1
|
Raghavan AR, Hochwagen A. Keeping it safe: control of meiotic chromosome breakage. Trends Genet 2024:S0168-9525(24)00270-1. [PMID: 39672680 DOI: 10.1016/j.tig.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/14/2024] [Accepted: 11/14/2024] [Indexed: 12/15/2024]
Abstract
Meiotic cells introduce numerous programmed DNA double-strand breaks (DSBs) into their genome to stimulate crossover recombination. DSB numbers must be high enough to ensure each homologous chromosome pair receives the obligate crossover required for accurate meiotic chromosome segregation. However, every DSB also increases the risk of aberrant or incomplete DNA repair, and thus genome instability. To mitigate these risks, meiotic cells have evolved an intricate network of controls that modulates the timing, levels, and genomic location of meiotic DSBs. This Review summarizes our current understanding of these controls with a particular focus on the mechanisms that prevent meiotic DSB formation at the wrong time or place, thereby guarding the genome from potentially catastrophic meiotic errors.
Collapse
Affiliation(s)
| | - Andreas Hochwagen
- Department of Biology, New York University, New York, NY 10003, USA.
| |
Collapse
|
2
|
Dorohova A, Lyasota O, Dzhimak S, Svidlov A, Leontyeva O, Drobotenko M. Fluctuations in Medium Viscosity May Affect the Stability of the CAG Tract in the ATXN2 Gene. Biomedicines 2024; 12:2396. [PMID: 39457708 PMCID: PMC11504642 DOI: 10.3390/biomedicines12102396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/15/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Trinucleotide repeats are the cause of many neurodegenerative diseases that are currently incurable. In this regard, the question of the causes of occurrence and methods of prevention or treatment of diseases caused by the expansion of repeats in the CAG tract of the ATXN2 gene remains relevant. Previously, it was shown that the frequency of occurrence of additional OS (open states) zones increases with increasing length of the CAG tract, and the value inverse to the frequency correlates with the age of disease onset. Methods: In this work, the influence of the viscosity of the medium and the external torque on the stability of the CAG tract in the ATXN2 gene was studied using mathematical modeling methods. Results: It has been established that the probability of the appearance of additional OS zones of significant size increases with an increase in the CAG of the tract (k > 40 CAG repeats) for all viscosity values, however, at k ≤ 40, the change in viscosity does not significantly affect the probability of additional OS zones in the tract. Conclusions: It was found that under normal conditions (absence of pathology), viscosity does not have a reliable effect on the stability of the DNA molecule, but when pathology appears, an increase in viscosity contributes to an increase in DNA stability, and, accordingly, a decrease has a negative effect on the stabilization of the DNA molecule. In the zone of close to incomplete penetrance of the disease, viscosity does not have a reliable effect on the stability of the CAG tract.
Collapse
Affiliation(s)
- Anna Dorohova
- Laboratory of Problems of Stable Isotope Spreading in Living Systems, Federal Research Center the Southern Scientific Center of the Russian Academy of Sciences, 344006 Rostov-on-Don, Russia; (O.L.); (S.D.); (A.S.)
- Research Department, Kuban State University, 350040 Krasnodar, Russia; (O.L.); (M.D.)
| | - Oksana Lyasota
- Laboratory of Problems of Stable Isotope Spreading in Living Systems, Federal Research Center the Southern Scientific Center of the Russian Academy of Sciences, 344006 Rostov-on-Don, Russia; (O.L.); (S.D.); (A.S.)
- Research Department, Kuban State University, 350040 Krasnodar, Russia; (O.L.); (M.D.)
| | - Stepan Dzhimak
- Laboratory of Problems of Stable Isotope Spreading in Living Systems, Federal Research Center the Southern Scientific Center of the Russian Academy of Sciences, 344006 Rostov-on-Don, Russia; (O.L.); (S.D.); (A.S.)
- Research Department, Kuban State University, 350040 Krasnodar, Russia; (O.L.); (M.D.)
| | - Alexandr Svidlov
- Laboratory of Problems of Stable Isotope Spreading in Living Systems, Federal Research Center the Southern Scientific Center of the Russian Academy of Sciences, 344006 Rostov-on-Don, Russia; (O.L.); (S.D.); (A.S.)
| | - Olga Leontyeva
- Research Department, Kuban State University, 350040 Krasnodar, Russia; (O.L.); (M.D.)
| | - Mikhail Drobotenko
- Research Department, Kuban State University, 350040 Krasnodar, Russia; (O.L.); (M.D.)
