1
|
Qu K, Shi M, Chen L, Liu Y, Yao X, Li X, Tan B, Xie S. Residual levels of dietary deltamethrin interfere with growth and intestinal health in Litopenaeus vannamei. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117376. [PMID: 39612679 DOI: 10.1016/j.ecoenv.2024.117376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 10/24/2024] [Accepted: 11/18/2024] [Indexed: 12/01/2024]
Abstract
To date, few study explored the damage of chronic dietary exposure to the lipophilic pesticide deltamethrin (DM) in aquatic animals, and it remains unclear whether its toxicity and residue levels would be affected by dietary lipid levels. Therefore, the present study aimed to elucidate the interactions between dietary lipid levels and DM levels in the Pacific white shrimp, focusing on growth performance, antioxidant capacity, and intestinal microbiota. DM has excellent insecticidal activity and has been used worldwide. Previous research has shown that environmental DM poses toxicity risks to aquatic animals. Six different diets were formulated to feed shrimp for 6 weeks with two lipid levels (6.96 %, 10.88 %) and three DM levels (0.2 mg·kg-1, 1 mg·kg-1, 5 mg·kg-1), namely LF0.2, LF1, LF5, HF0.2, HF1, HF5, respectively. Each diet was assigned to three net cages with a total of 18 cages (40 shrimp per tank, average weight (0.382±0.001 g), of which 0.2 mg·kg-1, are grouped in environmental DM control groups. The growth of shrimp was reduced as the dietary DM levels increased. When shrimp were fed a diet containing a high dose of DM, a reduction in their antioxidant capacity was also observed. Enzyme activity and gene expression related to lipid metabolism in hepatopancreas and hemolymph indicated a significant interaction between dietary lipid levels and DM in the lipid metabolism of shrimp. The terms of detoxification-related genes (gst, sult, cyp1a1) were upregulated in shrimp fed the high-dose DM. Additionally, the presence of DM in the diet severely harmed the hepatopancreas and intestinal histological morphology. DM in the diet increased the susceptibility of shrimp to pathogens and induced intestine microbiota dysbiosis, disrupting the balance of inter-species interactions. DM was not detected in the muscle and hepatopancreas of the shrimp after six weeks of exposure. In conclusion, the presence of DM in feed reduced the growth performance and antioxidant capacity of shrimp, damaging intestinal health. DM was rapidly metabolized by shrimp.
Collapse
Affiliation(s)
- Kangyuan Qu
- College of Aquatic Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Menglin Shi
- College of Aquatic Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Liutong Chen
- College of Aquatic Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yucheng Liu
- College of Aquatic Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xinzhou Yao
- College of Aquatic Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xiaoyue Li
- College of Aquatic Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Beiping Tan
- College of Aquatic Sciences, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Province Research Center for Accurate Nutrition and High-Efficiency Feeding of Aquatic Animals, Zhanjiang 524088, China; Key Laboratory of Aquatic Feed Science and Technology for Livestock and Poultry in Southern China, under the Ministry of Agriculture, Zhanjiang 524088, China
| | - Shiwei Xie
- College of Aquatic Sciences, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Province Research Center for Accurate Nutrition and High-Efficiency Feeding of Aquatic Animals, Zhanjiang 524088, China; Key Laboratory of Aquatic Feed Science and Technology for Livestock and Poultry in Southern China, under the Ministry of Agriculture, Zhanjiang 524088, China.
| |
Collapse
|
2
|
Khalid F, Azmat H, Khan N, Saima. Ameliorative effects of Moringa oleifera leaf extract against arsenic induced histo-biochemical alterations in Labeo rohita. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 287:117258. [PMID: 39486246 DOI: 10.1016/j.ecoenv.2024.117258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/24/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024]
Abstract
The current study evaluated the efficacy of Moringa oleifera leaf extract in mitigating the histo-biochemical alterations in Labeo rohita caused by arsenic. A medical plant (Moringa oleifera) known for its numerous pharmacological qualities, was added to three different diets at 0, 2, and 4 % level, prepared by mixing M. oleifera leaf extract with the basal diet. The 96 hr lethal concentration of arsenic to Labeo rohita was 20.25 mg L-1. One hundred and eighty healthy individuals of Labeo rohita were divided into four groups. One group served as control and other three groups were subjected to sub-lethal concentration 4.05 mg L-1 (1/5th of LC50) of arsenic, with or without Moringa oleifera leaf extract supplementation for 28 days. Fish exposed to arsenic experienced significant histological alterations, higher cortisol levels, impaired antioxidant status, elevated liver enzymes (ALT, AST, and ALP), and upregulated relative expression of the cytochrome P450 gene.". But, in fish fed with diets containing 2 % or 4 % M. oleifera leaf extract, the histological alterations were reduced, level of liver enzymes, cortisol and the upregulation of anti-oxidant enzyme and cytochrome P450 gene expression was normalized, with (4 %) M. oleifera leaf extract supplemented diet exhibiting stronger effects. These results suggest the protective and therapeutic roles of M. oleifera as a feed supplement in Labeo rohita against arsenic induced toxicity.
Collapse
Affiliation(s)
- Fakhira Khalid
- Department of Fisheries and Aquaculture, University of Veterinary and Animal Sciences, Lahore, Pakistan.
| | - Hamda Azmat
- Department of Fisheries and Aquaculture, University of Veterinary and Animal Sciences, Lahore, Pakistan.
| | - Noor Khan
- Institute of Zoology, University of the Punjab, Lahore, Pakistan.
| | - Saima
- Department of Animal nutrition, University of Veterinary and Animal Sciences, Lahore, Pakistan.
| |
Collapse
|
3
|
Gao N, Gao X, Du M, Xiang Y, Zuo H, Huang R, Wan W, Hu K. Lutein protects senescent ciliary muscle against oxidative stress through the Keap1/Nrf2/ARE pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155982. [PMID: 39244941 DOI: 10.1016/j.phymed.2024.155982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/30/2024] [Accepted: 08/22/2024] [Indexed: 09/10/2024]
Abstract
BACKGROUND Aging-induced decline in ciliary muscle function is an important factor in visual accommodative deficits in elderly adults. With this study, we provide an innovative investigation of the interaction between ciliary muscle aging and oxidative stress. METHODS Tricolor guinea pigs were used for the experiments in vivo and primary guinea pig ciliary smooth muscle cells were used for the experiments in vitro. RESULTS We enriched for genes associated with muscle-aging-lutein relationship using bioinformatics, including Nuclear factor-erythroid 2-related factor-2 (Nrf2), Glutathione Peroxidase (GPx) gene family, Superoxide Dismutase (SOD) gene family, NAD(P)H: Quinone Oxidoreductase 1 (NQO1) and Heme Oxygenase-1 (HO-1). After gavage to aged guinea pigs, lutein reduced Reactive Oxygen Species (ROS) and P21 levels in senescent ciliary muscle; lutein decreased refractive error and restored accommodation of the eye. In addition, lutein increased GPx, SOD, and Catalase (CAT) levels in serum; lutein increased GPx and CAT levels in ciliary bodies. Lutein regulated the expression of proteins such as Nrf2, Kelch-like ECH-associated protein 1 (Keap1), and downstream proteins in senescent ciliary bodies. Similarly, guinea pig ciliary muscle cell senescence was associated with oxidative stress. In vitro, 100 μM lutein reversed the damage caused by 800 μM H2O2; it reduced Senescence-Associated β-galactosidase (SA-β-Gal) and ROS activites, cell apoptosis and cell migration. Also, lutein increased the expression of smooth muscle contractile proteins. Lutein also increased the expression of Nrf2, GPx2, NQO1 and HO-1, decreased the expression of Keap1. A reduction in Nrf2 activity led to a reduction in the ability of lutein to activate antioxidant enzymes in the cells, thus reducing its inhibitory effect on cell senescence. CONCLUSION lutein improved resistance to oxidative stress in senescent ciliary muscle in vivo and in vitro by regulating the Keap1/Nrf2/Antioxidant Response Element pathway. We have innovatively demonstrated the molecular pharmacological mechanism by which lutein reverse age-related ciliary muscle systolic and diastolic deficits.
