1
|
Xu Q, Shao D. Leveraging the synergy between anti-angiogenic therapy and immune checkpoint inhibitors to treat digestive system cancers. Front Immunol 2024; 15:1487610. [PMID: 39691707 PMCID: PMC11649667 DOI: 10.3389/fimmu.2024.1487610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/20/2024] [Indexed: 12/19/2024] Open
Abstract
The response rates to immunotherapy vary widely depending on the type of cancer and the specific treatment used and can be disappointingly low for many solid tumors. Fortunately, due to their complementary mechanisms of action, immunotherapy and anti-angiogenic therapy have synergistic effects in cancer treatment. By normalizing the tumor vasculature, anti-angiogenic therapy can improve blood flow and oxygenation to facilitate better immune cell infiltration into the tumor and enhance the effectiveness of immunotherapy. It also reduces immunosuppressive factors and enhances immune activation, to create a more favorable environment for immune cells to attack the tumor. Their combination leverages the strengths of both therapies to enhance anti-tumor effects and improve patient outcomes. This review discusses the vasculature-immunity crosstalk in the tumor microenvironment and summarizes the latest advances in combining anti-angiogenic therapy and immune checkpoint inhibitors to treat digestive system tumors.
Collapse
Affiliation(s)
| | - Dong Shao
- Department of Gastroenterology, The Third Affiliated Hospital of Soochow
University, Changzhou, Jiangsu, China
| |
Collapse
|
2
|
Hao Z, Han Y, Zhao Q, Zhu M, Liu X, Yang Y, An N, He D, Lefai E, Storey KB, Chang H, Xie M. Involvement of Melatonin, Oxidative Stress, and Inflammation in the Protective Mechanism of the Carotid Artery over the Torpor-Arousal Cycle of Ground Squirrels. Int J Mol Sci 2024; 25:12888. [PMID: 39684599 DOI: 10.3390/ijms252312888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Hibernating mammals experience severe hemodynamic changes over the torpor-arousal cycle, with oxygen consumption reaching peaks during the early stage of torpor to re-enter arousal. Melatonin (MT) can improve mitochondrial function and reduce oxidative stress and inflammation. However, the regulatory mechanisms of MT action on the vascular protective function of hibernators are still unclear. Morphology, hemodynamic, mitochondrial oxidative stress, and inflammatory factors of the carotid artery were assessed in ground squirrels who were sampled during summer active (SA), late torpor (LT), and interbout arousal (IBA) conditions. Changes were assessed by methods including hematoxylin and eosin staining, color Doppler ultrasound, ELISA, Western blots, and qPCR. Changes in arterial blood and serum melatonin were also measured by blood gas analyzer and ELISA, whereas mitochondrial oxidative stress and inflammation factors of primary vascular smooth muscle cells (VSMCs) were assessed by qPCR. (1) Intima-media carotid thickness, peak systolic velocity (PSV), end diastolic blood flow velocity (EDV), maximal blood flow rate (Vmax) and pulsatility index (PI) were significantly decreased in the LT group as compared with the SA group, whereas there were no difference between the SA and IBA groups. (2) PO2, oxygen saturation, hematocrit and PCO2 in the arterial blood were significantly increased, and pH was significantly decreased in the LT group as compared with the SA and IBA groups. (3) The serum melatonin concentration was significantly increased in the LT group as compared with the SA and IBA groups. (4) MT treatment significantly reduced the elevated levels of LONP1, NF-κB, NLRP3 and IL-6 mRNA expression of VSMCs under hypoxic conditions. (5) Protein expression of HSP60 and LONP1 in the carotid artery were significantly reduced in the LT and IBA groups as compared with the SA group. (6) The proinflammatory factors IL-1β, IL-6, and TNF-α were reduced in the carotid artery of the LT group as compared with the SA and IBA groups. The carotid artery experiences no oxidative stress or inflammatory response during the torpor-arousal cycle. In addition, melatonin accumulates during torpor and alleviates oxidative stress and inflammatory responses caused by hypoxia in vitro in VSMCs from ground squirrels.
Collapse
Affiliation(s)
- Ziwei Hao
- Department of Aerospace Physiology, Air Force Medical University, Xi'an 710032, China
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an 710069, China
| | - Yuting Han
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an 710069, China
| | - Qi Zhao
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an 710069, China
| | - Minghui Zhu
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an 710069, China
| | - Xiaoxuan Liu
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an 710069, China
| | - Yingyu Yang
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an 710069, China
| | - Ning An
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an 710069, China
| | - Dinglin He
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an 710069, China
| | - Etienne Lefai
- INRAE, Unité de Nutrition Humaine, Université Clermont Auvergne, UMR 1019, F-63000 Clermont-Ferrand, France
| | - Kenneth B Storey
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Hui Chang
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an 710069, China
| | - Manjiang Xie
- Department of Aerospace Physiology, Air Force Medical University, Xi'an 710032, China
| |
Collapse
|
3
|
Nguyen TNH, Horowitz LF, Nguyen B, Lockhart E, Zhu S, Gujral TS, Folch A. Microfluidic Modulation of Microvasculature in Microdissected Tumors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.26.615278. [PMID: 39386436 PMCID: PMC11463410 DOI: 10.1101/2024.09.26.615278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The microvasculature within the tumor microenvironment (TME) plays an essential role in cancer signaling beyond nutrient delivery. However, it has been challenging to control the generation and/or maintenance of microvasculature in ex vivo systems, a critical step for establishing cancer models of high clinical biomimicry. There have been great successes in engineering tissues incorporating microvasculature de novo (e.g., organoids and organs-on-chip), but these reconstituted tissues are formed with non-native cellular and molecular components that can skew certain outcomes such as drug efficacy. Microdissected tumors, on the other hand, show promise in preserving the TME, which is key for creating cancer models that can bridge the gap between bench and bedside. However, microdissected tumors are challenging to perfuse. Here, we developed a microfluidic platform that allows for perfusing the microvasculature of microdissected tumors. We demonstrate that, compared to diffusive transport, microfluidically perfused tissues feature larger and longer microvascular structures, with a better expression of CD31, a marker for endothelial cells, as analyzed by 3D imaging. This study also explores the effects of nitric oxide pathway-related drugs on endothelial cells, which are sensitive to shear stress and can activate endothelial nitric oxide synthase, producing nitric oxide. Our findings highlight the critical role of controlled perfusion and biochemical modulation in preserving tumor microvasculature, offering valuable insights for developing more effective cancer treatments.
Collapse
Affiliation(s)
- Tran N. H. Nguyen
- Department of Bioengineering, University of Washington, Seattle, 98105, United States
| | - Lisa F. Horowitz
- Department of Bioengineering, University of Washington, Seattle, 98105, United States
| | - Brandon Nguyen
- Department of Bioengineering, University of Washington, Seattle, 98105, United States
| | - Ethan Lockhart
- Department of Bioengineering, University of Washington, Seattle, 98105, United States
| | - Songli Zhu
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, 98109, United States
| | - Taranjit S. Gujral
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, 98109, United States
| | - Albert Folch
- Department of Bioengineering, University of Washington, Seattle, 98105, United States
| |
Collapse
|
4
|
Guelfi S, Hodivala-Dilke K, Bergers G. Targeting the tumour vasculature: from vessel destruction to promotion. Nat Rev Cancer 2024; 24:655-675. [PMID: 39210063 DOI: 10.1038/s41568-024-00736-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/25/2024] [Indexed: 09/04/2024]
Abstract
As angiogenesis was recognized as a core hallmark of cancer growth and survival, several strategies have been implemented to target the tumour vasculature. Yet to date, attempts have rarely been so diverse, ranging from vessel growth inhibition and destruction to vessel normalization, reprogramming and vessel growth promotion. Some of these strategies, combined with standard of care, have translated into improved cancer therapies, but their successes are constrained to certain cancer types. This Review provides an overview of these vascular targeting approaches and puts them into context based on our subsequent improved understanding of the tumour vasculature as an integral part of the tumour microenvironment with which it is functionally interlinked. This new knowledge has already led to dual targeting of the vascular and immune cell compartments and sets the scene for future investigations of possible alternative approaches that consider the vascular link with other tumour microenvironment components for improved cancer therapy.
Collapse
Affiliation(s)
- Sophie Guelfi
- Department of Oncology, VIB-KU Leuven Center for Cancer Biology and KU Leuven, Leuven, Belgium
| | - Kairbaan Hodivala-Dilke
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, UK.
| | - Gabriele Bergers
- Department of Oncology, VIB-KU Leuven Center for Cancer Biology and KU Leuven, Leuven, Belgium.
| |
Collapse
|
5
|
Wang Q, Zhang X, Li B, Liu X, Li A, Li H, Shi X, Han J. Tumor-Derived Exosomes Promote Tumor Growth Through Modulating Microvascular Hemodynamics in a Human Ovarian Cancer Xenograft Model. Microcirculation 2024; 31:e12876. [PMID: 39005221 DOI: 10.1111/micc.12876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 04/27/2024] [Accepted: 06/29/2024] [Indexed: 07/16/2024]
Abstract
OBJECTIVE Abnormal tumor vascular network contributes to aberrant blood perfusion and reduced oxygenation in tumors, which lead to poor efficacy of chemotherapy and radiotherapy. We aimed to explore the effects of the tumor-derived exosomes (TDEs) and C188-9 (a small molecule inhibitor of signal transducer and activator of transcription 3, STAT3) on tumor microvascular hemodynamics and determine which blood flow oscillations for various frequency intervals are responsible for these changes. METHODS Microvascular hemodynamics parameters were recorded using a PeriFlux 6000 EPOS system in tumor surface in a nude mouse subcutaneous xenograft model. Oscillations of laser Doppler flowmetry (LDF) signal were investigated by wavelet transform analysis. RESULTS TDEs facilitated tumor growth at least partially was associated with increasing blood flow in smaller vessels with lower speed and decreasing the blood flow at larger vessels with higher speed. Lower oxyhemoglobin saturation (SO2) on tumor surface was aggravated by TDEs, and C188-9 treatment significantly alleviated this decrease. Wavelet transform spectral analysis revealed that TDEs increased the amplitude of oscillations in four frequency intervals related to endothelial (NO-dependent and -independent), myogenic and neurogenic activities, and C188-9 had no effect on this increase. CONCLUSIONS TDEs facilitated tumor growth partially was associated with increasing blood flow in distributing vessels, reducing blood perfusion in larger vessels, and lowering SO2 on tumor surface. Enhanced vascular smooth muscle, endothelial and neurogenic activities occurred in tumor superficial zone.
Collapse
Affiliation(s)
- Qin Wang
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoyan Zhang
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Bingwei Li
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Xueting Liu
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Ailing Li
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Hongwei Li
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaohua Shi
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Jianqun Han
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
6
|
Falleni M, Dal Lago M, Tosi D, Ghilardi G, De Pasquale L, Saibene AM, Felisati G, Cozzolino M, Gianelli U. Vascular mimicry and mosaic vessels in parathyroid tumours: a new diagnostic approach? J Clin Pathol 2024:jcp-2024-209703. [PMID: 39288990 DOI: 10.1136/jcp-2024-209703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024]
Abstract
AIMS Evaluation of 'alternative' vascularisation in human cancer is considered an important prognostic parameter; the 2022 WHO classification of parathyroid tumours despite progresses in clinical triaging of patients strongly emphasises new histopathological parameters to properly stratify these lesions. 'Alternative' and 'classic' vessels were here investigated for the first time in parathyroid tumours for their possible histopathological and clinical relevance during progression. METHODS Using a double CD31/PAS staining, microvessel density (MVD, 'classic' CD31+ vessels), mosaic vessel density (MoVD, 'alternative' CD31+/-vessels) and vessel mimicry density (VMD, 'alternative' CD31-/PAS+ vessels) were evaluated in 4 normal parathyroid glands (N), 50 Adenomas (A), 35 Atypical Tumours (AT) and 10 Carcinomas (K). RESULTS Compared with N, MVD significantly increased in A (p=0.012) and decreased in K (p=0.013) with vessel counts lower than in AT and A (p<0.001). MoVs and VMs, absent in normal tissue, were documented in non-benign parathyroid lesions (AT, K) (p<0.001), with MoVs and VMs most represented in AT and K, respectively (p<0.001), in peripheral growing areas. Vessel distribution was correlated to neoplastic progression (r=-0.541 MVD; r=+0.760 MoVD, r=+0.733 VMD), with MVD decrease in AT and K inversely related to MoVD and VMD increase (r=-0.503 and r=-0.456). CONCLUSIONS 'Alternative' vessel identification in parathyroid tumours is crucial because it: (1) explains the paradox of non-angiogenic tumours, consisting in a new bloody non-endothelial vessel network and (2) helps pathologists to unmask worrisome lesions. Furthermore, detection of alternative vascular systems in human tumours might explain the limited success of antiangiogenic therapies and encourage new oncological studies.
