 30 kDa filtration device. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 311:124046. [PMID: 38364514 DOI: 10.1016/j.saa.2024.124046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/04/2024] [Accepted: 02/12/2024] [Indexed: 02/18/2024]
Abstract
Raman spectroscopy is reliable tool for analyzing and exploring early disease diagnosis related to body fluids, such as blood serum, which contain low molecular weight fraction (LMWF) and high molecular weight fraction (HMWF) proteins. The disease biomarkers consist of LMWF which are dominated by HMWF hence their analysis is difficult. In this study, in order to overcome this issue, centrifugal filter devices of 30 kDa were used to obtain filtrate and residue portions obtained from whole blood serum samples of control and breast cancer diagnosed patients. The filtrate portions obtained in this way are expected to contain the marker proteins of breast cancer of the size below this filter size. These may include prolactin, Microphage migration inhabitation factor (MIF), γ-Synuclein, BCSG1, Leptin, MUC1, RS/DJ-1 present in the centrifuged blood serum (filtrate portions) which are then analyzed by the SERS technique to recognize the SERS spectral characteristics associated with the progression of breast cancer in the samples of different stages as compared to the healthy ones. The key intention of this study is to achieve early-stage breast cancer diagnosis through the utilization of Surface Enhanced Raman Spectroscopy (SERS) after the centrifugation of healthy and breast cancer serum samples with Amicon ultra-filter devices of 30 kDa. The silver nanoparticles with high plasmon resonance are used as a substrate for SERS analysis. Principal Component Analysis (PCA) and Partial Least Discriminant Analysis (PLS-DA) models are utilized as spectral classification tools to assess and predict rapid, reliable, and non-destructive SERS-based analysis. Notably, they were particularly effective in distinguishing between different SERS spectral groups of the cancerous and non-cancerous samples. By comparing all these spectral data sets to each other PLSDA shows the 79 % accuracy, 76 % specificity, and 81 % sensitivity in samples with AUC value of AUC = 0.774 SERS has proven to be a valuable technique for the rapid identification of the SERS spectral features of blood serum and its filtrate fractions from both healthy individuals and those with breast cancer, aiding in disease diagnosis.
Collapse
Affiliation(s)
- Hawa Hajab
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Ayesha Anwar
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Haq Nawaz
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, Pakistan.
| | - Muhammad Irfan Majeed
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, Pakistan.
| | - Najah Alwadie
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Sana Shabbir
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Arooj Amber
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | | | - Hafiza Faiza Nargis
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Zohaib
- Department of Zoology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Sidra Ismail
- Medical College, Foundation University Islamabad, Pakistan
| | - Abida Kamal
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Imran
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia
| |
Collapse
|
10
|
Dai L, Yang L, Li Y, Li S, Yang D, Li Y, He D. Origin differentiation based on volatile constituents of genuine medicinal materials Quisqualis indica L. via HS-GC-MS, response surface methodology, and chemometrics. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:567-578. [PMID: 38191129 DOI: 10.1002/pca.3313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 01/10/2024]
Abstract
INTRODUCTION Quisqualis indica L. (QIL) has a long history as a traditional Chinese herb in China, but the study of volatile components in QIL from different geographical sources has been relatively rare. OBJECTIVES To establish an optimal headspace gas chromatography-mass spectrometry (HS-GC-MS) method to comprehensively analyse the volatile component profile and screen quality markers of QIL from different origins. METHODS Response surface methodology (RSM) was used to optimise the conditions for headspace analysis. The volatile components of QIL from four main origins of southwest China were analysed and identified by HS-GC-MS. The similarity of all samples of QIL was evaluated by fingerprint. The differences of the volatile components in QIL from different origins were distinguished by chemometrics. RESULTS According to the optimal conditions of RSM, a total of 31 volatile components were identified, including fatty acids, aldehydes, alcohols, alkyl pyrazines, and other volatile components. Similarity evaluation presented that there were 26 common volatile components with different contents in all samples. Principal component analysis (PCA) showed that QIL from four different origins could be roughly divided into four categories. Hierarchical cluster analysis (HCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) indicated that QIL from different origins had obvious regional characteristics. CONCLUSION The optimised HS-GC-MS method provided a strategy to rapidly, effectively, and accurately elucidate the volatile component profile of QIL from different origins, and seven important differential components were screened for quality evaluation and origin traceability.
Collapse
Affiliation(s)
- Lei Dai
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Lin Yang
- Chongqing Pharmaceutical Preparation Engineering Technology Research Center, Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Yan Li
- Chongqing Pharmaceutical Preparation Engineering Technology Research Center, Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Shuya Li
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Dan Yang
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Yaxuan Li
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Dan He
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| |
Collapse
|
11
|
Eltahawy NA, Ali AI, Ibrahim SA, Nafie MS, Sindi AM, Alkharobi H, Almalki AJ, Badr JM, Elhady SS, Abdelhameed RFA. Analysis of Marrubiin in Marrubium alysson L. Extract Using Advanced HPTLC: Chemical Profiling, Acetylcholinesterase Inhibitory Activity, and Molecular Docking. Metabolites 2023; 14:27. [PMID: 38248830 PMCID: PMC10821196 DOI: 10.3390/metabo14010027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/04/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024] Open
Abstract
The main purpose of this work is to investigate the phytochemical composition of Marrubium alysson L. non-polar fraction. GC/MS analysis was used to evaluate the plant extract's saponifiable and unsaponifiable matter. Although M. alysson L. lipoidal matter saponification produced 30.3% of fatty acid methyl esters and 69.7% of unsaponifiable matter. Phytol was the most dominant substance in the unsaponifiable materials. Notably, marrubiin which is one of the most prominent metabolites of Marrubium alysson L. was not detected through our adopted GC/MS technique. Thus, further characterization was proceeded through simple and rapid HPTLC analysis which successfully managed to identify marrubiin. Based on the regression equation, the concentration of marrubiin in M. alysson L. extract was 14.09 mg/g of dry extract. Concerning acetylcholinesterase inhibitory activity, both the crude M. alysson L. total methanolic extract and the non-polar fraction displayed reasonable inhibitory activity against acetylcholinesterase (AChE), whereas the pure compound marrubiin was considered to be the most effective and potent AChE inhibitor, with an IC50 value of 52.66 (µM). According to the molecular docking studies, potential sites of interaction between the pure chemical marrubiin and AChE were examined. The results show that Tyr124 on AChE residue was critical to the activity of the aforementioned drug. Based on the depicted marrubin AChE inhibition activity and reported safety profile, this chemical metabolite is considered as a promising lead compound for further pre-clinical investigation as well as drug development and optimization.
Collapse
Affiliation(s)
- Nermeen A. Eltahawy
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (N.A.E.); (R.F.A.A.)
| | - Asmaa I. Ali
- Department of Pharmacognosy, Faculty of Pharmacy, Misr International University, Cairo 12585, Egypt; (A.I.A.); (S.A.I.)
| | - Salma A. Ibrahim
- Department of Pharmacognosy, Faculty of Pharmacy, Misr International University, Cairo 12585, Egypt; (A.I.A.); (S.A.I.)
| | - Mohamed S. Nafie
- Department of Chemistry, College of Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Amal M. Sindi
- Department of Oral Diagnostic Sciences, Faculty of Dentistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Hanaa Alkharobi
- Department of Oral Biology, Faculty of Dentistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Ahmad J. Almalki
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Jihan M. Badr
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (N.A.E.); (R.F.A.A.)
| | - Sameh S. Elhady
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Reda F. A. Abdelhameed
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (N.A.E.); (R.F.A.A.)
- Department of Pharmacognosy, Faculty of Pharmacy, Galala University, New Galala 43713, Egypt
| |
Collapse
|
12
|
Jiménez-Nevárez YB, Montes-Avila J, Angulo-Escalante MA, Nolasco-Quintana NY, González Christen J, Hurtado-Díaz I, Quintana-Obregón EA, Heredia JB, Valdez-Torres JB, Alvarez L. Bioactivity of Fractions and Pure Compounds from Jatropha cordata (Ortega) Müll. Arg. Bark Extracts. PLANTS (BASEL, SWITZERLAND) 2023; 12:3780. [PMID: 37960136 PMCID: PMC10649229 DOI: 10.3390/plants12213780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/26/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023]
Abstract
Medicines for chronic inflammation can cause gastric ulcers and hepatic and renal issues. An alternative treatment for chronic inflammation is that of natural bioactive compounds, which present low side effects. Extracts of Jatropha cordata (Ortega) Müll. Arg. have been evaluated for their cytotoxicity and anti-inflammatory activity; however, testing pure compounds would be of greater interest. Campesteryl palmitate, n-heptyl ferulate, palmitic acid, and a mixture of sterols, i.e., brassicasterol, campesterol, β-sitosterol, and stigmasterol, were obtained from an ethyl acetate extract from J. cordata (Ortega) Müll. Arg. bark using column chromatography. The toxicity and in vitro anti-inflammatory activities were evaluated using RAW 264.7 murine macrophage cells. None of the products assessed exhibited toxicity. The sterol mixture exhibited greater anti-inflammatory activity than the positive control, and nitric oxide (NO) inhibition percentages were 37.97% and 41.68% at 22.5 μg/mL and 30 μg/mL, respectively. In addition, n-heptyl ferulate decreased NO by 30.61% at 30 μg/mL, while campesteryl palmitate did not show anti-inflammatory activity greater than the positive control. The mixture and n-heptyl ferulate showed NO inhibition; hence, we may conclude that these compounds have anti-inflammatory potential. Additionally, further research and clinical trials are needed to fully explore the therapeutic potential of these bioactive compounds and their efficacy in treating chronic inflammation.