Collapse
Affiliation(s)
- Ning Gao
- The First Affiliated Hospital of Chongqing Medical University, Ophthalmology, Chongqing 400016, PR China; Key Laboratory of Prevention and Treatment on major blinding diseases, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing 400016, PR China
| | - Xiang Gao
- The First Affiliated Hospital of Chongqing Medical University, Ophthalmology, Chongqing 400016, PR China; Key Laboratory of Prevention and Treatment on major blinding diseases, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing 400016, PR China
| | - Miaomiao Du
- The First Affiliated Hospital of Chongqing Medical University, Ophthalmology, Chongqing 400016, PR China; Key Laboratory of Prevention and Treatment on major blinding diseases, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing 400016, PR China
| | - Yongguo Xiang
- The First Affiliated Hospital of Chongqing Medical University, Ophthalmology, Chongqing 400016, PR China; Key Laboratory of Prevention and Treatment on major blinding diseases, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing 400016, PR China
| | - Hangjia Zuo
- The First Affiliated Hospital of Chongqing Medical University, Ophthalmology, Chongqing 400016, PR China; Key Laboratory of Prevention and Treatment on major blinding diseases, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing 400016, PR China
| | - Rongxi Huang
- Chongqing General Hospital, Endocrinology, Chongqing 400013, PR China
| | - Wenjuan Wan
- The First Affiliated Hospital of Chongqing Medical University, Ophthalmology, Chongqing 400016, PR China; Key Laboratory of Prevention and Treatment on major blinding diseases, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing 400016, PR China.
| | - Ke Hu
- The First Affiliated Hospital of Chongqing Medical University, Ophthalmology, Chongqing 400016, PR China; Key Laboratory of Prevention and Treatment on major blinding diseases, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing 400016, PR China.
| |
Collapse
|
4
|
Zhao R, Bai Y, Yang F. Melatonin in animal husbandry: functions and applications. Front Vet Sci 2024; 11:1444578. [PMID: 39286597 PMCID: PMC11402905 DOI: 10.3389/fvets.2024.1444578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/14/2024] [Indexed: 09/19/2024] Open
Abstract
Melatonin (N-acetyl-5-methoxytryptamine) is an essential small molecule with diverse biological functions. It plays several key roles, including regulating the secretion of reproductive hormones and the reproductive cycle, enhancing the functionality of reproductive organs, improving the quality of sperm and eggs, and mitigating oxidative stress in the reproductive system. Melatonin effectively inhibits and scavenges excess free radicals while activating the antioxidant enzyme system and reduces the production of inflammatory factors and alleviates tissue damage caused by inflammation by regulating inflammatory pathways. Additionally, melatonin contributes to repairing the intestinal barrier and regulating the gut microbiota, thereby reducing bacterial and toxin permeation. The use of melatonin as an endogenous hormone in animal husbandry has garnered considerable attention because of its positive effects on animal production performance, reproductive outcomes, stress adaptation, disease treatment, and environmental sustainability. This review explores the characteristics and biological functions of melatonin, along with its current applications in animal production. Our findings may serve as a reference for the use of melatonin in animal farming and future developmental directions.
Collapse
Affiliation(s)
- Ruohan Zhao
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yicheng Bai
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Fangxiao Yang
- College of Animal Science and Veterinary Medicine, Yunnan Vocational and Technical College of Agriculture, Kunming, Yunnan, China
| |
Collapse
|
5
|
Li L, Li W, Liu Y, Han B, Yu Y, Lin H. Emamectin benzoate exposure induced carp kidney injury by triggering mitochondrial oxidative stress to accelerate ferroptosis and autophagy. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 203:106017. [PMID: 39084778 DOI: 10.1016/j.pestbp.2024.106017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/24/2024] [Accepted: 07/03/2024] [Indexed: 08/02/2024]
Abstract
Emamectin benzoate (EMB), commonly used as an insecticide in fishery production, inevitably leaves residual chemicals in aquatic environments. High-level EMB exposure can cause severe damage to multiple systems of marine animals, potentially through mechanisms involving severe mitochondrial damage and oxidative stress. However, it is not clear yet how EMB exposure at a certain level can cause damage to fish kidney tissue. In this study, we exposed carps to an aquatic environment containing 2.4 μg/L of EMB and cultured carp kidney cells in vitro, established a cell model exposed to EMB. Our findings revealed that EMB exposure resulted in severe kidney tissue damage in carp and compromised the viability of grass carp kidney cells (CIK cells). By RNA-seq analysis, EMB exposure led to significant differences in mitochondrial homeostasis, response to ROS, ferroptosis, and autophagy signals in carp kidney tissue. Mechanistically, EMB exposure induced mitochondrial oxidative stress by promoting the generation of mitochondrial superoxide and reducing the activity of antioxidant enzymes. Additionally, EMB exposure triggered loss of mitochondrial membrane potential, an imbalance in mitochondrial fusion/division homeostasis, and dysfunction in oxidative phosphorylation, ultimately impairing ATP synthesis. Notably, EMB exposure also accelerated excessive autophagy and ferroptosis of cells by contributing to the formation of lipid peroxides and autophagosomes, and the deposition of Fe2+. However, N-acetyl-L-cysteine (NAC) treatment alleviated the damage and death of CIK cells by inhibiting oxidative stress. Overall, our study demonstrated that EMB exposure induced mitochondrial oxidative stress, impaired mitochondrial homeostasis, and function, promoted autophagy and ferroptosis of kidney cells, and ultimately led to kidney tissue damage in carp. Our research enhanced the toxicological understanding on EMB exposure and provides a model reference for comparative medicine.
Collapse
Affiliation(s)
- Lu Li
- Northeast Agricultural University, Harbin 150030, PR China
| | - Wan Li
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, PR China
| | - Yufeng Liu
- Institute of Animal Husbandry Research, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, PR China
| | - Bing Han
- Northeast Agricultural University, Harbin 150030, PR China
| | - Yanbo Yu
- Northeast Agricultural University, Harbin 150030, PR China
| | - Hongjin Lin
- Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
6
|
Ye Y, Huang J, Li S, Li Y, Zhao Y. Effects of Dietary Melatonin on Antioxidant Capacity, Immune Defense, and Intestinal Microbiota in Red Swamp Crayfish (Procambarus clarkii). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:623-638. [PMID: 38814375 DOI: 10.1007/s10126-024-10326-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/23/2024] [Indexed: 05/31/2024]
Abstract
The aim of this study was to investigate the effects of melatonin (MT) feed supplementation on the antioxidant capacity, immune defense, and intestinal flora in Procambarus clarkii (P. clarkii). Six groups of P. clarkii were fed test feeds containing different levels of MT: 0 mg/kg (control), 22.5, 41.2, 82.7, 165.1, and 329.2 mg/kg for a duration of 2 months. The specific growth rate, hepatosomatic index, and condition factor were recorded highest in the test group of shrimp fed an MT concentration of 165.1 mg/kg. Compared to the control group, the rate of apoptosis was lower in hepatopancreas cells of P. clarkii supplemented with high concentrations of MT. Analyses of antioxidant capacity and immune-response-related enzymes in the hepatopancreas indicated that dietary supplementation of MT significantly augmented both the antioxidant system and immune responses. Dietary MT supplementation significantly increased the expression levels of antioxidant-immunity-related genes and decreased the expression levels of genes linked to apoptosis. Dietary MT was associated with an elevation in the abundance of the Firmicutes and a reduction in the abundance of the Proteobacteria in the intestines; besides, resulting in an increase in the abundance of beneficial bacteria, such as Lactobacilli. The broken-line model indicated that the suitable MT concentration was 154.09-157.09 mg/kg. MT supplementation enhanced the growth performance of P. clarkii, exerting a positive influence on the intestinal microbiota, and bolstered both immune response and disease resistance. Thus, this study offered novel perspectives regarding the application of dietary MT supplementation within the aquaculture field.