| |
Collapse
|
3
|
Pan F, Xu P, Roland C, Sagui C, Weninger K. Structural and Dynamical Properties of Nucleic Acid Hairpins Implicated in Trinucleotide Repeat Expansion Diseases. Biomolecules 2024; 14:1278. [PMID: 39456210 PMCID: PMC11505666 DOI: 10.3390/biom14101278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/26/2024] [Accepted: 10/05/2024] [Indexed: 10/28/2024] Open
Abstract
Dynamic mutations in some human genes containing trinucleotide repeats are associated with severe neurodegenerative and neuromuscular disorders-known as Trinucleotide (or Triplet) Repeat Expansion Diseases (TREDs)-which arise when the repeat number of triplets expands beyond a critical threshold. While the mechanisms causing the DNA triplet expansion are complex and remain largely unknown, it is now recognized that the expandable repeats lead to the formation of nucleotide configurations with atypical structural characteristics that play a crucial role in TREDs. These nonstandard nucleic acid forms include single-stranded hairpins, Z-DNA, triplex structures, G-quartets and slipped-stranded duplexes. Of these, hairpin structures are the most prolific and are associated with the largest number of TREDs and have therefore been the focus of recent single-molecule FRET experiments and molecular dynamics investigations. Here, we review the structural and dynamical properties of nucleic acid hairpins that have emerged from these studies and the implications for repeat expansion mechanisms. The focus will be on CAG, GAC, CTG and GTC hairpins and their stems, their atomistic structures, their stability, and the important role played by structural interrupts.
Collapse
Affiliation(s)
- Feng Pan
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA; (F.P.); (C.R.)
- Department of Statistics, Florida State University, Tallahassee, FL 32306, USA
| | - Pengning Xu
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA; (F.P.); (C.R.)
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Christopher Roland
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA; (F.P.); (C.R.)
| | - Celeste Sagui
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA; (F.P.); (C.R.)
| | - Keith Weninger
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA; (F.P.); (C.R.)
| |
Collapse
|
4
|
Snowbarger J, Koganti P, Spruck C. Evolution of Repetitive Elements, Their Roles in Homeostasis and Human Disease, and Potential Therapeutic Applications. Biomolecules 2024; 14:1250. [PMID: 39456183 PMCID: PMC11506328 DOI: 10.3390/biom14101250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
Repeating sequences of DNA, or repetitive elements (REs), are common features across both prokaryotic and eukaryotic genomes. Unlike many of their protein-coding counterparts, the functions of REs in host cells remained largely unknown and have often been overlooked. While there is still more to learn about their functions, REs are now recognized to play significant roles in both beneficial and pathological processes in their hosts at the cellular and organismal levels. Therefore, in this review, we discuss the various types of REs and review what is known about their evolution. In addition, we aim to classify general mechanisms by which REs promote processes that are variously beneficial and harmful to host cells/organisms. Finally, we address the emerging role of REs in cancer, aging, and neurological disorders and provide insights into how RE modulation could provide new therapeutic benefits for these specific conditions.
Collapse
Affiliation(s)
| | | | - Charles Spruck
- Cancer Genome and Epigenetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; (J.S.); (P.K.)
| |
Collapse
|
5
|
Yang Y, Wang Y, Yan Z, Li Z, Guo P. Effects of interrupting residues on DNA dumbbell structures formed by CCTG tetranucleotide repeats associated with myotonic dystrophy type 2. FEBS Lett 2024; 598:2544-2556. [PMID: 38922834 DOI: 10.1002/1873-3468.14952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/03/2024] [Accepted: 05/15/2024] [Indexed: 06/28/2024]
Abstract
Myotonic dystrophy type 2 (DM2) is a neurogenerative disease caused by caprylic/capric triglyceride (CCTG) tetranucleotide repeat expansions in intron 1 of the cellular nucleic acid-binding protein (CNBP) gene. Non-B DNA structures formed by CCTG repeats can promote genetic instability, whereas interrupting motifs of NCTG (N = A/T/G) within CCTG repeats help to maintain genomic stability. However, whether the interrupting motifs can affect DNA structures of CCTG repeats remains unclear. Here, we report that four CCTG repeats with an interrupting 3'-A/T/G residue formed dumbbell structures, whereas a non-interrupting 3'-C residue resulted in a multi-loop structure exhibiting conformational dynamics that may contribute to a higher tendency of escaping from DNA mismatch repair and causing repeat expansions. The results provide new structural insights into the genetic instability of CCTG repeats in DM2.