Collapse
Affiliation(s)
- Yazmín B. Jiménez-Nevárez
- Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera Eldorado km 5.5, Campo El Diez, Culiacán 80110, Mexico; (Y.B.J.-N.); (M.A.A.-E.); (J.B.H.)
| | - Julio Montes-Avila
- Programa de Posgrado en Ciencias Biomédicas, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, Ciudad Universitaria s/n, Culiacán 80010, Mexico;
| | - Miguel Angel Angulo-Escalante
- Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera Eldorado km 5.5, Campo El Diez, Culiacán 80110, Mexico; (Y.B.J.-N.); (M.A.A.-E.); (J.B.H.)
| | - Ninfa Yaret Nolasco-Quintana
- Centro de Investigaciones Químicas, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Col. Chamilpa, Cuernavaca 62209, Mexico;
| | - Judith González Christen
- Laboratorio de Inmunidad Innata, Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Col. Chamilpa, Cuernavaca 62206, Mexico;
| | - Israel Hurtado-Díaz
- Departamento de Madera Celulosa y Papel, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, km 15.5 Guadalajara-Nogales, Las Agujas, Zapopan 45100, Mexico;
| | - Eber Addí Quintana-Obregón
- CONACYT—Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Col. La Victoria, Hermosillo 83304, Mexico;
| | - J. Basilio Heredia
- Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera Eldorado km 5.5, Campo El Diez, Culiacán 80110, Mexico; (Y.B.J.-N.); (M.A.A.-E.); (J.B.H.)
| | - José Benigno Valdez-Torres
- Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera Eldorado km 5.5, Campo El Diez, Culiacán 80110, Mexico; (Y.B.J.-N.); (M.A.A.-E.); (J.B.H.)
| | - Laura Alvarez
- Programa de Posgrado en Ciencias Biomédicas, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, Ciudad Universitaria s/n, Culiacán 80010, Mexico;
| |
Collapse
|
13
|
Li C, Zhang Y, Zhao X, Li L, Kong X. Autophagy regulation of virus infection in aquatic animals. REVIEWS IN AQUACULTURE 2023; 15:1405-1420. [DOI: 10.1111/raq.12785] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 01/04/2023] [Indexed: 01/04/2025]
Abstract
AbstractAutophagy is a conserved intracellular degradation process that is required to maintain host homeostasis and cope with invading pathogens. Over the past few decades, studies on mammals have greatly increased our understanding of the relationship between autophagy and virus infection. Autophagy may convey the invader to lysosomes to degrade or activate the host immune response against virus replication. However, many viruses have developed some strategies that evade the degradative nature of autophagy or hijack this pathway for their gain. It follows that autophagy during viral infection is a double‐edged sword. In contrast to mammals, the review on autophagy modulated by the aquatic animal virus is limited. Here, after a brief description of the main information about autophagy, we highlight current progress on the interplays between autophagy and virus infection in aquatic animals, including the phenomenon of autophagy upon virus infection, the effect of modulating autophagy on virus replication, and the crosstalk between autophagy and immune response during virus infection. This review will help us better understand the pathogenic mechanism of aquatic animal viruses and develop proper antiviral countermeasures aimed at modulating autophagy.
Collapse
Affiliation(s)
- Chen Li
- Engineering Lab of Henan Province for Aquatic Animal Disease Control College of Fisheries, Henan Normal University Xinxiang Henan Province PR China
| | - Yunli Zhang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control College of Fisheries, Henan Normal University Xinxiang Henan Province PR China
| | - Xianliang Zhao
- Engineering Lab of Henan Province for Aquatic Animal Disease Control College of Fisheries, Henan Normal University Xinxiang Henan Province PR China
| | - Li Li
- Engineering Lab of Henan Province for Aquatic Animal Disease Control College of Fisheries, Henan Normal University Xinxiang Henan Province PR China
| | - Xianghui Kong
- Engineering Lab of Henan Province for Aquatic Animal Disease Control College of Fisheries, Henan Normal University Xinxiang Henan Province PR China
| |
Collapse
|
14
|
Wang X, Zhang C, Bao N. Molecular mechanism of palmitic acid and its derivatives in tumor progression. Front Oncol 2023; 13:1224125. [PMID: 37637038 PMCID: PMC10447256 DOI: 10.3389/fonc.2023.1224125] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Palmitic acid (PA) is a saturated fatty acid commonly found in coconut oil and palm oil. It serves as an energy source for the body and plays a role in the structure and function of cell membranes. Beyond its industrial applications, PA has gained attention for its potential therapeutic properties. Modern pharmacological studies have demonstrated that PA exhibits anti-inflammatory, antioxidant, and immune-enhancing effects. In recent years, PA has emerged as a promising anti-tumor agent with demonstrated efficacy against various malignancies including gastric cancer, liver cancer, cervical cancer, breast cancer, and colorectal cancer. Its anti-tumor effects encompass inducing apoptosis in tumor cells, inhibiting tumor cell proliferation, suppressing metastasis and invasion, enhancing sensitivity to chemotherapy, and improving immune function. The main anticancer mechanism of palmitic acid (PA) involves the induction of cell apoptosis through the mitochondrial pathway, facilitated by the promotion of intracellular reactive oxygen species (ROS) generation. PA also exhibits interference with the cancer cell cycle, leading to cell cycle arrest predominantly in the G1 phase. Moreover, PA induces programmed cell autophagy death, inhibits cell migration, invasion, and angiogenesis, and synergistically enhances the efficacy of chemotherapy drugs while reducing adverse reactions. PA acts on various intracellular and extracellular targets, modulating tumor cell signaling pathways, including the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt), endoplasmic reticulum (ER), B Cell Lymphoma-2 (Bcl-2), P53, and other signaling pathways. Furthermore, derivatives of PA play a significant regulatory role in tumor resistance processes. This paper provides a comprehensive review of recent studies investigating the anti-tumor effects of PA. It summarizes the underlying mechanisms through which PA exerts its anti-tumor effects, aiming to inspire new perspectives for the treatment of malignant tumors in clinical settings and the development of novel anti-cancer drugs.
Collapse
Affiliation(s)
- Xitan Wang
- Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Chaonan Zhang
- Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
- Weifang Medical University, Weifang, Shandong, China
| | - Na Bao
- Jining First People’s Hospital, Jining, Shandong, China
| |
Collapse
|
15
|
Natnan ME, Low CF, Chong CM, Bunawan H, Baharum SN. Oleic acid as potential immunostimulant in metabolism pathways of hybrid grouper fingerlings (Epinephelus fuscoguttatus × Epinephelus lanceolatus) infected with Vibrio vulnificus. Sci Rep 2023; 13:12830. [PMID: 37553472 PMCID: PMC10409752 DOI: 10.1038/s41598-023-40096-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 08/04/2023] [Indexed: 08/10/2023] Open
Abstract
Grouper culture has been expanding in Malaysia due to the huge demand locally and globally. However, due to infectious diseases such as vibriosis, the fish mortality rate increased, which has affected the production of grouper. Therefore, this study focuses on the metabolic profiling of surviving infected grouper fed with different formulations of fatty acid diets that acted as immunostimulants for the fish to achieve desirable growth and health performance. After a six-week feeding trial and one-week post-bacterial challenge, the surviving infected grouper was sampled for GC-MS analysis. For metabolite extraction, a methanol/chloroform/water (2:2:1.8) extraction method was applied to the immune organs (spleen and liver) of surviving infected grouper. The distribution patterns of metabolites between experimental groups were then analyzed using a metabolomics platform. A total of 50 and 81 metabolites were putatively identified from the spleen and liver samples, respectively. Our further analysis identified glycine, serine, and threonine metabolism, and alanine, aspartate and glutamate metabolism had the most impacted pathways, respectively, in spleen and liver samples from surviving infected grouper. The metabolites that were highly abundant in the spleen found in these pathways were glycine (20.9%), l-threonine (1.0%) and l-serine (0.8%). Meanwhile, in the liver l-glutamine (1.8%) and aspartic acid (0.6%) were found to be highly abundant. Interestingly, among the fish diet groups, grouper fed with oleic acid diet produced more metabolites with a higher percent area compared to the control diets. The results obtained from this study elucidate the use of oleic acid as an immunostimulant in fish feed formulation affects more various immune-related metabolites than other formulated feed diets for vibriosis infected grouper.