Collapse
Affiliation(s)
- Monica Falleni
- Unit of Pathology, Department of Health Sciences, University of Milan, ASST Santi Paolo e Carlo, Milano, Italy
| | - Matteo Dal Lago
- Unit of Pathology, Department of Health Sciences, University of Milan, ASST Santi Paolo e Carlo, Milano, Italy
| | - Delfina Tosi
- Unit of Pathology, Department of Health Sciences, University of Milan, ASST Santi Paolo e Carlo, Milano, Italy
| | - Giorgio Ghilardi
- Surgical Unit, Department of Health Sciences, University of Milan, ASST Santi Paolo e Carlo, Milano, Italy
| | | | - Alberto M Saibene
- Otolaryngology Unit, Department of Health Sciences, University of Milan, ASST Santi Paolo e Carlo, Milano, Italy
| | - Giovanni Felisati
- Otolaryngology Unit, Department of Health Sciences, University of Milan, ASST Santi Paolo e Carlo, Milano, Italy
| | - Mario Cozzolino
- Renal Division, Department of Health Sciences, University of Milan, ASST Santi Paolo e Carlo, Milano, Italy
| | - Umberto Gianelli
- Unit of Pathology, Department of Health Sciences, University of Milan, ASST Santi Paolo e Carlo, Milano, Italy
| |
Collapse
|
7
|
Li W, Cheng J, Zhang X, Wang Y, Wu S, Zhang P, Gan Z, Hou Y. High-Resolution Magnetic Resonance Angiography of Tumor Vasculatures with an Interlocking Contrast Agent. ACS NANO 2024; 18:25647-25656. [PMID: 39216081 DOI: 10.1021/acsnano.4c07533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The comprehensive evaluation of tumor vasculature that is crucial for the development, expansion, and spread of cancer still remains a great challenge, especially the three-dimensional (3D) evaluation of vasculatures. In this study, we proposed a magnetic resonance (MR) angiography strategy with interlocking stratagem of zwitterionic Gd-chelate contrast agents (PAA-Gd) for continuous monitoring of tumor angiogenesis progression in 3D. Owing to the zwitterionic structure and nanoscale molecular diameter, the longitudinal molar relaxivity (r1) of PAA-Gd was 2.5 times higher than that of individual Gd-chelates on a 7.0 T MRI scanner, resulting in the higher-resolution visualization of tumor vasculatures. More importantly, PAA-Gd has the appropriate blood half-life (69.2 min), emphasizing the extended imaging window compared to the individual Gd-chelates. On this basis, by using PAA-Gd as the contrast agent, the high-resolution, 3D depiction of the spatiotemporal distribution of microvasculature in solid tumors formed by different cell lines over various inoculation times has been obtained. This method offers an effective approach for early tumor diagnosis, development assessment, and prognosis evaluation.
Collapse
Affiliation(s)
- Wenyue Li
- College of Materials Science and Engineering and College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Junwei Cheng
- College of Materials Science and Engineering and College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xinyi Zhang
- College of Materials Science and Engineering and College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuqing Wang
- Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing 100084, China
| | - Shuai Wu
- College of Materials Science and Engineering and College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Peisen Zhang
- College of Materials Science and Engineering and College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhihua Gan
- College of Materials Science and Engineering and College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yi Hou
- College of Materials Science and Engineering and College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
8
|
Tadic S, Martínez A. Nucleic acid cancer vaccines targeting tumor related angiogenesis. Could mRNA vaccines constitute a game changer? Front Immunol 2024; 15:1433185. [PMID: 39081320 PMCID: PMC11286457 DOI: 10.3389/fimmu.2024.1433185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Tumor related angiogenesis is an attractive target in cancer therapeutic research due to its crucial role in tumor growth, invasion, and metastasis. Different agents were developed aiming to inhibit this process; however they had limited success. Cancer vaccines could be a promising tool in anti-cancer/anti-angiogenic therapy. Cancer vaccines aim to initiate an immune response against cancer cells upon presentation of tumor antigens which hopefully will result in the eradication of disease and prevention of its recurrence by inducing an efficient and long-lasting immune response. Different vaccine constructs have been developed to achieve this and they could include either protein-based or nucleic acid-based vaccines. Nucleic acid vaccines are simple and relatively easy to produce, with high efficiency and safety, thus prompting a high interest in the field. Different DNA vaccines have been developed to target crucial regulators of tumor angiogenesis. Most of them were successful in pre-clinical studies, mostly when used in combination with other therapeutics, but had limited success in the clinic. Apparently, different tumor evasion mechanisms and reduced immunogenicity still limit the potential of these vaccines and there is plenty of room for improvement. Nowadays, mRNA cancer vaccines are making remarkable progress due to improvements in the manufacturing technology and represent a powerful potential alternative. Apart from their efficiency, mRNA vaccines are simple and cheap to produce, can encompass multiple targets simultaneously, and can be quickly transferred from bench to bedside. mRNA vaccines have already accomplished amazing results in cancer clinical trials, thus ensuring a bright future in the field, although no anti-angiogenic mRNA vaccines have been described yet. This review aims to describe recent advances in anti-angiogenic DNA vaccine therapy and to provide perspectives for use of revolutionary approaches such are mRNA vaccines for anti-angiogenic treatments.
Collapse
Affiliation(s)
| | - Alfredo Martínez
- Angiogenesis Unit, Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), Logroño, Spain
| |
Collapse
|
9
|
Hoffmann E, Masthoff M, Kunz WG, Seidensticker M, Bobe S, Gerwing M, Berdel WE, Schliemann C, Faber C, Wildgruber M. Multiparametric MRI for characterization of the tumour microenvironment. Nat Rev Clin Oncol 2024; 21:428-448. [PMID: 38641651 DOI: 10.1038/s41571-024-00891-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2024] [Indexed: 04/21/2024]
Abstract
Our understanding of tumour biology has evolved over the past decades and cancer is now viewed as a complex ecosystem with interactions between various cellular and non-cellular components within the tumour microenvironment (TME) at multiple scales. However, morphological imaging remains the mainstay of tumour staging and assessment of response to therapy, and the characterization of the TME with non-invasive imaging has not yet entered routine clinical practice. By combining multiple MRI sequences, each providing different but complementary information about the TME, multiparametric MRI (mpMRI) enables non-invasive assessment of molecular and cellular features within the TME, including their spatial and temporal heterogeneity. With an increasing number of advanced MRI techniques bridging the gap between preclinical and clinical applications, mpMRI could ultimately guide the selection of treatment approaches, precisely tailored to each individual patient, tumour and therapeutic modality. In this Review, we describe the evolving role of mpMRI in the non-invasive characterization of the TME, outline its applications for cancer detection, staging and assessment of response to therapy, and discuss considerations and challenges for its use in future medical applications, including personalized integrated diagnostics.
Collapse
Affiliation(s)
- Emily Hoffmann
- Clinic of Radiology, University of Münster, Münster, Germany
| | - Max Masthoff
- Clinic of Radiology, University of Münster, Münster, Germany
| | - Wolfgang G Kunz
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Max Seidensticker
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Stefanie Bobe
- Gerhard Domagk Institute of Pathology, University Hospital Münster, Münster, Germany
| | - Mirjam Gerwing
- Clinic of Radiology, University of Münster, Münster, Germany
| | | | | | - Cornelius Faber
- Clinic of Radiology, University of Münster, Münster, Germany
| | - Moritz Wildgruber
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany.
| |
Collapse
|
10
|
Kuo HY, Khan KA, Kerbel RS. Antiangiogenic-immune-checkpoint inhibitor combinations: lessons from phase III clinical trials. Nat Rev Clin Oncol 2024; 21:468-482. [PMID: 38600370 DOI: 10.1038/s41571-024-00886-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 04/12/2024]
Abstract
Antiangiogenic agents, generally antibodies or tyrosine-kinase inhibitors that target the VEGF-VEGFR pathway, are currently among the few combination partners clinically proven to improve the efficacy of immune-checkpoint inhibitors (ICIs). This benefit has been demonstrated in pivotal phase III trials across different cancer types, some with practice-changing results; however, numerous phase III trials have also had negative results. The rationale for using antiangiogenic drugs as partners for ICIs relies primarily on blocking the multiple immunosuppressive effects of VEGF and inducing several different vascular-modulating effects that can stimulate immunity, such as vascular normalization leading to increased intratumoural blood perfusion and flow, and inhibition of pro-apoptotic effects of endothelial cells on T cells, among others. Conversely, VEGF blockade can also cause changes that suppress antitumour immunity, such as increased tumour hypoxia, and reduced intratumoural ingress of co-administered ICIs. As a result, the net clinical benefits from antiangiogenic-ICI combinations will be determined by the balance between the opposing effects of VEGF signalling and its inhibition on the antitumour immune response. In this Perspective, we summarize the results from the currently completed phase III trials evaluating antiangiogenic agent-ICI combinations. We also discuss strategies to improve the efficacy of these combinations, focusing on aspects that include the deleterious functions of VEGF-VEGFR inhibition on antitumour immunity, vessel co-option as a driver of non-angiogenic tumour growth, clinical trial design, or the rationale for drug selection, dosing and scheduling.
Collapse
Affiliation(s)
- Hung-Yang Kuo
- Department of Oncology, National Taiwan University Hospital, and Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Kabir A Khan
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
| | - Robert S Kerbel
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
11
|
Aibinder P, Cohen-Erez I, Rapaport H. Rational Formulation of targeted ABT-737 nanoparticles by self-assembled polypeptides and designed peptides. Heliyon 2024; 10:e26095. [PMID: 38420433 PMCID: PMC10900936 DOI: 10.1016/j.heliyon.2024.e26095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/11/2023] [Accepted: 02/07/2024] [Indexed: 03/02/2024] Open
Abstract
Here we present the development of nanoparticles (NPs) formulations specifically designed for targeting the antiapoptotic Bcl-2 proteins on the outer membrane of mitochondria with the drug agent ABT-737. The NPs which are self-assembled by the natural polypeptide poly gamma glutamic acid (ϒPGA) and a designed cationic and amphiphilic peptide (PFK) have been shown to target drugs toward mitochondria. In this study we systematically developed the formulation of such NPs loaded with the ABT-737 and demonstrated the cytotoxic effect of the best identified formulation on MDA-MB-231 cells. Our findings emphasize the critical role of solutions pH and the charged state of the components throughout the formulation process as well as the concentrations of the co-components and their mixing sequence, in achieving the most stable and effective cytotoxic formulation. Our study highlights the potential versatility of designed peptides in combination with biopolymers for improving drug delivery formulations and enhance their targeting abilities.
Collapse
Affiliation(s)
- Polina Aibinder
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Ifat Cohen-Erez
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Hanna Rapaport
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
- Ilse Katz Institute for Nanoscale Science and Technology (IKI), Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| |
Collapse
|
12
|
Ma J, Song J, Yi X, Zhang S, Sun L, Huang L, Han C. Enhanced T cell immune activity mediated by Drp1 promotes the efficacy of PD-1 inhibitors in treating lung cancer. Cancer Immunol Immunother 2024; 73:40. [PMID: 38340166 PMCID: PMC10858821 DOI: 10.1007/s00262-023-03582-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/10/2023] [Indexed: 02/12/2024]
Abstract
BACKGROUND Dynamin-related protein 1 (Drp1)-mediated mitochondrial fission plays important roles in the activation, proliferation, and migration of T cells. METHODS We investigated the synergistic effect of Drp1-mediated T cell antitumor activities and programmed cell death protein 1 (PD-1) blockade for treating lung cancer through in vitro co-culture experiments and an in vivo nude mouse xenograft model. RESULTS High expression levels of Drp1 positively regulated T cell activation, enhanced T cell-induced suppression of lung cancer cells, promoted CD8+ T cell infiltration in the tumor and spleen, and significantly enhanced the antitumor immune response of the PD-1 inhibitor pembrolizumab. The mechanism of this synergistic antitumor effect involved the secretion of immune killing-related cytokines and the regulation of the PD-1-ERK/Drp1 pathway in T cells. CONCLUSIONS Our findings suggest that modifying Drp1 expression in T cells could serve as a potential therapeutic target for enhancing the antitumor immune response in future immunotherapies.
Collapse
Affiliation(s)
- Jietao Ma
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110022, China
| | - Jun Song
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441100, China
| | - Xiaofang Yi
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110022, China
| | - Shuling Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110022, China
| | - Li Sun
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110022, China
| | - Letian Huang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110022, China
| | - Chengbo Han
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110022, China.
| |
Collapse
|
13
|
Majewska A, Brodaczewska K, Filipiak-Duliban A, Kieda C. Comparative analysis of the effect of hypoxia in two different tumor cell models shows the differential involvement of PTEN control of proangiogenic pathways. Biochem Cell Biol 2024; 102:47-59. [PMID: 37459649 DOI: 10.1139/bcb-2023-0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023] Open
Abstract
Hypoxia, low, non-physiological oxygen tension is a key regulator of tumor microenvironment, determining the pathological tumor vascularization. Alleviation of hypoxia through vessel normalization may be a promising therapeutic approach. We aimed to assess the role of low oxygen tension in PTEN-related pathways and proangiogenic response, in vitro, in two different tumor cell lines, focusing on potential therapeutic targets for tumor vessel normalization. Downregulation of PTEN in hypoxia mediates the activation of distinct mechanisms: cytoplasmic pAKT activation in melanoma and pMDM2 modulation in kidney cancer. We show that hypoxia-induced proangiogenic potential was stronger in Renca cells than B16 F10-confirmed by a distinct secretory potential and different ability to affect endothelial cells functions. Therefore, the impact of hypoxia on PTEN-mediated regulation may determine the therapeutic targets and effectiveness of vessel normalization and intrinsic characteristics of cancer cell have to be taken into account when designing treatment.
