1
|
Sasikumar R, Saranya S, Lourdu Lincy L, Thamanna L, Chellapandi P. Genomic insights into fish pathogenic bacteria: A systems biology perspective for sustainable aquaculture. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109978. [PMID: 39442738 DOI: 10.1016/j.fsi.2024.109978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/12/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
Fish diseases significantly challenge global aquaculture, causing substantial financial losses and impacting sustainability, trade, and socioeconomic conditions. Understanding microbial pathogenesis and virulence at the molecular level is crucial for disease prevention in commercial fish. This review provides genomic insights into fish pathogenic bacteria from a systems biology perspective, aiming to promote sustainable aquaculture. It covers the genomic characteristics of various fish pathogens and their industry impact. The review also explores the systems biology of zebrafish, fish bacterial pathogens, and probiotic bacteria, offering insights into fish production, potential vaccines, and therapeutic drugs. Genome-scale metabolic models aid in studying pathogenic bacteria, contributing to disease management and antimicrobial development. Researchers have also investigated probiotic strains to improve aquaculture health. Additionally, the review highlights bioinformatics resources for fish and fish pathogens, which are essential for researchers. Systems biology approaches enhance understanding of bacterial fish pathogens by revealing virulence factors and host interactions. Despite challenges from the adaptability and pathogenicity of bacterial infections, sustainable alternatives are necessary to meet seafood demand. This review underscores the potential of systems biology in understanding fish pathogen biology, improving production, and promoting sustainable aquaculture.
Collapse
Affiliation(s)
- R Sasikumar
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - S Saranya
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - L Lourdu Lincy
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - L Thamanna
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - P Chellapandi
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India.
| |
Collapse
|
2
|
Abdellaoui N, Kim MS. Transcriptome Profiling of Gene Expression in Atlantic Salmon (Salmo salar) at Early Stage of Development. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:964-974. [PMID: 39110288 DOI: 10.1007/s10126-024-10354-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/30/2024] [Indexed: 10/17/2024]
Abstract
For Atlantic salmon development, the most critical phase is the early development stage from egg to fry through alevin. However, the studies investigating the early development of Atlantic salmon based on RNA-seq are scarce and focus only on one stage of development. Therefore, using the RNA-seq technology, the assessment of different gene expressions of various early development stages (egg, alevin, and fry) was performed on a global scale. Over 22 GB of clean data was generated from 9 libraries with three replicates for each stage with over 90% mapping efficiency. A total of 5534 genes were differentially expressed, among which 19, 606, and 826 genes were specifically expressed in each stage, respectively. The transcriptome analysis showed that the number of differentially expressed genes (DEGs) increased as the Atlantic salmon progressed in development from egg to fry stage. In addition, gene ontology enrichment demonstrated that egg and alevin stages are characterized by upregulation of genes involved in spinal cord development, neuron projection morphogenesis, axonogenesis, and cytoplasmic translation. At the fry stage, upregulated genes were enriched in the muscle development process (muscle cell development, striated muscle cell differentiation, and muscle tissue development), immune system (defense response and canonical NF-kappaB signal transduction), as well as epidermis development. These results suggest that the early development of Atlantic salmon is characterized by a dynamic shift in gene expression and DEGs between different stages, which provided a solid foundation for the investigation of Atlantic salmon development.
Collapse
Affiliation(s)
- Najib Abdellaoui
- Department of Biological Sciences, Kongju National University, Gongju, 32588, South Korea
| | - Min Sun Kim
- Department of Biological Sciences, Kongju National University, Gongju, 32588, South Korea.
| |
Collapse
|
3
|
Gnanagobal H, Chakraborty S, Vasquez I, Chukwu-Osazuwa J, Cao T, Hossain A, Dang M, Valderrama K, Kumar S, Bindea G, Hill S, Boyce D, Hall JR, Santander J. Transcriptome profiling of lumpfish (Cyclopterus lumpus) head kidney to Renibacterium salmoninarum at early and chronic infection stages. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 156:105165. [PMID: 38499166 DOI: 10.1016/j.dci.2024.105165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 03/08/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
Renibacterium salmoninarum causes Bacterial Kidney Disease (BKD) in several fish species. Atlantic lumpfish, a cleaner fish, is susceptible to R. salmoninarum. To profile the transcriptome response of lumpfish to R. salmoninarum at early and chronic infection stages, fish were intraperitoneally injected with either a high dose of R. salmoninarum (1 × 109 cells dose-1) or PBS (control). Head kidney tissue samples were collected at 28- and 98-days post-infection (dpi) for RNA sequencing. Transcriptomic profiling identified 1971 and 139 differentially expressed genes (DEGs) in infected compared with control samples at 28 and 98 dpi, respectively. At 28 dpi, R. salmoninarum-induced genes (n = 434) mainly involved in innate and adaptive immune response-related pathways, whereas R. salmoninarum-suppressed genes (n = 1537) were largely connected to amino acid metabolism and cellular processes. Cell-mediated immunity-related genes showed dysregulation at 98 dpi. Several immune-signalling pathways were dysregulated in response to R. salmoninarum, including apoptosis, alternative complement, JAK-STAT signalling, and MHC-I dependent pathways. In summary, R. salmoninarum causes immune suppression at early infection, whereas lumpfish induce a cell-mediated immune response at chronic infection. This study provides a complete depiction of diverse immune mechanisms dysregulated by R. salmoninarum in lumpfish and opens new avenues to develop immune prophylactic tools to prevent BKD.
Collapse
Affiliation(s)
- Hajarooba Gnanagobal
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada.
| | - Setu Chakraborty
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Ignacio Vasquez
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Joy Chukwu-Osazuwa
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Trung Cao
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Ahmed Hossain
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - My Dang
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Katherine Valderrama
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Surendra Kumar
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada; Ocean Frontier Institute, Ocean Sciences Centre, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Gabriela Bindea
- INSERM, Laboratory of Integrative Cancer Immunology, 75006, Paris, France; Equipe Labellisée Ligue Contre Le Cancer, 75013, Paris, France; Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, 75006, Paris, France
| | - Stephen Hill
- Cold-Ocean Deep-Sea Research Facility, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| | - Danny Boyce
- The Dr. Joe Brown Aquatic Research Building (JBARB), Ocean Sciences Centre, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Jennifer R Hall
- Aquatic Research Cluster, CREAIT Network, Ocean Sciences Centre, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Javier Santander
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada.
| |
Collapse
|
4
|
Chakraborty S, Gnanagobal H, Hossain A, Cao T, Vasquez I, Boyce D, Santander J. Inactivated Aeromonas salmonicida impairs adaptive immunity in lumpfish (Cyclopterus lumpus). JOURNAL OF FISH DISEASES 2024; 47:e13944. [PMID: 38523320 DOI: 10.1111/jfd.13944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/25/2024] [Accepted: 03/01/2024] [Indexed: 03/26/2024]
Abstract
Aeromonas salmonicida, a widely distributed aquatic pathogen causing furunculosis in fish, exhibits varied virulence, posing challenges in infectious disease and immunity studies, notably in vaccine efficacy assessment. Lumpfish (Cyclopterus lumpus) has become a valuable model for marine pathogenesis studies. This study evaluated several antigen preparations against A. salmonicida J223, a hypervirulent strain of teleost fish, including lumpfish. The potential immune protective effect of A. salmonicida bacterins in the presence and absence of the A-layer and extracellular products was tested in lumpfish. Also, we evaluated the impact of A. salmonicida outer membrane proteins (OMPs) and iron-regulated outer membrane proteins (IROMPs) on lumpfish immunity. The immunized lumpfish were intraperitoneally (i.p.) challenged with 104 A. salmonicida cells/dose at 8 weeks-post immunization (wpi). Immunized and non-immunized fish died within 2 weeks post-challenge. Our analyses showed that immunization with A. salmonicida J223 bacterins and antigen preparations did not increase IgM titres. In addition, adaptive immunity biomarker genes (e.g., igm, mhc-ii and cd4) were down-regulated. These findings suggest that A. salmonicida J223 antigen preparations hinder lumpfish immunity. Notably, many fish vaccines are bacterin-based, often lacking efficacy evaluation. This study offers crucial insights for finfish vaccine approval and regulations.