Collapse
Affiliation(s)
- Yingquan Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM) Chinese Academy of Sciences, China
| | - Yang Wang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM) Chinese Academy of Sciences, China
- School of Materials Science and Engineering, Tianjin University, China
| | - Zhenzhen Yan
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM) Chinese Academy of Sciences, China
| | - Zhigang Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Pei Guo
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM) Chinese Academy of Sciences, China
| |
Collapse
|
6
|
Lee RS, Twarowski JM, Malkova A. Stressed? Break-induced replication comes to the rescue! DNA Repair (Amst) 2024; 142:103759. [PMID: 39241677 DOI: 10.1016/j.dnarep.2024.103759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/09/2024]
Abstract
Break-induced replication (BIR) is a homologous recombination (HR) pathway that repairs one-ended DNA double-strand breaks (DSBs), which can result from replication fork collapse, telomere erosion, and other events. Eukaryotic BIR has been mainly investigated in yeast, where it is initiated by invasion of the broken DNA end into a homologous sequence, followed by extensive replication synthesis proceeding to the chromosome end. Multiple recent studies have described BIR in mammalian cells, the properties of which show many similarities to yeast BIR. While HR is considered as "error-free" mechanism, BIR is highly mutagenic and frequently leads to chromosomal rearrangements-genetic instabilities known to promote human disease. In addition, it is now recognized that BIR is highly stimulated by replication stress (RS), including RS constantly present in cancer cells, implicating BIR as a contributor to cancer genesis and progression. Here, we discuss the past and current findings related to the mechanism of BIR, the association of BIR with replication stress, and the destabilizing effects of BIR on the eukaryotic genome. Finally, we consider the potential for exploiting the BIR machinery to develop anti-cancer therapeutics.
Collapse
Affiliation(s)
- Rosemary S Lee
- Department of Biochemistry & Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | | | - Anna Malkova
- Department of Biochemistry & Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
7
|
Drobotenko MI, Lyasota OM, Hernandez-Caceres JL, Labrada RR, Svidlov AA, Dorohova АA, Baryshev MG, Nechipurenko YD, Pérez LV, Dzhimak SS. Abnormal open states patterns in the ATXN2 DNA sequence depends on the CAG repeats length. Int J Biol Macromol 2024; 276:133849. [PMID: 39004246 DOI: 10.1016/j.ijbiomac.2024.133849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/04/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
Hereditary ataxias are one of the «anticipation diseases» types. Spinocerebral ataxia type 2 occurs when the number of CAG repeats in the coding region of the ATXN2 gene exceeds 34 or more. In healthy people, the CAG repeat region in the ATXN2 gene usually consists of 22-23 CAG trinucleotides. Mutations that increase the length of CAG repeats can cause severe neurodegenerative and neuromuscular disorders known as trinucleotide repeat expansion diseases. The mechanisms causing such diseases are associated with non-canonical configurations that can be formed in the CAG repeat region during replication, transcription or repair. This makes it relevant to study the zones of open states that arise in the region of CAG repeats under torque. The purpose of this work is to study, using mathematical modeling, zones of open states in the region of CAG repeats of the ATXN2 gene, caused by torque. It has been established that the torque effect on the 1st exon of the ATXN2 gene, in addition to the formation of open states in the promoter region, can lead to the formation of additional various sizes open states zones in the CAG repeats region. Moreover, the frequency of additional large zones genesis increases with increasing number of CAG repeats. The inverse of this frequency correlates with the dependence of the disease onset average age on the CAG repeats length. The obtained results will allow us to get closer to understanding the genetic mechanisms that cause trinucleotide repeat diseases.
Collapse
Affiliation(s)
- Mikhail I Drobotenko
- Department of Radiophysics and Nanothechnology, Kuban State University, 350040 Krasnodar, Russian Federation
| | - Oksana M Lyasota
- Laboratory of Problems of Stable Isotope Spreading in Living Systems, Southern Scientific Center of the Russian Academy of Sciences, 344006 Rostov-on-Don, Russian Federation
| | | | | | - Alexandr A Svidlov
- Laboratory of Problems of Stable Isotope Spreading in Living Systems, Southern Scientific Center of the Russian Academy of Sciences, 344006 Rostov-on-Don, Russian Federation
| | - Аnna A Dorohova
- Department of Radiophysics and Nanothechnology, Kuban State University, 350040 Krasnodar, Russian Federation; Laboratory of Problems of Stable Isotope Spreading in Living Systems, Southern Scientific Center of the Russian Academy of Sciences, 344006 Rostov-on-Don, Russian Federation
| | - Mikhail G Baryshev
- Laboratory of Problems of Stable Isotope Spreading in Living Systems, Southern Scientific Center of the Russian Academy of Sciences, 344006 Rostov-on-Don, Russian Federation
| | - Yury D Nechipurenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russian Federation
| | | | - Stepan S Dzhimak
- Department of Radiophysics and Nanothechnology, Kuban State University, 350040 Krasnodar, Russian Federation; Laboratory of Problems of Stable Isotope Spreading in Living Systems, Southern Scientific Center of the Russian Academy of Sciences, 344006 Rostov-on-Don, Russian Federation.