Collapse
Affiliation(s)
- Yucong Ye
- School of Life Science, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Jiarong Huang
- School of Life Science, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Siwen Li
- School of Life Science, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Yiming Li
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, 63 Chifeng Rd, Shanghai, 200092, China.
| | - Yunlong Zhao
- School of Life Science, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China.
| |
Collapse
|
7
|
Ping K, Yang R, Chen H, Xie S, Li M, Xiang Y, Lu Y, Dong J. Gypenoside XLIX alleviates intestinal injury by inhibiting sepsis-induced inflammation, oxidative stress, apoptosis, and autophagy. Chem Biol Interact 2024; 397:111077. [PMID: 38810818 DOI: 10.1016/j.cbi.2024.111077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/16/2024] [Accepted: 05/27/2024] [Indexed: 05/31/2024]
Abstract
Intestinal barrier dysfunction is a significant complication induced by sepsis, yet therapeutic strategies targeting such dysfunction remain inadequate. This study investigates the protective effects of Gypenoside XLIX (Gyp XLIX) against intestinal damage induced by sepsis. Septic intestinal injury in mice was induced by cecum ligation and puncture (CLP) surgery. The biological activity and potential mechanisms of Gyp XLIX were explored through intraperitoneal injection of Gyp XLIX (40 mg/kg). The study demonstrates that Gyp XLIX improves the pathological structural damage of the intestine and increases tight junction protein expression as well as the number of cup cells. Through activation of the nuclear factor erythroid 2-related factor 2 - Kelch-like ECH-associated protein 1 (Nrf2-Keap1) pathway, Gyp XLIX enhances antioxidant enzyme levels while reducing the excessive accumulation of reactive oxygen species (ROS). In addition, Gyp XLIX effectively alleviates sepsis-induced intestinal inflammation by inhibiting the nuclear factor kappa B (NF-κB) pathway and activation of the NLRP3 inflammasome. Moreover, Gyp XLIX inhibits cell death through modifying phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway, further enhancing its ability to shield the intestinal barrier. The combined action of these molecular mechanisms promotes the restoration of immune balance and reduces excessive autophagy activity induced under septic conditions. In summary, Gyp XLIX exhibits a significant preventive action against intestinal damage brought on by sepsis, with its mechanisms involving the improvement of intestinal barrier function, antioxidative stress, inhibition of inflammatory response, and cell apoptosis. This research offers a potential strategy for addressing intestinal barrier impairment brought on by sepsis.
Collapse
Affiliation(s)
- Kaixin Ping
- Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, China; Institute of Neuroscience, Neurosurgery Department, The First People's Hospital of Lianyungang, Lianyungang, 222000, China
| | - Rongrong Yang
- Department of Oncology, The Second People's Hospital of Lianyungang (The Oncology Hospital of Lianyungang), Affiliated to Kangda College of Nanjing Medical University, Lianyungang, 222000, China
| | - Huizhen Chen
- Institute of Neuroscience, Neurosurgery Department, The First People's Hospital of Lianyungang, Lianyungang, 222000, China
| | - Shaocheng Xie
- Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Mengxin Li
- Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, China; Institute of Neuroscience, Neurosurgery Department, The First People's Hospital of Lianyungang, Lianyungang, 222000, China
| | - Yannan Xiang
- Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, China; Department of Oncology, The Second People's Hospital of Lianyungang (The Oncology Hospital of Lianyungang), Affiliated to Kangda College of Nanjing Medical University, Lianyungang, 222000, China
| | - Yingzhi Lu
- Department of Oncology, The Second People's Hospital of Lianyungang (The Oncology Hospital of Lianyungang), Affiliated to Kangda College of Nanjing Medical University, Lianyungang, 222000, China.
| | - Jingquan Dong
- Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, China.
| |
Collapse
|
8
|
Cai J, Huang J, Li D, Zhang X, Shi B, Liu Q, Fang C, Xu S, Zhang Z. Hippo-YAP/TAZ-ROS signaling axis regulates metaflammation induced by SelenoM deficiency in high-fat diet-derived obesity. J Adv Res 2024:S2090-1232(24)00229-7. [PMID: 38879122 DOI: 10.1016/j.jare.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/21/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
INTRODUCTION Metabolic inflammation (metaflammation) in obesity is primarily initiated by proinflammatory macrophage infiltration into adipose tissue. SelenoM contributes to the modulation of antioxidative stress and inflammation in multiple pathological processes; however, its roles in metaflammation and the proinflammatory macrophage (M1)-like state in adipose tissue have not been determined. OBJECTIVES We hypothesize that SelenoM could effectively regulate metaflammation via the Hippo-YAP/TAZ-ROS signaling axis in obesity derived from a high-fat diet. METHODS Morphological changes in adipose tissue were examined by hematoxylin-eosin (H&E) staining and fluorescence microscopy. The glucose tolerance test (GTT) and insulin tolerance test (ITT) were used to evaluate the impact of SelenoM deficiency on blood glucose levels. RNA-Seq analysis, LC-MS analysis, Mass spectrometry analysis and western blotting were performed to detect the levels of genes and proteins related to glycolipid metabolism in adipose tissue. RESULTS Herein, we evaluated the inflammatory features and metabolic microenvironment of mice with SelenoM-deficient adipose tissues by multi-omics analyses. The deletion of SelenoM resulted in glycolipid metabolic disturbances and insulin resistance, thereby accelerating weight gain, adiposity, and hyperglycemia. Mice lacking SelenoM in white adipocytes developed severe adipocyte hypertrophy via impaired lipolysis. SelenoM deficiency aggravated the generation of ROS by reducing equivalents (NADPH and glutathione) in adipocytes, thereby promoting inflammatory cytokine production and the M1-proinflammatory reaction, which was related to a change in nuclear factor kappa-B (NF-κB) levels in macrophages. Mechanistically, SelenoM deficiency promoted metaflammation via Hippo-YAP/TAZ-ROS-mediated transcriptional regulation by targeting large tumor suppressor 2 (LATS2). Moreover, supplementation with N-acetyl cysteine (NAC) to reduce excessive oxidative stress partially rescued adipocyte inflammatory responses and macrophage M1 activation. CONCLUSION Our data indicate that SelenoM ameliorates metaflammation mainly via the Hippo-YAP/TAZ-ROS signaling axis in obesity. The identification of SelenoM as a key regulator of metaflammation presents opportunities for the development of novel therapeutic interventions targeting adipose tissue dysfunction in obesity.
Collapse
Affiliation(s)
- Jingzeng Cai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jiaqiang Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Di Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xintong Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Bendong Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Qiaohan Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Cheng Fang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, China.
| | - Ziwei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, China.
| |
Collapse
|
9
|
Hu H, Yu Q, Zheng Y, Cui H, Huang X, Zhang K. Forsythoside A protects against Zearalenone-induced cell damage in chicken embryonic fibroblasts via mitigation of endoplasmic reticulum stress. Vet Res Commun 2024; 48:1659-1670. [PMID: 38467911 DOI: 10.1007/s11259-024-10350-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/05/2024] [Indexed: 03/13/2024]
Abstract
Zearalenone (ZEA) is a non-steroidal estrogenic mycotoxin that exerts its toxic effects through various damage mechanisms such as oxidative stress, endoplasmic reticulum stress (ERS), mitochondrial damage, cell cycle arrest, and apoptosis. At present, there are few studies on drugs that can rescue ZEA-induced chicken embryonic fibroblasts damage. Forsythoside A (FA) is one of effective ingredients of traditional Chinese medicine that plays a role in various biological functions, but its antitoxin research has not been investigated so far. In this study, in vitro experiments were carried out. Chicken embryo fibroblast (DF-1) cells was used as the research object to select the appropriate treatment concentration of ZEA and examined reactive oxygen species (ROS), mitochondrial membrane potential, ERS and apoptosis to investigate the effects and mechanisms of FA in alleviating ZEA-induced cytotoxicity in DF-1 cells. Our results showed that ZEA induced ERS and activated the unfolded protein response (UPR) leading to apoptosis, an apoptotic pathway characterized by overproduction of Lactate dehydrogenase (LDH), Caspase-3, and ROS and loss of mitochondrial membrane potential. We also demonstrated that FA help to prevent ERS and attenuated ZEA-induced apoptosis in DF-1 cells by reducing the level of ROS, downregulating GRP78, PERK, ATF4, ATF6, JNK, IRE1, ASK1, CHOP, BAX expression, and up-regulating Bcl-2 expression. Our results provide a basis for an in-depth study of the mechanism of toxic effects of ZEA on chicken cells and the means of detoxification, which has implications for the treatment of relevant avian diseases.