Collapse
Affiliation(s)
- Setu Chakraborty
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Hajarooba Gnanagobal
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Ahmed Hossain
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Trung Cao
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Ignacio Vasquez
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Danny Boyce
- Department of Ocean Sciences, Dr. Joe Brown Aquatic Research Building, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Javier Santander
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| |
Collapse
|
5
|
Ghasemieshkaftaki M, Cao T, Hossain A, Vasquez I, Santander J. Haemato-Immunological Response of Immunized Atlantic Salmon ( Salmo salar) to Moritella viscosa Challenge and Antigens. Vaccines (Basel) 2024; 12:70. [PMID: 38250883 PMCID: PMC10818610 DOI: 10.3390/vaccines12010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/26/2023] [Accepted: 01/06/2024] [Indexed: 01/23/2024] Open
Abstract
Winter ulcer disease is a health issue in the Atlantic salmonid aquaculture industry, mainly caused by Moritella viscosa. Although vaccination is one of the effective ways to prevent bacterial outbreaks in the salmon farming industry, ulcer disease related to bacterial infections is being reported on Canada's Atlantic coast. Here, we studied the immune response of farmed immunized Atlantic salmon to bath and intraperitoneal (ip) M. viscosa challenges and evaluated the immunogenicity of M. viscosa cell components. IgM titers were determined after infection, post boost immunization, and post challenge with M. viscosa. IgM+ (B cell) in the spleen and blood cell populations were also identified and quantified by 3,3 dihexyloxacarbocyanine (DiOC6) and IgM-Texas red using confocal microscopy and flow cytometry. At 14 days post challenge, IgM was detected in the serum and spleen. There was a significant increase in circulating neutrophils 3 days after ip and bath challenges in the M. viscosa outer membrane vesicles (OMVs) boosted group compared to non-boosted. Lymphocytes increased in the blood at 7 and 14 days after the ip and bath challenges, respectively, in OMVs boosted group. Furthermore, a rise in IgM titers was detected in the OMVs boosted group. We determined that a commercial vaccine is effective against M. viscosa strain, and OMVs are the most immunogenic component of M. viscosa cells.
Collapse
Affiliation(s)
| | | | | | | | - Javier Santander
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; (M.G.); (T.C.); (A.H.); (I.V.)
| |
Collapse
|
6
|
Huo Y, Hu X, Lü J, Luo F, Liang J, Lei H, Lv A. Single-cell transcriptome, phagocytic activity and immunohistochemical analysis of crucian carp (Carassius auratus) in response to Rahnella aquatilis infection. FISH & SHELLFISH IMMUNOLOGY 2023; 140:108970. [PMID: 37488042 DOI: 10.1016/j.fsi.2023.108970] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/14/2023] [Accepted: 07/20/2023] [Indexed: 07/26/2023]
Abstract
In teleost fish, kidney is an important immune and hematopoietic organ with multiple physiological functions. However, the immune cells and cellular markers of kidney require further elucidation in crucian carp (C. auratus). Here we report on the single-cell transcriptional landscape in posterior kidney, immunohistochemical and phagocytic features of C. auratus with R. aquatilis infection. The results showed that a total of 18 cell populations were identified for the main immune cells such as monocytes/macrophages (Mo/Mφ), dendritic cells (DCs), B cells, T cells, granulocytes and hematopoietic progenitor cells (HPCs). Pseudo-time trajectory analysis was reconstructed for the immune cells using Monocle2 to obtain additional insights into their developmental lineage relationships. In the detected tissues (liver, spleen, kidney, intestine, skin, and gills) of infected fish exhibited positive immunohistochemical staining with prepared for antibody to R. aquatilis. Apoptotic cells were fluorescently demonstrated by TUNEL assay, and bacterial phagocytic activity were observed for neutrophils and Mo/Mφ cells, respectively. Moreover, a similar up-ward/down-ward expression trend of the selected immune and inflammatory genes was found in the kidney against R. aquatilis infection, which were significantly involved in TLR/NLR, ECM adhesion, phago-lysosome, apoptosis, complement and coagulation pathways. To our knowledge, this is the first report on the detailed characterization of immune cells and host-R. aquatilis interaction, which will contribute to understanding on the biology of renal immune cells and repertoire of potential markers in cyprinid fish species.
Collapse
Affiliation(s)
- Yian Huo
- College of Fisheries, Tianjin Agricultural University, Tianjin, 300392, China
| | - Xiucai Hu
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, Tianjin Agricultural University, Tianjin, 300392, China
| | - Jiarui Lü
- School of Foreign Languages, Peking University, Beijing, 100871, China
| | - Fuli Luo
- College of Fisheries, Tianjin Agricultural University, Tianjin, 300392, China
| | - Jing Liang
- College of Fisheries, Tianjin Agricultural University, Tianjin, 300392, China
| | - Haibo Lei
- College of Basic Science, Tianjin Agricultural University, Tianjin, 300392, China
| | - Aijun Lv
- College of Fisheries, Tianjin Agricultural University, Tianjin, 300392, China; Tianjin Key Lab of Aqua-Ecology and Aquaculture, Tianjin Agricultural University, Tianjin, 300392, China.
| |
Collapse
|
7
|
Zhang Z, Niu J, Li Q, Huang Y, Jiang B, Li X, Jian J, Huang Y. A novel C-type lectin (CLEC12B) from Nile tilapia (Oreochromis niloticus) is involved in host defense against bacterial infection. FISH & SHELLFISH IMMUNOLOGY 2022; 131:218-228. [PMID: 36198379 DOI: 10.1016/j.fsi.2022.09.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/17/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
C-type lectin (CLEC) is a family of carbohydrate-binding protein that has high affinity for calcium and mediates multiple biological events including adhesion between cells, the turnover of serum glycoproteins, and the innate immune system's reaction to prospective invaders. However, it's ill-defined for how CLEC effects bony fish's innate immunity to bacterial infection. Therefore, CLEC12B, a member of the C-type lectin domain family, was found in Nile tilapia (Oreochromis niloticus) and its functions in bacterial infection were examined. The OnCLEC12B consist of a C-type lectin domain, a transmembrane domain, and a hypothetical protein of 308 amino acids that encoded by 927 bp basic group. Besides, the OnCLEC12B protein have a series of highly conserved amino acid sites with other CLEC12B proteins. Subcellular localization showed that OnCLEC12B located in cell membrane. Transcriptional levels investigation showed that OnCLEC12B was extensively expressed in all selected organs and has high expression in the liver. The transcriptional levels of OnCLEC12B were induced by Streptococcus agalactiae and Aeromonas hydrophila in the liver, spleen, head kidney, brain, and intestine. Afterward, invitro study revealed that several kinds of pathogens could be bound and agglutinated by recombinant protein of OnCLEC12B (rOnCLEC12B). Moreover, rOnCLEC12B could not only promote the proliferation of monocytes/macrophages but also encourage its phagocytosis on S.agalactiae and A.hydrophila, and its over-expression could significantly suppress the activation of the NF-κB pathway. Summarily, our results indicated that OnCLEC12B gets involved in fish immunization activities to pathogens infection.
Collapse
Affiliation(s)
- Zhiqiang Zhang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jinzhong Niu
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China
| | - Qi Li
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China
| | - Yongxiong Huang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China
| | - Baijian Jiang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China
| | - Xing Li
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China
| | - Jichang Jian
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China
| | - Yu Huang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China.
| |
Collapse
|
8
|
Deng F, Wang D, Chen F, Lu T, Li S. Molecular characterization and expression analysis of claudin-4-like in rainbow trout involved in Flavobacterium psychrophilum infection. FISH & SHELLFISH IMMUNOLOGY 2022; 130:244-251. [PMID: 36122640 DOI: 10.1016/j.fsi.2022.09.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/23/2022] [Accepted: 09/10/2022] [Indexed: 06/15/2023]
Abstract
The claudin family of proteins are pivotal components of tight junction (TJ) participating in the epithelial barrier function in fish. Our previous studies indicated that one of the claudins, claudin-4-like (OmCLDN4L) was differentially expressed in rainbow trout (Oncorhynchus mykiss) spleen post infection of Flavobacterium psychrophilum, which is the causative pathogen of bacterial coldwater disease (BCWD). However, little is known about the function of OmCLDN4L in rainbow trout against bacterial infection. In the present study, the OmCLDN4L was identified and functionally characterized from rainbow trout. The OmCLDN4L has an open reading frame (ORF) of 668 bp, encoding a 22.86 kDa four-transmembrane protein with function of bicellular tight junction and apical tight junction. OmCLDN4L has the highest similarity with CLDN28a, CLDN28b and CLDN30 in amino acid sequence. Phylogenetic analysis showed that all of CLDN4 and CLDN4-like from fish clustered together but diverged from their counterparts in mammals, with main differences lying in their N-terminus. RT-qPCR results indicated that OmCLDN4L was constitutively expressed in all tissues investigated under healthy conditions, primarily in mucus, liver, skin and intestine. The expression of OmCLDN4L in rainbow trout intestine was slightly down-regulated at day 1 while up-regulated at day 3 and day 7 post F. psychrophilum infection, with the similar profiling of CLDN30 and CLDN10e. The expression level of inflammatory cytokines TNF-α, IL4/13A, IL-6 and pattern recognition receptor TLR-2 showed the same trend with OmCLDN4L in the intestine at day 3 and day 7 post F. psychrophilum infection. Collectively, these findings demonstrate that OmCLDN4L participates in the immune response to bacterial infection, offering new insights into the molecular mechanism of intestinal barrier in rainbow trout against F. psychrophilum infection.