Collapse
Affiliation(s)
- Maya Erna Natnan
- Metabolomics Research Laboratory, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia
| | - Chen-Fei Low
- Metabolomics Research Laboratory, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia
| | - Chou-Min Chong
- Laboratory of Immunogenomics, Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Hamidun Bunawan
- Metabolomics Research Laboratory, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia
| | - Syarul Nataqain Baharum
- Metabolomics Research Laboratory, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia.
| |
Collapse
|
16
|
Ameixa OMCC, Pinho M, Domingues MR, Lillebø AI. Bioconversion of olive oil pomace by black soldier fly increases eco-efficiency in solid waste stream reduction producing tailored value-added insect meals. PLoS One 2023; 18:e0287986. [PMID: 37478051 PMCID: PMC10361471 DOI: 10.1371/journal.pone.0287986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 06/17/2023] [Indexed: 07/23/2023] Open
Abstract
Olive oil is one of the most important agricultural products in Mediterranean areas, and currently the European Union is the largest producer. Due to technological innovations, Portugal has become one of the main olive oil producing countries over the last few years, accompanied by large amounts of olive oil pomace (OOP), the most representative residue of the olive oil extraction process. This is causing serious waste management problems since current management solutions also present environmental impacts. Here we explored the black soldier fly (Hermetia illucens) potential to biotransform OOP into valuable insect meals by feeding them OOP-based diets as substrates. Results show that despite survival rates not being affected by higher replacement (75% and 50%) levels of OOP, there was an increase in larval instar duration. Substrate reduction was significantly lower for higher replacement levels but was not affected up to the 50% replacement level. Feed conversion rate differed among all the treatments, increasing as the replacement level increased, while bioconversion rate, which also differed among all the treatments, decreased as replacement level increased. Differences in larval protein content were only seen at higher replacement levels (75%), with an increase in protein content for replacements of up to 25%. One of the most striking results was the change in fatty acid profile, which became more abundant in monounsaturated fatty acids (mostly oleic acid) as the olive pomace replacement levels increased in comparison with the control substrate, rich in saturated fatty acids (palmitic acid). These results show that BSF can be an effective OOP bioconversion agent, and resulting insect meals can be used as alternatives to currently available saturated fatty acid insect meals.
Collapse
Affiliation(s)
- Olga M C C Ameixa
- ECOMARE - Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Marisa Pinho
- ECOMARE - Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Aveiro, Portugal
| | - M Rosário Domingues
- CESAM - Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Aveiro, Portugal
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Ana I Lillebø
- ECOMARE - Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
17
|
Simsek O, Canli K, Benek A, Turu D, Altuner EM. Biochemical, Antioxidant Properties and Antimicrobial Activity of Epiphytic Leafy Liverwort Frullania dilatata (L.) Dumort. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091877. [PMID: 37176934 PMCID: PMC10181397 DOI: 10.3390/plants12091877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 04/24/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023]
Abstract
In this study, the biochemical, antioxidant properties, and antimicrobial activity of the epiphytic leafy liverwort Frullania dilatata (L.) Dumort were investigated. Due to the scarcity and difficulty in obtaining liverworts, research on their bioactivity is limited; thus, this study aimed to uncover the potential of F. dilatata. The antimicrobial activity was evaluated against various microorganisms, including food isolates, clinical isolates, multidrug-resistant strains, and standard strains, using the disk diffusion method and determining the minimum inhibitory concentration (MIC) values. This study represents the first antioxidant investigation on F. dilatata and an antimicrobial study using ethanol extract and the disk diffusion method. Notably, susceptibility was observed in Enterococcus faecalis ATCC 29212, Enterococcus faecium FI, Listeria monocytogenes ATCC 7644, Providencia rustigianii MDR, and Staphylococcus aureus ATCC 25923. The antioxidant capacity was assessed using the DPPH method, emphasizing the high scavenging performance. Gas chromatography-mass spectrometry (GC-MS) analysis identified the primary compounds as frullanolide (19.08%), 2,3-Dimethylanisole (15.21%), linoleic acid (11.11%), palmitic acid (9.83%), and valerenic acid (5.3%). The results demonstrated the significant antimicrobial activity of F. dilatata against the tested microorganisms and its potent antioxidant properties. These findings emphasize the potential of F. dilatata as a promising source of natural antimicrobial and antioxidant agents, underscoring the importance of further investigation into its bioactive compounds and elucidating the mechanisms of action in future studies.
Collapse
Affiliation(s)
- Ozcan Simsek
- Department of Forestry, Yenice Vocational School, Çanakkale Onsekiz Mart University, Çanakkale 17950, Türkiye
| | - Kerem Canli
- Department of Biology, Faculty of Science, Dokuz Eylül University, Izmir 35390, Türkiye
- Fauna and Flora Research and Application Center, Dokuz Eylül University, Izmir 35390, Türkiye
| | - Atakan Benek
- Department of Biology, Graduate School of Natural and Applied Sciences, Kastamonu University, Kastamonu 37150, Türkiye
| | - Dilay Turu
- Department of Biology, Graduate School of Natural and Applied Science, Dokuz Eylül University, Izmir 35390, Türkiye
| | - Ergin Murat Altuner
- Department of Biology, Faculty of Science, Kastamonu University, Kastamonu 37150, Türkiye
| |
Collapse
|
18
|
Joshi RK, Agarwal S, Patil P, Alagarasu K, Panda K, Prashar C, Kakade M, Davuluri KS, Cherian S, Parashar D, Pandey KC, Roy S. Effect of Sauropus androgynus L. Merr. on dengue virus-2: An in vitro and in silico study. JOURNAL OF ETHNOPHARMACOLOGY 2023; 304:116044. [PMID: 36528212 DOI: 10.1016/j.jep.2022.116044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sauropus androgynus L. Merr. (Euphorbiaceae) commonly known as "multigreen" and "multivitamin" is consumed as a vegetable and used in traditional medicine to relieve fever. AIM OF THE STUDY This in vitro study is aimed to explore the activities of the lipophilic fraction of the leaves of S. androgynus (LFSA) against dengue (DENV), chikungunya (CHIKV) viruses and malaria (P. falciparum strain 3D7) parasite. MATERIALS AND METHODS The LFSA was analyzed by using GC-FID and GC-MS. The antiviral activity of LFSA was studied using the Vero CCL-81 cell line. The cytotoxicity assay was performed using 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT). Focus forming unit (FFU), cell-based immunofluorescence (IFA) assays, and quantitative RT-PCR, were used to determine and confirm antiviral activity against DENV and CHIKV. The antiparasitic activity of LFSA was carried out against P. falciparum strain 3D7 grown in fresh O+ human erythrocytes culture. RESULTS Twelve compounds were identified in LFSA using GC/MS. The most abundant compound was squalene (36.9%), followed by vitamin E (12.5%) and linolenic acid (10.2%). Significant reduction in DENV titre was observed under pre- and post-infection treatment conditions at a concentration of 31.25 μg/ml, but no anti-malarial and anti-CHIKV activity was observed. The Autodock-Vina-based in-silico docking study revealed that β-sitosterol could form a strong interaction with the DENV E glycoprotein. CONCLUSION Our findings suggest that LFSA can inhibit DENV infection and might act as a potent prophylactic/therapeutic agent against DENV-2. In-silico results suggested that β-sitosterol may block the viral entry by inhibiting the fusion process.
Collapse
Affiliation(s)
- Rajesh K Joshi
- ICMR-National Institute of Traditional Medicine, Belagavi, 590010, Karnataka, India.
| | - Shivankar Agarwal
- ICMR-National Institute of Traditional Medicine, Belagavi, 590010, Karnataka, India
| | - Poonam Patil
- ICMR-National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune, 411001, Maharashtra, India
| | - Kalichamy Alagarasu
- ICMR-National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune, 411001, Maharashtra, India
| | - Kingshuk Panda
- ICMR-National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune, 411001, Maharashtra, India
| | - Cherish Prashar
- ICMR-National Institute of Malaria Research, Sector 8 Dwarka, Dwarka, New Delhi, 110077, Delhi, India; AcSIRAcademic Council of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Mahadeo Kakade
- ICMR-National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune, 411001, Maharashtra, India
| | - Kusuma S Davuluri
- ICMR-National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune, 411001, Maharashtra, India
| | - Sarah Cherian
- ICMR-National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune, 411001, Maharashtra, India
| | - Deepti Parashar
- ICMR-National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune, 411001, Maharashtra, India.