Collapse
Affiliation(s)
- Aleksandra Majewska
- Military Institute of Medicine-National Research Institute, Laboratory of Molecular Oncology and Innovative Therapies, Szaserów 128, 01-141 Warsaw, Poland
- Postgraduate School of Molecular Medicine (Medical University of Warsaw), Żwirki i Wigury 61, 02-091 Warsaw, Poland
| | - Klaudia Brodaczewska
- Military Institute of Medicine-National Research Institute, Laboratory of Molecular Oncology and Innovative Therapies, Szaserów 128, 01-141 Warsaw, Poland
| | - Aleksandra Filipiak-Duliban
- Military Institute of Medicine-National Research Institute, Laboratory of Molecular Oncology and Innovative Therapies, Szaserów 128, 01-141 Warsaw, Poland
- Postgraduate School of Molecular Medicine (Medical University of Warsaw), Żwirki i Wigury 61, 02-091 Warsaw, Poland
| | - Claudine Kieda
- Military Institute of Medicine-National Research Institute, Laboratory of Molecular Oncology and Innovative Therapies, Szaserów 128, 01-141 Warsaw, Poland
- Center for Molecular Biophysics UPR 4301 CNRS, 45071 Orleans, France
| |
Collapse
|
14
|
Park HJ, Jeong JH, Choi YH, Park SH. Hexane Fraction of Adenophora triphylla var. japonica Root Extract Inhibits Angiogenesis and Endothelial Cell-Induced Erlotinib Resistance in Lung Cancer Cells. Molecules 2024; 29:597. [PMID: 38338342 PMCID: PMC10856037 DOI: 10.3390/molecules29030597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/20/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
The aim of this study was to investigate the anti-angiogenic effects of the hexane fraction of Adenophora triphylla var. japonica root extract (HAT) and its influence on the development of erlotinib resistance in human lung cancer cells. HAT significantly reduced the migration, invasion, and tube formation of human umbilical vein endothelial cells (HUVECs). The phosphorylation levels of vascular endothelial growth factor receptor 2 (VEGFR2) and its downstream molecules were decreased via HAT, indicating its anti-angiogenic potential in endothelial cells (ECs). A docking analysis demonstrated that β-sitosterol and lupeol, representative components of HAT, exhibit a high affinity for binding to VEGFR2. In addition, conditioned media from HAT-pretreated H1299 human lung cancer cells attenuated cancer-cell-induced chemotaxis of HUVECs, which was attributed to the decreased expression of angiogenic and chemotactic factors in H1299 cells. Interestingly, co-culture of erlotinib-sensitive PC9 human lung cancer cells with HUVECs induced erlotinib resistance in PC9 cells. However, co-culture with HAT-pretreated HUVECs partially restored the sensitivity of PC9 cells to erlotinib. HAT inhibited the development of erlotinib resistance by attenuating hepatocyte growth factor (HGF) production by ECs. Taken together, our results demonstrate that HAT exerts its anticancer effects by regulating the crosstalk between ECs and lung cancer cells.
Collapse
Affiliation(s)
- Hyun-Ji Park
- Department of Pathology, College of Korean Medicine, Dong-eui University, Busan 47227, Republic of Korea; (H.-J.P.); (J.-H.J.)
| | - Jae-Hoon Jeong
- Department of Pathology, College of Korean Medicine, Dong-eui University, Busan 47227, Republic of Korea; (H.-J.P.); (J.-H.J.)
| | - Yung-Hyun Choi
- Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47227, Republic of Korea;
| | - Shin-Hyung Park
- Department of Pathology, College of Korean Medicine, Dong-eui University, Busan 47227, Republic of Korea; (H.-J.P.); (J.-H.J.)
| |
Collapse
|
15
|
Mascheroni P, Penta R, Merodio J. The impact of vascular volume fraction and compressibility of the interstitial matrix on vascularised poroelastic tissues. Biomech Model Mechanobiol 2023; 22:1901-1917. [PMID: 37587330 PMCID: PMC10613172 DOI: 10.1007/s10237-023-01742-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/05/2023] [Indexed: 08/18/2023]
Abstract
In this work we address the role of the microstructural properties of a vascularised poroelastic material, characterised by the coupling between a poroelastic matrix and a viscous fluid vessels network, on its overall response in terms of pressures, velocities and stress maps. We embrace the recently developed model (Penta and Merodio in Meccanica 52(14):3321-3343, 2017) as a theoretical starting point and present the results obtained by solving the full interplay between the microscale, represented by the intervessels' distance, and the macroscale, representing the size of the overall tissue. We encode the influence of the vessels' density and the poroelastic matrix compressibility in the poroelastic coefficients of the model, which are obtained by solving appropriate periodic cell problem at the microscale. The double-poroelastic model (Penta and Merodio 2017) is then solved at the macroscale in the context of vascular tumours, for different values of vessels' walls permeability. The results clearly indicate that improving the compressibility of the matrix and decreasing the vessels' density enhances the transvascular pressure difference and hence transport of fluid and drug within a tumour mass after a transient time. Our results suggest to combine vessel and interstitial normalization in tumours to allow for better drug delivery into the lesions.
Collapse
Affiliation(s)
- Pietro Mascheroni
- Laboratoire Interdisciplinaire de Physique, Université Grenoble Alpes, 140, Rue de la Physique, 38402, Saint Martin d'Héres, France
| | - Raimondo Penta
- School of Mathematics and Statistics, University of Glasgow, University Place, Glasgow, G12 8QQ, UK.
| | - José Merodio
- Departamento de Matemática Aplicada a las TIC ETS de Ingeniería de Sistemas Informáticos, Universidad Politécnica de Madrid, 28031, Madrid, Spain
| |
Collapse
|
16
|
Ansardamavandi A, Nikfarjam M, He H. PAK in Pancreatic Cancer-Associated Vasculature: Implications for Therapeutic Response. Cells 2023; 12:2692. [PMID: 38067120 PMCID: PMC10705971 DOI: 10.3390/cells12232692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Angiogenesis has been associated with numbers of solid tumours. Anti-angiogenesis drugs starve tumours of nutrients and oxygen but also make it difficult for a chemo reagent to distribute into a tumour, leading to aggressive tumour growth. Anti-angiogenesis drugs do not appear to improve the overall survival rate of pancreatic cancer. Vessel normalisation is merging as one of the new approaches for halting tumour progression by facilitating the tumour infiltration of immune cells and the delivery of chemo reagents. Targeting p21-activated kinases (PAKs) in cancer has been shown to inhibit cancer cell growth and improve the efficacy of chemotherapy. Inhibition of PAK enhances anti-tumour immunity and stimulates the efficacy of immune checkpoint blockades. Inhibition of PAK also improves Car-T immunotherapy by reprogramming the vascular microenvironment. This review summarizes current research on PAK's role in tumour vasculature and therapeutical response, with a focus on pancreatic cancer.
Collapse
Affiliation(s)
- Arian Ansardamavandi
- Department of Surgery, Austin Precinct, The University of Melbourne, 145 Studley Rd, Heidelberg, VIC 3084, Australia; (A.A.); (M.N.)
| | - Mehrdad Nikfarjam
- Department of Surgery, Austin Precinct, The University of Melbourne, 145 Studley Rd, Heidelberg, VIC 3084, Australia; (A.A.); (M.N.)
- Department of Hepatopancreatic-Biliary Surgery, Austin Health, 145 Studley Rd, Heidelberg, VIC 3084, Australia
| | - Hong He
- Department of Surgery, Austin Precinct, The University of Melbourne, 145 Studley Rd, Heidelberg, VIC 3084, Australia; (A.A.); (M.N.)
| |
Collapse
|
17
|
Davodabadi F, Sajjadi SF, Sarhadi M, Mirghasemi S, Nadali Hezaveh M, Khosravi S, Kamali Andani M, Cordani M, Basiri M, Ghavami S. Cancer chemotherapy resistance: Mechanisms and recent breakthrough in targeted drug delivery. Eur J Pharmacol 2023; 958:176013. [PMID: 37633322 DOI: 10.1016/j.ejphar.2023.176013] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 08/28/2023]
Abstract
Conventional chemotherapy, one of the most widely used cancer treatment methods, has serious side effects, and usually results in cancer treatment failure. Drug resistance is one of the primary reasons for this failure. The most significant drawbacks of systemic chemotherapy are rapid clearance from the circulation, the drug's low concentration in the tumor site, and considerable adverse effects outside the tumor. Several ways have been developed to boost neoplasm treatment efficacy and overcome medication resistance. In recent years, targeted drug delivery has become an essential therapeutic application. As more mechanisms of tumor treatment resistance are discovered, nanoparticles (NPs) are designed to target these pathways. Therefore, understanding the limitations and challenges of this technology is critical for nanocarrier evaluation. Nano-drugs have been increasingly employed in medicine, incorporating therapeutic applications for more precise and effective tumor diagnosis, therapy, and targeting. Many benefits of NP-based drug delivery systems in cancer treatment have been proven, including good pharmacokinetics, tumor cell-specific targeting, decreased side effects, and lessened drug resistance. As more mechanisms of tumor treatment resistance are discovered, NPs are designed to target these pathways. At the moment, this innovative technology has the potential to bring fresh insights into cancer therapy. Therefore, understanding the limitations and challenges of this technology is critical for nanocarrier evaluation.
Collapse
Affiliation(s)
- Fatemeh Davodabadi
- Department of Biology, Faculty of Basic Science, Payame Noor University, Tehran, Iran.
| | - Seyedeh Fatemeh Sajjadi
- School of Biological Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.
| | - Mohammad Sarhadi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Shaghayegh Mirghasemi
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Mahdieh Nadali Hezaveh
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Samin Khosravi
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - Mahdieh Kamali Andani
- Department of Biology, Faculty of Basic Science, Payame Noor University, Tehran, Iran.
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, Complutense University of Madrid, Madrid, Spain; Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid, Spain.
| | - Mohsen Basiri
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Saeid Ghavami
- Academy of Silesia, Faculty of Medicine, Rolna 43, 40-555. Katowice, Poland; Research Institute of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB R3E 3P5, Canada; Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P5, Canada; Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 3P5, Canada.
| |
Collapse
|
18
|
Liu Q, Bode AM, Chen X, Luo X. Metabolic reprogramming in nasopharyngeal carcinoma: Mechanisms and therapeutic opportunities. Biochim Biophys Acta Rev Cancer 2023; 1878:189023. [PMID: 37979733 DOI: 10.1016/j.bbcan.2023.189023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/20/2023]
Abstract
The high prevalence of metabolic reprogramming in nasopharyngeal carcinoma (NPC) offers an abundance of potential therapeutic targets. This review delves into the distinct mechanisms underlying metabolic reprogramming in NPC, including enhanced glycolysis, nucleotide synthesis, and lipid metabolism. All of these changes are modulated by Epstein-Barr virus (EBV) infection, hypoxia, and tumor microenvironment. We highlight the role of metabolic reprogramming in the development of NPC resistance to standard therapies, which represents a challenging barrier in treating this malignancy. Furthermore, we dissect the state of the art in therapeutic strategies that target these metabolic changes, evaluating the successes and failures of clinical trials and the strategies to tackle resistance mechanisms. By providing a comprehensive overview of the current knowledge and future directions in this field, this review sets the stage for new therapeutic avenues in NPC.
Collapse
Affiliation(s)
- Qian Liu
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China; Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078, PR China
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Xue Chen
- Early Clinical Trial Center, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China.
| | - Xiangjian Luo
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China; Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078, PR China; Key Laboratory of Biological Nanotechnology of National Health Commission, Central South University, Changsha, Hunan 410078, China.
| |
Collapse
|
19
|
Pérez-Gutiérrez L, Ferrara N. Biology and therapeutic targeting of vascular endothelial growth factor A. Nat Rev Mol Cell Biol 2023; 24:816-834. [PMID: 37491579 DOI: 10.1038/s41580-023-00631-w] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2023] [Indexed: 07/27/2023]
Abstract
The formation of new blood vessels, called angiogenesis, is an essential pathophysiological process in which several families of regulators have been implicated. Among these, vascular endothelial growth factor A (VEGFA; also known as VEGF) and its two tyrosine kinase receptors, VEGFR1 and VEGFR2, represent a key signalling pathway mediating physiological angiogenesis and are also major therapeutic targets. VEGFA is a member of the gene family that includes VEGFB, VEGFC, VEGFD and placental growth factor (PLGF). Three decades after its initial isolation and cloning, VEGFA is arguably the most extensively investigated signalling system in angiogenesis. Although many mediators of angiogenesis have been identified, including members of the FGF family, angiopoietins, TGFβ and sphingosine 1-phosphate, all current FDA-approved anti-angiogenic drugs target the VEGF pathway. Anti-VEGF agents are widely used in oncology and, in combination with chemotherapy or immunotherapy, are now the standard of care in multiple malignancies. Anti-VEGF drugs have also revolutionized the treatment of neovascular eye disorders such as age-related macular degeneration and ischaemic retinal disorders. In this Review, we emphasize the molecular, structural and cellular basis of VEGFA action as well as recent findings illustrating unexpected interactions with other pathways and provocative reports on the role of VEGFA in regenerative medicine. We also discuss clinical and translational aspects of VEGFA. Given the crucial role that VEGFA plays in regulating angiogenesis in health and disease, this molecule is largely the focus of this Review.