Collapse
Affiliation(s)
- Furong Deng
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, China
| | - Di Wang
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, China
| | - Fuguang Chen
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, China
| | - Tongyan Lu
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, China
| | - Shaowu Li
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, China.
| |
Collapse
|
9
|
Emam M, Eslamloo K, Caballero-Solares A, Lorenz EK, Xue X, Umasuthan N, Gnanagobal H, Santander J, Taylor RG, Balder R, Parrish CC, Rise ML. Nutritional immunomodulation of Atlantic salmon response to Renibacterium salmoninarum bacterin. Front Mol Biosci 2022; 9:931548. [PMID: 36213116 PMCID: PMC9532746 DOI: 10.3389/fmolb.2022.931548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/12/2022] [Indexed: 11/18/2022] Open
Abstract
We investigated the immunomodulatory effect of varying levels of dietary ω6/ω3 fatty acids (FA) on Atlantic salmon (Salmo salar) antibacterial response. Two groups were fed either high-18:3ω3 or high-18:2ω6 FA diets for 8 weeks, and a third group was fed for 4 weeks on the high-18:2ω6 diet followed by 4 weeks on the high-18:3ω3 diet and termed "switched-diet". Following the second 4 weeks of feeding (i.e., at 8 weeks), head kidney tissues from all groups were sampled for FA analysis. Fish were then intraperitoneally injected with either a formalin-killed Renibacterium salmoninarum bacterin (5 × 107 cells mL-1) or phosphate-buffered saline (PBS control), and head kidney tissues for gene expression analysis were sampled at 24 h post-injection. FA analysis showed that the head kidney profile reflected the dietary FA, especially for C18 FAs. The qPCR analyses of twenty-three genes showed that both the high-ω6 and high-ω3 groups had significant bacterin-dependent induction of some transcripts involved in lipid metabolism (ch25ha and lipe), pathogen recognition (clec12b and tlr5), and immune effectors (znrf1 and cish). In contrast, these transcripts did not significantly respond to the bacterin in the "switched-diet" group. Concurrently, biomarkers encoding proteins with putative roles in biotic inflammatory response (tnfrsf6b) and dendritic cell maturation (ccl13) were upregulated, and a chemokine receptor (cxcr1) was downregulated with the bacterin injection regardless of the experimental diets. On the other hand, an inflammatory regulator biomarker, bcl3, was only significantly upregulated in the high-ω3 fed group, and a C-type lectin family member (clec3a) was only significantly downregulated in the switched-diet group with the bacterin injection (compared with diet-matched PBS-injected controls). Transcript fold-change (FC: bacterin/PBS) showed that tlr5 was significantly over 2-fold higher in the high-18:2ω6 diet group compared with other diet groups. FC and FA associations highlighted the role of DGLA (20:3ω6; anti-inflammatory) and/or EPA (20:5ω3; anti-inflammatory) vs. ARA (20:4ω6; pro-inflammatory) as representative of the anti-inflammatory/pro-inflammatory balance between eicosanoid precursors. Also, the correlations revealed associations of FA proportions (% total FA) and FA ratios with several eicosanoid and immune receptor biomarkers (e.g., DGLA/ARA significant positive correlation with pgds, 5loxa, 5loxb, tlr5, and cxcr1). In summary, dietary FA profiles and/or regimens modulated the expression of some immune-relevant genes in Atlantic salmon injected with R. salmoninarum bacterin. The modulation of Atlantic salmon responses to bacterial pathogens and their associated antigens using high-ω6/high-ω3 diets warrants further investigation.
Collapse
Affiliation(s)
- Mohamed Emam
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Khalil Eslamloo
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| | | | - Evandro Kleber Lorenz
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Xi Xue
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| | | | - Hajarooba Gnanagobal
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Javier Santander
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| | | | - Rachel Balder
- Cargill Animal Nutrition and Health, Minneapolis, MN, United States
| | - Christopher C. Parrish
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Matthew L. Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| |
Collapse
|
10
|
Host–Pathogen Interactions of Marine Gram-Positive Bacteria. BIOLOGY 2022; 11:biology11091316. [PMID: 36138795 PMCID: PMC9495620 DOI: 10.3390/biology11091316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary Complex interactions between marine Gram-positive pathogens and fish hosts in the marine environment can result in diseases of economically important finfish, which cause economic losses in the aquaculture industry. Understanding how these pathogens interact with the fish host and generate disease will contribute to efficient prophylactic measures and treatments. To our knowledge, there are no systematic reviews on marine Gram-positive pathogens. Therefore, here we reviewed the host–pathogen interactions of marine Gram-positive pathogens from the pathogen-centric and host-centric points of view. Abstract Marine Gram-positive bacterial pathogens, including Renibacterium salmoninarum, Mycobacterium marinum, Nocardia seriolae, Lactococcus garvieae, and Streptococcus spp. cause economic losses in marine fish aquaculture worldwide. Comprehensive information on these pathogens and their dynamic interactions with their respective fish–host systems are critical to developing effective prophylactic measures and treatments. While much is known about bacterial virulence and fish immune response, it is necessary to synthesize the knowledge in terms of host–pathogen interactions as a centerpiece to establish a crucial connection between the intricate details of marine Gram-positive pathogens and their fish hosts. Therefore, this review provides a holistic view and discusses the different stages of the host–pathogen interactions of marine Gram-positive pathogens. Gram-positive pathogens can invade fish tissues, evade the fish defenses, proliferate in the host system, and modulate the fish immune response. Marine Gram-positive pathogens have a unique set of virulence factors that facilitate adhesion (e.g., adhesins, hemagglutination activity, sortase, and capsules), invasion (e.g., toxins, hemolysins/cytolysins, the type VII secretion system, and immune-suppressive proteins), evasion (e.g., free radical quenching, actin-based motility, and the inhibition of phagolysosomal fusion), and proliferation and survival (e.g., heme utilization and siderophore-mediated iron acquisition systems) in the fish host. After infection, the fish host initiates specific innate and adaptive immune responses according to the extracellular or intracellular mechanism of infection. Although efforts have continued to be made in understanding the complex interplay at the host–pathogen interface, integrated omics-based investigations targeting host–pathogen–marine environment interactions hold promise for future research.
Collapse
|
11
|
Chen H, Zhao Y, Chen K, Wei Y, Luo H, Li Y, Liu F, Zhu Z, Hu W, Luo D. Isolation, Identification, and Investigation of Pathogenic Bacteria From Common Carp (Cyprinus carpio) Naturally Infected With Plesiomonas shigelloides. Front Immunol 2022; 13:872896. [PMID: 35844551 PMCID: PMC9279890 DOI: 10.3389/fimmu.2022.872896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/01/2022] [Indexed: 11/27/2022] Open
Abstract
Various bacterial diseases have caused great economic losses to the high-density and intensive aquaculture industry; however, the pathogenic mechanism underlying the large-scale challenged to caused by many bacteria remain unclear, making the prevention and treatment of these diseases difficult. In the present study, we isolated a bacterial strain from Cyprinus carpio having a typical bacterial disease and named it Cc2021. Through subsequent morphological observations, a regression challenge, biochemical identification, and 16S rRNA gene sequence analysis, we determined Cc2021 to be Plesiomonas shigelloides. Subsequently, we comprehensively investigated the pathogenicity of P. shigelloides in C. carpio through a regression challenge and assessed the underlying the pathogenic mechanism. Mortality results revealed that P. shigelloides is highly pathogenic and infects various tissues throughout the body, resulting in edema of the liver, spleen, and body and head kidneys. Histopathological analysis revealed obvious inflammation, bleeding, and necrosis in the intestine, spleen, and head kidney. The body’s immune tissues actively produce complement C3, superoxide dismutase, and lysozyme after a challenge to resist bacterial invasion. With regard to the underlying pathogenesis of P. shigelloides, comparative transcriptome analysis revealed 876 upregulated genes and 828 downregulated genes in the intestine of C. carpio after the challenge. Analysis of differentially expressed unigenes revealed the involvement of major immune pathways, particularly the TNF signaling pathway, interleukin (IL)-17 signaling pathway, and Toll-like receptor signaling pathway. The present study provides new valuable information on the immune system and defense mechanisms of P. shigelloides.