Collapse
Affiliation(s)
- Hui Hu
- University Key Laboratory for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qiang Yu
- University Key Laboratory for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yu Zheng
- University Key Laboratory for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hongjie Cui
- University Key Laboratory for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaohong Huang
- University Key Laboratory for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Kaizhao Zhang
- University Key Laboratory for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
10
|
Li Q, Ping K, Xiang Y, Sun Y, Hu Z, Liu S, Guan X, Fu M. Ferulic acid alleviates avermectin induced renal injury in carp by inhibiting inflammation, oxidative stress and apoptosis. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109575. [PMID: 38663463 DOI: 10.1016/j.fsi.2024.109575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/11/2024] [Accepted: 04/18/2024] [Indexed: 05/02/2024]
Abstract
Avamectin (AVM), a macrolide antibiotic, is widely used in fisheries, agriculture, and animal husbandry, however, its irrational use poses a great danger to aquatic organisms. Ferulic acid (FA) is a natural chemical found in the cell walls of plants. It absorbs free radicals from the surrounding environment and acts as an antioxidant. However, the protective effect of FA against kidney injury caused by AVM has not been demonstrated. In this study, 60 carp were divided into the control group, AVM group (2.404 μg/L), FA+AVM group and FA group (400 mg/kg). Pathological examination, quantitative real-time PCR (qPCR), reactive oxygen species (ROS) and western blot were used to evaluate the preventive effect of FA on renal tissue injury after AVM exposure. Histological findings indicated that FA significantly reduced the swelling and infiltration of inflammatory cells in the kidney tissues of carp triggered by AVM. Dihydroethidium (DHE) fluorescent probe assay showed that FA inhibited the accumulation of kidney ROS. Biochemical results showed that FA significantly increased glutathione (GSH) content, total antioxidant capacity (T-AOC) and catalase (CAT) activity, and decreased intracellular malondialdehyde (MDA) content. In addition, western blot results revealed that the protein expression levels of Nrf2 and p-NF-κBp65 in the carp kidney were inhibited by AVM, but reversed by the FA. The qPCR results exhibited that FA significantly increased the mRNA levels of tgf-β1 and il-10, while significantly down-regulated the gene expression levels of tnf-α, il-6 and il-1β. These data suggest that FA can reduce oxidative stress and renal tissue inflammation induced by AVM. At the same time, FA inhibited the apoptosis of renal cells induced by AVM by decreasing the transcription level and protein expression level of Bax, and increasing the transcription level and protein expression level of Bcl2, PI3K and AKT. This study provides preliminary evidence for the theory that FA reduces the level of oxidative stress, inflammation response and kidney tissue damage caused by apoptosis in carp, providing a theoretical basis for the prevention and treatment of the AVM.
Collapse
Affiliation(s)
- Qiulu Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Kaixin Ping
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yannan Xiang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Ying Sun
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Zunhan Hu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Shujuan Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xinying Guan
- Science and Technology Department, The First People's Hospital of Lianyungang, Lianyungang, 222000, China.
| | - Mian Fu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China; Jiangsu Institute of Marine Resources Development, Lianyungang, 222005, China.
| |
Collapse
|
11
|
Guo JT, Li HY, Cheng C, Shi JX, Ruan HN, Li J, Liu CM. Lead-induced liver fibrosis and inflammation in mice by the AMPK/MAPKs/NF-κB and STAT3/TGF-β1/Smad2/3 pathways: the role of Isochlorogenic acid a. Toxicol Res (Camb) 2024; 13:tfae072. [PMID: 38737339 PMCID: PMC11081073 DOI: 10.1093/toxres/tfae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/24/2024] [Accepted: 05/03/2024] [Indexed: 05/14/2024] Open
Abstract
Lead (Pb) is a nonessential heavy metal, which can cause many health problems. Isochlorogenic acid A (ICAA), a phenolic acid present in tea, fruits, vegetables, coffee, plant-based food products, and various medicinal plants, exerts multiple effects, including anti-oxidant, antiviral, anti-inflammatory and antifibrotic functions. Thus, the purpose of our study was to determine if ICAA could prevent Pb-induced hepatotoxicity in ICR mice. An evaluation was performed on oxidative stress, inflammation and fibrosis, and related signaling. The results indicate that ICAA attenuates Pb-induced abnormal liver function. ICAA reduced liver fibrosis, inflammation and oxidative stress caused by Pb. ICAA abated Pb-induced fibrosis and decreased inflammatory cytokines interleukin-1β (IL-1β) and tumor necrosis factor-alpha (TNF-α). ICAA abrogated reductions in activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). Masson staining revealed that ICAA reduced collagen fiber deposition in Pb-induced fibrotic livers. Western blot and immunohistochemistry analyses showed ICAA increased phosphorylated AMP-activated protein kinase (p-AMPK) expression. ICAA also reduced the expression of collagen I, α-smooth muscle actin (α-SMA), phosphorylated extracellular signal-regulated kinase (p-ERK), phosphorylated c-jun N-terminal kinase (p-JNK), p-p38, phosphorylated signal transducer and phosphorylated activator of transcription 3 (p-STAT3), transforming growth factor β1 (TGF-β1), and p-Smad2/3 in livers of mice. Overall, ICAA ameliorates Pb-induced hepatitis and fibrosis by inhibiting the AMPK/MAPKs/NF-κB and STAT3/TGF-β1/Smad2/3 pathways.
Collapse
Affiliation(s)
- Jun-Tao Guo
- School of Life Science, Jiangsu Normal University, No. 101, Shanghai Road, Tongshan New Area, 221116, Xuzhou City, Jiangsu Province, PR China
| | - Han-Yu Li
- School of Life Science, Jiangsu Normal University, No. 101, Shanghai Road, Tongshan New Area, 221116, Xuzhou City, Jiangsu Province, PR China
| | - Chao Cheng
- School of Life Science, Jiangsu Normal University, No. 101, Shanghai Road, Tongshan New Area, 221116, Xuzhou City, Jiangsu Province, PR China
| | - Jia-Xue Shi
- School of Life Science, Jiangsu Normal University, No. 101, Shanghai Road, Tongshan New Area, 221116, Xuzhou City, Jiangsu Province, PR China
| | - Hai-Nan Ruan
- School of Life Science, Jiangsu Normal University, No. 101, Shanghai Road, Tongshan New Area, 221116, Xuzhou City, Jiangsu Province, PR China
| | - Jun Li
- School of Life Science, Jiangsu Normal University, No. 101, Shanghai Road, Tongshan New Area, 221116, Xuzhou City, Jiangsu Province, PR China
| | - Chan-Min Liu
- School of Life Science, Jiangsu Normal University, No. 101, Shanghai Road, Tongshan New Area, 221116, Xuzhou City, Jiangsu Province, PR China
| |
Collapse
|
12
|
Miao Z, Wang W, Miao Z, Cao Q, Xu S. Role of Selenoprotein W in participating in the progression of non-alcoholic fatty liver disease. Redox Biol 2024; 71:103114. [PMID: 38460355 PMCID: PMC10943047 DOI: 10.1016/j.redox.2024.103114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/04/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a chronic liver disease worldwide. Numerous evidence has demonstrated that metabolic reprogramming serves as a hallmark associated with an elevated risk of NAFLD progression. Selenoprotein W (SelW) is an extensively expressed hepatic selenoprotein that plays a crucial role in antioxidant function. Here, we first demonstrated that SelW is a significantly distinct factor in the liver tissue of NAFLD patients through the Gene Expression Omnibus (GEO) database. Additionally, loss of SelW alleviated hepatic steatosis induced by a high-fat diet (HFD), and was accompanied by the regulation of metabolic and inflammatory pathways as verified by transcriptomic analysis. Moreover, co-immunoprecipitation (CO-IP), liquid chromatography-tandem mass spectrometry (LC-MS), laser scanning confocal microscopy (LSCM) and molecular docking analysis were subsequently implemented to identify Pyruvate Kinase M2 (PKM2) as a potential interacting protein of SelW. Meanwhile, SelW modulated PKM2 translocation into the nucleus to trigger transactivation of the HIF-1α, in further mediating mitochondrial apoptosis, eventually resulting in mitochondrial damage, ROS excessive production and mtDNA leakage. Additionally, mito-ROS accumulation induced the activation of the NLRP3 inflammasome-mediated pyroptosis, thereby facilitating extracellular leakage of mtDNA. The escaped mtDNA then evokes the cGAS-STING signaling pathway in macrophage, thus inducing a shift in macrophage phenotype. Together, our results suggest SelW promotes hepatocyte apoptosis and pyroptosis by regulating metabolic reprogramming to activate cGAS/STING signaling of macrophages, thereby exacerbating the progression of NAFLD.