Collapse
Affiliation(s)
- Lorena Pérez-Gutiérrez
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
- Department of Ophthalmology, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Napoleone Ferrara
- Department of Pathology, University of California San Diego, La Jolla, CA, USA.
- Department of Ophthalmology, University of California San Diego, La Jolla, CA, USA.
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
20
|
Panneerselvan P, Vasanthakumar K, Muthuswamy K, Krishnan V, Subramaniam S. Insights on the functional dualism of nitric oxide in the hallmarks of cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:189001. [PMID: 37858621 DOI: 10.1016/j.bbcan.2023.189001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 10/21/2023]
Abstract
Nitric oxide (NO), a gaseous radical, governs a variety of physiological and pathological processes, including cancer, pro-inflammatory signalling, and vasodilation. The family of nitric oxide synthases (NOS), which comprises the constitutive forms, nNOS and eNOS, and the inducible form, iNOS, produces NO enzymatically. Additionally, NO can be generated non-enzymatically from the nitrate-nitrite-NO pathway. The anti- and pro-oxidant properties of NO and its functional dualism in cancer is due to its highly reactive nature. Numerous malignancies have NOS expression, which interferes with the tumour microenvironment to modulate the tumour's growth in both favourable and unfavourable ways. NO regulates a number of mechanisms in the tumour microenvironment, including metabolism, cell cycle, DNA repair, angiogenesis, and apoptosis/necrosis, depending on its concentration and spatiotemporal profile. This review focuses on the bi-modal impact of nitric oxide on the alteration of a few cancer hallmarks.
Collapse
Affiliation(s)
- Prabha Panneerselvan
- Molecular Physiology Laboratory, Department of Biochemistry, Bharathiar University, Coimbatore, Tamil Nadu 641046, India
| | - Keerthana Vasanthakumar
- Molecular Physiology Laboratory, Department of Biochemistry, Bharathiar University, Coimbatore, Tamil Nadu 641046, India
| | - Karthi Muthuswamy
- Molecular Physiology Laboratory, Department of Biochemistry, Bharathiar University, Coimbatore, Tamil Nadu 641046, India
| | - Vasanth Krishnan
- Molecular Biology Laboratory, Department of Botany, Bharathiar University, Coimbatore, Tamil Nadu 641046, India
| | - Selvakumar Subramaniam
- Molecular Physiology Laboratory, Department of Biochemistry, Bharathiar University, Coimbatore, Tamil Nadu 641046, India.
| |
Collapse
|
21
|
Sjöberg E, Melssen M, Richards M, Ding Y, Chanoca C, Chen D, Nwadozi E, Pal S, Love DT, Ninchoji T, Shibuya M, Simons M, Dimberg A, Claesson-Welsh L. Endothelial VEGFR2-PLCγ signaling regulates vascular permeability and antitumor immunity through eNOS/Src. J Clin Invest 2023; 133:e161366. [PMID: 37651195 PMCID: PMC10575733 DOI: 10.1172/jci161366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/15/2023] [Indexed: 09/02/2023] Open
Abstract
Endothelial phospholipase Cγ (PLCγ) is essential for vascular development; however, its role in healthy, mature, or pathological vessels is unexplored. Here, we show that PLCγ was prominently expressed in vessels of several human cancer forms, notably in renal cell carcinoma (RCC). High PLCγ expression in clear cell RCC correlated with angiogenic activity and poor prognosis, while low expression correlated with immune cell activation. PLCγ was induced downstream of vascular endothelial growth factor receptor 2 (VEGFR2) phosphosite Y1173 (pY1173). Heterozygous Vegfr2Y1173F/+ mice or mice lacking endothelial PLCγ (Plcg1iECKO) exhibited a stabilized endothelial barrier and diminished vascular leakage. Barrier stabilization was accompanied by decreased expression of immunosuppressive cytokines, reduced infiltration of B cells, helper T cells and regulatory T cells, and improved response to chemo- and immunotherapy. Mechanistically, pY1173/PLCγ signaling induced Ca2+/protein kinase C-dependent activation of endothelial nitric oxide synthase (eNOS), required for tyrosine nitration and activation of Src. Src-induced phosphorylation of VE-cadherin at Y685 was accompanied by disintegration of endothelial junctions. This pY1173/PLCγ/eNOS/Src pathway was detected in both healthy and tumor vessels in Vegfr2Y1173F/+ mice, which displayed decreased activation of PLCγ and eNOS and suppressed vascular leakage. Thus, we believe that we have identified a clinically relevant endothelial PLCγ pathway downstream of VEGFR2 pY1173, which destabilizes the endothelial barrier and results in loss of antitumor immunity.
Collapse
Affiliation(s)
- Elin Sjöberg
- Department of Immunology, Genetics and Pathology, Beijer and Science for Life Laboratories, Uppsala University, Uppsala, Sweden
| | - Marit Melssen
- Department of Immunology, Genetics and Pathology, Beijer and Science for Life Laboratories, Uppsala University, Uppsala, Sweden
| | - Mark Richards
- Department of Immunology, Genetics and Pathology, Beijer and Science for Life Laboratories, Uppsala University, Uppsala, Sweden
| | - Yindi Ding
- Department of Immunology, Genetics and Pathology, Beijer and Science for Life Laboratories, Uppsala University, Uppsala, Sweden
| | - Catarina Chanoca
- Department of Immunology, Genetics and Pathology, Beijer and Science for Life Laboratories, Uppsala University, Uppsala, Sweden
| | - Dongying Chen
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Emmanuel Nwadozi
- Department of Immunology, Genetics and Pathology, Beijer and Science for Life Laboratories, Uppsala University, Uppsala, Sweden
| | - Sagnik Pal
- Department of Immunology, Genetics and Pathology, Beijer and Science for Life Laboratories, Uppsala University, Uppsala, Sweden
| | - Dominic T. Love
- Department of Immunology, Genetics and Pathology, Beijer and Science for Life Laboratories, Uppsala University, Uppsala, Sweden
| | - Takeshi Ninchoji
- Department of Immunology, Genetics and Pathology, Beijer and Science for Life Laboratories, Uppsala University, Uppsala, Sweden
| | - Masabumi Shibuya
- Institute of Physiology and Medicine, Jobu University, Takasaki, Gunma, Japan
| | - Michael Simons
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Anna Dimberg
- Department of Immunology, Genetics and Pathology, Beijer and Science for Life Laboratories, Uppsala University, Uppsala, Sweden
| | - Lena Claesson-Welsh
- Department of Immunology, Genetics and Pathology, Beijer and Science for Life Laboratories, Uppsala University, Uppsala, Sweden
| |
Collapse
|
22
|
Lahooti B, Akwii RG, Zahra FT, Sajib MS, Lamprou M, Alobaida A, Lionakis MS, Mattheolabakis G, Mikelis CM. Targeting endothelial permeability in the EPR effect. J Control Release 2023; 361:212-235. [PMID: 37517543 DOI: 10.1016/j.jconrel.2023.07.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/19/2023] [Accepted: 07/23/2023] [Indexed: 08/01/2023]
Abstract
The characteristics of the primary tumor blood vessels and the tumor microenvironment drive the enhanced permeability and retention (EPR) effect, which confers an advantage towards enhanced delivery of anti-cancer nanomedicine and has shown beneficial effects in preclinical models. Increased vascular permeability is a landmark feature of the tumor vessels and an important driver of the EPR. The main focus of this review is the endothelial regulation of vascular permeability. We discuss current challenges of targeting vascular permeability towards clinical translation and summarize the structural components and mechanisms of endothelial permeability, the principal mediators and signaling players, the targeted approaches that have been used and their outcomes to date. We also critically discuss the effects of the tumor-infiltrating immune cells, their interplay with the tumor vessels and the impact of immune responses on nanomedicine delivery, the impact of anti-angiogenic and tumor-stroma targeting approaches, and desirable nanoparticle design approaches for greater translational benefit.
Collapse
Affiliation(s)
- Behnaz Lahooti
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Racheal G Akwii
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Fatema Tuz Zahra
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Md Sanaullah Sajib
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Margarita Lamprou
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras 26504, Greece
| | - Ahmed Alobaida
- Department of Pharmaceutics, College of Pharmacy, University of Ha'il, Ha'il 81442, Saudi Arabia
| | - Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - George Mattheolabakis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA.
| | - Constantinos M Mikelis
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras 26504, Greece.
| |
Collapse
|
23
|
Wang S, Li X, Jiang H, Zhang J. High Serum VE-Cadherin and Vinculin Concentrations Are Markers of the Disruption of Vascular Integrity during Type B Acute Aortic Dissection. J Clin Med 2023; 12:4730. [PMID: 37510844 PMCID: PMC10381106 DOI: 10.3390/jcm12144730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND In the present study, we measured the serum vascular endothelial cadherin (VEC) and vinculin (Vcn) concentrations in patients with type B acute aortic dissection (TBAD) to evaluate their diagnostic value for this condition. METHODS A total of 100 patients with TBAD and 90 matched controls were included in the study. The serum concentrations of VEC and Vcn were measured using enzyme-linked immunosorbent assays. RESULTS The serum VEC and Vcn concentrations were significantly higher in participants with TBAD than in healthy controls. Compared with patients with acute myocardial infarction (AMI), the serum concentrations of VEC and Vcn in patients with TBAD were higher, and the Vcn showed significant difference, with statistical significance. Receiver operating characteristic analysis generated areas under the curves for VEC and Vcn that were diagnostic for TBAD (0.599 and 0.655, respectively). The optimal cut-off values were 3.975 ng/μL and 128.1 pg/mL, the sensitivities were 43.0% and 35.0%, and the specificities were 73.3% and 90.0%, respectively. In addition, the use of a combination of serum VEC and Vcn increased the AUC to 0.661, with a sensitivity of 33.0% and a specificity of 93.33%. A high serum Vcn concentration was associated with a higher risk of visceral malperfusion in participants with TBAD (odds ratio (OR) = 1.007, 95% confidence interval [CI]: 1.001-1.013, p = 0.014). In participants with refractory pain, the adjusted OR for the serum VEC concentration increased to 1.172 (95% CI: 1.010-1.361; p = 0.036), compared with participants without refractory pain. CONCLUSION This study is the first to show the diagnostic value of serum VEC and Vcn for AAD and their relationships with the clinical characteristics of patients with TBAD. Thus, VEC and Vcn are potential serum markers of TBAD.
Collapse
Affiliation(s)
- Shiyue Wang
- Department of Vascular & Thyroid Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Xin Li
- Department of Vascular & Thyroid Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Han Jiang
- Department of Vascular & Thyroid Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Jian Zhang
- Department of Vascular & Thyroid Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
24
|
Iesato A, Li S, Sadow PM, Abbasian M, Nazarian A, Lawler J, Nucera C. The Tyrosine Kinase Inhibitor Lenvatinib Inhibits Anaplastic Thyroid Carcinoma Growth by Targeting Pericytes in the Tumor Microenvironment. Thyroid 2023; 33:835-848. [PMID: 37171127 PMCID: PMC10354711 DOI: 10.1089/thy.2022.0597] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Background: Anaplastic thyroid carcinoma (ATC) is a rapidly fatal cancer with a median survival of a few months. Enhanced therapeutic options for durable management of ATC will rely on an understanding of genetics and the role of the tumor microenvironment. The prognosis for patients with ATC has not improved despite more detailed scrutiny of underlying tumor genetics. Pericytes in the microenvironment play a key evasive role for thyroid carcinoma (TC) cells. Lenvatinib improves outcomes in patients with radioiodine-refractory well-differentiated TC. In addition to the unclear role of pericytes in ATC, the effect and mechanism of lenvatinib efficacy on ATC have not been sufficiently elucidated. Design: We assessed pericyte enrichment in ATC. We determined the effect of lenvatinib on ATC cell growth cocultured with pericytes and in a xenograft mouse model from human BRAFWT/V600E-ATC-derived cells coimplanted with pericytes. Results: ATC samples were significantly enriched in pericytes compared with normal thyroid samples. BRAFWT/V600E-ATC-derived cells were resistant to lenvatinib treatment shown by a lack of suppression of MAPK and Akt pathways. Moreover, lenvatinib increased CD47 protein (thrombospondin-1 [TSP-1] receptor) levels over time vs. vehicle. TSP-1 levels were downregulated upon lenvatinib at late vs. early time points. Critically, ATC cells, when cocultured with pericytes, showed increased sensitivity to this therapy and ultimately decreased number of cells. The coimplantation in vivo of ATC cells with pericytes increased ATC growth and did not downregulate TSP-1 in the microenvironment in vivo. Conclusions and Implications: Pericytes are enriched in ATC samples. Lenvatinib showed inhibitory effects on BRAFWT/V600E-ATC cells in the presence of pericytes. The presence of pericytes could be crucial for effective lenvatinib treatment in patients with ATC. Degree of pericyte abundance may be an attractive prognostic marker in assessing pharmacotherapeutic options. Effective durable management of ATC will rely on an understanding not only of genetics but also on the role of the tumor microenvironment.