Collapse
Affiliation(s)
- Huijie Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Yuanli Zhao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Kuangxin Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yulai Wei
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hongrui Luo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Yongming Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Fei Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zuoyan Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Wei Hu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Daji Luo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Daji Luo,
| |
Collapse
|
12
|
Caballero-Solares A, Umasuthan N, Xue X, Katan T, Kumar S, Westcott JD, Chen Z, Fast MD, Skugor S, Taylor RG, Rise ML. Interacting Effects of Sea Louse (Lepeophtheirus salmonis) Infection and Formalin-Killed Aeromonas salmonicida on Atlantic Salmon Skin Transcriptome. Front Immunol 2022; 13:804987. [PMID: 35401509 PMCID: PMC8987027 DOI: 10.3389/fimmu.2022.804987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Lepeophtheirus salmonis (sea lice) and bacterial co-infection threatens wild and farmed Atlantic salmon performance and welfare. In the present study, pre-adult L. salmonis-infected and non-infected salmon were intraperitoneally injected with either formalin-killed Aeromonas salmonicida bacterin (ASAL) or phosphate-buffered saline (PBS). Dorsal skin samples from each injection/infection group (PBS/no lice, PBS/lice, ASAL/no lice, and ASAL/lice) were collected at 24 h post-injection and used for transcriptome profiling using a 44K salmonid microarray platform. Microarray results showed no clear inflammation gene expression signatures and revealed extensive gene repression effects by pre-adult lice (2,189 down and 345 up-regulated probes) in the PBS-injected salmon (PBS/lice vs. PBS/no lice), which involved basic cellular (e.g., RNA and protein metabolism) processes. Lice repressive effects were not observed within the group of ASAL-injected salmon (ASAL/lice vs. ASAL/no lice); on the contrary, the observed skin transcriptome changes –albeit of lesser magnitude (82 up and 1 down-regulated probes)– suggested the activation in key immune and wound healing processes (e.g., neutrophil degranulation, keratinocyte differentiation). The molecular skin response to ASAL was more intense in the lice-infected (ASAL/lice vs. PBS/lice; 272 up and 11 down-regulated probes) than in the non-infected fish (ASAL/no lice vs. PBS/no lice; 27 up-regulated probes). Regardless of lice infection, the skin’s response to ASAL was characterized by the putative activation of both antibacterial and wound healing pathways. The transcriptomic changes prompted by ASAL+lice co-stimulation (ASAL/lice vs. PBS/no lice; 1878 up and 3120 down-regulated probes) confirmed partial mitigation of lice repressive effects on fundamental cellular processes and the activation of pathways involved in innate (e.g., neutrophil degranulation) and adaptive immunity (e.g., antibody formation), as well as endothelial cell migration. The qPCR analyses evidenced immune-relevant genes co-stimulated by ASAL and lice in an additive (e.g., mbl2b, bcl6) and synergistic (e.g., hampa, il4r) manner. These results provided insight on the physiological response of the skin of L. salmonis-infected salmon 24 h after ASAL stimulation, which revealed immunostimulatory properties by the bacterin with potential applications in anti-lice treatments for aquaculture. As a simulated co-infection model, the present study also serves as a source of candidate gene biomarkers for sea lice and bacterial co-infection.
Collapse
Affiliation(s)
- Albert Caballero-Solares
- Department of Ocean Sciences, Memorial University, St. John’s, NL, Canada
- *Correspondence: Albert Caballero-Solares,
| | | | - Xi Xue
- Department of Ocean Sciences, Memorial University, St. John’s, NL, Canada
| | - Tomer Katan
- Department of Ocean Sciences, Memorial University, St. John’s, NL, Canada
| | - Surendra Kumar
- Department of Ocean Sciences, Memorial University, St. John’s, NL, Canada
| | | | - Zhiyu Chen
- Department of Ocean Sciences, Memorial University, St. John’s, NL, Canada
- Fisheries and Marine Institute, Memorial University, St. John’s, NL, Canada
| | - Mark D. Fast
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Stanko Skugor
- Cargill Aqua Nutrition, Cargill, Sea Lice Research Center (SLRC), Sandnes, Norway
| | | | - Matthew L. Rise
- Department of Ocean Sciences, Memorial University, St. John’s, NL, Canada
| |
Collapse
|
13
|
Eslamloo K, Kumar S, Xue X, Parrish KS, Purcell SL, Fast MD, Rise ML. Global gene expression responses of Atlantic salmon skin to Moritella viscosa. Sci Rep 2022; 12:4622. [PMID: 35301338 PMCID: PMC8931016 DOI: 10.1038/s41598-022-08341-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 03/03/2022] [Indexed: 12/19/2022] Open
Abstract
Moritella viscosa is a Gram-negative pathogen that causes large, chronic ulcers, known as winter-ulcer disease, in the skin of several fish species including Atlantic salmon. We used a bath challenge approach to profile the transcriptome responses of M. viscosa-infected Atlantic salmon skin at the lesion (Mv-At) and away from the lesion (Mv-Aw) sites. M. viscosa infection was confirmed through RNA-based qPCR assays. RNA-Seq identified 5212 and 2911 transcripts differentially expressed in the Mv-At compared to no-infection control and Mv-Aw groups, respectively. Also, there were 563 differentially expressed transcripts when comparing the Mv-Aw to control samples. Our results suggest that M. viscosa caused massive and strong, but largely infection site-focused, transcriptome dysregulations in Atlantic salmon skin, and its effects beyond the skin lesion site were comparably subtle. The M. viscosa-induced transcripts of Atlantic salmon were mainly involved in innate and adaptive immune response-related pathways, whereas the suppressed transcripts by this pathogen were largely connected to developmental and cellular processes. As validated by qPCR, M. viscosa dysregulated transcripts encoding receptors, signal transducers, transcription factors and immune effectors playing roles in TLR- and IFN-dependent pathways as well as immunoregulation, antigen presentation and T-cell development. This study broadened the current understanding of molecular pathways underlying M. viscosa-triggered responses of Atlantic salmon, and identified biomarkers that may assist to diagnose and combat this pathogen.
Collapse
Affiliation(s)
- Khalil Eslamloo
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada. .,Hoplite Laboratory, Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PEI, Canada.
| | - Surendra Kumar
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Xi Xue
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Kathleen S Parrish
- Hoplite Laboratory, Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PEI, Canada
| | - Sara L Purcell
- Hoplite Laboratory, Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PEI, Canada
| | - Mark D Fast
- Hoplite Laboratory, Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PEI, Canada
| | - Matthew L Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
14
|
Avendaño-Herrera R, Saldivia P, Bethke J, Vargas C, Hernández M. Proteomic analysis reveals Renibacterium salmoninarum grown under iron-limited conditions induces iron uptake mechanisms and overproduction of the 57-kDa protein. JOURNAL OF FISH DISEASES 2022; 45:289-300. [PMID: 34791674 DOI: 10.1111/jfd.13554] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/28/2021] [Accepted: 10/31/2021] [Indexed: 06/13/2023]
Abstract
Renibacterium salmoninarum, a slow-growing facultative intracellular pathogen, is the causative agent of bacterial kidney disease, a chronic, progressive and granulomatous infection that threatens farmed and wild salmonids worldwide. Pathogenic R. salmoninarum colonizes tissues and invades the host through cell surface-associated and secreted proteins. While correlations between iron acquisition genes and virulence have been demonstrated in vitro, these mechanisms have not undergone proteomic characterization. The present study applied a proteomic approach to elucidate the differences between the virulent Chilean R. salmoninarum H-2 strain and the type strain ATCC 33209T . Analyses were conducted under normal (control) and iron-limited conditions (DIP) emulating the host environment. Interestingly, strain H-2 apparently responded better to the iron-limited condition-for example, only this strain presented a significantly enriched iron ion homeostasis pathway. Furthermore, key virulence factors related to an iron-limited environment were more abundant in strain H-2. Importantly, the lack of iron favoured the expression of the 57-kDa protein in strain H-2, the principal virulence factor for R. salmoninarum. Our findings can be employed in the design and development of treatments targeted to iron uptake mechanisms (e.g. siderophore synthesis or haem uptake), which represents a promising therapeutic approach for treating this persistent fastidious bacterium.