| | - Kailash C Pandey
- ICMR-National Institute of Malaria Research, Sector 8 Dwarka, Dwarka, New Delhi, 110077, Delhi, India; AcSIRAcademic Council of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Subarna Roy
- ICMR-National Institute of Traditional Medicine, Belagavi, 590010, Karnataka, India
| |
Collapse
|
19
|
Tian S, Zhang J, Yuan S, Wang Q, Lv C, Wang J, Fang J, Fu L, Yang J, Zu X, Zhao J, Zhang W. Exploring pharmacological active ingredients of traditional Chinese medicine by pharmacotranscriptomic map in ITCM. Brief Bioinform 2023; 24:7017365. [PMID: 36719094 DOI: 10.1093/bib/bbad027] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/18/2022] [Accepted: 01/10/2023] [Indexed: 02/01/2023] Open
Abstract
With the emergence of high-throughput technologies, computational screening based on gene expression profiles has become one of the most effective methods for drug discovery. More importantly, profile-based approaches remarkably enhance novel drug-disease pair discovery without relying on drug- or disease-specific prior knowledge, which has been widely used in modern medicine. However, profile-based systematic screening of active ingredients of traditional Chinese medicine (TCM) has been scarcely performed due to inadequate pharmacotranscriptomic data. Here, we develop the largest-to-date online TCM active ingredients-based pharmacotranscriptomic platform integrated traditional Chinese medicine (ITCM) for the effective screening of active ingredients. First, we performed unified high-throughput experiments and constructed the largest data repository of 496 representative active ingredients, which was five times larger than the previous one built by our team. The transcriptome-based multi-scale analysis was also performed to elucidate their mechanism. Then, we developed six state-of-art signature search methods to screen active ingredients and determine the optimal signature size for all methods. Moreover, we integrated them into a screening strategy, TCM-Query, to identify the potential active ingredients for the special disease. In addition, we also comprehensively collected the TCM-related resource by literature mining. Finally, we applied ITCM to an active ingredient bavachinin, and two diseases, including prostate cancer and COVID-19, to demonstrate the power of drug discovery. ITCM was aimed to comprehensively explore the active ingredients of TCM and boost studies of pharmacological action and drug discovery. ITCM is available at http://itcm.biotcm.net.
Collapse
Affiliation(s)
- Saisai Tian
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Jinbo Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
- Department of Pharmacy, Tianjin Rehabilitation Center of Joint Logistics Support Force, Tianjin, 300110, China
| | - Shunling Yuan
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Qun Wang
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosafety, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chao Lv
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosafety, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jinxing Wang
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Jiansong Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lu Fu
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Jian Yang
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Xianpeng Zu
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Jing Zhao
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosafety, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weidong Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosafety, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
20
|
Khodzori FA, Mazlan NB, Chong WS, Ong KH, Palaniveloo K, Shah MD. Metabolites and Bioactivity of the Marine Xestospongia Sponges (Porifera, Demospongiae, Haplosclerida) of Southeast Asian Waters. Biomolecules 2023; 13:484. [PMID: 36979419 PMCID: PMC10046039 DOI: 10.3390/biom13030484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Sponges are aquatic, spineless organisms that belong to the phylum Porifera. They come in three primary classes: Hexactinellidae, Demospongiae, and Calcarea. The Demospongiae class is the most dominant, making up over 90% of sponge species. One of the most widely studied genera within the Demospongiae class is Xestospongia, which is found across Southeast Asian waters. This genus is of particular interest due to the production of numerous primary and secondary metabolites with a wide range of biological potentials. In the current review, the antioxidant, anticancer, anti-inflammatory, antibacterial, antiviral, antiparasitic, and cytotoxic properties of metabolites from several varieties of Southeast Asian Xestospongia spp. were discussed. A total of 40 metabolites of various natures, including alkaloids, fatty acids, steroids, and quinones, were highlighted in X. bergquistia, X. testudinaria, X. muta, X. exigua, X. ashmorica and X. vansoesti. The review aimed to display the bioactivity of Xestospongia metabolites and their potential for use in the pharmaceutical sector. Further research is needed to fully understand their bioactivities.
Collapse
Affiliation(s)
- Fikri Akmal Khodzori
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88450, Malaysia
| | - Nurzafirah Binti Mazlan
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88450, Malaysia
| | - Wei Sheng Chong
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88450, Malaysia
| | - Kuan Hung Ong
- Institute of Ocean and Earth Sciences, Advanced Studies Complex, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Kishneth Palaniveloo
- Institute of Ocean and Earth Sciences, Advanced Studies Complex, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Centre for Natural Products Research and Drug Discovery (CENAR), Level 3, Research Management & Innovation Complex, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Muhammad Dawood Shah
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88450, Malaysia
| |
Collapse
|
21
|
Morad MY, El-Sayed H, El-Khadragy MF, Abdelsalam A, Ahmed EZ, Ibrahim AM. Metabolomic Profiling, Antibacterial, and Molluscicidal Properties of the Medicinal Plants Calotropis procera and Atriplex halimus: In Silico Molecular Docking Study. PLANTS (BASEL, SWITZERLAND) 2023; 12:477. [PMID: 36771561 PMCID: PMC9920412 DOI: 10.3390/plants12030477] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/11/2023] [Accepted: 01/14/2023] [Indexed: 06/18/2023]
Abstract
The potential of plant-based natural compounds in the creation of new molluscicidal and antimicrobial medications has gained attention in recent years. The current study compared the metabolic profiles, antibacterial, and molluscicidal properties of the medicinal plants Calotropis procera (C. procera) and Atriplex halimus (A. halimus). In both plants, 118 metabolites were identified using gas chromatography-mass spectrometry. Palmitic acid, stigmasterol, and campesterol were the most prevalent constituents. C. procera extract showed stronger antibacterial activity than A. halimus against Escherichia coli and Proteus mirabilis. Both extracts exhibited molluscicidal activity against Biomphalaria alexandrina, with LC50 values of C. procera (135 mg/L) and A. halimus (223.8 mg/L). Survival rates of snails exposed to sub-lethal concentrations (LC25) of C. procera and A. halimus extracts were 5% and 20%, respectively. The hatchability of snail eggs exposed to both extracts has been dramatically reduced. Both extracts significantly decreased the levels of alkaline phosphatase, acid phosphatase, total protein, and albumin in snails, as well as causing DNA damage and resulting in numerous hermaphrodite and digestive gland damages and distortions. Molecular docking showed palmitic acid binding with acid, alkaline, and alanine aminotransferases in treated digestive gland snails. In conclusion, C. procera and A. halimus have antibacterial and molluscicidal properties.
Collapse
Affiliation(s)
- Mostafa Y. Morad
- Zoology and Entomology Department, Faculty of Science, Helwan University, Helwan 11795, Egypt
| | - Heba El-Sayed
- Botany and Microbiology Department, Faculty of Science, Helwan University, Helwan 11795, Egypt
| | - Manal F. El-Khadragy
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Asmaa Abdelsalam
- Botany and Microbiology Department, Faculty of Science, Helwan University, Helwan 11795, Egypt
| | - Eman Zakaria Ahmed
- Botany and Microbiology Department, Faculty of Science, Helwan University, Helwan 11795, Egypt
| | - Amina M. Ibrahim
- Medical Malacology Department, Theodor Bilharz Research Institute, Giza 12411, Egypt
| |
Collapse
|
22
|
Wu F, Wei Q, Yang M, Deng R, Liu S. Analysis of chemical components in two tree species of magnoliaceae, Magnolia sumatrana var. glauca (Blume) Figlar & Noot and Magnolia hypolampra (Dandy) Figlar. Nat Prod Res 2023; 37:328-332. [PMID: 34328033 DOI: 10.1080/14786419.2021.1958216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The essential oils from roots, branches, leaves and bark of Magnolia sumatrana var. glauca (Blume) Figlar & Noot and Magnolia hypolampra (Dandy) Figlar were extracted by ultrasonic-assisted extraction and the chemicals were determined by gas chromatography-mass spectroscopy (GC-MS). The major constitutes of M. sumatrana var. glauca were trans-cinnamaldehyde (27.55%), caryophyllene (1.20-10.14%), (+)-bulnesol (9.70%), α-caryophyllene (2.35-6.35%), α-eudesmol (1.08-6.17%). M. hypolampra was characterized by the presence of safrole (0.18-35.01%), (+) cycloisosativene (18.70%), oxirane, hexadecyl- (0.72-12.79%), β-cubebene (1.53-8.90%), (Z)-14-tricosenyl formate (8.65%). This is the first study of the composition of essential oils from the roots, branches and bark of M. sumatrana var. glauca and the roots of M. hypolampra, and some compounds were being described for the first time. Combined with present results and literatures, phytochemicals may be affected by multi-factors such as organs, growing location, and extraction methods, providing more approaches for further exploration of the non-wood resources of forestry species.