Collapse
Affiliation(s)
- Zhiruo Miao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Wei Wang
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, 310000, People's Republic of China
| | - Zhiying Miao
- College of Life Science, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Qiyuan Cao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
13
|
Huang P, Gao J, Du J, Nie Z, Li Q, Sun Y, Xu G, Cao L. Prometryn exposure disrupts the intestinal health of Eriocheir sinensis: Physiological responses and underlying mechanism. Comp Biochem Physiol C Toxicol Pharmacol 2024; 277:109820. [PMID: 38145793 DOI: 10.1016/j.cbpc.2023.109820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/26/2023] [Accepted: 12/14/2023] [Indexed: 12/27/2023]
Abstract
Most toxicity studies of prometryn in non-target aquatic animals have focused on hepatotoxicity, cardiotoxicity, embryonic developmental and growth toxicity, while studies on the molecular mechanisms of intestinal toxicity of prometryn are still unknown. In the current study, the intestinal tissues of the Chinese mitten crab (Eriocheir sinensis) were used to uncover the underlying molecular mechanisms of stress by 96-h acute in vivo exposure to prometryn. The results showed that prometryn activated the Nrf2-Keap1 pathway and up-regulated the expression of downstream antioxidant genes. Prometryn induced the expression of genes associated with non-specific immunity and autophagy, and induced apoptosis through the MAPK pathway. Interestingly, the significant up-or down-regulation of the above genes mainly occurred at 12 h- 24 h after exposure. Intestinal flora sequencing revealed that prometryn disrupted the intestinal normal barrier function mainly by reducing beneficial bacteria abundance, which further weakened the intestinal resistance to exogenous toxicants and caused an inflammatory response. Correlation analyses found that differential flora at the genus level had potential associations with gut stress-related genes. In conclusion, our study contributes to understanding the molecular mechanisms behind the intestinal stress caused by herbicides on aquatic crustaceans.
Collapse
Affiliation(s)
- Peng Huang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Jiancao Gao
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Jinliang Du
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Zhijuan Nie
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Quanjie Li
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yi Sun
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Gangchun Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Liping Cao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| |
Collapse
|
14
|
Wu H, Xu T, Yang N, Zhang J, Xu S. Low-Se Diet Increased Mitochondrial ROS to Suppress Myoblasts Proliferation and Promote Apoptosis in Broilers via miR-365-3p/SelT Signaling Axis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:284-299. [PMID: 38109331 DOI: 10.1021/acs.jafc.3c04406] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
microRNA (miRNA) controls the post-transcriptional translation of mRNA to affect the expression of many genes participating in functional interaction pathways. Selenoproteins are characterized by their antioxidant activity, wherein selenoprotein T (SelT) is an essential membrane-bound selenoprotein serving as a guardian of intracellular homeostasis. During muscle development and regeneration, myoblasts enter the cell cycle and rapidly proliferate. However, the role of SelT in muscle development and selenium (Se) deficiency-induced muscle damage remains poorly investigated. This study established Se deficient broiler models, chicken embryos models, and cultured chicken primary myoblasts in vitro. We showed that Se deficiency induced skeletal muscle damage in broilers, promoted miR-365-3p expression, and downregulated the level of SelT, significantly. The absence of SelT led to the accumulation of mitochondrial superoxide and downregulated mitochondrial dynamics gene expression, which, in turn, induced the disruption of mitochondria potential and blocked the oxidative phosphorylation (OXPHOS) process. Limited ATP production rate caused by mitochondrial ROS overproduction went along with cell cycle arrest, cell proliferation slowness, and myocyte apoptosis increase. Using Mito-TEMPO for mitochondrial ROS elimination could effectively mitigate the above adverse reactions and significantly restore the proliferation potential of myoblasts. Moreover, we identified miR-365-3p, a miRNA that targeted SelT mRNA to inhibit myoblast proliferation by disrupting intracellular redox balance. The omics analysis results showed that Se deficiency led to the significant enrichment of "cell cycle", "oxidative stress response", and "oxidative phosphorylation" pathway genes. Finally, we proved that the effect of the miR-365-3p/SelT signaling axis on muscle development did exist in the chicken embryo stage. In summary, our findings revealed that miR-365-3p was involved in broiler skeletal muscle damage in Se deficiency by targeting SelT, and SelT, serving as an intracellular homeostasis guardian, resisted mitochondrial oxidative stress, and protected ATP generation, promoting myoblast proliferation and inhibiting apoptosis. This study provides an attractive target for the cultivated meat industry and regenerative medicine.
Collapse
Affiliation(s)
- Hao Wu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Tong Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Naixi Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Jiuli Zhang
- Heilongjiang Polytechnic, Harbin 150080, P. R. China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China
| |
Collapse
|
15
|
Li X, Wu Q, Chen D, Bai Y, Yang Y, Xu S. Environment-relevant concentrations of cadmium induces necroptosis and inflammation; baicalein maintains gill homeostasis through suppressing ROS/ER stress signaling in common carps (Cyprinus carpio L.). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122805. [PMID: 37913980 DOI: 10.1016/j.envpol.2023.122805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/13/2023] [Accepted: 10/23/2023] [Indexed: 11/03/2023]
Abstract
Cadmium (Cd) is a major contaminant in natural environments and exerts adverse effects on aquatic biota at low concentrations. Gill is as vital respiratory organ and may cause pollutants to enter fish during gas exchange. Baicalein (BAI), as a kind of flavonoids, possess antioxidant properties through inactivating free radicals. To confirm the potential effects and approaches of BAI addition in maintaining the gill stability, 90 common carps (Cyprinus carpio L.) were selected and randomly divided into water environment exposure group (0.22 mg/L Cd) and/or feed added with 0.10 g/kg BAI for 30 days. The analysis of ion content in serum showed that Cd exposure disturbed ion homeostasis, and BAI could reduce serum Cd concentration. The histopathological results of gills showed that Cd exposure caused gill tissue lesions and structural damage, and BAI feeding effectively alleviated this damage. In addition, BAI could enhance antioxidant activity and activate Nrf2/HO-1 axis, thereby reducing oxidative stress and endoplasmic reticulum (ER) stress. Moreover, BAI lightened cytokine imbalance, inflammatory response, and necroptosis. Overall, the results indicated that BAI feeding could maintain gill homeostasis against Cd poisoning via the ROS/ER stress signaling. This trial revealed the properties of BAI resistance to metal Cd in aquaculture and partially elucidated its mechanism.
Collapse
Affiliation(s)
- Xiaojing Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Qian Wu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Dan Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yichen Bai
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Yuhong Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
16
|
Chen D, Shen F, Liu J, Tang H, Zhang K, Teng X, Yang F. The protective effect of Luteolin on chicken spleen lymphocytes from ammonia poisoning through mitochondria and balancing energy metabolism disorders. Poult Sci 2023; 102:103093. [PMID: 37783192 PMCID: PMC10551554 DOI: 10.1016/j.psj.2023.103093] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/25/2023] [Accepted: 09/05/2023] [Indexed: 10/04/2023] Open
Abstract
Ammonia poses a significant challenge in the contemporary intensive breeding industry, resulting in substantial economic losses. Despite this, there is a dearth of research investigating efficacious strategies to prevent ammonia poisoning in poultry. Consequently, the objective of this study was to investigate the molecular mechanisms through which Luteolin (Lut) safeguards mitochondria and restores equilibrium to energy metabolism disorders, thereby shielding chicken spleen lymphocytes from the detrimental effects of ammonia poisoning. Chicken spleen lymphocytes were categorized into 3 distinct groups: the control group, the ammonia group (with the addition of 1 mmol/L of ammonium chloride), and the Lut group (with the treatment of 0.5 μg/mL of Lut for 12 h followed by the addition of 1 mmol/L of ammonium chloride). These groups were then cultured for a duration of 24 h. To investigate the potential protective effect of Lut on lymphocytes exposed to ammonia, various techniques were employed, including CCK-8 analysis, ultrastructural observation, reagent kit methodology, fluorescence microscopy, and quantitative real-time PCR (qRT-PCR). The findings indicate that Lut has the potential to mitigate the morphological damage of mitochondria caused by ammonia poisoning. Additionally, it can counteract the decline in mitochondrial membrane potential, ATP content, and ATPase activities (specifically Na+/K+-ATPase, Ca2+-ATPase, Mg2+-ATPase, and Ca/Mg2+-ATPase) following exposure to ammonia in lymphocytes. Lut also has the ability to regulate the expression of genes involved in mitochondrial fusion (Opa1, Mfn1, and Mfn2) and division (Drp1 and Mff) in spleen lymphocytes after ammonia exposure. This regulation leads to a balanced energy metabolism (HK1, HK2, LDHA, LDHB, PFK, PK, SDHB, and ACO2) and provides protection against ammonia poisoning.