Collapse
Affiliation(s)
- Ruben Avendaño-Herrera
- Laboratorio de Patología de Organismos Acuáticos y Biotecnología Acuícola, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Viña del Mar, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Viña del Mar, Chile
- Centro de Investigación Marina Quintay (CIMARQ), Universidad Andrés Bello, Quintay, Chile
| | - Pablo Saldivia
- Division of Biotechnology, MELISA Institute, San Pedro de la Paz, Concepción, Chile
| | - Jorn Bethke
- Laboratorio de Patología de Organismos Acuáticos y Biotecnología Acuícola, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Viña del Mar, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Viña del Mar, Chile
| | - Cristian Vargas
- Division of Biotechnology, MELISA Institute, San Pedro de la Paz, Concepción, Chile
| | - Mauricio Hernández
- Division of Biotechnology, MELISA Institute, San Pedro de la Paz, Concepción, Chile
| |
Collapse
|
15
|
Xue X, Caballero-Solares A, Hall JR, Umasuthan N, Kumar S, Jakob E, Skugor S, Hawes C, Santander J, Taylor RG, Rise ML. Transcriptome Profiling of Atlantic Salmon ( Salmo salar) Parr With Higher and Lower Pathogen Loads Following Piscirickettsia salmonis Infection. Front Immunol 2022; 12:789465. [PMID: 35035387 PMCID: PMC8758579 DOI: 10.3389/fimmu.2021.789465] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/03/2021] [Indexed: 12/29/2022] Open
Abstract
Salmonid rickettsial septicemia (SRS), caused by Piscirickettsia salmonis, is one of the most devastating diseases of salmonids. However, the transcriptomic responses of Atlantic salmon (Salmon salar) in freshwater to an EM-90-like isolate have not been explored. Here, we infected Atlantic salmon parr with an EM-90-like isolate and conducted time-course qPCR analyses of pathogen load and four biomarkers (campb, hampa, il8a, tlr5a) of innate immunity on the head kidney samples. Transcript expression of three of these genes (except hampa), as well as pathogen level, peaked at 21 days post-injection (DPI). Multivariate analyses of infected individuals at 21 DPI revealed two infection phenotypes [lower (L-SRS) and higher (H-SRS) infection level]. Five fish from each group (Control, L-SRS, and H-SRS) were selected for transcriptome profiling using a 44K salmonid microarray platform. We identified 1,636 and 3,076 differentially expressed probes (DEPs) in the L-SRS and H-SRS groups compared with the control group, respectively (FDR = 1%). Gene ontology term enrichment analyses of SRS-responsive genes revealed the activation of a large number of innate (e.g. “phagocytosis”, “defense response to bacterium”, “inflammatory response”) and adaptive (e.g. “regulation of T cell activation”, “antigen processing and presentation of exogenous antigen”) immune processes, while a small number of general physiological processes (e.g. “apoptotic process”, development and metabolism relevant) was enriched. Transcriptome results were confirmed by qPCR analyses of 42 microarray-identified transcripts. Furthermore, the comparison of individuals with differing levels of infection (H-SRS vs. L-SRS) generated insights into the biological processes possibly involved in disease resistance or susceptibility. This study demonstrated a low mortality (~30%) EM-90-like infection model and broadened the current understanding of molecular pathways underlying P. salmonis-triggered responses of Atlantic salmon, identifying biomarkers that may assist to diagnose and combat this pathogen.
Collapse
Affiliation(s)
- Xi Xue
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | | | - Jennifer R Hall
- Aquatic Research Cluster, CREAIT Network, Ocean Sciences Centre, Memorial University of Newfoundland, St. John's, NL, Canada
| | | | - Surendra Kumar
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Eva Jakob
- Cargill Innovation Centre - Colaco, Colaco, Chile
| | - Stanko Skugor
- Cargill Aqua Nutrition, Cargill, Sea Lice Research Center (SLRC), Sandnes, Norway
| | | | - Javier Santander
- Marine Microbial Pathogenesis and Vaccinology Lab, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Richard G Taylor
- Cargill Animal Nutrition and Health, Elk River, MN, United States
| | - Matthew L Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
16
|
Gnanagobal H, Cao T, Hossain A, Dang M, Hall JR, Kumar S, Van Cuong D, Boyce D, Santander J. Lumpfish ( Cyclopterus lumpus) Is Susceptible to Renibacterium salmoninarum Infection and Induces Cell-Mediated Immunity in the Chronic Stage. Front Immunol 2021; 12:733266. [PMID: 34880856 PMCID: PMC8645940 DOI: 10.3389/fimmu.2021.733266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/19/2021] [Indexed: 02/02/2023] Open
Abstract
Renibacterium salmoninarum is a Gram-positive, intracellular pathogen that causes Bacterial Kidney Disease (BKD) in several fish species in freshwater and seawater. Lumpfish (Cyclopterus lumpus) is utilized as a cleaner fish to biocontrol sea lice infestation in Atlantic salmon (Salmo salar) farms. Atlantic salmon is susceptible to R. salmoninarum, and it can transfer the infection to other fish species. Although BKD outbreaks have not been reported in lumpfish, its susceptibility and immune response to R. salmoninarum is unknown. In this study, we evaluated the susceptibility and immune response of lumpfish to R. salmoninarum infection. Groups of lumpfish were intraperitoneally (i.p.) injected with either R. salmoninarum (1×107, 1×108, or 1×109 cells dose-1) or PBS (control). R. salmoninarum infection kinetics and mortality were followed for 98 days post-infection (dpi). Transcript expression levels of 33 immune-relevant genes were measured in head kidney (n = 6) of fish infected with 1×109 cells/dose and compared to the control at 28 and 98 dpi. Infected lumpfish displayed characteristic clinical signs of BKD. Lumpfish infected with high, medium, and low doses had a survival rate of 65%, 93%, and 95%, respectively. Mortality in the high-dose infected group stabilized after 50 dpi, but R. salmoninarum persisted in the fish tissues until 98 dpi. Cytokines (il1β, il8a, il8b), pattern recognition receptors (tlr5a), interferon-induced effectors (rsad2, mxa, mxb, mxc), and iron regulation (hamp) and acute phase reactant (saa5) related genes were up-regulated at 28 dpi. In contrast, cell-mediated adaptive immunity-related genes (cd4a, cd4b, ly6g6f, cd8a, cd74) were down-regulated at 28 dpi, revealing the immune suppressive nature of R. salmoninarum. However, significant upregulation of cd74 at 98 dpi suggests induction of cell-mediated immune response. This study showed that R. salmoninarum infected lumpfish in a similar fashion to salmonid fish species and caused a chronic infection, enhancing cell-mediated adaptive immune response.