Collapse
Affiliation(s)
- Fanglan Wu
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, PR China
| | - Qiusi Wei
- State-ownYachang Forest Farm of Guangxi Zhuang Autonomous Region, Baise, Guangxi, PR China
| | - Mei Yang
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, PR China
| | - Rongyan Deng
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, PR China
| | - Shinan Liu
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, PR China
| |
Collapse
|
23
|
Zhou Z, He Y, Wang S, Wang Y, Shan P, Li P. Autophagy regulation in teleost fish: A double-edged sword. AQUACULTURE 2022; 558:738369. [DOI: 10.1016/j.aquaculture.2022.738369] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
24
|
Natnan ME, Low CF, Chong CM, Daud NINAA, Om AD, Baharum SN. Comparison of Different Dietary Fatty Acids Supplement on the Immune Response of Hybrid Grouper ( Epinephelus fuscoguttatus × Epinephelus lanceolatus) Challenged with Vibrio vulnificus. BIOLOGY 2022; 11:biology11091288. [PMID: 36138767 PMCID: PMC9495948 DOI: 10.3390/biology11091288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/22/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022]
Abstract
Aquaculture has been expanding in Malaysia due to the increased demand for fish products. In addition, aquaculture faces challenges in maintaining feed suitability in support of the global growth of fish production. Therefore, improvements in diet formulation are necessary to achieve the optimal requirements and attain a desirable growth efficiency and health performance in fish. Seven weeks of study were conducted to compare the equal amounts of different fatty acids (2%) (oleic acid, stearic acid, palmitic acid, and behenic acid) on the survival, the growth, and the immune response of hybrid grouper (Epinephelus fuscoguttatus × Epinephelus lanceolatus) against V. vulnificus. After six weeks of the feeding trial, fish were challenged with V. vulnificus for 30 min before continuing on the same feeding regime for the next seven days (post-bacterial challenge). Fish supplemented with dietary oleic acid showed significantly (p < 0.05) enhanced immune responses, i.e., lysozyme, respiratory burst, and phagocytic activities compared to the control diet group for both pre-and post-bacterial challenges. Following the Vibrio challenge, no significant effects of supplemented fatty acid diets on survival rate were observed, although dietary oleic acid demonstrated the highest 63.3% survival rate compared to only 43.3% of the control diet group. In addition, there were no significant effects (p > 0.05) on specific growth rate (SGR), white blood cell (WBC), and red blood cell (RBC) counts among all experimental diets. The results from this study suggest that among the tested dietary fatty acids, the oleic acid diet showed promising results in the form of elevated immune responses and increased disease resistance of the hybrid grouper fingerlings challenged with V. vulnificus.
Collapse
Affiliation(s)
- Maya Erna Natnan
- Metabolomics Research Laboratory, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Chen Fei Low
- Metabolomics Research Laboratory, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Chou Min Chong
- Aquaculture Animal Health and Therapeutics Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | | | - Ahmad Daud Om
- Marine Fish Aquaculture Research Division, Fisheries Research Institute Tanjung Demong, Besut 22200, Malaysia
| | - Syarul Nataqain Baharum
- Metabolomics Research Laboratory, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
- Correspondence:
| |
Collapse
|
25
|
Review of Medicinal Plants and Active Pharmaceutical Ingredients against Aquatic Pathogenic Viruses. Viruses 2022; 14:v14061281. [PMID: 35746752 PMCID: PMC9230652 DOI: 10.3390/v14061281] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 06/08/2022] [Indexed: 02/04/2023] Open
Abstract
Aquaculture offers a promising source of economic and healthy protein for human consumption, which can improve wellbeing. Viral diseases are the most serious type of diseases affecting aquatic animals and a major obstacle to the development of the aquaculture industry. In the background of antibiotic-free farming, the development and application of antibiotic alternatives has become one of the most important issues in aquaculture. In recent years, many medicinal plants and their active pharmaceutical ingredients have been found to be effective in the treatment and prevention of viral diseases in aquatic animals. Compared with chemical drugs and antibiotics, medicinal plants have fewer side-effects, produce little drug resistance, and exhibit low toxicity to the water environment. Most medicinal plants can effectively improve the growth performance of aquatic animals; thus, they are becoming increasingly valued and widely used in aquaculture. The present review summarizes the promising antiviral activities of medicinal plants and their active pharmaceutical ingredients against aquatic viruses. Furthermore, it also explains their possible mechanisms of action and possible implications in the prevention or treatment of viral diseases in aquaculture. This article could lay the foundation for the future development of harmless drugs for the prevention and control of viral disease outbreaks in aquaculture.
Collapse
|
26
|
Huang L, Li M, Wei H, Yu Q, Huang S, Wang T, Liu M, Li P. Research on the indirect antiviral function of medicinal plant ingredient quercetin against grouper iridovirus infection. FISH & SHELLFISH IMMUNOLOGY 2022; 124:372-379. [PMID: 35430348 DOI: 10.1016/j.fsi.2022.04.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/19/2022] [Accepted: 04/09/2022] [Indexed: 06/14/2023]
Abstract
Grouper iridovirus is a devastating pathogen that belongs to the genus Ranavirus. Based on the previous results that natural ingredient quercetin isolated from Illicium verum Hook. f. could effectively inhibit Singapore grouper iridovirus (SGIV) replication, suggesting that quercetin could serve as potential antiviral agent against grouper iridovirus. To know about whether quercetin has indirect antiviral activity against SGIV, this study made the investigation in vitro and in vivo, and the potential mechanism was also explored. Pretreating the cells with quercetin (12.5 μg/mL) significantly inhibited the replication of SGIV, similar results were also confirmed in vivo. Importantly, quercetin pretreatment could induce the expression of genes involved in type I interferon (IFN) system (IFN, STAT1, PKR, MxI and ISG15) and TLR9. It suggested that quercetin exerted the indirect antiviral activity against SGIV infection through promoting the recognition of SGIV and activating the IFN pathway to establish the antiviral status of host cell. Taken together, our results shedded light on the indirect antiviral function of natural ingredient quercetin, and clearly demonstrated that natural ingredient quercetin will be an excellent potential agent against SGIV infection in grouper aquaculture.
Collapse
Affiliation(s)
- Lin Huang
- Guangxi Engineering Research Center for Fishery Major Diseases Control and Efficient Healthy Breeding Industrial Technology (GERCFT), Guangxi Academy of Sciences, Nanning, China
| | - Mengmeng Li
- Guangxi Engineering Research Center for Fishery Major Diseases Control and Efficient Healthy Breeding Industrial Technology (GERCFT), Guangxi Academy of Sciences, Nanning, China; College of Life Science, Henan Normal University, Xinxiang, PR China
| | - Hongling Wei
- Guangxi Engineering Research Center for Fishery Major Diseases Control and Efficient Healthy Breeding Industrial Technology (GERCFT), Guangxi Academy of Sciences, Nanning, China
| | - Qing Yu
- Guangxi Engineering Research Center for Fishery Major Diseases Control and Efficient Healthy Breeding Industrial Technology (GERCFT), Guangxi Academy of Sciences, Nanning, China; Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning, China
| | - Shuaishuai Huang
- Guangxi Engineering Research Center for Fishery Major Diseases Control and Efficient Healthy Breeding Industrial Technology (GERCFT), Guangxi Academy of Sciences, Nanning, China; College of Marine Sciences, Beibu Gulf University, Qinzhou, PR China
| | - Taixia Wang
- College of Life Science, Henan Normal University, Xinxiang, PR China
| | - Mingzhu Liu
- Guangxi Engineering Research Center for Fishery Major Diseases Control and Efficient Healthy Breeding Industrial Technology (GERCFT), Guangxi Academy of Sciences, Nanning, China.
| | - Pengfei Li
- Guangxi Engineering Research Center for Fishery Major Diseases Control and Efficient Healthy Breeding Industrial Technology (GERCFT), Guangxi Academy of Sciences, Nanning, China; Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning, China; College of Marine Sciences, Beibu Gulf University, Qinzhou, PR China.
| |
Collapse
|
27
|
Ali MA, Soliman SS, Bajou K, El-Keblawy A, Mosa KA. Identification of phytochemicals capping the exogenously biosynthesized silver nanoparticles by T. apollinea (Delile) DC. living plants and evaluation of their cytotoxic activity. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
Zhu S, Jiao W, Xu Y, Hou L, Li H, Shao J, Zhang X, Wang R, Kong D. Palmitic acid inhibits prostate cancer cell proliferation and metastasis by suppressing the PI3K/Akt pathway. Life Sci 2021; 286:120046. [PMID: 34653428 DOI: 10.1016/j.lfs.2021.120046] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 09/26/2021] [Accepted: 10/07/2021] [Indexed: 12/15/2022]
Abstract
AIMS Prostate cancer is one of the most frequent causes of cancer death in men worldwide, and novel drugs for prostate cancer therapies are still being developed. Palmitic acid is a common saturated long-chain fatty acid that is known to exhibit anti-inflammatory and metabolic regulatory effects and antitumor activities in several types of tumors. The present study aims to explore the antiproliferative and antimetastatic activities of palmitic acid on human prostate cancer cells and the underlying mechanism. MAIN METHODS MTT and colony formation assays were utilized to determine the antiproliferative effect of palmitic acid. Cell metastasis was evaluated by wound healing, Transwell migration and invasion assay. The in vivo anticancer effect was assessed by a nude mouse xenograft model of prostate cancer. The involved molecular mechanisms were investigated by flow cytometry and Western blot analysis. KEY FINDINGS Palmitic acid significantly suppressed prostate cancer cell growth in vitro and in vivo. Treatment with palmitic acid induced G1 phase arrest, which was associated with downregulation of cyclin D1 and p-Rb and upregulation of p27. In addition, palmitic acid could inhibit prostate cancer cell metastasis, in which suppression of PKCζ and p-Integrinβ1 and an increase in E-cadherin expression might be involved. Furthermore, a mechanistic study indicated that palmitic acid inhibited the key molecules of the PI3K/Akt pathway to block prostate cancer proliferation and metastasis. SIGNIFICANCE Our findings suggested the antitumor potential of palmitic acid for prostate cancer by targeting the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Shan Zhu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Wenhui Jiao
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Yanglu Xu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Lanjiao Hou
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Hui Li
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Jingrong Shao
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Xiaoliang Zhang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Ran Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China.