Collapse
Affiliation(s)
- Dechun Chen
- Southwest Minzu University Key Laboratory of Animal Medicine in Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Fanyu Shen
- Southwest Minzu University Key Laboratory of Animal Medicine in Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Jiahao Liu
- Southwest Minzu University Key Laboratory of Animal Medicine in Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Haojinming Tang
- Southwest Minzu University Key Laboratory of Animal Medicine in Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Kai Zhang
- Southwest Minzu University Key Laboratory of Animal Medicine in Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Falong Yang
- Southwest Minzu University Key Laboratory of Animal Medicine in Sichuan Province, Southwest Minzu University, Chengdu 610041, China.
| |
Collapse
|
17
|
Wu Q, Yang W, Bi Y, Yao Y, Li C, Li X. Baicalein inhibits apoptosis and autophagy induced by chlorpyrifos exposure to kidney of Cyprinus carpio through activation of PI3K/AKT pathway. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 196:105624. [PMID: 37945259 DOI: 10.1016/j.pestbp.2023.105624] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/09/2023] [Accepted: 09/14/2023] [Indexed: 11/12/2023]
Abstract
Chlorpyrifos (CPF), a widely used organophosphate pesticide that has caused large-scale contamination globally, has become a major concern. Baicalein (BAI), as a flavonoid extract, shows anti-inflammatory as well as antioxidant activities. The kidneys of fish serve to excrete toxins and are major target organs for environmental contaminants. However, it is not obvious whether BAI can counteract the damage caused by CPF exposure to fish kidneys. Therefore, we conducted a 30-day simulation of CPF poisoning and/or BAI treatment by adding 23.2 μg/L CPF to water and/or 0.15 g/kg BAI to feed. In the transmission electron microscopy results, we observed obvious phenomenon of autophagy and apoptosis in the CPF group, and the TUNEL staining and immunofluorescence of LC3B and p62 double-staining results confirmed that CPF induced autophagy and apoptosis in the kidney of common carp. Furthermore, CPF induced the increase of ROS level and inhibition of PI3K and Nrf2 pathways, which in turn triggered oxidative stress, autophagy and apoptosis in carp kidney according to western blot, RT-qPCR and kit assays. However, addition of BAI significantly alleviated oxidative stress, autophagy and apoptosis due to binding to PI3K protein. Additionally, through phylogenetic tree and structural domain analyses, we also found that the binding sites of BAI and PI3K are conserved in a variety of representative species. These results suggest that BAI antagonizes CPF-caused renal impairments in carp involving the PI3K/AKT pathway and the Nrf2 pathway. Our findings provide new insights into the nephrotoxicity effects of CPF and the potential use of BAI as a detoxification agent for CPF intoxication.
Collapse
Affiliation(s)
- Qian Wu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Wenrui Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Yanju Bi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yujie Yao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Chengzhi Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Xiaojing Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
18
|
Bi Y, Li X, Wei H, Xu S. Resveratrol improves emamectin benzoate-induced pyroptosis and inflammation of Ctenopharyngodon idellus hepatic cells by alleviating oxidative stress/endoplasmic reticulum stress. FISH & SHELLFISH IMMUNOLOGY 2023; 142:109148. [PMID: 37805109 DOI: 10.1016/j.fsi.2023.109148] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/13/2023] [Accepted: 10/05/2023] [Indexed: 10/09/2023]
Abstract
Emamectin benzoate (EMB) is the most widely used pesticide in the world and contributes to water pollution. Owing to the lack of a specific antidote, EMB has a severe negative impact on the health of aquatic organisms. Resveratrol (RES), a substance with antioxidant capacity, is secreted by the fruits of many plants. This study was to explore the protection of RES against EMB-induced pyroptosis and inflammatory response in grass carp (Ctenopharyngodon idellus) hepatic liver (L8824) cells by oxidative stress/endoplasmic reticulum (ER) stress. The results showed that compared to the CON group, EMB induced oxidative stress in L8824 cells with the increase of reactive oxygen species (ROS), methane dicarboxylic aldehyde (MDA), and hydrogen peroxide (H2O2) contents and the decrease of total superoxide dismutase (t-sod) and glutathione peroxidase (gsh-px) activities (P < 0.05). In addition, EMB triggered ERS, increasing the relative mRNA expression of protein kinase R-like endoplasmic reticulum kinase (perk), inositol requiring enzyme 1 alpha (ire1α), glucose-regulated protein 78 (grp78), activating transcription factor 4 (atf4), activating transcription factor 6 (atf6), and CCAAT-enhancer-binding protein homologous protein (chop) and the protein expression of eukaryotic initiation factor 2α (eif2α), chop, atf6, and atf4. Meanwhile, EMB further induced pyroptosis by upregulating the mRNA and protein expression of nlrp3, aptamer protein (asc), caspase-1, gsdmd, interleukin-1β (il-1β), and interleukin-18 (il-18). EMB also induced inflammation in L8824 cells by increasing the mRNA expression of interleukin-2 (il-2), interleukin-6 (il-6), tumor necrosis factor-α (tnf-α), and ifn-γ and decreasing the content of interleukin-10 (il-10). However, compared to the EMB group, the oxidant indices and expression of genes related to ER stress, pyroptosis, and pro-inflammatory factors were significantly down-regulated (P < 0.05), whereas the antioxidant indicators and anti-inflammatory factor were significantly up-regulated in the EMB + RES group (P < 0.05). In conclusion, EMB caused hepatocytes pyroptosis and inflammation in grass carp, and RES could alleviate EMB-induced pyroptosis and inflammation in L8824 cells by ameliorating oxidative stress/ER stress.
Collapse
Affiliation(s)
- Yanju Bi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xiaojing Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Haidong Wei
- College of Life Science, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
19
|
Sun X, Zhang W, Shi X, Wang Y, Zhang Y, Liu X, Xu S, Zhang J. Selenium deficiency caused hepatitis in chickens via the miR-138-5p/SelM/ROS/Ca 2+ overload pathway induced by hepatocyte necroptosis. Food Funct 2023; 14:9226-9242. [PMID: 37743830 DOI: 10.1039/d3fo00683b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Selenoprotein M (SelM), a key thioredoxin like enzyme in the endoplasmic reticulum (ER), is closely related to hepatocyte degeneration. However, the role of miR-138-5p/SelM and necroptosis in chicken SelM-deficient hepatitis and the specific biological mechanism of liver inflammation caused by SelM deficiency have not been elucidated. We established an in vivo chicken liver Se deficiency model by feeding a low-Se diet. The miR-138-5p knockdown and overexpression models and SelM knockdown models were established in LMH cells for an in vitro study. Transmission electron microscopy, H&E staining, Fluo4-AM/ER staining, and flow cytometry were used to detect the morphological changes in chicken liver tissue and the expression changes of necroptosis and inflammation in chicken liver cells. We observed that Se deficiency resulted in liver inflammation, up-regulation of miR-138-5p expression and down-regulation of SelM expression in chickens. Oxidative stress, Ca2+ overload, energy metabolism disorder and necroptosis occurred in chicken liver tissue. Importantly, ROS and the Ca2+ inhibitor could effectively alleviate the energy metabolism disorder, necroptosis and inflammatory cytokine secretion caused by miR-138-5p overexpression and SelM knockdown in LMH cells. In conclusion, selenium deficiency causes hepatitis by upregulating miR-138-5p targeting SelM. Our research findings enrich our knowledge about the biological functions of SelM and provide a theoretical basis for the lack of SelM leading to liver inflammation in chickens.