Collapse
Affiliation(s)
- Hajarooba Gnanagobal
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada.,Department of Bio-systems Technology, Faculty of Technology, University of Jaffna, Kilinochchi, Sri Lanka
| | - Trung Cao
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Ahmed Hossain
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - My Dang
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Jennifer R Hall
- Aquatic Research Cluster, CREAIT Network, Ocean Sciences Centre, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Surendra Kumar
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada.,Ocean Frontier Institute, Ocean Sciences Centre, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Doan Van Cuong
- Southern Monitoring Center for Aquaculture Environment and Epidemic (MCE), Research Institute for Aquaculture No. 2, Ho Chi Minh City, Vietnam
| | - Danny Boyce
- The Dr. Joe Brown Aquatic Research Building (JBARB), Ocean Sciences Centre, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Javier Santander
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
17
|
Oral Immunization of Larvae and Juvenile of Lumpfish ( Cyclopterus lumpus) against Vibrio anguillarum Does Not Influence Systemic Immunity. Vaccines (Basel) 2021; 9:vaccines9080819. [PMID: 34451944 PMCID: PMC8402551 DOI: 10.3390/vaccines9080819] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 12/31/2022] Open
Abstract
Vibrio anguillarum, a marine bacterial pathogen that causes vibriosis, is a recurrent pathogen of lumpfish (Cyclopterus lumpus). Lumpfish is utilized as a cleaner fish in the Atlantic salmon (Salmo salar) aquaculture in the North Atlantic region because of its ability to visualize and prey on the ectoparasite sea lice (Lepeophtheirus salmonis) on the skin of Atlantic salmon, and its performance in cold environments. Lumpfish immunity is critical for optimal performance and sea lice removal. Oral vaccine delivery at a young age is the desired method for fish immunization because is easy to use, reduces fish stress during immunization, and can be applied on a large scale while the fish are at a young age. However, the efficacy of orally delivered inactivated vaccines is controversial. In this study, we evaluated the effectiveness of a V. anguillarum bacterin orally delivered to cultured lumpfish and contrasted it to an intraperitoneal (i.p.) boost delivery. We bio-encapsulated V. anguillarum bacterin in Artemia salina live-feed and orally immunized lumpfish larvae. Vaccine intake and immune response were evaluated by microscopy and quantitative polymerase chain reaction (qPCR) analysis, respectively. qPCR analyses showed that the oral immunization of lumpfish larvae resulted in a subtle stimulation of canonical immune transcripts such as il8b, il10, igha, ighmc, ighb, ccl19, ccl20, cd8a, cd74, ifng, and lgp2. Nine months after oral immunization, one group was orally boosted, and a second group was both orally and i.p. boosted. Two months after boost immunization, lumpfish were challenged with V. anguillarum (7.8 × 105 CFU dose−1). Orally boosted fish showed a relative percentage of survival (RPS) of 2%. In contrast, the oral and i.p. boosted group showed a RPS of 75.5% (p < 0.0001). V. anguillarum bacterin that had been orally delivered was not effective in lumpfish, which is in contrast to the i.p. delivered bacterin that protected the lumpfish against vibriosis. This suggests that orally administered V. anguillarum bacterin did not reach the deep lymphoid tissues, either in the larvae or juvenile fish, therefore oral immunization was not effective. Oral vaccines that are capable of crossing the epithelium and reach deep lymphoid tissues are required to confer an effective protection to lumpfish against V. anguillarum
Collapse
|
18
|
Echeverría-Bugueño M, Balada C, Irgang R, Avendaño-Herrera R. Evidence for the existence of extracellular vesicles in Renibacterium salmoninarum and related cytotoxic effects on SHK-1 cells. JOURNAL OF FISH DISEASES 2021; 44:1015-1024. [PMID: 33683739 DOI: 10.1111/jfd.13362] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
Extracellular vesicles (EVs) in bacteria have been implicated in invasive and, through enzymes, infective processes. One Gram-positive bacterium lacking any EV research, despite having commercial impacts on the aquaculture industry, is Renibacterium salmoninarum. We addressed this gap in knowledge by utilizing scanning electron microscopy to provide the first reported evidence for the production of EVs by R. salmoninarum strain H-2. Dispersive light scattering detected that the EVs were heterogeneous in size, and the protein compositions were similar to the bacterial membrane and contained the virulent protein factors p22 and p57. The EVs additionally had a concentrated negative charge compared with R. salmoninarum H-2, as determined by Z potential. Finally, these particles seemed to play a role in host invasion in vitro in the salmon head kidney cell line, as demonstrated by the occurrence of a cytotoxic effect within the first 48 hr post-infection. Higher EV concentrations (i.e. 52.6 µg/ml) were more toxic than R. salmoninarum H-2. This information serves as a foundation to develop and test possible uses for R. salmoninarum EVs in salmon aquaculture, inspiring future advances against bacterial kidney disease.
Collapse
Affiliation(s)
- Macarena Echeverría-Bugueño
- Grupo de Espectroscopia Vibracional y Materiales Moleculares, Instituto de Química, Pontificia Universidad Católica De Valparaíso, Valparaíso, Chile
- Laboratorio de Patología de Organismos Acuáticos y Biotecnología Acuícola, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Viña del Mar, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Universidad Andrés Bello, Viña del Mar, Chile
| | - Cristóbal Balada
- Laboratorio de Química Biológica, Instituto de Química, Pontificia Universidad Católica De Valparaíso, Valparaíso, Chile
| | - Rute Irgang
- Laboratorio de Patología de Organismos Acuáticos y Biotecnología Acuícola, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Viña del Mar, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Universidad Andrés Bello, Viña del Mar, Chile
| | - Ruben Avendaño-Herrera
- Laboratorio de Patología de Organismos Acuáticos y Biotecnología Acuícola, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Viña del Mar, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Universidad Andrés Bello, Viña del Mar, Chile
- Centro de Investigaciones Marina Quintay (CIMARQ), Universidad Andés Bello, Quintay, Chile
| |
Collapse
|
19
|
Eslamloo K, Caballero-Solares A, Inkpen SM, Emam M, Kumar S, Bouniot C, Avendaño-Herrera R, Jakob E, Rise ML. Transcriptomic Profiling of the Adaptive and Innate Immune Responses of Atlantic Salmon to Renibacterium salmoninarum Infection. Front Immunol 2020; 11:567838. [PMID: 33193341 PMCID: PMC7656060 DOI: 10.3389/fimmu.2020.567838] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 09/07/2020] [Indexed: 01/08/2023] Open
Abstract
Bacterial Kidney Disease (BKD), which is caused by a Gram-positive, intracellular bacterial pathogen (Renibacterium salmoninarum), affects salmonids including Atlantic salmon (Salmo salar). However, the transcriptome response of Atlantic salmon to BKD remained unknown before the current study. We used a 44K salmonid microarray platform to characterise the global gene expression response of Atlantic salmon to BKD. Fish (~54 g) were injected with a dose of R. salmoninarum (H-2 strain, 2 × 108 CFU per fish) or sterile medium (control), and then head kidney samples were collected at 13 days post-infection/injection (dpi). Firstly, infection levels of individuals were determined through quantifying the R. salmoninarum level by RNA-based TaqMan qPCR assays. Thereafter, based on the qPCR results for infection level, fish (n = 5) that showed no (control), higher (H-BKD), or lower (L-BKD) infection level at 13 dpi were subjected to microarray analyses. We identified 6,766 and 7,729 differentially expressed probes in the H-BKD and L-BKD groups, respectively. There were 357 probes responsive to the infection level (H-BKD vs. L-BKD). Several adaptive and innate immune processes were dysregulated in R. salmoninarum-infected Atlantic salmon. Adaptive immune pathways associated with lymphocyte differentiation and activation (e.g., lymphocyte chemotaxis, T-cell activation, and immunoglobulin secretion), as well as antigen-presenting cell functions, were shown to be differentially regulated in response to BKD. The infection level-responsive transcripts were related to several mechanisms such as the JAK-STAT signalling pathway, B-cell differentiation and interleukin-1 responses. Sixty-five microarray-identified transcripts were subjected to qPCR validation, and they showed the same fold-change direction as microarray results. The qPCR-validated transcripts studied herein play putative roles in various immune processes including pathogen recognition (e.g., tlr5), antibacterial activity (e.g., hamp and camp), regulation of immune responses (e.g., tnfrsf11b and socs1), T-/B-cell differentiation (e.g., ccl4, irf1 and ccr5), T-cell functions (e.g., rnf144a, il13ra1b and tnfrsf6b), and antigen-presenting cell functions (e.g., fcgr1). The present study revealed diverse immune mechanisms dysregulated by R. salmoninarum in Atlantic salmon, and enhanced the current understanding of Atlantic salmon response to BKD. The identified biomarker genes can be used for future studies on improving the resistance of Atlantic salmon to BKD.