| | - Dexin Kong
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China; School of Medicine, Tianjin Tianshi College, Tianyuan University, Tianjin 301700, China.
| |
Collapse
|
29
|
Palmitoleate Protects against Zika Virus-Induced Placental Trophoblast Apoptosis. Biomedicines 2021; 9:biomedicines9060643. [PMID: 34200091 PMCID: PMC8226770 DOI: 10.3390/biomedicines9060643] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 05/31/2021] [Indexed: 01/15/2023] Open
Abstract
Zika virus (ZIKV) infection in pregnancy is associated with the development of microcephaly, intrauterine growth restriction, and ocular damage in the fetus. ZIKV infection of the placenta plays a crucial role in the vertical transmission from the maternal circulation to the fetus. Our previous study suggested that ZIKV induces endoplasmic reticulum (ER) stress and apoptosis of placental trophoblasts. Here, we showed that palmitoleate, an omega-7 monounsaturated fatty acid, prevents ZIKV-induced ER stress and apoptosis in placental trophoblasts. Human trophoblast cell lines (JEG-3 and JAR) and normal immortalized trophoblasts (HTR-8) were used. We observed that ZIKV infection of the trophoblasts resulted in apoptosis and treatment of palmitoleate to ZIKV-infected cells significantly prevented apoptosis. However, palmitate (saturated fatty acid) did not offer protection from ZIKV-induced ER stress and apoptosis. We also observed that the Zika viral RNA copies were decreased, and the cell viability improved in ZIKV-infected cells treated with palmitoleate as compared to the infected cells without palmitoleate treatment. Further, palmitoleate was shown to protect against ZIKV-induced upregulation of ER stress markers, C/EBP homologous protein and X-box binding protein-1 splicing in placental trophoblasts. In conclusion, our studies suggest that palmitoleate protects placental trophoblasts against ZIKV-induced ER stress and apoptosis.
Collapse
|
30
|
Sullivan C, Soos BL, Millard PJ, Kim CH, King BL. Modeling Virus-Induced Inflammation in Zebrafish: A Balance Between Infection Control and Excessive Inflammation. Front Immunol 2021; 12:636623. [PMID: 34025644 PMCID: PMC8138431 DOI: 10.3389/fimmu.2021.636623] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 04/21/2021] [Indexed: 12/16/2022] Open
Abstract
The inflammatory response to viral infection in humans is a dynamic process with complex cell interactions that are governed by the immune system and influenced by both host and viral factors. Due to this complexity, the relative contributions of the virus and host factors are best studied in vivo using animal models. In this review, we describe how the zebrafish (Danio rerio) has been used as a powerful model to study host-virus interactions and inflammation by combining robust forward and reverse genetic tools with in vivo imaging of transparent embryos and larvae. The innate immune system has an essential role in the initial inflammatory response to viral infection. Focused studies of the innate immune response to viral infection are possible using the zebrafish model as there is a 4-6 week timeframe during development where they have a functional innate immune system dominated by neutrophils and macrophages. During this timeframe, zebrafish lack a functional adaptive immune system, so it is possible to study the innate immune response in isolation. Sequencing of the zebrafish genome has revealed significant genetic conservation with the human genome, and multiple studies have revealed both functional conservation of genes, including those critical to host cell infection and host cell inflammatory response. In addition to studying several fish viruses, zebrafish infection models have been developed for several human viruses, including influenza A, noroviruses, chikungunya, Zika, dengue, herpes simplex virus type 1, Sindbis, and hepatitis C virus. The development of these diverse viral infection models, coupled with the inherent strengths of the zebrafish model, particularly as it relates to our understanding of macrophage and neutrophil biology, offers opportunities for far more intensive studies aimed at understanding conserved host responses to viral infection. In this context, we review aspects relating to the evolution of innate immunity, including the evolution of viral pattern recognition receptors, interferons and interferon receptors, and non-coding RNAs.
Collapse
Affiliation(s)
- Con Sullivan
- College of Arts and Sciences, University of Maine at Augusta, Bangor, ME, United States
| | - Brandy-Lee Soos
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, United States
| | - Paul J. Millard
- Department of Environmental and Sustainable Engineering, University at Albany, Albany, NY, United States
| | - Carol H. Kim
- Department of Biomedical Sciences, University at Albany, Albany, NY, United States
- Department of Biological Sciences, University at Albany, Albany, NY, United States
| | - Benjamin L. King
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, United States
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, United States
| |
Collapse
|
31
|
Liu JT, Lumsden JS. Impact of feed restriction, chloroquine and deoxynivalenol on viral haemorrhagic septicaemia virus IVb in fathead minnow Pimephales promelas Rafinesque. JOURNAL OF FISH DISEASES 2021; 44:217-220. [PMID: 33165930 DOI: 10.1111/jfd.13300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 06/11/2023]
Abstract
Autophagy can markedly alter host response to infectious disease, and several studies have demonstrated that a restricted diet or deoxynivalenol modulates autophagy and reduces mortality of fish due to bacterial disease. The picture is less clear for viral diseases of fish. Duplicate tanks of fathead minnow, Pimephales promelas Rafinesque, were fed a replete diet (control), 100 µM chloroquine, 5 µM deoxynivalenol, 10% (fasted) or 40% of a replete diet (pair-fed) for 2 weeks and then experimentally infected by intraperitoneal injection with 2 × 105 viral haemorrhagic septicaemia virus IVb. Survival from highest to lowest for the different treatments was as follows: deoxynivalenol (average 43.3%); control (40.0%); pair-fed (35.0%); fasted (33.3%); and chloroquine (21.7%). No treatment significantly altered the survival rate of fathead minnow after VHSV IVb infection when compared to controls; however, the fish fed with chloroquine had significantly lower survival rate than the fish fed deoxynivalenol (p < .05).
Collapse
Affiliation(s)
- Juan-Ting Liu
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | - John S Lumsden
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
32
|
Combination and tricombination therapy to destabilize the structural integrity of COVID-19 by some bioactive compounds with antiviral drugs: insights from molecular docking study. Struct Chem 2021; 32:1415-1430. [PMID: 33437137 PMCID: PMC7791912 DOI: 10.1007/s11224-020-01723-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/29/2020] [Indexed: 11/14/2022]
Abstract
Recently, the SARS-CoV-2 (COVID-19) pandemic virus has been spreading throughout the world. Until now, no certified drugs have been discovered to efficiently inhibit the virus. The scientists are struggling to find new safe bioactive inhibitors of this deadly virus. In this study, we aim to find antagonists that may inhibit the activity of the three major viral targets: SARS-CoV-2 3-chymotrypsin-like protease (6LU7), SARS-CoV-2 spike protein (6VYB), and a host target human angiotensin-converting enzyme 2 (ACE2) receptor (1R42), which is the entry point for the viral encounter, were studied with the prospects of identifying significant drug candidate(s) against COVID-19 infection. Then, the protein stability produced score of less than 0.6 for all residues of all studied receptors. This confirmed that these receptors are extremely stable proteins, so it is very difficult to unstable the stability of these proteins through utilizing individual drugs. Hence, we studied the combination and tricombination therapy between bioactive compounds which have the best binding affinity and some antiviral drugs like chloroquine, hydroxychloroquine, azithromycin, simeprevir, baloxavir, lopinavir, and favipiravir to show the effect of combination and tricombination therapy to disrupt the stability of the three major viral targets that are mentioned previously. Also, ADMET study suggested that most of all studied bioactive compounds are safe and nontoxic compounds. All results confirmed that caulerpin can be utilized as a combination and tricombination therapy along with the studied antiviral drugs for disrupting the stability of the three major viral receptors (6LU7, 6VYB, and 1R42).