Collapse
Affiliation(s)
- Xinyue Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China.
| | - Wenyue Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China.
| | - Xu Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China.
| | - Yuqi Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China.
| | - Yilei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China.
| | - Xiaojing Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China.
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China.
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Jiuli Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China.
- Heilongjiang Polytechnic, Harbin 150030, P. R. China.
| |
Collapse
|
20
|
Miao Z, Miao Z, Feng S, Xu S. Chlorpyrifos-mediated mitochondrial calcium overload induces EPC cell apoptosis via ROS/AMPK/ULK1. FISH & SHELLFISH IMMUNOLOGY 2023; 141:109053. [PMID: 37661036 DOI: 10.1016/j.fsi.2023.109053] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 09/05/2023]
Abstract
Chlorpyrifos (CPF) is a typical organophosphate insecticide known to has serious toxicological effects on aquatic animals and causes many environmental contamination problems. To assess the effects of CPF on the epithelioma papulosum cyprini (EPC) cells of the common carps from the point of calcium ion (Ca2+) transport, the CPF-exposed EPC models were primarily established, and both AO/EB staining and Annexin V/PI assay with flow cytometry analysis were subsequently implemented to identify that CPF-induced EPC cell apoptosis, in consistent with the up-regulated expression of BAX, Cyt-c, CASP3 and CASP9, and down-regulated BCL-2 expression. Then, Mag-Fluo-4 AM, Fluo-4 AM and Rhod-2 AM staining probes were co-stained with ER-Tracker Red and Mito-Tracker Green applied to image cellular Ca2+ flux, illuminating Ca2+ depleted from ER and flux into mitochondria, resulting in ER stress and mitochondrial dysfunction. Additionally, 2-Aminoethyl Diphenylborinate (2-APB), 4-Phenylbutyric acid (4-PBA) and Dorsomorphin (Compound C) were performed as the inhibitor of Ca2+ transition, ER stress and AMPK phosphorylation, suggesting CPF-mediated Ca2+ overload triggered ER stress. And the over-generation of Mito-ROS intensified oxidative stress, promoting the phosphorylation of AMPK and deteriorating cell apoptotic death. The results of this study demonstrated Ca2+ overload-dependent mitochondrial dysfunction engages in the CPF-induced apoptosis, providing a novel concept for investigating the toxicity of CPF as environmental pollution on aquatic organisms.
Collapse
Affiliation(s)
- Zhiying Miao
- College of Life Science, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Zhiruo Miao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Shuang Feng
- Large Scale Instrument and Equipment Sharing Service Platform, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
21
|
Muthusamy R, Ramkumar G, Kumarasamy S, Kumar TC, Albeshr MF, Alrefaei AF, Nhung TC, B B, Karuppusamy I. Effect of melatonin and luzindole antagonist on fipronil toxicity, detoxification and antioxidant enzyme system in different tissues of Helicoverpa armigera (Lepidoptera: Noctuidae). ENVIRONMENTAL RESEARCH 2023; 231:116130. [PMID: 37201702 DOI: 10.1016/j.envres.2023.116130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/20/2023]
Abstract
Studies have investigating the detoxification and antioxidant enzymes with melatonin under pesticide stress in many vertebrates, whereas no reports produced in invertebrates. In this study possible role of melatonin and luzindole effect on fipronil toxicity and the detoxification, antioxidant enzymes in H. armigera has been reported. Result showed high toxicity of fipronil treatment (LC50 4.24 ppm), followed by increased LC50 value with melatonin pretreatment (6.44 ppm). Whereas decreased toxicity was observed with melatonin and luzindole combination (3.72 ppm). The detoxification enzymes AChE, esterase and P450 were increased in larval head and whole body with exogenous melatonin level compared to control 1-1.5 μmol/mg of protein. The antioxidant levels of CAT, SOD and GST in whole body and head tissue had been increased by melatonin and fipronil combination 1.1-1.4 unit/mg of protein followed by GPx and GR in larval head (1-1.2 μmol/mg of protein). Mean while the luzindole antagonist inhibits CAT, SOD, GST and GR oxidative enzyme level (1-1.5 fold) in most of the tissue compared to melatonin and fipronil treatment (p < 0.01). Hence this study concludes that the melatonin pretreatment can reduce the fipronil toxicity by enhanced detoxification and antioxidant enzyme system in H. armigera.
Collapse
Affiliation(s)
- Ranganathan Muthusamy
- PG and Research Centre in Biotechnology, MGR College, Adhiyamaan Educational Research Institution, Hosur, 635 130, Tamil Nadu, India
| | - Govindaraju Ramkumar
- Department of Entomology, College of Agricultural and Environmental Sciences, University of Georgia, Griffin, 30223, GA, USA
| | - Suresh Kumarasamy
- PG and Research Centre in Biotechnology, MGR College, Adhiyamaan Educational Research Institution, Hosur, 635 130, Tamil Nadu, India
| | - Thimmappa Chethan Kumar
- PG and Research Centre in Biotechnology, MGR College, Adhiyamaan Educational Research Institution, Hosur, 635 130, Tamil Nadu, India
| | - Mohammed F Albeshr
- Department of Zoology, College of Sciences, King Saud University, P.O. Box. 2455, Riyadh, 11451, Saudi Arabia
| | - Abdulwahed Fahad Alrefaei
- Department of Zoology, College of Sciences, King Saud University, P.O. Box. 2455, Riyadh, 11451, Saudi Arabia
| | - Tran Cam Nhung
- Faculty of Safety Engineering, School of Technology, Van Lang University, Ho Chi Minh City, Vietnam
| | - Barani B
- Department of Biomedical Engineering, SSN College of Engineering, Chennai, Tamil Nadu, India
| | - Indira Karuppusamy
- Emerging Materials for Energy and Environmental Applications Research Group, School of Technology, Van Lang University, Ho Chi Minh City, Vietnam; Faculty of Environment, School of Technology, Van Lang University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
22
|
Zhang L, Chen L, Qi M, Yu F, Ni X, Hong H, Xu H, Xu S. Glyphosate induces autophagy in hepatic L8824 cell line through NO-mediated activation of RAS/RAF/MEK/ERK signaling pathway and energy metabolism disorders. FISH & SHELLFISH IMMUNOLOGY 2023; 137:108772. [PMID: 37100311 DOI: 10.1016/j.fsi.2023.108772] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/22/2023]
Abstract
Glyphosate is an herbicide commonly used worldwide, and its substantial use causes widespread pollution with runoff. However, research on glyphosate toxicity has mostly remained at the embryonic level and existing studies are limited. In the present study, we investigated whether glyphosate can induce autophagy in hepatic L8824 cells by regulating energy metabolism and rat sarcoma (RAS)/rapidly accelerated fibrosarcoma (RAF)/mitogen-activated extracellular signal-regulated kinase (MEK)/extracellular regulated protein kinases (ERK) signaling by activating nitric oxide (NO). First, we selected 0, 50, 200, and 500 μg/mL as the challenge doses, according to the inhibitory concentration of 50% (IC50) of glyphosate. The results showed that glyphosate exposure increased the enzyme activity of inducible nitric oxide synthase (iNOS), which in turn increased the NO content. The activity and expression of enzymes related to energy metabolism, such as hexokinase (HK)1, HK2, phosphofructokinase (PFK), phosphokinase (PK), succinate dehydrogenase (SDH), and nicotinamide adenine dinucleotide with hydrogen (NADH), were inhibited, and the RAS/RAF/MEK/ERK signaling pathway was activated. This led to the negative expression of mammalian target of rapamycin (mTOR) and P62 in hepatic L8824 cells and the activation of the autophagy marker genes microtubule-associated proteins light chain 3 (LC3) and Beclin1 to induce autophagy. The above results were dependent on glyphosate concentration. To verify whether autophagy can be excited by the RAS/RAF/MEK/ERK signaling pathway, we treated L8824 cells with the ERK inhibitor U0126 and found that the autophagy gene LC3 was reduced due to the inhibition of ERK, thus demonstrating the reliability of the results. In conclusion, our results demonstrate that glyphosate can induce autophagy in hepatic L8824 cells by activating NO, thus regulating energy metabolism and the RAS/RAF/MEK/ERK signaling pathway.