| |
Collapse
|
8
|
Darlami O, Pun R, Ahn SH, Kim SH, Shin D. Macrocyclization strategy for improving candidate profiles in medicinal chemistry. Eur J Med Chem 2024; 272:116501. [PMID: 38754142 DOI: 10.1016/j.ejmech.2024.116501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/12/2024] [Accepted: 05/12/2024] [Indexed: 05/18/2024]
Abstract
Macrocycles are defined as cyclic compounds with 12 or more members. In medicinal chemistry, they are categorized based on their core chemistry into cyclic peptides and macrocycles. Macrocycles are advantageous because of their structural diversity and ability to achieve high affinity and selectivity towards challenging targets that are often not addressable by conventional small molecules. The potential of macrocyclization to optimize drug-like properties while maintaining adequate bioavailability and permeability has been emphasized as a key innovation in medicinal chemistry. This review provides a detailed case study of the application of macrocyclization over the past 5 years, starting from the initial analysis of acyclic active compounds to optimization of the resulting macrocycles for improved efficacy and drug-like properties. Additionally, it illustrates the strategic value of macrocyclization in contemporary drug discovery efforts.
Collapse
Affiliation(s)
- Om Darlami
- College of Pharmacy, Gachon University, Hambakmoe-ro 191, Yeunsu-gu, Incheon, 21935, Republic of Korea
| | - Rabin Pun
- College of Pharmacy, Gachon University, Hambakmoe-ro 191, Yeunsu-gu, Incheon, 21935, Republic of Korea
| | - Sung-Hoon Ahn
- College of Pharmacy, Kangwon National University, Gangwondaehak-gil 1, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Seok-Ho Kim
- College of Pharmacy, Kangwon National University, Gangwondaehak-gil 1, Chuncheon, Gangwon-do, 24341, Republic of Korea.
| | - Dongyun Shin
- College of Pharmacy, Gachon University, Hambakmoe-ro 191, Yeunsu-gu, Incheon, 21935, Republic of Korea.
| |
Collapse
|
9
|
Flynn JM, Yamashita YM. The implications of satellite DNA instability on cellular function and evolution. Semin Cell Dev Biol 2024; 156:152-159. [PMID: 37852904 DOI: 10.1016/j.semcdb.2023.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/21/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023]
Abstract
Abundant tandemly repeated satellite DNA is present in most eukaryotic genomes. Previous limitations including a pervasive view that it was uninteresting junk DNA, combined with challenges in studying it, are starting to dissolve - and recent studies have found important functions for satellite DNAs. The observed rapid evolution and implied instability of satellite DNA now has important significance for their functions and maintenance within the genome. In this review, we discuss the processes that lead to satellite DNA copy number instability, and the importance of mechanisms to manage the potential negative effects of instability. Satellite DNA is vulnerable to challenges during replication and repair, since it forms difficult-to-process secondary structures and its homology within tandem arrays can result in various types of recombination. Satellite DNA instability may be managed by DNA or chromatin-binding proteins ensuring proper nuclear localization and repair, or by proteins that process aberrant structures that satellite DNAs tend to form. We also discuss the pattern of satellite DNA mutations from recent mutation accumulation (MA) studies that have tracked changes in satellite DNA for up to 1000 generations with minimal selection. Finally, we highlight examples of satellite evolution from studies that have characterized satellites across millions of years of Drosophila fruit fly evolution, and discuss possible ways that selection might act on the satellite DNA composition.
Collapse
Affiliation(s)
- Jullien M Flynn
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA; Howard Hughes Medical Institute, Cambridge, MA, USA.