Collapse
|
33
|
Tian J, Zhang Y, Zhu R, Wu Y, Liu X, Wang X. Red elemental selenium (Se 0 ) improves the immunoactivities of EPC cells, crucian carp and zebrafish against spring viraemia of carp virus. JOURNAL OF FISH BIOLOGY 2021; 98:208-218. [PMID: 33000466 DOI: 10.1111/jfb.14571] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/27/2020] [Accepted: 09/29/2020] [Indexed: 06/11/2023]
Abstract
Selenium, as an essential trace element, interferes through selenoproteins in many physiological processes of plants and mammals. Its antiviral activity has recently attracted much attention because selenium improves the antiviral capacity of animal cells against a few viruses relevant to human diseases. In this study, the red elemental selenium was purified from the fermentative culture of Herbaspirillum camelliae WT00C and then used to culture epithelioma papulosum cyprinid (EPC) cells or feed crucian carp and zebrafish. Finally, its antiviral effects were investigated at the cell level and living fishes after spring viraemia of carp virus infection. At the cell level, 5, 10 and 20 μg ml-1 red elemental selenium significantly induced the expression of interferon (IFN) and ISG15 genes in EPC cells. The viral TCID50 (50% tissue culture infective dose) values in the EPC cells incubated with 5, 10 and 20 μg ml-1 red elemental selenium were significantly less than those of the control. More expression of IFN and ISG15 genes and less TCID50 values indicate that red elemental selenium indeed improves the antiviral capability of EPC cells. In the crucian carp fed with the food containing 5 and 10 μg g-1 red elemental selenium, IFN expressions showed 13- and 39-fold increases at the 16th day of post-injection, and its expression was dependent on selenium concentrations. Meanwhile, no fish death occurred in all the experimental groups. In the zebrafish fed with the red worm containing 5 μg g-1 red elemental selenium, IFN and Mx expressions and survival rate were significantly higher than those of the control. The results of this study show that red elemental selenium indeed improves the antiviral activity of fish. The antiviral effects of selenium mainly come from its immune regulation through its incorporation into selenoproteins. The optimum level of selenium contributes to improving fish immunity, whereas excess selenium causes excessive immune and inflammatory responses.
Collapse
Affiliation(s)
- Jinbao Tian
- State Key Laboratory of Biocatalysis and Enzyme Engineering, The Faculty of Life Science, Hubei University, Wuhan, China
| | - Yong Zhang
- Xianning Central Hospital, Tongji Xianning Hospital, Xianning, China
| | - Rong Zhu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, The Faculty of Life Science, Hubei University, Wuhan, China
| | - Yeqing Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, The Faculty of Life Science, Hubei University, Wuhan, China
| | - Xiaoxiao Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, The Faculty of Life Science, Hubei University, Wuhan, China
| | - Xingguo Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, The Faculty of Life Science, Hubei University, Wuhan, China
| |
Collapse
|
34
|
Novel Antiviral and Antibacterial Activities of Hibiscus schizopetalus. Antibiotics (Basel) 2020; 9:antibiotics9110756. [PMID: 33142982 PMCID: PMC7692239 DOI: 10.3390/antibiotics9110756] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/17/2020] [Accepted: 10/20/2020] [Indexed: 12/11/2022] Open
Abstract
Hibiscus schizopetalus (Dyer) Hook.f. (Malvaceae) is an ornamental plant. The aim was to investigate its antimicrobial and antioxidant activities. In vitro antiviral, antibacterial, and antioxidant activities of the 70% ethanolic extract (Et-E) of the aerial parts of the plant were determined. The Dichloromethane Fraction (DCM-F) and the n-Butanol Fraction (Bu-F) were assessed using Liquid chromatography-mass spectrometry (LC-MS). The DCM-F showed higher antiviral activities against Coxsackie B4 (CoxB4) viruses (IC50 = 64.13 µg/mL) and adenoviruses (IC50 = 54.88 µg/mL) than acyclovir (IC50 = 72.79 µg/mL for CoxB4 viruses; IC50 = 91.92 µg/mL for adenoviruses). The DCM-F showed higher anti-helicobacter pylori activity (MIC = 3.9 µg/mL) than clarithromycin (MIC = 1.95 µg/mL). The DCM-F inhibited Herpes Simplex Virus (HSV) Type I (IC50 = 29.85 µg/mL) and HSV Type II (IC50 = 74.17 µg/mL). The Bu-F showed higher anti-mycobacterial activity (MIC = 7.81 µg/mL) than isoniazid (MIC = 0.24 µg/mL) and higher antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA)(MIC = 7.81 µg/mL) than vancomycin (MIC = 3.9 µg/mL). Antioxidant assays included total antioxidant capacity (TAC), 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS), 2,2-diphenyl-1-picryl-hydrazyl (DPPH), and iron reducing power. The Bu-F showed the highest antioxidant activity. Chemical profiles were analyzed using HPLC-HR-ESI-MS to identify the metabolites responsible for these biological activities. We identified more than 60 metabolites that belong to anthocyanins, flavonoids, phenolics, terpenes, sterols, and fatty acids. In conclusion, Hibiscusschizopetalus is endowed with metabolites that could be used against viruses and antibiotic-resistant bacteria. They can also be potent antioxidants.
Collapse
|
35
|
Abdelrheem DA, Ahmed SA, Abd El-Mageed HR, Mohamed HS, Rahman AA, Elsayed KNM, Ahmed SA. The inhibitory effect of some natural bioactive compounds against SARS-CoV-2 main protease: insights from molecular docking analysis and molecular dynamic simulation. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2020; 55:1373-1386. [PMID: 32998618 PMCID: PMC7544954 DOI: 10.1080/10934529.2020.1826192] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 05/24/2023]
Abstract
This work aimed at evaluating the inhibitory effect of ten natural bioactive compounds (1-10) as potential inhibitors of SARS-CoV-2-3CL main protease (PDB ID: 6LU7) and SARS-CoV main proteases (PDB IDs: 2GTB and 3TNT) by molecular docking analysis. The inhibitory effect of all studied compounds was studied with compared to some proposed antiviral drugs which currently used in COVID-19 treatment such as chloroquine, hydroxychloroquine, azithromycin, remdesivir, baloxvir, lopinavir, and favipiravir. Homology modeling and sequence alignment was computed to evaluate the similarity between the SARS-CoV-2-3CL main protease and other SARS-CoV receptors. ADMET properties of all studied compounds were computed and reported. Also, molecular dynamic (MD) simulation was performed on the compound which has the highest binding affinity inside 6LU7 obtained from molecular docking analysis to study it is stability inside receptor in explicit water solvent. Based on molecular docking analysis, we found that caulerpin has the highest binding affinity inside all studied receptors compared to other bioactive compounds and studied drugs. Our homology modeling and sequence alignment showed that SARS-CoV main protease (PDB ID: 3TNT) shares high similarity with 3CLpro (96.00%). Also, ADMET properties confirmed that caulerpin obeys Lipinski's rule and passes ADMET property, which make it a promising compound to act as a new safe natural drug against SARS-CoV-2-3CL main protease. Finally, MD simulation confirmed that the complex formed between caulerpin and 3CLpro is stable in water explicit and had no major effect on the flexibility of the protein throughout the simulations and provided a suitable basis for our study. Also, binding free energy between caulerpin and 6LU7 confirmed the efficacy of the caulerpin molecule against SARS-CoV-2 main protease. So, this study suggested that caulerpin could be used as a potential candidate in COVID-19 treatment.
Collapse
Affiliation(s)
- Doaa A. Abdelrheem
- Department of Chemistry, Faculty of Science,
Beni-Suef University, Beni-Suef,
Egypt
| | - Shimaa A. Ahmed
- Department of Chemistry, Faculty of Science,
Beni-Suef University, Beni-Suef,
Egypt
| | - H. R. Abd El-Mageed
- Micro-Analysis and Environmental Research and
Community Services Center, Faculty of Science, Beni-Suef University,
Beni-Suef, Egypt
| | - Hussein S. Mohamed
- Research Institute of Medicinal and Aromatic
Plants (RIMAP), Beni-Suef University, Beni-Suef,
Egypt
| | - Aziz A. Rahman
- Department of Pharmacy, University of
Rajshahi, Rajshahi, Bangladesh
| | - Khaled N. M. Elsayed
- Department of Botany, Faculty of Science,
Beni-Suef University, Beni-Suef,
Egypt
| | - Sayed A. Ahmed
- Department of Chemistry, Faculty of Science,
Beni-Suef University, Beni-Suef,
Egypt
| |
Collapse
|
36
|
Constitutive immune mechanisms: mediators of host defence and immune regulation. Nat Rev Immunol 2020; 21:137-150. [PMID: 32782357 PMCID: PMC7418297 DOI: 10.1038/s41577-020-0391-5] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2020] [Indexed: 02/07/2023]
Abstract
The immune system enables organisms to combat infections and to eliminate endogenous challenges. Immune responses can be evoked through diverse inducible pathways. However, various constitutive mechanisms are also required for immunocompetence. The inducible responses of pattern recognition receptors of the innate immune system and antigen-specific receptors of the adaptive immune system are highly effective, but they also have the potential to cause extensive immunopathology and tissue damage, as seen in many infectious and autoinflammatory diseases. By contrast, constitutive innate immune mechanisms, including restriction factors, basal autophagy and proteasomal degradation, tend to limit immune responses, with loss-of-function mutations in these pathways leading to inflammation. Although they function through a broad and heterogeneous set of mechanisms, the constitutive immune responses all function as early barriers to infection and aim to minimize any disruption of homeostasis. Supported by recent human and mouse data, in this Review we compare and contrast the inducible and constitutive mechanisms of immunosurveillance.