Collapse
Affiliation(s)
- Khalil Eslamloo
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | | | - Sabrina M Inkpen
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Mohamed Emam
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Surendra Kumar
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | | | - Ruben Avendaño-Herrera
- Facultad Ciencias de la Vida, Viña del Mar, and FONDAP Interdisciplinary Center for Aquaculture Research (INCAR), Universidad Andrés Bello, Santiago, Chile
| | - Eva Jakob
- Cargill Innovation Center-Colaco, Calbuco, Chile
| | - Matthew L Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
20
|
Renibacterium salmoninarum-The Causative Agent of Bacterial Kidney Disease in Salmonid Fish. Pathogens 2020; 9:pathogens9100845. [PMID: 33076564 PMCID: PMC7602803 DOI: 10.3390/pathogens9100845] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/04/2020] [Accepted: 10/14/2020] [Indexed: 12/20/2022] Open
Abstract
Renibacterium salmoninarum is one of the oldest known bacterial pathogens of fish. This Gram-positive bacterium is the causative agent of bacterial kidney disease, a chronic infection that is mostly known to infect salmonid fish at low temperatures. Externally, infected fish can display exophthalmia as well as blebs on the skin and ulcerations alongside haemorrhages at the base of the fins and alongside the lateral line. Internally, the kidney, heart, spleen and liver can show signs of swelling. Granulomas can be seen on various internal organs, as can haemorrhages, and the organs can be covered with a false membrane. Ascites can also accumulate in the abdominal cavity. The bacterium is generally cultivated on specialized media such as kidney disease medium-1 (KDM-1), KDM-2 and selective kidney disease medium (SKDM), and a diagnostic is performed using molecular tools such as PCRs or real-time quantitative PCRs (RT-qPCRs). Several virulence mechanisms have been identified in R. salmoninarum, in particular the protein p57 that is known to play a role in both agglutination and immunosuppression of the host’s defense mechanisms. Control of the disease is difficult; the presence of asymptomatic carriers complicates the eradication of the disease, as does the ability of the bacterium to gain entrance inside the eggs. Bacterin-killed vaccines have proven to be of doubtful efficacy in controlling the disease, and even more recent application of a virulent environmental relative of R. salmoninarum is of limited efficacy. Treatment by antibiotics such as erythromycin, azithromycin and enrofloxacin can be effective but it is slow and requires prolonged treatment. Moreover, antibiotic-resistant strains have been reported. Despite being known for a long time, there is still much to be discovered about R. salmoninarum, notably regarding its virulence mechanisms and its vaccine potential. Consequently, these gaps in knowledge continue to hinder control of this bacterial disease in aquaculture settings.
Collapse
|
21
|
Vasquez I, Cao T, Hossain A, Valderrama K, Gnanagobal H, Dang M, Leeuwis RHJ, Ness M, Campbell B, Gendron R, Kao K, Westcott J, Gamperl AK, Santander J. Aeromonas salmonicida infection kinetics and protective immune response to vaccination in sablefish (Anoplopoma fimbria). FISH & SHELLFISH IMMUNOLOGY 2020; 104:557-566. [PMID: 32592927 DOI: 10.1016/j.fsi.2020.06.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/29/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
Effective vaccine programs against Aeromonas salmonicida have been identified as a high priority area for the sablefish (Anoplopoma fimbria) aquaculture. In this study, we established an A. salmonicida infection model in sablefish to evaluate the efficacy of commercial vaccines and an autogenous vaccine preparation. Groups of 40 fish were intraperitoneally (ip) injected with different doses of A. salmonicida J410 isolated from infected sablefish to calculate the median lethal dose (LD50). Samples of blood, head kidney, spleen, brain, and liver were also collected at different time points to determine the infection kinetics. The LD50 was estimated as ~3 × 105 CFU/dose. To evaluate the immune protection provided by an autogenous vaccine and two commercial vaccines in a common garden experimental design, 140 fish were PIT-tagged, vaccinated and distributed equally into 4 tanks (35 fish for each group, including a control group). Blood samples were taken every 2 weeks to evaluate IgM titers. At 10 weeks post-immunization, all groups were ip challenged with 100 times the calculated LD50 for A. salmonicida J410. A. salmonicida was detected after 5 days post-infection (dpi) in all collected tissues. At 30 days post-challenge the relative percentage survival (RPS) with respect to the control group was calculated for each vaccine. The RPS for the bacterin mix was 65.22%, for Forte Micro 4® vaccine was 56.52% and for Alpha Ject Micro 4® was 30.43%, and these RPS values were reflected by A. salmonicida tissue colonization levels at 10 days post-challenge. Total IgM titers peaked at 6-8 weeks post-immunization, where the autogenous vaccine group showed the highest IgM titers and these values were consistent with the RPS data. Also, we determined that the A. salmonicida A-layer binds to immunoglobulins F(ab)' in a non-specific fashion, interfering with immune assays and potentially vaccine efficacy. Our results indicate that vaccine design influences sablefish immunity and provide a guide for future sablefish vaccine programs.
Collapse
Affiliation(s)
- Ignacio Vasquez
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Trung Cao
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Ahmed Hossain
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Katherinne Valderrama
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Hajarooba Gnanagobal
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - My Dang
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Robine H J Leeuwis
- Fish Physiology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | | | | | - Robert Gendron
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Kenneth Kao
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Jillian Westcott
- Fisheries and Marine Institute, Memorial University of Newfoundland, St. John's, NL, Canada
| | - A Kurt Gamperl
- Fish Physiology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Javier Santander
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada.
| |
Collapse
|
22
|
Zhong JR, Wu P, Feng L, Jiang WD, Liu Y, Kuang SY, Tang L, Zhou XQ. Dietary phytic acid weakened the antimicrobial activity and aggravated the inflammatory status of head kidney, spleen and skin in on-growing grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2020; 103:256-265. [PMID: 32439508 DOI: 10.1016/j.fsi.2020.05.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/13/2020] [Accepted: 05/14/2020] [Indexed: 06/11/2023]
Abstract
The present study aimed to explore the effects of phytic acid (PA) on the antimicrobial activity and inflammatory response in three immune organs (head kidney, spleen and skin) of on-growing grass carp (Ctenopharyngodon idella). To achieve this goal, we first conducted a 60-day growth trial by feeding fish with graded levels of PA (0, 0.8, 1.6, 2.4, 3.2 and 4.0%). Then, the fish were challenged with Aeromonas hydrophila for 6 days. Compared with the control group, the following results were obtained regarding supplementation with certain levels of PA in the diet. (1) There was an increase in skin haemorrhage and lesion morbidity in fish. (2) There was a decrease in activities or contents of immune factors, including lysozyme (LZ), complement 3 (C3), C4 and immunoglobulin M (IgM), and there was downregulation of gene expression levels of hepcidin, liver-expressed antimicrobial peptide 2A (LEAP-2A), LEAP-2B, and β-defensin-1 in immune organs. (3) There was upregulation in the gene expression of the following pro-inflammatory cytokines: tumour necrosis factor α (TNF-α), interleukin 1β (IL-1β) (except in the spleen), interferon γ2 (IFN-γ2), IL-6 (except in the spleen), IL-8, IL-12p40, IL-15 and IL-17D. These changes were partly related to the nuclear factor kappa B (NF-κB) signalling pathway, but downregulation of mRNA levels of anti-inflammatory cytokines (transforming growth factor β1 (TGF-β1), TGF-β2, IL-413/A, IL-413/B, IL-10 (except in the skin) and IL-11) occurred in a manner partially related to the target of rapamycin (TOR) signalling pathway. Finally, based on the broken-line analysis of skin haemorrhage and lesion morbidity and IgM content in the head kidney, the maximum tolerance levels of PA for on-growing grass carp (120.56-452.00 g) were estimated to be 1.79 and 1.31% of the diet, respectively.
Collapse
Affiliation(s)
- Jing-Ren Zhong
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production, University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production, University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production, University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production, University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production, University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, China.
| |
Collapse
|
23
|
Rozas-Serri M, Lobos C, Correa R, Ildefonso R, Vásquez J, Muñoz A, Maldonado L, Jaramillo V, Coñuecar D, Oyarzún C, Walker R, Navarrete C, Gayosa J, Mancilla P, Peña A, Senn C, Schwerter F. Atlantic Salmon Pre-smolt Survivors of Renibacterium salmoninarum Infection Show Inhibited Cell-Mediated Adaptive Immune Response and a Higher Risk of Death During the Late Stage of Infection at Lower Water Temperatures. Front Immunol 2020; 11:1378. [PMID: 32695119 PMCID: PMC7338658 DOI: 10.3389/fimmu.2020.01378] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/29/2020] [Indexed: 12/20/2022] Open
Abstract
Bacterial kidney disease (BKD) is widespread in many areas of the world and can cause substantial economic losses for the salmon aquaculture industry. The objective of this study was to investigate the pathophysiological response and gene expression profiles related to the immune response at different water temperatures and to identify the best immunopathological biomarkers to define a phenotype of resistance to BKD. The abundance of msa transcripts of R. salmoninarum in the head kidney was significantly higher in infected fish at 11°C. R. salmoninarum induced significantly more severe kidney lesions, anemia and impaired renal function at 11°C. In addition, the expression pattern of the genes related to humoral and cell-mediated immune responses in infected fish at 11 and 15°C was very similar, although R. salmoninarum induced a significantly greater downregulation of the adaptive immune response genes at the lower water temperature. These results could be due to a suppressed host response directly related to the lowest water temperature and/or associated with a delayed host response related to the lowest water temperature. Although no significant differences in survival rate were observed, fish infected at the lowest temperature showed a higher probability of death and delayed the mortality curve during the late stage of infection (35 days after infection). Thirty-three immunopathological biomarkers were identified for potential use in the search for a resistance phenotype for BKD, and eight were genes related specifically to the adaptive cell-mediated immune response.