| | - Yukiko M Yamashita
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA; Howard Hughes Medical Institute, Cambridge, MA, USA; Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
10
|
Antkowiak KR, Coskun P, Noronha ST, Tavella D, Massi F, Ryder SP. A nematode model to evaluate microdeletion phenotype expression. G3 (BETHESDA, MD.) 2024; 14:jkad258. [PMID: 37956108 PMCID: PMC10849325 DOI: 10.1093/g3journal/jkad258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/12/2023] [Accepted: 11/05/2023] [Indexed: 11/15/2023]
Abstract
Microdeletion syndromes are genetic diseases caused by multilocus chromosomal deletions too small to be detected by karyotyping. They are typified by complex pleiotropic developmental phenotypes that depend both on the extent of the deletion and variations in genetic background. Microdeletion alleles cause a wide array of consequences involving multiple pathways. How simultaneous haploinsufficiency of numerous adjacent genes leads to complex and variable pleiotropic phenotypes is not well understood. CRISPR/Cas9 genome editing has been shown to induce microdeletion-like alleles at a meaningful rate. Here, we describe a microdeletion allele in Caenorhabditis elegans recovered during a CRISPR/Cas9 genome editing experiment. We mapped the allele to chromosome V, balanced it with a reciprocal translocation crossover suppressor, and precisely defined the breakpoint junction. The allele simultaneously removes 32 protein-coding genes, yet animals homozygous for this mutation are viable as adults. Homozygous animals display a complex phenotype including maternal effect lethality, producing polynucleated embryos that grow into uterine tumors, vulva morphogenesis defects, body wall distensions, uncoordinated movement, and a shortened life span typified by death by bursting. Our work provides an opportunity to explore the complexity and penetrance of microdeletion phenotypes in a simple genetic model system.
Collapse
Affiliation(s)
- Katianna R Antkowiak
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Peren Coskun
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Sharon T Noronha
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Davide Tavella
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Francesca Massi
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Sean P Ryder
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|
11
|
Papp D, Hernandez LA, Mai TA, Haanen TJ, O’Donnell MA, Duran AT, Hernandez SM, Narvanto JE, Arguello B, Onwukwe MO, Mirkin SM, Kim JC. Massive contractions of myotonic dystrophy type 2-associated CCTG tetranucleotide repeats occur via double-strand break repair with distinct requirements for DNA helicases. G3 (BETHESDA, MD.) 2024; 14:jkad257. [PMID: 37950892 PMCID: PMC10849350 DOI: 10.1093/g3journal/jkad257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/06/2023] [Accepted: 10/19/2023] [Indexed: 11/13/2023]
Abstract
Myotonic dystrophy type 2 (DM2) is a genetic disease caused by expanded CCTG DNA repeats in the first intron of CNBP. The number of CCTG repeats in DM2 patients ranges from 75 to 11,000, yet little is known about the molecular mechanisms responsible for repeat expansions or contractions. We developed an experimental system in Saccharomyces cerevisiae that enables the selection of large-scale contractions of (CCTG)100 within the intron of a reporter gene and subsequent genetic analysis. Contractions exceeded 80 repeat units, causing the final repetitive tract to be well below the threshold for disease. We found that Rad51 and Rad52 are involved in these massive contractions, indicating a mechanism that uses homologous recombination. Srs2 helicase was shown previously to stabilize CTG, CAG, and CGG repeats. Loss of Srs2 did not significantly affect CCTG contraction rates in unperturbed conditions. In contrast, loss of the RecQ helicase Sgs1 resulted in a 6-fold decrease in contraction rate with specific evidence that helicase activity is required for large-scale contractions. Using a genetic assay to evaluate chromosome arm loss, we determined that CCTG and reverse complementary CAGG repeats elevate the rate of chromosomal fragility compared to a short-track control. Overall, our results demonstrate that the genetic control of CCTG repeat contractions is notably distinct among disease-causing microsatellite repeat sequences.
Collapse
Affiliation(s)
- David Papp
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078, USA
| | - Luis A Hernandez
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078, USA
| | - Theresa A Mai
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078, USA
| | - Terrance J Haanen
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078, USA
| | - Meghan A O’Donnell
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078, USA
| | - Ariel T Duran
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078, USA
| | - Sophia M Hernandez
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078, USA
| | - Jenni E Narvanto
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078, USA
| | - Berenice Arguello
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078, USA
| | - Marvin O Onwukwe
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078, USA
| | - Sergei M Mirkin
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Jane C Kim
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078, USA
| |
Collapse
|
12
|
Scelfo A, Fachinetti D. Centromere: A Trojan horse for genome stability. DNA Repair (Amst) 2023; 130:103569. [PMID: 37708591 DOI: 10.1016/j.dnarep.2023.103569] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/22/2023] [Accepted: 09/05/2023] [Indexed: 09/16/2023]
Abstract
Centromeres play a key role in the maintenance of genome stability to prevent carcinogenesis and diseases. They are specialized chromosome loci essential to ensure faithful transmission of genomic information across cell generations by mediating the interaction with spindle microtubules. Nonetheless, while fulfilling these essential roles, their distinct repetitive composition and susceptibility to mechanical stresses during cell division render them susceptible to breakage events. In this review, we delve into the present understanding of the underlying causes of centromere fragility, from the mechanisms governing its DNA replication and repair, to the pathways acting to counteract potential challenges. We propose that the centromere represents a "Trojan horse" exerting vital functions that, at the same time, potentially threatens whole genome stability.