Collapse
Affiliation(s)
- Asumi Iesato
- Human Thyroid Cancers Preclinical and Translational Research Program, Division of Experimental Pathology, Cancer Research Institute (CRI), Cancer Center, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
- Center for Vascular Biology Research (CVBR), Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Stephanie Li
- Human Thyroid Cancers Preclinical and Translational Research Program, Division of Experimental Pathology, Cancer Research Institute (CRI), Cancer Center, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
- Center for Vascular Biology Research (CVBR), Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Peter M. Sadow
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Mohammadreza Abbasian
- Musculoskeletal Translational Innovation Initiative, Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Ara Nazarian
- Musculoskeletal Translational Innovation Initiative, Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Jack Lawler
- Center for Vascular Biology Research (CVBR), Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Carmelo Nucera
- Human Thyroid Cancers Preclinical and Translational Research Program, Division of Experimental Pathology, Cancer Research Institute (CRI), Cancer Center, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
- Center for Vascular Biology Research (CVBR), Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
25
|
Ren Y, Okazaki T, Ngamnsae P, Hashimoto H, Ikeda R, Honkura Y, Suzuki J, Izumi SI. Anatomy and function of the lymphatic vessels in the parietal pleura and their plasticity under inflammation in mice. Microvasc Res 2023; 148:104546. [PMID: 37230165 DOI: 10.1016/j.mvr.2023.104546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/08/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023]
Abstract
Inflammatory pleuritis often causes pleural effusions, which are drained through lymphatic vessels (lymphatics) in the parietal pleura. The distribution of button- and zipper-like endothelial junctions can identify the subtypes of lymphatics, the initial, pre-collecting, and collecting lymphatics. Vascular endothelial growth factor receptor (VEGFR)-3 and its ligands VEGF-C/D are crucial lymphangiogenic factors. Currently, in the pleura covering the chest walls, the anatomy of the lymphatics and connecting networks of blood vessels are incompletely understood. Moreover, their pathological and functional plasticity under inflammation and the effects of VEGFR inhibition are unclear. This study aimed to learn the above-unanswered questions and immunostained mouse chest walls as whole-mount specimens. Confocal microscopic images and their 3-dimensional reconstruction analyzed the vasculatures. Repeated intra-pleural cavity lipopolysaccharide challenge induced pleuritis, which was also treated with VEGFR inhibition. Levels of vascular-related factors were evaluated by quantitative real-time polymerase chain reaction. We observed the initial lymphatics in the intercostals, collecting lymphatics under the ribs, and pre-collecting lymphatics connecting both. Arteries branched into capillaries and gathered into veins from the cranial to the caudal side. Lymphatics and blood vessels were in different layers with an adjacent distribution of the lymphatic layer to the pleural cavity. Inflammatory pleuritis elevated expression levels of VEGF-C/D and angiopoietin-2, induced lymphangiogenesis and blood vessel remodeling, and disorganized the lymphatic structures and subtypes. The disorganized lymphatics showed large sheet-like structures with many branches and holes inside. Such lymphatics were abundant in zipper-like endothelial junctions with some button-like junctions. The blood vessels were tortuous and had various diameters and complex networks. Stratified layers of lymphatics and blood vessels were disorganized, with impaired drainage function. VEGFR inhibition partially maintained their structures and drainage function. These findings demonstrate anatomy and pathological changes of the vasculatures in the parietal pleura and their potential as a novel therapeutic target.
Collapse
Affiliation(s)
- Yuzhuo Ren
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Tatsuma Okazaki
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan; Center for Dysphagia of Tohoku University Hospital, Sendai, Miyagi, Japan.
| | - Peerada Ngamnsae
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Hikaru Hashimoto
- Center for Dysphagia of Tohoku University Hospital, Sendai, Miyagi, Japan; Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-0872, Japan
| | - Ryoukichi Ikeda
- Center for Dysphagia of Tohoku University Hospital, Sendai, Miyagi, Japan; Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-0872, Japan
| | - Yohei Honkura
- Center for Dysphagia of Tohoku University Hospital, Sendai, Miyagi, Japan; Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-0872, Japan
| | - Jun Suzuki
- Center for Dysphagia of Tohoku University Hospital, Sendai, Miyagi, Japan; Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-0872, Japan
| | - Shin-Ichi Izumi
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan; Center for Dysphagia of Tohoku University Hospital, Sendai, Miyagi, Japan; Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Biomedical Engineering, Sendai, Miyagi, Japan
| |
Collapse
|
26
|
Zhao B, Wu B, Feng N, Zhang X, Zhang X, Wei Y, Zhang W. Aging microenvironment and antitumor immunity for geriatric oncology: the landscape and future implications. J Hematol Oncol 2023; 16:28. [PMID: 36945046 PMCID: PMC10032017 DOI: 10.1186/s13045-023-01426-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/15/2023] [Indexed: 03/23/2023] Open
Abstract
The tumor microenvironment (TME) has been extensively investigated; however, it is complex and remains unclear, especially in elderly patients. Senescence is a cellular response to a variety of stress signals, which is characterized by stable arrest of the cell cycle and major changes in cell morphology and physiology. To the best of our knowledge, senescence leads to consistent arrest of tumor cells and remodeling of the tumor-immune microenvironment (TIME) by activating a set of pleiotropic cytokines, chemokines, growth factors, and proteinases, which constitute the senescence-associated secretory phenotype (SASP). On the one hand, the SASP promotes antitumor immunity, which enhances treatment efficacy; on the other hand, the SASP increases immunosuppressive cell infiltration, including myeloid-derived suppressor cells (MDSCs), regulatory T cells (Tregs), M2 macrophages, and N2 neutrophils, contributing to TIME suppression. Therefore, a deeper understanding of the regulation of the SASP and components contributing to robust antitumor immunity in elderly individuals with different cancer types and the available therapies is necessary to control tumor cell senescence and provide greater clinical benefits to patients. In this review, we summarize the key biological functions mediated by cytokines and intercellular interactions and significant components of the TME landscape, which influence the immunotherapy response in geriatric oncology. Furthermore, we summarize recent advances in clinical practices targeting TME components and discuss potential senescent TME targets.
Collapse
Affiliation(s)
- Binghao Zhao
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, China
- Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100032, China
| | - Bo Wu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, China
- Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Nan Feng
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, China
- Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Xiang Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, China
- Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Xin Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, China
- Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Yiping Wei
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, China
| | - Wenxiong Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, China.
| |
Collapse
|
27
|
Chen Z, Han F, Du Y, Shi H, Zhou W. Hypoxic microenvironment in cancer: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther 2023; 8:70. [PMID: 36797231 PMCID: PMC9935926 DOI: 10.1038/s41392-023-01332-8] [Citation(s) in RCA: 262] [Impact Index Per Article: 131.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/20/2022] [Accepted: 01/18/2023] [Indexed: 02/18/2023] Open
Abstract
Having a hypoxic microenvironment is a common and salient feature of most solid tumors. Hypoxia has a profound effect on the biological behavior and malignant phenotype of cancer cells, mediates the effects of cancer chemotherapy, radiotherapy, and immunotherapy through complex mechanisms, and is closely associated with poor prognosis in various cancer patients. Accumulating studies have demonstrated that through normalization of the tumor vasculature, nanoparticle carriers and biocarriers can effectively increase the oxygen concentration in the tumor microenvironment, improve drug delivery and the efficacy of radiotherapy. They also increase infiltration of innate and adaptive anti-tumor immune cells to enhance the efficacy of immunotherapy. Furthermore, drugs targeting key genes associated with hypoxia, including hypoxia tracers, hypoxia-activated prodrugs, and drugs targeting hypoxia-inducible factors and downstream targets, can be used for visualization and quantitative analysis of tumor hypoxia and antitumor activity. However, the relationship between hypoxia and cancer is an area of research that requires further exploration. Here, we investigated the potential factors in the development of hypoxia in cancer, changes in signaling pathways that occur in cancer cells to adapt to hypoxic environments, the mechanisms of hypoxia-induced cancer immune tolerance, chemotherapeutic tolerance, and enhanced radiation tolerance, as well as the insights and applications of hypoxia in cancer therapy.
Collapse
Affiliation(s)
- Zhou Chen
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China.,The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Fangfang Han
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China.,The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yan Du
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Huaqing Shi
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Wence Zhou
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China. .,Lanzhou University Sencond Hospital, Lanzhou, Gansu, China.
| |
Collapse
|
28
|
Placental Galectins in Cancer: Why We Should Pay More Attention. Cells 2023; 12:cells12030437. [PMID: 36766779 PMCID: PMC9914345 DOI: 10.3390/cells12030437] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/15/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
The first studies suggesting that abnormal expression of galectins is associated with cancer were published more than 30 years ago. Today, the role of galectins in cancer is relatively well established. We know that galectins play an active role in many types of cancer by regulating cell growth, conferring cell death resistance, or inducing local and systemic immunosuppression, allowing tumor cells to escape the host immune response. However, most of these studies have focused on very few galectins, most notably galectin-1 and galectin-3, and more recently, galectin-7 and galectin-9. Whether other galectins play a role in cancer remains unclear. This is particularly true for placental galectins, a subgroup that includes galectin-13, -14, and -16. The role of these galectins in placental development has been well described, and excellent reviews on their role during pregnancy have been published. At first sight, it was considered unlikely that placental galectins were involved in cancer. Yet, placentation and cancer progression share several cellular and molecular features, including cell invasion, immune tolerance and vascular remodeling. The development of new research tools and the concomitant increase in database repositories for high throughput gene expression data of normal and cancer tissues provide a new opportunity to examine the potential involvement of placental galectins in cancer. In this review, we discuss the possible roles of placental galectins in cancer progression and why they should be considered in cancer studies. We also address challenges associated with developing novel research tools to investigate their protumorigenic functions and design highly specific therapeutic drugs.
Collapse
|
29
|
Extracellular Vesicles: New Classification and Tumor Immunosuppression. BIOLOGY 2023; 12:biology12010110. [PMID: 36671802 PMCID: PMC9856004 DOI: 10.3390/biology12010110] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/05/2023] [Accepted: 01/05/2023] [Indexed: 01/13/2023]
Abstract
Extracellular vesicles (EVs) are cell-derived membrane-surrounded vesicles carrying various types of molecules. These EV cargoes are often used as pathophysiological biomarkers and delivered to recipient cells whose fates are often altered in local and distant tissues. Classical EVs are exosomes, microvesicles, and apoptotic bodies, while recent studies discovered autophagic EVs, stressed EVs, and matrix vesicles. Here, we classify classical and new EVs and non-EV nanoparticles. We also review EVs-mediated intercellular communication between cancer cells and various types of tumor-associated cells, such as cancer-associated fibroblasts, adipocytes, blood vessels, lymphatic vessels, and immune cells. Of note, cancer EVs play crucial roles in immunosuppression, immune evasion, and immunotherapy resistance. Thus, cancer EVs change hot tumors into cold ones. Moreover, cancer EVs affect nonimmune cells to promote cellular transformation, including epithelial-to-mesenchymal transition (EMT), chemoresistance, tumor matrix production, destruction of biological barriers, angiogenesis, lymphangiogenesis, and metastatic niche formation.
Collapse
|
30
|
Swetha KL, Maravajjala KS, Li SD, Singh MS, Roy A. Breaking the niche: multidimensional nanotherapeutics for tumor microenvironment modulation. Drug Deliv Transl Res 2023; 13:105-134. [PMID: 35697894 DOI: 10.1007/s13346-022-01194-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2022] [Indexed: 12/13/2022]
Abstract
Most of the current antitumor therapeutics were developed targeting the cancer cells only. Unfortunately, in the majority of tumors, this single-dimensional therapy is found to be ineffective. Advanced research has shown that cancer is a multicellular disorder. The tumor microenvironment (TME), which is made by a complex network of the bulk tumor cells and other supporting cells, plays a crucial role in tumor progression. Understanding the importance of the TME in tumor growth, different treatment modalities have been developed targeting these supporting cells. Recent clinical results suggest that simultaneously targeting multiple components of the tumor ecosystem with drug combinations can be highly effective. This type of "multidimensional" therapy has a high potential for cancer treatment. However, tumor-specific delivery of such multi-drug combinations remains a challenge. Nanomedicine could be utilized for the tumor-targeted delivery of such multidimensional therapeutics. In this review, we first give a brief overview of the major components of TME. We then highlight the latest developments in nanoparticle-based combination therapies, where one drug targets cancer cells and other drug targets tumor-supporting components in the TME for a synergistic effect. We include the latest preclinical and clinical studies and discuss innovative nanoparticle-mediated targeting strategies.