Collapse
Affiliation(s)
- Linlin Zhang
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang Uygur Autonomous Region, 843300, PR China
| | - Lu Chen
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang Uygur Autonomous Region, 843300, PR China
| | - Meng Qi
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang Uygur Autonomous Region, 843300, PR China
| | - Fuchang Yu
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang Uygur Autonomous Region, 843300, PR China
| | - Xiaotong Ni
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang Uygur Autonomous Region, 843300, PR China
| | - Haozheng Hong
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang Uygur Autonomous Region, 843300, PR China
| | - Haotian Xu
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang Uygur Autonomous Region, 843300, PR China.
| | - Shiwen Xu
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang Uygur Autonomous Region, 843300, PR China; Key Laboratory of Tarim Animal Husbandry Technology Corps, Tarim University, Alar, Xinjiang Uygur Autonomous Region, 843300, PR China.
| |
Collapse
|
23
|
Bhende RS, Dafale NA. Insights into the ubiquity, persistence and microbial intervention of imidacloprid. Arch Microbiol 2023; 205:215. [PMID: 37129684 DOI: 10.1007/s00203-023-03516-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 05/03/2023]
Abstract
Imidacloprid, a neonicotinoid pesticide, is employed to increase crop productivity. Meanwhile, its indiscriminate application severely affects the non-target organisms and the environment. As an eco-friendly and economically workable option, the microbial intervention has garnered much attention. This review concisely outlines the toxicity, long-term environmental repercussions, degradation kinetics, biochemical pathways, and interplay of genes implicated in imidacloprid remediation. The studies have highlighted imidacloprid residue persistence in the environment for up to 3000 days. In view of high persistence, effective intervention is highly required. Bacteria-mediated degradation has been established as a viable approach with Bacillus spp. being among the most efficient at 30 ℃ and pH 7. Further, a comparative metagenomic investigation reveals dominant neonicotinoid degradation genes in agriculture compared to forest soils with distinctive microbial communities. Functional metabolism of carbohydrates, amino acids, fatty acids, and lipids demonstrated a significantly superior relative abundance in forest soil, implying its quality and fertility. The CPM, CYP4C71v2, CYP4C72, and CYP6AY3v2 genes that synthesize cyt p450 monooxygenase enzyme play a leading role in imidacloprid degradation. In the future, a systems biology approach incorporating integrated kinetics should be utilized to come up with innovative strategies for moderating the adverse effects of imidacloprid on the environment.
Collapse
Affiliation(s)
- Rahul S Bhende
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 4400 20, India
| | - Nishant A Dafale
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 4400 20, India.
| |
Collapse
|
24
|
Sun W, Liu H, Zhu H, Gao M, Xu S. Eucalyptol antagonized the apoptosis and immune dysfunction of grass carp hepatocytes induced by tetrabromobisphenol A by regulating ROS/ASK1/JNK pathway. ENVIRONMENTAL TOXICOLOGY 2023; 38:820-832. [PMID: 36629057 DOI: 10.1002/tox.23726] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/08/2022] [Accepted: 12/25/2022] [Indexed: 06/17/2023]
Abstract
Tetrabromobisphenol A (TBBPA) is a common environmental pollutant which has multi-organ toxicity to mammals. Eucalyptol (EUC) has super antioxidant biological activity. However, in this experimental study, we probed into the mechanism of toxic of TBBPA exposure on Grass carp hepatocytes (L8824 cells) and the antagonistic impact of EUC on TBBPA. We treated L8824 cells with 8 μg/ml TBBPA and/or 20 μM EUC for 24 h in this test research. The experiment results suggested that TBBPA exposure induced elevated levels of reactive oxygen species (ROS), led to oxidative stress, decreased SOD and CAT activities, decreased GSH and T-AOC contents, exacerbated MDA accumulation, activated ASK1/JNK signaling pathway, and further increased the contents of mitochondrial dependent apoptosis pathway related indicators (Cyt-C, Bax, Caspase 9, Caspase 3), while Bcl-2 expression decreased. In addition, TBBPA exposure induced increased expression of TNF-α, IL-6, IL-1β, and decreased expression of IL-2, IFN-γ, Hepcidin, β-defensin, LEAP2. The oxidative stress level, ASK1/JNK signal pathway expression level, apoptosis ratio and cellular immune function of cells exposed to EUC alone did not change significantly. Combined exposure of TBBPA and EUC significantly reduced the proportion of apoptosis and restored cellular immune function. Therefore, these results suggest that EUC can effectively antagonize TBBPA-induced apoptosis and immune dysfunction of L8824 cells by regulating ROS/ASK1/JNK signaling pathway.
Collapse
Affiliation(s)
- Wenying Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Huanyi Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Huijun Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Meichen Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| |
Collapse
|
25
|
Shi X, Xu T, Cui W, Qi X, Xu S. Combined negative effects of microplastics and plasticizer DEHP: The increased release of Nets delays wound healing in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160861. [PMID: 36526177 DOI: 10.1016/j.scitotenv.2022.160861] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 05/12/2023]
Abstract
Environmental harmful pollutants microplastics (MPs) and di (2-ethyl) hexyl phthalate (DEHP) are widely residual in the environment, which may cause lesion to multiple apparatus by inducing oxidative stress, threatening the health of human and animals. Neutrophil extracellular traps (Nets) are involved in skin wound healing. Most studies focused on the individual effects of different poisons on animals and ecosystems, but there are few studies on the accumulation and interaction of multiple poisons. The purpose of this study is to explore the effect of DEHP and MPs co-exposure on skin wound healing and the formation of Nets. For this purpose, we detected this hypothesis by replicating the DEHP and MPs-exposed skin wound model in mice, as well as the co-culture system of neutrophil and fibroblast. The results displayed that MPs and DEHP exposure delayed skin healing, which was more pronounced in the combined exposure group. In vitro and in vivo experiments confirmed that compared with the DEHP or MPs group, the DEHP+MPs group had more significant oxidative stress, increased Nets release and inflammatory factors, and inhibited the Wnt/β-catenin pathway and fibrosis-related factors. N-acetylcysteine (NAC) attenuated these phenomena. Through the co-culture system, we confirmed that the overproduction of Nets induced fibroblasts to exacerbate inflammatory responses and inhibit Wnt pathway and fibrosis. Overall, DEHP and MPs can produce synergistic toxic injury in mice skin wounds, and the excessive activation of ROS/Nets can aggravate inflammatory and inhibit fibrosis, resulting in delayed wound healing.
Collapse
Affiliation(s)
- Xu Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Tong Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Wei Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xue Qi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Laboratory of Embryo Biotechnology, College of Life Science, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
26
|
Yao Y, Zhu W, Han D, Shi X, Xu S. New Insights into How Melatonin Ameliorates Bisphenol A-Induced Colon Damage: Inhibition of NADPH Oxidase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2566-2578. [PMID: 36633214 DOI: 10.1021/acs.jafc.2c07236] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Bisphenol A (BPA) is an endocrine disruptor, widely employed, and detected in many consumer products and food items. Oral intake poses a great threat to intestinal health. Melatonin (MT) stands out as an endogenous, dietary, and therapeutic molecule with potent antioxidant capacity. To explore the protective effect of MT against BPA-induced colon damage and the role of NADPH oxidase (NOX) in this process, we established mice and colonic epithelial cell (NCM460) models of BPA exposure and treated with MT. In vitro and in vivo results showed that MT ameliorated BPA-induced oxidative stress, DNA damage, and the G2/M cell cycle arrest. MT also downregulated the expression of NOX family-related genes, reversed the inhibition of the base excision repair (BER) pathway, promoted the activation of non-homologous end-joining (NHEJ) pathway, and suppressed the mRNA and protein expression of ATM, Chk1/2, and p53. Diphenyleneiodonium chloride (DPI), a NOX-specific inhibitor, also attenuated the toxic effects of BPA on NCM460 cells. Furthermore, molecular docking revealed that MT could bind to NOX. Conclusively, our finding suggested that MT can ameliorate BPA-induced colonic DNA damage by scavenging NOX-derived ROS, which further attenuates G2/M cell cycle arrest dependent on the ATM-Chk1/2-p53 axis.
Collapse
Affiliation(s)
- Yujie Yao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Wenjing Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Dongxu Han
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Xu Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| |
Collapse
|