Collapse
Affiliation(s)
- Marco Rozas-Serri
- Laboratorio Pathovet Ltda., Puerto Montt, Chile.,Newenko Group SpA., Puerto Montt, Chile
| | - Carlos Lobos
- Hendrix Genetics Aquaculture S.A., Puerto Varas, Chile
| | | | | | | | - Ariel Muñoz
- Laboratorio Pathovet Ltda., Puerto Montt, Chile
| | | | | | | | | | | | | | | | | | - Andrea Peña
- Laboratorio Pathovet Ltda., Puerto Montt, Chile
| | | | | |
Collapse
|
24
|
Zanuzzo FS, Beemelmanns A, Hall JR, Rise ML, Gamperl AK. The Innate Immune Response of Atlantic Salmon ( Salmo salar) Is Not Negatively Affected by High Temperature and Moderate Hypoxia. Front Immunol 2020; 11:1009. [PMID: 32536921 PMCID: PMC7268921 DOI: 10.3389/fimmu.2020.01009] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 04/28/2020] [Indexed: 12/12/2022] Open
Abstract
Climate change is predicted to increase water temperatures and decrease oxygen levels in freshwater and marine environments, however, there is conflicting information regarding the extent to which these conditions may impact the immune defenses of fish. In this study, Atlantic salmon were exposed to: (1) normoxia (100–110% air saturation) at 12°C; (2) an incremental temperature increase (1°C per week from 12 to 20°C), and then held at 20°C for an additional 4 weeks; and (3) “2” with the addition of moderate hypoxia (~65–75% air saturation). These conditions realistically reflect what farmed salmon in some locations are currently facing, and future conditions in Atlantic Canada and Europe, during the summer months. The salmon were sampled for the measurement of head kidney constitutive anti-bacterial and anti-viral transcript expression levels, and blood parameters of humoral immune function. Thereafter, they were injected with either the multi-valent vaccine Forte V II (contains both bacterial and viral antigens) or PBS (phosphate-buffer-saline), and the head kidney and blood of these fish were sampled at 6, 12, 24, and 48 h post-injection (HPI). Our results showed that: (1) neither high temperature, nor high temperature + moderate hypoxia, adversely affected respiratory burst, complement activity or lysozyme concentration; (2) the constitutive transcript expression levels of the anti-bacterial genes il1β, il8-a, cox2, hamp-a, stlr5-a, and irf7-b were up-regulated by high temperature; (3) while high temperature hastened the peak in transcript expression levels of most anti-bacterial genes by 6–12 h following V II injection, it did not affect the magnitude of changes in transcript expression; (4) anti-viral (viperin-b, mx-b, and isg15-a) transcript expression levels were either unaffected, or downregulated, by acclimation temperature or V II injection over the 48 HPI; and (5) hypoxia, in addition to high temperature, did not impact immune transcript expression. In conclusion, temperatures up to 20°C, and moderate hypoxia, do not impair the capacity of the Atlantic salmon's innate immune system to respond to bacterial antigens. These findings are surprising, and highlight the salmon's capacity to mount robust innate immune responses (i.e., similar to control fish under optimal conditions) under conditions approaching their upper thermal limit.
Collapse
Affiliation(s)
- Fábio S Zanuzzo
- Department of Ocean Sciences, Memorial University, St. John's, NL, Canada
| | - Anne Beemelmanns
- Department of Ocean Sciences, Memorial University, St. John's, NL, Canada
| | - Jennifer R Hall
- Aquatic Research Cluster, CREAIT Network, Ocean Sciences Centre, Memorial University, St. John's, NL, Canada
| | - Matthew L Rise
- Department of Ocean Sciences, Memorial University, St. John's, NL, Canada
| | - Anthony K Gamperl
- Department of Ocean Sciences, Memorial University, St. John's, NL, Canada
| |
Collapse
|
25
|
Umasuthan N, Xue X, Caballero-Solares A, Kumar S, Westcott JD, Chen Z, Fast MD, Skugor S, Nowak BF, Taylor RG, Rise ML. Transcriptomic Profiling in Fins of Atlantic Salmon Parasitized with Sea Lice: Evidence for an Early Imbalance Between Chalimus-Induced Immunomodulation and the Host's Defense Response. Int J Mol Sci 2020; 21:E2417. [PMID: 32244468 PMCID: PMC7177938 DOI: 10.3390/ijms21072417] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/27/2020] [Indexed: 01/08/2023] Open
Abstract
Parasitic sea lice (e.g., Lepeophtheirus salmonis) cause costly outbreaks in salmon farming. Molecular insights into parasite-induced host responses will provide the basis for improved management strategies. We investigated the early transcriptomic responses in pelvic fins of Atlantic salmon parasitized with chalimus I stage sea lice. Fin samples collected from non-infected (i.e. pre-infected) control (PRE) and at chalimus-attachment sites (ATT) and adjacent to chalimus-attachment sites (ADJ) from infected fish were used in profiling global gene expression using 44 K microarrays. We identified 6568 differentially expressed probes (DEPs, FDR < 5%) that included 1928 shared DEPs between ATT and ADJ compared to PRE. The ATT versus ADJ comparison revealed 90 DEPs, all of which were upregulated in ATT samples. Gene ontology/pathway term network analyses revealed profound changes in physiological processes, including extracellular matrix (ECM) degradation, tissue repair/remodeling and wound healing, immunity and defense, chemotaxis and signaling, antiviral response, and redox homeostasis in infected fins. The QPCR analysis of 37 microarray-identified transcripts representing these functional themes served to confirm the microarray results with a significant positive correlation (p < 0.0001). Most immune/defense-relevant transcripts were downregulated in both ATT and ADJ sites compared to PRE, suggesting that chalimus exerts immunosuppressive effects in the salmon's fins. The comparison between ATT and ADJ sites demonstrated the upregulation of a suite of immune-relevant transcripts, evidencing the salmon's attempt to mount an anti-lice response. We hypothesize that an imbalance between immunomodulation caused by chalimus during the early phase of infection and weak defense response manifested by Atlantic salmon makes it a susceptible host for L. salmonis.
Collapse
Affiliation(s)
- Navaneethaiyer Umasuthan
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; (X.X.); (A.C.-S.); (S.K.)
| | - Xi Xue
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; (X.X.); (A.C.-S.); (S.K.)
| | - Albert Caballero-Solares
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; (X.X.); (A.C.-S.); (S.K.)
| | - Surendra Kumar
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; (X.X.); (A.C.-S.); (S.K.)
| | - Jillian D. Westcott
- Fisheries and Marine Institute, Memorial University of Newfoundland, P.O. Box 4920, St. John’s, NL A1C 5R3, Canada; (J.D.W.); (Z.C.)
| | - Zhiyu Chen
- Fisheries and Marine Institute, Memorial University of Newfoundland, P.O. Box 4920, St. John’s, NL A1C 5R3, Canada; (J.D.W.); (Z.C.)
| | - Mark D. Fast
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada;
| | - Stanko Skugor
- Cargill Aqua Nutrition, Cargill, Sea Lice Research Center (SLRC), Hanaveien 17, 4327 Sandnes, Norway;
| | - Barbara F. Nowak
- Institute of Marine and Antarctic Studies, University of Tasmania, Locked Bag 1370, Launceston 7250, TAS, Australia;
| | - Richard G. Taylor
- Cargill Animal Nutrition, 10383 165th Avenue NW, Elk River, MN 55330, USA;
| | - Matthew L. Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; (X.X.); (A.C.-S.); (S.K.)
| |
Collapse
|