Collapse
Affiliation(s)
- K Laxmi Swetha
- Department of Pharmacy, Birla Institute of Technology & Science, Vidya Vihar, Pilani, Rajasthan, 333031, India
| | - Kavya Sree Maravajjala
- Department of Pharmacy, Birla Institute of Technology & Science, Vidya Vihar, Pilani, Rajasthan, 333031, India
| | - Shyh-Dar Li
- Faculty of Pharmaceutical Sciences, The University of British Columbia, 2405 Westbrook Mall, Vancouver, BC, Canada
| | - Manu Smriti Singh
- Department of Biotechnology, Bennett University, Greater Noida, Uttar Pradesh, 201310, India. .,Center of Excellence for Nanosensors and Nanomedicine, Bennett University, Greater Noida, Uttar Pradesh, 201310, India.
| | - Aniruddha Roy
- Department of Pharmacy, Birla Institute of Technology & Science, Vidya Vihar, Pilani, Rajasthan, 333031, India.
| |
Collapse
|
31
|
Bu MT, Chandrasekhar P, Ding L, Hugo W. The roles of TGF-β and VEGF pathways in the suppression of antitumor immunity in melanoma and other solid tumors. Pharmacol Ther 2022; 240:108211. [PMID: 35577211 PMCID: PMC10956517 DOI: 10.1016/j.pharmthera.2022.108211] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 12/13/2022]
Abstract
Immune checkpoint blockade (ICB) has become well-known in cancer therapy, strengthening the body's antitumor immune response rather than directly targeting cancer cells. Therapies targeting immune inhibitory checkpoints, such as PD-1, PD-L1, and CTLA-4, have resulted in impressive clinical responses across different types of solid tumors. However, as with other types of cancer treatments, ICB-based immunotherapy is hampered by both innate and acquired drug resistance. We previously reported the enrichment of gene signatures associated with wound healing, epithelial-to-mesenchymal, and angiogenesis processes in the tumors of patients with innate resistance to PD-1 checkpoint antibody therapy; we termed these the Innate Anti-PD-1 Resistance Signatures (IPRES). The TGF-β and VEGFA pathways emerge as the dominant drivers of IPRES-associated processes. Here, we review these pathways' functions, their roles in immunosuppression, and the currently available therapies that target them. We also discuss recent developments in the targeting of TGF-β using a specific antibody class termed trap antibody. The application of trap antibodies opens the promise of localized targeting of the TGF-β and VEGFA pathways within the tumor microenvironment. Such specificity may offer an enhanced therapeutic window that enables suppression of the IPRES processes in the tumor microenvironment while sparing the normal homeostatic functions of TGF-β and VEGFA in healthy tissues.
Collapse
Affiliation(s)
- Melissa T Bu
- Department of Medicine/Dermatology, University of California Los Angeles, Los Angeles, CA 90095, USA; Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA; David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Pallavi Chandrasekhar
- Department of Medicine/Dermatology, University of California Los Angeles, Los Angeles, CA 90095, USA; David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Lizhong Ding
- Department of Medicine/Dermatology, University of California Los Angeles, Los Angeles, CA 90095, USA; Parker Institute for Cancer Immunotherapy UCLA, USA; David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Willy Hugo
- Department of Medicine/Dermatology, University of California Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA 90095, USA; Parker Institute for Cancer Immunotherapy UCLA, USA; David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
32
|
Ji Kim H, Geun Lim Y, Jun Song Y, Park K. Folate receptor-targetable and tumor microenvironment-responsive manganese dioxide-based nano-photosensitizer for enhancing hypoxia alleviation-triggered phototherapeutic effects. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.11.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
33
|
Microglia-Derived Olfactomedin-like 3 Is a Potent Angiogenic Factor in Primary Mouse Brain Endothelial Cells: A Novel Target for Glioblastoma. Int J Mol Sci 2022; 23:ijms232314613. [PMID: 36498941 PMCID: PMC9741462 DOI: 10.3390/ijms232314613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022] Open
Abstract
Neoangiogenesis, a hallmark feature of all malignancies, is robust in glioblastoma (GBM). Vascular endothelial growth factor (VEGF) has long been regarded as the primary pro-angiogenic molecule in GBM. However, anti-VEGF therapies have had little clinical efficacy, highlighting the need to explore VEGF-independent mechanisms of neoangiogenesis. Olfactomedin-like 3 (OLFML3), a secreted glycoprotein, is an established proangiogenic factor in many cancers, but its role in GBM neoangiogenesis is unknown. To gain insight into the role of OLFML3 in microglia-mediated angiogenesis, we assessed endothelial cell (EC) viability, migration and differentiation following (1) siRNA knockdown targeting endogenous EC Olfml3 and (2) EC exposure to human recombinant OLFML3 (rhOLFML3; 10 ng/mL, 48 h), and conditioned medium (CM) from isogenic control and Olfml3−/− microglia (48 h). Despite a 70% reduction in Olfml3 mRNA levels, EC angiogenic parameters were not affected. However, exposure to both rhOLFML3 and isogenic control microglial CM increased EC viability (p < 0.01), migration (p < 0.05) and differentiation (p < 0.05). Strikingly, these increases were abolished, or markedly attenuated, following exposure to Olfml3−/− microglial CM despite corresponding increased microglial secretion of VEGF-A (p < 0.0001). Consistent with reports in non-CNS malignancies, we have demonstrated that OLFML3, specifically microglia-derived OLFML3, promotes VEGF-independent angiogenesis in primary brain microvascular ECs and may provide a complementary target to mitigate neovascularization in GBM.
Collapse
|
34
|
Kugeratski FG, Santi A, Zanivan S. Extracellular vesicles as central regulators of blood vessel function in cancer. Sci Signal 2022; 15:eaaz4742. [PMID: 36166511 DOI: 10.1126/scisignal.aaz4742] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Blood vessels deliver oxygen and nutrients that sustain tumor growth and enable the dissemination of cancer cells to distant sites and the recruitment of intratumoral immune cells. In addition, the structural and functional abnormalities of the tumor vasculature foster the development of an aggressive tumor microenvironment and impair the efficacy of existing cancer therapies. Extracellular vesicles (EVs) have emerged as major players of tumor progression, and a growing body of evidence has demonstrated that EVs derived from cancer cells trigger multiple responses in endothelial cells that alter blood vessel function in tumors. EV-mediated signaling in endothelial cells can occur through the transfer of functional cargos such as miRNAs, lncRNAs, cirRNAs, and proteins. Moreover, membrane-bound proteins in EVs can elicit receptor-mediated signaling in endothelial cells. Together, these mechanisms reprogram endothelial cells and contribute to the sustained exacerbated angiogenic signaling typical of tumors, which, in turn, influences cancer progression. Targeting these angiogenesis-promoting EV-dependent mechanisms may offer additional strategies to normalize tumor vasculature. Here, we discuss the current knowledge pertaining to the contribution of cancer cell-derived EVs in mechanisms regulating blood vessel functions in tumors. Moreover, we discuss the translational opportunities in targeting the dysfunctional tumor vasculature using EVs and highlight the open questions in the field of EV biology that can be addressed using mass spectrometry-based proteomics analysis.
Collapse
Affiliation(s)
- Fernanda G Kugeratski
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Alice Santi
- Department of Experimental and Clinical Biomedical Sciences, Università degli Studi di Firenze, 50134 Firenze, Italy
| | - Sara Zanivan
- CRUK Beatson Institute, Switchback Road, Glasgow G61 1BD, UK
- School of Cancer Sciences, University of Glasgow, Switchback Road, Glasgow G61 1QH, UK
| |
Collapse
|
35
|
Salavati H, Debbaut C, Pullens P, Ceelen W. Interstitial fluid pressure as an emerging biomarker in solid tumors. Biochim Biophys Acta Rev Cancer 2022; 1877:188792. [PMID: 36084861 DOI: 10.1016/j.bbcan.2022.188792] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/12/2022] [Accepted: 08/30/2022] [Indexed: 11/28/2022]
Abstract
The physical microenvironment of cancer is characterized by elevated stiffness and tissue pressure, the main component of which is the interstitial fluid pressure (IFP). Elevated IFP is an established negative predictive and prognostic parameter, directly affecting malignant behavior and therapy response. As such, measurement of the IFP would allow to develop strategies aimed at engineering the physical microenvironment of cancer. Traditionally, IFP measurement required the use of invasive methods. Recent progress in dynamic and functional imaging methods such as dynamic contrast enhanced (DCE) magnetic resonance imaging and elastography, combined with numerical models and simulation, allows to comprehensively assess the biomechanical landscape of cancer, and may help to overcome physical barriers to drug delivery and immune cell infiltration. Here, we provide a comprehensive overview of the origin of elevated IFP, and its role in the malignant phenotype. Also, we review the methods used to measure IFP using invasive and imaging based methods, and highlight remaining obstacles and potential areas of progress in order to implement IFP measurement in clinical practice.
Collapse
Affiliation(s)
- Hooman Salavati
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium; IBitech- Biommeda, Department of Electronics and Information Systems, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Charlotte Debbaut
- IBitech- Biommeda, Department of Electronics and Information Systems, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Pim Pullens
- Department of Radiology, Ghent University Hospital, Ghent, Belgium; Ghent Institute of Functional and Metabolic Imaging (GIFMI), Ghent University, Ghent, Belgium; IBitech- Medisip, Ghent University, Ghent, Belgium
| | - Wim Ceelen
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| |
Collapse
|
36
|
Masiero M, Boulos P, Crake C, Rowe C, Coviello CM. Ultrasound-induced cavitation and passive acoustic mapping: SonoTran platform performance and short-term safety in a large-animal model. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:1681-1690. [PMID: 35577660 DOI: 10.1016/j.ultrasmedbio.2022.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/16/2022] [Accepted: 03/13/2022] [Indexed: 06/15/2023]
Abstract
Ultrasound-induced cavitation is currently under investigation for several potential applications in cancer treatment. Among these, the use of low-intensity ultrasound, coupled with the systemic administration of various cavitation nuclei, has been found to enhance the delivery of co-administered therapeutics into solid tumors. Effective pharmacological treatment of solid tumors is often hampered, among various factors, by the limited diffusion of drugs from the bloodstream into the neoplastic mass and through it, and SonoTran holds the potential to tackle this clinical limitation by increasing the amount of drug and its distribution within the ultrasound-targeted tumor tissue. Here we use a clinically ready system (SonoTran Platform) composed of a dedicated ultrasound device (SonoTran System) capable of instigating, detecting and displaying cavitation events in real time by passive acoustic mapping and associated cavitation nuclei (SonoTran Particles), to instigate cavitation in target tissues and illustrate its performance and safety in a large-animal model. This study found that cavitation can be safely triggered and mapped at different tissue depths and in different organs. No adverse effects were associated with infusion of SonoTran Particles, and ultrasound-induced cavitation caused no tissue damage in clinically targetable organs (e.g., liver) for up to 1 h. These data provide evidence of cavitation initiation and monitoring performance of the SonoTran System and the safety of controlled cavitation in a large-animal model using a clinic-ready platform technology.
Collapse
Affiliation(s)
- Massimo Masiero
- OxSonics Limited, The Magdalen Centre, Robert Robinson Avenue, Oxford OX4 4GA, United Kingdom
| | - Paul Boulos
- OxSonics Limited, The Magdalen Centre, Robert Robinson Avenue, Oxford OX4 4GA, United Kingdom
| | - Calum Crake
- OxSonics Limited, The Magdalen Centre, Robert Robinson Avenue, Oxford OX4 4GA, United Kingdom
| | - Cliff Rowe
- OxSonics Limited, The Magdalen Centre, Robert Robinson Avenue, Oxford OX4 4GA, United Kingdom
| | - Christian M Coviello
- OxSonics Limited, The Magdalen Centre, Robert Robinson Avenue, Oxford OX4 4GA, United Kingdom.
| |
Collapse
|
37
|
Wei J, Yao J, Yan M, Xie Y, Liu P, Mao Y, Li X. The role of matrix stiffness in cancer stromal cell fate and targeting therapeutic strategies. Acta Biomater 2022; 150:34-47. [DOI: 10.1016/j.actbio.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/11/2022] [Accepted: 08/02/2022] [Indexed: 11/15/2022]
|
38
|
Liao S, Sun H, Wu J, Lu H, Fang Y, Wang Y, Liao W. Case report: Two novel intergenic region-ALK fusions in non-small-cell lung cancer resistant to alectinib: A report of two cases. Front Oncol 2022; 12:916315. [PMID: 35941871 PMCID: PMC9356229 DOI: 10.3389/fonc.2022.916315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/27/2022] [Indexed: 11/25/2022] Open
Abstract
Background The anaplastic lymphoma kinase (ALK) mutation, also known as the diamond mutation in non–small-cell lung cancer (NSCLC), has been treated with tremendous success since it was first reported in 2007. Alectinib, a second generation ALK-Tyrosine kinase inhibitor (TKI), has been reported to have significantly longer progression- free survival (PFS) than first generation ALK inhibitors in untreated ALK positive NSCLC. However, the clinical efficacy of ALK-TKIs on rare ALK fusions remains unclear. In recent years, with the popularity of next-generation sequencing (NGS) technology, an increasing number of novel ALK fusion partners have been reported, but the responses are heterogeneous among different ALK fusions. Considering the inconsistent reactions, the clinical efficacy of ALK-TKIs in rare ALK gene fusions remains to be evaluated in more cases. Methods To seek for individualized therapy, the tumor tissues acquired during biopsy were sent for genomic testing by NGS based on a 139-gene panel and a 425-gene panel in a centralized clinical testing center (GENESEEQ Technology Inc, Nanjing, China). See Supplementary Material for more details about the methods for DNA-based NGS, RNA-based NGS. Results We present two cases of patients with lung adenocarcinoma harboring two novel Intergenic Region (IGR)-ALK rearrangements detected by DNA sequencing, which had limited clinical response to ALK-TKIs but showed sensitivity to chemotherapy combined with bevacizumab therapy in patient 2, with a PFS of over 1 year up till the last follow‐up assessment. Conclusions In summary, our cases emphasize the need for comprehensive molecular analysis of different ALK fusion partners at the DNA level to formulate accurate treatment strategies and provide a certain therapeutic reference for these two types of novel IGR-ALK fusions.