Collapse
Affiliation(s)
- Andrea Scelfo
- Institut Curie, CNRS, UMR 144, Sorbonne University, 26 rue d'Ulm, 75005 Paris, France.
| | - Daniele Fachinetti
- Institut Curie, CNRS, UMR 144, Sorbonne University, 26 rue d'Ulm, 75005 Paris, France.
| |
Collapse
|
13
|
Fakharzadeh A, Qu J, Pan F, Sagui C, Roland C. Structure and Dynamics of DNA and RNA Double Helices Formed by d(CTG), d(GTC), r(CUG), and r(GUC) Trinucleotide Repeats and Associated DNA-RNA Hybrids. J Phys Chem B 2023; 127:7907-7924. [PMID: 37681731 PMCID: PMC10519205 DOI: 10.1021/acs.jpcb.3c03538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/11/2023] [Indexed: 09/09/2023]
Abstract
Myotonic dystrophy type 1 is the most frequent form of muscular dystrophy in adults caused by an abnormal expansion of the CTG trinucleotide. Both the expanded DNA and the expanded CUG RNA transcript can fold into hairpins. Co-transcriptional formation of stable RNA·DNA hybrids can also enhance the instability of repeat tracts. We performed molecular dynamics simulations of homoduplexes associated with the disease, d(CTG)n and r(CUG)n, and their corresponding r(CAG)n:d(CTG)n and r(CUG)n:d(CAG)n hybrids that can form under bidirectional transcription and of non-pathological d(GTC)n and d(GUC)n homoduplexes. We characterized their conformations, stability, and dynamics and found that the U·U and T·T mismatches are dynamic, favoring anti-anti conformations inside the helical core, followed by anti-syn and syn-syn conformations. For DNA, the secondary minima in the non-expanding d(GTC)n helices are deeper, wider, and longer-lived than those in d(CTG)n, which constitutes another biophysical factor further differentiating the expanding and non-expanding sequences. The hybrid helices are closer to A-RNA, with the A-T and A-U pairs forming two stable Watson-Crick hydrogen bonds. The neutralizing ion distribution around the non-canonical pairs is also described.
Collapse
Affiliation(s)
- Ashkan Fakharzadeh
- Department
of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202, USA
| | - Jing Qu
- Department
of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202, USA
| | - Feng Pan
- Department
of Statistics, Florida State University, Tallahassee, Florida 32306, USA
| | - Celeste Sagui
- Department
of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202, USA
| | - Christopher Roland
- Department
of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202, USA
| |
Collapse
|
14
|
Papp D, Hernandez LA, Mai TA, Haanen TJ, O'Donnell MA, Duran AT, Hernandez SM, Narvanto JE, Arguello B, Onwukwe MO, Kolar K, Mirkin SM, Kim JC. Massive contractions of Myotonic Dystrophy Type 2-associated CCTG tetranucleotide repeats occur via double strand break repair with distinct requirements for helicases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.06.548036. [PMID: 37461657 PMCID: PMC10350092 DOI: 10.1101/2023.07.06.548036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Myotonic Dystrophy Type 2 (DM2) is a genetic disease caused by expanded CCTG DNA repeats in the first intron of CNBP. The number of CCTG repeats in DM2 patients ranges from 75-11,000, yet little is known about the molecular mechanisms responsible for repeat expansions or contractions. We developed an experimental system in Saccharomyces cerevisiae that enables selection of large-scale contractions of (CCTG)100 within the intron of a reporter gene and subsequent genetic analysis. Contractions exceeded 80 repeat units, causing the final repetitive tract to be well below the threshold for disease. We found that Rad51 and Rad52 are required for these massive contractions, indicating a mechanism that involves homologous recombination. Srs2 helicase was shown previously to stabilize CTG, CAG, and CGG repeats. Loss of Srs2 did not significantly affect CCTG contraction rates in unperturbed conditions. In contrast, loss of the RecQ helicase Sgs1 resulted in a 6-fold decrease in contraction rate with specific evidence that helicase activity is required for large-scale contractions. Using a genetic assay to evaluate chromosome arm loss, we determined that CCTG and reverse complementary CAGG repeats elevate the rate of chromosomal fragility compared to a low-repeat control. Overall, our results demonstrate that the genetic control of CCTG repeat contractions is notably distinct among disease-causing microsatellite repeat sequences.