Collapse
|
37
|
Yu Y, Li C, Liu J, Zhu F, Wei S, Huang Y, Huang X, Qin Q. Palmitic Acid Promotes Virus Replication in Fish Cell by Modulating Autophagy Flux and TBK1-IRF3/7 Pathway. Front Immunol 2020; 11:1764. [PMID: 32849631 PMCID: PMC7419653 DOI: 10.3389/fimmu.2020.01764] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/01/2020] [Indexed: 12/23/2022] Open
Abstract
Palmitic acid is the most common saturated fatty acid in animals, plants, and microorganisms. Studies highlighted that palmitic acid plays a significant role in diverse cellular processes and viral infections. Accumulation of palmitic acid was observed in fish cells (grouper spleen, GS) infected with Singapore grouper iridovirus (SGIV). The fluctuated content levels after viral infection suggested that palmitic acid was functional in virus-cell interactions. In order to investigate the roles of palmitic acid in SGIV infection, the effects of palmitic acid on SGIV induced cytopathic effect, expression levels of viral genes, viral proteins, as well as virus production were evaluated. The infection and replication of SGIV were increased after exogenous addition of palmitic acid but suppressed after knockdown of fatty acid synthase (FASN), of which the primary function was to catalyze palmitate synthesis. Besides, the promotion of virus replication was associated with the down-regulating of interferon-related molecules, and the reduction of IFN1 and ISRE promotor activities by palmitic acid. We also discovered that palmitic acid restricted TBK1, but not MDA5-induced interferon immune responses. On the other hand, palmitic acid decreased autophagy flux in GS cells via suppressing autophagic degradation, and subsequently enhanced viral replication. Together, our findings indicate that palmitic acid is not only a negative regulator of TBK1-IRF3/7 pathway, but also a suppressor of autophagic flux. Finally, palmitic acid promotes the replication of SGIV in fish cells.
Collapse
Affiliation(s)
- Yepin Yu
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Chen Li
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Jiaxin Liu
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Fengyi Zhu
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shina Wei
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Youhua Huang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Xiaohong Huang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Qiwei Qin
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
38
|
Ahmed SA, Abdelrheem DA, El-Mageed HRA, Mohamed HS, Rahman AA, Elsayed KNM, Ahmed SA. Destabilizing the structural integrity of COVID-19 by caulerpin and its derivatives along with some antiviral drugs: An in silico approaches for a combination therapy. Struct Chem 2020; 31:2391-2412. [PMID: 32837118 PMCID: PMC7376526 DOI: 10.1007/s11224-020-01586-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/06/2020] [Indexed: 12/17/2022]
Abstract
Presently, the SARS-CoV-2 (COVID-19) pandemic has been spreading throughout the world. Some drugs such as lopinavir, simeprevir, hydroxychloroquine, chloroquine, and amprenavir have been recommended for COVID-19 treatment by some researchers, but these drugs were not effective enough against this virus. This study based on in silico approaches was aimed to increase the anti-COVID-19 activities of these drugs by using caulerpin and its derivatives as an adjunct drug against SARS-CoV-2 receptor proteins: the SARS-CoV-2 main protease and the SARS-CoV-2 spike protein. Caulerpin exhibited antiviral activities against chikungunya virus and herpes simplex virus type 1. Caulerpin and some of its derivatives showed inhibitory activity against Alzheimer’s disease. The web server ANCHOR revealed higher protein stability for the two receptors with disordered score (< 0.6). Molecular docking analysis showed that the binding energies of most of the caulerpin derivatives were higher than all the suggested drugs for the two receptors. Also, we deduced that inserting NH2, halogen, and vinyl groups can increase the binding affinity of caulerpin toward 6VYB and 6LU7, while inserting an alkyl group decreases the binding affinity of caulerpin toward 6VYB and 6LU7. So, we can modify the inhibitory effect of caulerpin against 6VYB and 6LU7 by inserting NH2, halogen, and vinyl groups. Based on the protein disordered results, the SARS-CoV-2 main protease and SARS-CoV-2 spike protein domain are highly stable proteins, so it is quite difficult to unstabilize their integrity by using individual drugs. Also, molecular dynamics (MD) simulation indicates that binding of the combination therapy of simeprevir and the candidate studied compounds to the receptors was stable and had no major effect on the flexibility of the protein throughout the simulations and provided a suitable basis for our study. So, this study suggested that caulerpin and its derivatives could be used as a combination therapy along with lopinavir, simeprevir, hydroxychloroquine, chloroquine, and amprenavir for disrupting the stability of SARS-CoV2 receptor proteins to increase the antiviral activity of these drugs.
Collapse
Affiliation(s)
- Shimaa A Ahmed
- Department of Chemistry, Faculty of Science, Beni-Suef University, Beni Suef, 62511 Egypt
| | - Doaa A Abdelrheem
- Department of Chemistry, Faculty of Science, Beni-Suef University, Beni Suef, 62511 Egypt
| | - H R Abd El-Mageed
- Micro-analysis and Environmental Research and Community Services Center, Faculty of Science, Beni-Suef University, Beni Suef, Egypt
| | - Hussein S Mohamed
- Research Institute of Medicinal and Aromatic Plants (RIMAP), Beni-Suef University, Beni Suef, Egypt
| | - Aziz A Rahman
- Department of Pharmacy, University of Rajshahi, Rajshahi, 6205 Bangladesh
| | - Khaled N M Elsayed
- Department of Botany, Faculty of Science, Beni-Suef University, Beni-Suef, 62511 Egypt
| | - Sayed A Ahmed
- Department of Chemistry, Faculty of Science, Beni-Suef University, Beni Suef, 62511 Egypt
| |
Collapse
|
39
|
Pradhan D, Biswasroy P, Kumar Naik P, Ghosh G, Rath G. A Review of Current Interventions for COVID-19 Prevention. Arch Med Res 2020; 51:363-374. [PMID: 32409144 PMCID: PMC7190516 DOI: 10.1016/j.arcmed.2020.04.020] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 12/15/2022]
Abstract
The recent outbreak of CoVID-19 is declared as a global public health emergency of international concern by the World Health Organization (WHO). A fresh figure of 2268011 positive cases and 155185 death records (till April 18th 2020) across the worldwide signify the severity of this viral infection. CoVID-19 infection is a pandemic, surface to surface communicable disease with a case fatality rate of 3.4% as estimated by WHO up to March 3rd 2020. Unfortunately, the current unavailability of an effective antiviral drug and approved vaccine, worsen the situation more critical. Implementation of an effective preventive measure is the only option left to counteract CoVID-19. Further, a retrospective analysis provides evidence that contemplates the decisive role of preventive measures in controlling severe acute respiratory syndrome (SARS) outbreak in 2003. A statistical surveillance report of WHO reflects, maintaining a coherent infection, prevention and control guideline resulted in a 30% reduction in healthcare-associated infections. The effectiveness of preventive measures completely relies on the strength of surface disinfectants, the composition of hand sanitizer, appropriate material for the manufacture of personal protective equipment (PPE). This review enlightens the various preventive measures such as a suitable selection of surface disinfectants, appropriate hand sanitization, and empowering the PPE that could be a potential intervention to fight against CoVID-19.
Collapse
Affiliation(s)
- Deepak Pradhan
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha O Anusandhan, Deemed to be University, Bhubaneswar, Odisha, India
| | - Prativa Biswasroy
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha O Anusandhan, Deemed to be University, Bhubaneswar, Odisha, India
| | | | - Goutam Ghosh
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha O Anusandhan, Deemed to be University, Bhubaneswar, Odisha, India
| | - Goutam Rath
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha O Anusandhan, Deemed to be University, Bhubaneswar, Odisha, India.
| |
Collapse
|
40
|
Zebrafish pten Genes Play Relevant but Distinct Roles in Antiviral Immunity. Vaccines (Basel) 2020; 8:vaccines8020199. [PMID: 32357549 PMCID: PMC7349019 DOI: 10.3390/vaccines8020199] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 12/14/2022] Open
Abstract
The PTEN (phosphatase and TENsin homolog on chromosome 10) gene encodes a bifunctional phosphatase that acts as a tumor suppressor. However, PTEN has been implicated in different immune processes, including autophagy, inflammation, regulation of natural killer (NK) cell cytolytic activity and type I interferon responses. Unlike mammals, zebrafish possess two pten genes (ptena and ptenb). This study explores the involvement of both zebrafish pten genes in antiviral defense. Although ptena−/− and ptenb−/− larvae were more susceptible to Spring viremia of carp virus (SVCV), the viral replication rate was lower in the mutant larvae than in the wild-type larvae. We observed that both mutant lines showed alterations in the transcription of numerous genes, including those related to the type I interferon (IFN) system, cytolytic activity, autophagy and inflammation, and some of these genes were regulated in opposite ways depending on which pten gene was mutated. Even though the lower replication rate of SVCV could be associated with impaired autophagy in the mutant lines, the higher mortality observed in the ptena−/− and ptenb−/− larvae does not seem to be associated with an uncontrolled inflammatory response.
Collapse
|