Collapse
|
39
|
Pahapale GJ, Tao J, Nikolic M, Gao S, Scarcelli G, Sun SX, Romer LH, Gracias DH. Directing Multicellular Organization by Varying the Aspect Ratio of Soft Hydrogel Microwells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104649. [PMID: 35434926 PMCID: PMC9189654 DOI: 10.1002/advs.202104649] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 03/08/2022] [Indexed: 06/03/2023]
Abstract
Multicellular organization with precise spatial definition is essential to various biological processes, including morphogenesis, development, and healing in vascular and other tissues. Gradients and patterns of chemoattractants are well-described guides of multicellular organization, but the influences of 3D geometry of soft hydrogels are less well defined. Here, the discovery of a new mode of endothelial cell self-organization guided by combinatorial effects of stiffness and geometry, independent of protein or chemical patterning, is described. Endothelial cells in 2 kPa microwells are found to be ≈30 times more likely to migrate to the edge to organize in ring-like patterns than in stiff 35 kPa microwells. This organization is independent of curvature and significantly more pronounced in 2 kPa microwells with aspect ratio (perimeter/depth) < 25. Physical factors of cells and substrates that drive this behavior are systematically investigated and a mathematical model that explains the organization by balancing the dynamic interaction between tangential cytoskeletal tension, cell-cell, and cell-substrate adhesion is presented. These findings demonstrate the importance of combinatorial effects of geometry and stiffness in complex cellular organization that can be leveraged to facilitate the engineering of bionics and integrated model organoid systems with customized nutrient vascular networks.
Collapse
Affiliation(s)
- Gayatri J. Pahapale
- Department of Chemical and Biomolecular EngineeringJohns Hopkins UniversityBaltimoreMD21218USA
| | - Jiaxiang Tao
- Department of Mechanical EngineeringJohns Hopkins UniversityBaltimoreMD21218USA
| | - Milos Nikolic
- Maryland Biophysics ProgramInstitute for Physical Science and TechnologyUniversity of MarylandCollege ParkMD20742USA
| | - Sammy Gao
- Department of Chemical and Biomolecular EngineeringJohns Hopkins UniversityBaltimoreMD21218USA
| | - Giuliano Scarcelli
- Maryland Biophysics ProgramInstitute for Physical Science and Technology and Fischell Department of BioengineeringUniversity of MarylandCollege ParkMD20742USA
| | - Sean X. Sun
- Department of Mechanical EngineeringCell Biologyand Institute of NanoBioTechnology (INBT)Johns Hopkins UniversityBaltimoreMD21218USA
| | - Lewis H. Romer
- Department of Cell BiologyAnesthesiology and Critical Care MedicineBiomedical EngineeringPediatricsand Center for Cell DynamicsJohns Hopkins School of MedicineBaltimoreMD21205USA
| | - David H. Gracias
- Department of Chemical and Biomolecular EngineeringMaterials Science and EngineeringChemistry and Laboratory for Computational Sensing and Robotics (LCSR)Johns Hopkins UniversityBaltimoreMD21218USA
- Department of Oncology and Sidney Kimmel Comprehensive Cancer CenterJohns Hopkins School of MedicineBaltimoreMD21205USA
| |
Collapse
|
40
|
Huang Y, Wang T, Yang J, Wu X, Fan W, Chen J. Current Strategies for the Treatment of Hepatocellular Carcinoma by Modulating the Tumor Microenvironment via Nano-Delivery Systems: A Review. Int J Nanomedicine 2022; 17:2335-2352. [PMID: 35619893 PMCID: PMC9128750 DOI: 10.2147/ijn.s363456] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/13/2022] [Indexed: 12/24/2022] Open
Abstract
Liver cancer remains a global health challenge with a projected incidence of over one million cases by 2025. Hepatocellular carcinoma (HCC) is a common primary liver cancer, accounting for about 90% of all liver cancer cases. The tumor microenvironment (TME) is the internal and external environment for tumor development, which plays an important role in tumorigenesis, immune escape and treatment resistance. Knowing that TME is a unique setting for HCC tumorigenesis, exploration of strategies to modulate TME has attracted increasing attention. Among them, the use of nano-delivery systems to deliver therapeutic agents to regulate TME components has shown great potential. TME-modulating nanoparticles have the advantages of protecting therapeutic agents from degradation, enhancing the ability of targeting HCC and reducing systemic toxicity. In this article, we summarize the TME components associated with HCC, including cancer-associated fibroblasts (CAFs), extracellular matrix (ECM), endothelial cells and immune cells, discuss their impact on the HCC progression, and highlight recent studies on nano-delivery systems that modulate these components. Finally, we also discuss opportunities and challenges in this field.
Collapse
Affiliation(s)
- Yongjie Huang
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, People's Republic of China
| | - Tiansi Wang
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, People's Republic of China
| | - Jiefen Yang
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, People's Republic of China
| | - Xin Wu
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, People's Republic of China.,Shanghai Wei Er Lab, Shanghai, People's Republic of China
| | - Wei Fan
- Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Jianming Chen
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, People's Republic of China
| |
Collapse
|
41
|
Lidonnici J, Santoro MM, Oberkersch RE. Cancer-Induced Metabolic Rewiring of Tumor Endothelial Cells. Cancers (Basel) 2022; 14:cancers14112735. [PMID: 35681715 PMCID: PMC9179421 DOI: 10.3390/cancers14112735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Angiogenesis, the formation of new blood vessels from preexisting ones, is a complex and demanding biological process that plays an important role in physiological, as well as pathological conditions, including cancer. During tumor growth, the induction of angiogenesis allows tumor cells to grow, invade, and metastasize. Recent evidence supports endothelial cell metabolism as a critical regulator of angiogenesis. However, whether and how tumor endothelial cells rewire their metabolism in cancer remains elusive. In this review, we discussed the metabolic signatures of tumor endothelial cells and their symbiotic, competitive, and mechanical metabolic interactions with tumor cells. We also discussed the recent works that may provide a rationale for attractive metabolic targets and strategies for developing specific therapies against tumor angiogenesis. Abstract Cancer is a leading cause of death worldwide. If left untreated, tumors tend to grow and spread uncontrolled until the patient dies. To support this growth, cancer cells need large amounts of nutrients and growth factors that are supplied and distributed to the tumor tissue by the vascular system. The aberrant tumor vasculature shows deep morphological, molecular, and metabolic differences compared to the blood vessels belonging to the non-malignant tissues (also referred as normal). A better understanding of the metabolic mechanisms driving the differences between normal and tumor vasculature will allow the designing of new drugs with a higher specificity of action and fewer side effects to target tumors and improve a patient’s life expectancy. In this review, we aim to summarize the main features of tumor endothelial cells (TECs) and shed light on the critical metabolic pathways that characterize these cells. A better understanding of such mechanisms will help to design innovative therapeutic strategies in healthy and diseased angiogenesis.
Collapse
|
42
|
Petrazzuolo A, Maiuri MC, Zitvogel L, Kroemer G, Kepp O. Trial Watch: combination of tyrosine kinase inhibitors (TKIs) and immunotherapy. Oncoimmunology 2022; 11:2077898. [PMID: 35655707 PMCID: PMC9154809 DOI: 10.1080/2162402x.2022.2077898] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The past decades witnessed the clinical employment of targeted therapies including but not limited to tyrosine kinase inhibitors (TKIs) that restrain a broad variety of pro-tumorigenic signals. TKIs can be categorized into (i) agents that directly target cancer cells, (ii) normalize angiogenesis or (iii) affect cells of the hematologic lineage. However, a clear distinction of TKIs based on this definition is limited by the fact that many TKIs designed to inhibit cancer cells have also effects on immune cells that are being discovered. Additionally, TKIs originally designed to target hematological cancers exhibit bioactivities on healthy cells of the same hematological lineage. TKIs have been described to improve immune recognition and cancer immunosurveillance, providing the scientific basis to combine TKIs with immunotherapy. Indeed, combination of TKIs with immunotherapy showed synergistic effects in preclinical models and clinical trials and some combinations of TKIs normalizing angiogenesis with immune checkpoint blocking antibodies have already been approved by the FDA for cancer therapy. However, the identification of appropriate drug combinations as well as optimal dosing and scheduling needs to be improved in order to obtain tangible progress in cancer care. This Trial Watch summarizes active clinical trials combining TKIs with various immunotherapeutic strategies to treat cancer patients.
Collapse
Affiliation(s)
- Adriana Petrazzuolo
- Team “Metabolism, Cancer & Immunity”, Centre de Recherche des Cordeliers, INSERM UMRS1138, Université Paris Cité, Sorbonne Université, Paris, France
- Cell Biology and Metabolomics platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - M. Chiara Maiuri
- Team “Metabolism, Cancer & Immunity”, Centre de Recherche des Cordeliers, INSERM UMRS1138, Université Paris Cité, Sorbonne Université, Paris, France
- Cell Biology and Metabolomics platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Laurence Zitvogel
- Faculty of Medicine, University Paris Saclay, Kremlin Bicêtre, France
- Gustave Roussy Cancer Campus (GRCC), Clinicobiome, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France
- Institut National de la Santé et de la Recherche Medicale (INSERM) U1015, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT) Biotheris 1428, Villejuif, France
| | - Guido Kroemer
- Team “Metabolism, Cancer & Immunity”, Centre de Recherche des Cordeliers, INSERM UMRS1138, Université Paris Cité, Sorbonne Université, Paris, France
- Cell Biology and Metabolomics platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Department of Biology, Institut du Cancer Paris CARPEM, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Oliver Kepp
- Team “Metabolism, Cancer & Immunity”, Centre de Recherche des Cordeliers, INSERM UMRS1138, Université Paris Cité, Sorbonne Université, Paris, France
- Cell Biology and Metabolomics platforms, Gustave Roussy Cancer Campus, Villejuif, France
| |
Collapse
|
43
|
Targeting of the Peritumoral Adipose Tissue Microenvironment as an Innovative Antitumor Therapeutic Strategy. Biomolecules 2022; 12:biom12050702. [PMID: 35625629 PMCID: PMC9138344 DOI: 10.3390/biom12050702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 12/03/2022] Open
Abstract
The tumor microenvironment (TME) plays a key role in promoting and sustaining cancer growth. Adipose tissue (AT), due to its anatomical distribution, is a prevalent component of TME, and contributes to cancer development and progression. Cancer-associated adipocytes (CAAs), reprogrammed by cancer stem cells (CSCs), drive cancer progression by releasing metabolites and inflammatory adipokines. In this review, we highlight the mechanisms underlying the bidirectional crosstalk among CAAs, CSCs, and stromal cells. Moreover, we focus on the recent advances in the therapeutic targeting of adipocyte-released factors as an innovative strategy to counteract cancer progression.
Collapse
|
44
|
Mudassar F, Shen H, Cook KM, Hau E. Improving the synergistic combination of programmed death‐1/programmed death ligand‐1 blockade and radiotherapy by targeting the hypoxic tumour microenvironment. J Med Imaging Radiat Oncol 2022; 66:560-574. [PMID: 35466515 PMCID: PMC9322583 DOI: 10.1111/1754-9485.13416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 04/05/2022] [Accepted: 04/10/2022] [Indexed: 11/28/2022]
Abstract
Immune checkpoint inhibition with PD‐1/PD‐L1 blockade is a promising area in the field of anti‐cancer therapy. Although clinical data have revealed success of PD‐1/PD‐L1 blockade as monotherapy or in combination with CTLA‐4 or chemotherapy, the combination with radiotherapy could further boost anti‐tumour immunity and enhance clinical outcomes due to the immunostimulatory effects of radiation. However, the synergistic combination of PD‐1/PD‐L1 blockade and radiotherapy can be challenged by the complex nature of the tumour microenvironment (TME), including the presence of tumour hypoxia. Hypoxia is a major barrier to the effectiveness of both radiotherapy and PD‐1/PD‐L1 blockade immunotherapy. Thus, targeting the hypoxic TME is an attractive strategy to enhance the efficacy of the combination. Addition of compounds that directly or indirectly reduce hypoxia, to the combination of PD‐1/PD‐L1 inhibitors and radiotherapy may optimize the success of the combination and improve therapeutic outcomes. In this review, we will discuss the synergistic combination of PD‐1/PD‐L1 blockade and radiotherapy and highlight the role of hypoxic TME in impeding the success of both therapies. In addition, we will address the potential approaches for targeting tumour hypoxia and how exploiting these strategies could benefit the combination of PD‐1/PD‐L1 blockade and radiotherapy.