Collapse
Affiliation(s)
- David Papp
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078
- Department of Biology, Tufts University, Medford, MA 02155
| | - Luis A Hernandez
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078
- Department of Biology, Tufts University, Medford, MA 02155
| | - Theresa A Mai
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078
- Department of Biology, Tufts University, Medford, MA 02155
| | - Terrance J Haanen
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078
- Department of Biology, Tufts University, Medford, MA 02155
| | - Meghan A O'Donnell
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078
- Department of Biology, Tufts University, Medford, MA 02155
| | - Ariel T Duran
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078
- Department of Biology, Tufts University, Medford, MA 02155
| | - Sophia M Hernandez
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078
- Department of Biology, Tufts University, Medford, MA 02155
| | - Jenni E Narvanto
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078
- Department of Biology, Tufts University, Medford, MA 02155
| | - Berenice Arguello
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078
- Department of Biology, Tufts University, Medford, MA 02155
| | - Marvin O Onwukwe
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078
- Department of Biology, Tufts University, Medford, MA 02155
| | - Kara Kolar
- Department of Biology, Tufts University, Medford, MA 02155
| | | | - Jane C Kim
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078
| |
Collapse
|
15
|
Carnie CJ, Armstrong L, Sebesta M, Ariza A, Wang X, Graham E, Zhu K, Ahel D. ERCC6L2 mitigates replication stress and promotes centromere stability. Cell Rep 2023; 42:112329. [PMID: 37014751 DOI: 10.1016/j.celrep.2023.112329] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 01/26/2023] [Accepted: 03/20/2023] [Indexed: 04/05/2023] Open
Abstract
Structurally complex genomic regions, such as centromeres, are inherently difficult to duplicate. The mechanism behind centromere inheritance is not well understood, and one of the key questions relates to the reassembly of centromeric chromatin following DNA replication. Here, we define ERCC6L2 as a key regulator of this process. ERCC6L2 accumulates at centromeres and promotes deposition of core centromeric factors. Interestingly, ERCC6L2-/- cells show unrestrained replication of centromeric DNA, likely caused by the erosion of centromeric chromatin. Beyond centromeres, ERCC6L2 facilitates replication at genomic repeats and non-canonical DNA structures. Notably, ERCC6L2 interacts with the DNA-clamp PCNA through an atypical peptide, presented here in a co-crystal structure. Finally, ERCC6L2 also restricts DNA end resection, acting independently of the 53BP1-REV7-Shieldin complex. We propose a mechanistic model, which reconciles seemingly distinct functions of ERCC6L2 in DNA repair and DNA replication. These findings provide a molecular context for studies linking ERCC6L2 to human disease.
Collapse
Affiliation(s)
| | - Lucy Armstrong
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Marek Sebesta
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Antonio Ariza
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Xiaomeng Wang
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Emily Graham
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Kang Zhu
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Dragana Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK.
| |
Collapse
|
16
|
Revisiting mutagenesis at non-B DNA motifs in the human genome. Nat Struct Mol Biol 2023; 30:417-424. [PMID: 36914796 DOI: 10.1038/s41594-023-00936-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 02/03/2023] [Indexed: 03/16/2023]
Abstract
Non-B DNA structures formed by repetitive sequence motifs are known instigators of mutagenesis in experimental systems. Analyzing this phenomenon computationally in the human genome requires careful disentangling of intrinsic confounding factors, including overlapping and interrupted motifs and recurrent sequencing errors. Here, we show that accounting for these factors eliminates all signals of repeat-induced mutagenesis that extend beyond the motif boundary, and eliminates or dramatically shrinks the magnitude of mutagenesis within some motifs, contradicting previous reports. Mutagenesis not attributable to artifacts revealed several biological mechanisms. Polymerase slippage generates frequent indels within every variety of short tandem repeat motif, implicating slipped-strand structures. Interruption-correcting single nucleotide variants within short tandem repeats may originate from error-prone polymerases. Secondary-structure formation promotes single nucleotide variants within palindromic repeats and duplications within direct repeats. G-quadruplex motifs cause recurrent sequencing errors, whereas mutagenesis at Z-DNAs is conspicuously absent.