Collapse
Affiliation(s)
- Faiqa Mudassar
- Translational Radiation Biology and Oncology Laboratory, Centre for Cancer Research The Westmead Institute for Medical Research Sydney New South Wales Australia
- Sydney Medical School The University of Sydney Sydney New South Wales Australia
| | - Han Shen
- Translational Radiation Biology and Oncology Laboratory, Centre for Cancer Research The Westmead Institute for Medical Research Sydney New South Wales Australia
- Sydney Medical School The University of Sydney Sydney New South Wales Australia
| | - Kristina M Cook
- Sydney Medical School The University of Sydney Sydney New South Wales Australia
- Charles Perkins Centre The University of Sydney Sydney New South Wales Australia
| | - Eric Hau
- Translational Radiation Biology and Oncology Laboratory, Centre for Cancer Research The Westmead Institute for Medical Research Sydney New South Wales Australia
- Sydney Medical School The University of Sydney Sydney New South Wales Australia
- Department of Radiation Oncology, Crown Princess Mary Cancer Centre Westmead Hospital Sydney New South Wales Australia
- Blacktown Hematology and Cancer Centre Blacktown Hospital Sydney New South Wales Australia
| |
Collapse
|
45
|
Zhou YT, Yu YQ, Yang H, Yang H, Huo YF, Huang Y, Tian XX, Fang WG. Extracellular ATP promotes angiogenesis and adhesion of TNBC cells to endothelial cells via up-regulation of CTGF. Cancer Sci 2022; 113:2457-2471. [PMID: 35441763 PMCID: PMC9277410 DOI: 10.1111/cas.15375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 12/01/2022] Open
Abstract
Our previous works have indicated that extracellular ATP is an important prometastasis factor. However, the molecular mechanism involved needs to be further studied. We demonstrated that extracellular ATP treatment could upregulate the expression of connective tissue growth factor (CTGF) in both triple‐negative breast cancer (TNBC) cells and endothelial cells (ECs). Extracellular ATP stimulated the migration of TNBC cells and ECs, and angiogenesis of ECs via the P2Y2––YAP‐CTGF axis. Furthermore, we demonstrated that adenosine triphosphate (ATP) stimulated TNBC cell adhesion to ECs and transmigration through the EC layer via CTGF by upregulation of integrin β1 on TNBC cells and VCAM‐1 on ECs. Both apyrase (ATP‐diphosphohydrolase) and CTGF shRNA treatments could inhibit the metastasis of inoculated tumors to lung and liver in a mouse model, and these treated tumors had fewer blood vessels. Collectively, our data indicated that extracellular ATP promotes tumor angiogenesis and the interactions between TNBC cells and ECs through upregulation of CTGF, thereby stimulating TNBC metastasis. The pleiotropic effects of ATP in angiogenesis and cell adhesion suggest that extracellular ATP or CTGF could be an effective target for TNBC therapy.
Collapse
Affiliation(s)
- Yan-Ting Zhou
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing, 100191, China
| | - Yu-Qing Yu
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing, 100191, China
| | - Hui Yang
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing, 100191, China
| | - Han Yang
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing, 100191, China
| | - Yan-Fei Huo
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing, 100191, China
| | - Yang Huang
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing, 100191, China
| | - Xin-Xia Tian
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing, 100191, China
| | - Wei-Gang Fang
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing, 100191, China
| |
Collapse
|
46
|
Multi-Layered Human Blood Vessels-on-Chip Design Using Double Viscous Finger Patterning. Biomedicines 2022; 10:biomedicines10040797. [PMID: 35453546 PMCID: PMC9027030 DOI: 10.3390/biomedicines10040797] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 12/26/2022] Open
Abstract
Blood vessel-on-a-chip models aim at reproducing vascular functions. However, very few efficient methods have been designed to address the need for biological replicates in medium- to high-throughput screenings. Here, vessels-on-chip were designed in polydimethylsiloxane-glass chips using the viscous finger patterning technique which was adapted to create channels with various internal diameters inside a collagen solution and to simultaneously seed cells. This method was refined to create blood vessels composed of two concentric, distinct, and closely appositioned layers of human endothelial and perivascular cells arranged around a hollow lumen. These approaches allowed the formation of structurally correct blood vessels-on-chips which were constituted of either only endothelial cells or of both cell types in order to distinguish the vascular barrier reactivity to drugs in the presence or not of perivascular cells. The established vessels showed a tight vascular barrier, as assessed by immunostaining of the adherens junctions, and were reactive to the natural vasopermeant thrombin and to inflammatory cytokines. The presence of perivascular cells markedly increased the tightness of the vascular barrier and lowered its response to thrombin. The design allowed us to simultaneously challenge in real-time several tens of 3D-reconstituted, multicellular blood vessels in a standard multiwell plate format suitable for high-throughput drug screening.
Collapse
|
47
|
Sathiyanadan K, Alonso F, Domingos-Pereira S, Santoro T, Hamard L, Cesson V, Meda P, Nardelli-Haefliger D, Haefliger JA. Targeting Endothelial Connexin37 Reduces Angiogenesis and Decreases Tumor Growth. Int J Mol Sci 2022; 23:2930. [PMID: 35328350 PMCID: PMC8948817 DOI: 10.3390/ijms23062930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 12/13/2022] Open
Abstract
Connexin37 (Cx37) and Cx40 form intercellular channels between endothelial cells (EC), which contribute to the regulation of the functions of vessels. We previously documented the participation of both Cx in developmental angiogenesis and have further shown that loss of Cx40 decreases the growth of different tumors. Here, we report that loss of Cx37 reduces (1) the in vitro proliferation of primary human EC; (2) the vascularization of subcutaneously implanted matrigel plugs in Cx37-/- mice or in WT using matrigel plugs supplemented with a peptide targeting Cx37 channels; (3) tumor angiogenesis; and (4) the growth of TC-1 and B16 tumors, resulting in a longer mice survival. We further document that Cx37 and Cx40 function in a collaborative manner to promote tumor growth, inasmuch as the injection of a peptide targeting Cx40 into Cx37-/- mice decreased the growth of TC-1 tumors to a larger extent than after loss of Cx37. This loss did not alter vessel perfusion, mural cells coverage and tumor hypoxia compared to tumors grown in WT mice. The data show that Cx37 is relevant for the control of EC proliferation and growth in different tumor models, suggesting that it may be a target, alone or in combination with Cx40, in the development of anti-tumoral treatments.
Collapse
Affiliation(s)
- Karthik Sathiyanadan
- Department of Urology, Lausanne University Hospital, 1011 Lausanne, Switzerland; (K.S.); (S.D.-P.); (V.C.); (D.N.-H.)
| | - Florian Alonso
- Laboratory for the Bioengineering of Tissues (BioTis-INSERM U1026), Université de Bordeaux, 33607 Bordeaux, France;
| | - Sonia Domingos-Pereira
- Department of Urology, Lausanne University Hospital, 1011 Lausanne, Switzerland; (K.S.); (S.D.-P.); (V.C.); (D.N.-H.)
| | - Tania Santoro
- Department of Medicine, Lausanne University Hospital, 1011 Lausanne, Switzerland; (T.S.); (L.H.)
| | - Lauriane Hamard
- Department of Medicine, Lausanne University Hospital, 1011 Lausanne, Switzerland; (T.S.); (L.H.)
| | - Valérie Cesson
- Department of Urology, Lausanne University Hospital, 1011 Lausanne, Switzerland; (K.S.); (S.D.-P.); (V.C.); (D.N.-H.)
| | - Paolo Meda
- Department of Cell Physiology and Metabolism, Medical Center, University of Geneva, 1206 Geneva, Switzerland;
| | - Denise Nardelli-Haefliger
- Department of Urology, Lausanne University Hospital, 1011 Lausanne, Switzerland; (K.S.); (S.D.-P.); (V.C.); (D.N.-H.)
| | | |
Collapse
|
48
|
Anti-VEGF Effect of Bioactive Indolic Compounds and Hydroxytyrosol Metabolites. Foods 2022; 11:foods11040526. [PMID: 35206003 PMCID: PMC8871452 DOI: 10.3390/foods11040526] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/04/2022] [Accepted: 02/09/2022] [Indexed: 02/01/2023] Open
Abstract
Angiogenesis is a key process involved in both cancer and cardiovascular diseases, the vascular endothelial growth factor (VEGF) and its VEGF receptor-2 (VEGFR-2) being the main triggers. The aim of this study was to determine the molecular mechanism underlying the potent inhibition of VEGF signaling by hydroxytyrosol (HT) metabolites and indolic compounds and establish a relation between their structure and bioactivity. Experiments involved the evaluation of their potential to inhibit VEGF on human umbilical vein endothelial cells (HUVECs) by ELISA assay and their subsequent effect on the downstream signaling pathway (PLCγ1, Akt, and endothelial nitric oxide synthetase (eNOS)) by Western blot. Respectively, 3,4-dihydroxyphenylacetaldehyde (DOPAL) (100 µM) and indole pyruvic acid (IPy) (1 mM) were capable of inhibiting VEGFR-2 activation with an IC50 value of 119 µM and 1.037 mM. The anti-angiogenic effect of DOPAL and IPy is mediated via PLCγ1. Additionally, DOPAL significantly increases eNOS phosphorylation, while IPy maintained it. These data provide for the first time evidence of the anti-angiogenic effect of DOPAL and IPy for future use as potential bioactive food ingredients.
Collapse
|
49
|
Huijbers EJM, Khan KA, Kerbel RS, Griffioen AW. Tumors resurrect an embryonic vascular program to escape immunity. Sci Immunol 2022; 7:eabm6388. [PMID: 35030032 DOI: 10.1126/sciimmunol.abm6388] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Elisabeth J M Huijbers
- Angiogenesis Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Kabir A Khan
- Biological Sciences Platform, Sunnybrook Research Institute, Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Robert S Kerbel
- Biological Sciences Platform, Sunnybrook Research Institute, Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Arjan W Griffioen
- Angiogenesis Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
50
|
Guarino B, Katari V, Adapala R, Bhavnani N, Dougherty J, Khan M, Paruchuri S, Thodeti C. Tumor-Derived Extracellular Vesicles Induce Abnormal Angiogenesis via TRPV4 Downregulation and Subsequent Activation of YAP and VEGFR2. Front Bioeng Biotechnol 2022; 9:790489. [PMID: 35004649 PMCID: PMC8733651 DOI: 10.3389/fbioe.2021.790489] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/03/2021] [Indexed: 12/12/2022] Open
Abstract
Tumor angiogenesis is initiated and maintained by the tumor microenvironment through secretion of autocrine and paracrine factors, including extracellular vesicles (EVs). Although tumor-derived EVs (t-EVs) have been implicated in tumor angiogenesis, growth and metastasis, most studies on t-EVs are focused on proangiogenic miRNAs and growth factors. We have recently demonstrated that conditioned media from human lung tumor cells (A549) downregulate TRPV4 channels and transform normal endothelial cells to a tumor endothelial cell-like phenotype and induce abnormal angiogenesis in vitro, via t-EVs. However, the underlying molecular mechanism of t-EVs on endothelial cell phenotypic transition and abnormal angiogenesis in vivo remains unknown. Here, we demonstrate that t-EVs downregulate TRPV4 expression post-translationally and induce abnormal angiogenesis by activating Rho/Rho kinase/YAP/VEGFR2 pathways. Further, we demonstrate that t-EVs induce abnormal vessel formation in subcutaneously implanted Matrigel plugs in vivo (independent of tumors), which are characterized by increased VEGFR2 expression and reduced pericyte coverage. Taken together, our findings demonstrate that t-EVs induce abnormal angiogenesis via TRPV4 downregulation-mediated activation of Rho/Rho kinase/YAP/VEGFR2 pathways and suggest t-EVs and TRPV4 as novel targets for vascular normalization and cancer therapy.
Collapse
Affiliation(s)
- Brianna Guarino
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Venkatesh Katari
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, United States.,Department of Physiology and Pharmacology, University of Toledo, Toledo, OH, United States
| | - Ravi Adapala
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, United States.,Department of Physiology and Pharmacology, University of Toledo, Toledo, OH, United States
| | - Neha Bhavnani
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Julie Dougherty
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States.,Department of Emergency Medicine, The Ohio State University, Columbus, OH, United States
| | - Mahmood Khan
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States.,Department of Emergency Medicine, The Ohio State University, Columbus, OH, United States
| | - Sailaja Paruchuri
- Department of Physiology and Pharmacology, University of Toledo, Toledo, OH, United States
| | - Charles Thodeti
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, United States.,Department of Physiology and Pharmacology, University of Toledo, Toledo, OH, United States
| |
Collapse
|