Collapse
|
17
|
Rider SD, Damewood FJ, Gadgil RY, Hitch DC, Alhawach V, Shrestha R, Shanahan M, Zavada N, Leffak M. Suppressors of Break-Induced Replication in Human Cells. Genes (Basel) 2023; 14:genes14020398. [PMID: 36833325 PMCID: PMC9956954 DOI: 10.3390/genes14020398] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/23/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Short tandem DNA repeats are drivers of genome instability. To identify suppressors of break-induced mutagenesis human cells, unbiased genetic screens were conducted using a lentiviral shRNA library. The recipient cells possessed fragile non-B DNA that could induce DNA double-strand breaks (DSBs), integrated at an ectopic chromosomal site adjacent to a thymidine kinase marker gene. Mutagenesis of the thymidine kinase gene rendered cells resistant to the nucleoside analog ganciclovir (GCV). The screen identified genes that have established roles in DNA replication and repair, chromatin modification, responses to ionizing radiation, and genes encoding proteins enriched at replication forks. Novel loci implicated in BIR included olfactory receptors, the G0S2 oncogene/tumor suppressor axis, the EIF3H-METTL3 translational regulator, and the SUDS3 subunit of the Sin3A corepressor. Consistent with a role in suppressing BIR, siRNA knockdown of selected candidates increased the frequency of the GCVr phenotype and increased DNA rearrangements near the ectopic non-B DNA. Inverse PCR and DNA sequence analyses showed that hits identified in the screen increased genome instability. Further analysis quantitated repeat-induced hypermutagenesis at the ectopic site and showed that knockdown of a primary hit, COPS2, induced mutagenic hotspots, remodeled the replication fork, and increased nonallelic chromosome template switches.
Collapse
|
18
|
Schoelmerich MC, Sachdeva R, West-Roberts J, Waldburger L, Banfield JF. Tandem repeats in giant archaeal Borg elements undergo rapid evolution and create new intrinsically disordered regions in proteins. PLoS Biol 2023; 21:e3001980. [PMID: 36701369 PMCID: PMC9879509 DOI: 10.1371/journal.pbio.3001980] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 12/23/2022] [Indexed: 01/27/2023] Open
Abstract
Borgs are huge, linear extrachromosomal elements associated with anaerobic methane-oxidizing archaea. Striking features of Borg genomes are pervasive tandem direct repeat (TR) regions. Here, we present six new Borg genomes and investigate the characteristics of TRs in all ten complete Borg genomes. We find that TR regions are rapidly evolving, recently formed, arise independently, and are virtually absent in host Methanoperedens genomes. Flanking partial repeats and A-enriched character constrain the TR formation mechanism. TRs can be in intergenic regions, where they might serve as regulatory RNAs, or in open reading frames (ORFs). TRs in ORFs are under very strong selective pressure, leading to perfect amino acid TRs (aaTRs) that are commonly intrinsically disordered regions. Proteins with aaTRs are often extracellular or membrane proteins, and functionally similar or homologous proteins often have aaTRs composed of the same amino acids. We propose that Borg aaTR-proteins functionally diversify Methanoperedens and all TRs are crucial for specific Borg-host associations and possibly cospeciation.
Collapse
Affiliation(s)
| | - Rohan Sachdeva
- Innovative Genomics Institute, University of California, Berkeley, California, United States of America
- Earth and Planetary Science, University of California, Berkeley, California, United States of America
| | - Jacob West-Roberts
- Earth and Planetary Science, University of California, Berkeley, California, United States of America
| | - Lucas Waldburger
- Bioengineering, University of California, Berkeley, California, United States of America
| | - Jillian F. Banfield
- Innovative Genomics Institute, University of California, Berkeley, California, United States of America
- Earth and Planetary Science, University of California, Berkeley, California, United States of America
- Environmental Science, Policy and Management, University of California, Berkeley, California, United States of America
- Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| |
Collapse
|
19
|
Liu Y, Wan L, Ngai CK, Wang Y, Lam SL, Guo P. Structures and conformational dynamics of DNA minidumbbells in pyrimidine-rich repeats associated with neurodegenerative diseases. Comput Struct Biotechnol J 2023; 21:1584-1592. [PMID: 36874156 PMCID: PMC9975016 DOI: 10.1016/j.csbj.2023.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/05/2023] [Accepted: 02/05/2023] [Indexed: 02/10/2023] Open
Abstract
Expansions of short tandem repeats (STRs) are associated with approximately 50 human neurodegenerative diseases. These pathogenic STRs are prone to form non-B DNA structure, which has been considered as one of the causative factors for repeat expansions. Minidumbbell (MDB) is a relatively new type of non-B DNA structure formed by pyrimidine-rich STRs. An MDB is composed of two tetraloops or pentaloops, exhibiting a highly compact conformation with extensive loop-loop interactions. The MDB structures have been found to form in CCTG tetranucleotide repeats associated with myotonic dystrophy type 2, ATTCT pentanucleotide repeats associated with spinocerebellar ataxia type 10, and the recently discovered ATTTT/ATTTC repeats associated with spinocerebellar ataxia type 37 and familial adult myoclonic epilepsy. In this review, we first introduce the structures and conformational dynamics of MDBs with a focus on the high-resolution structural information determined by nuclear magnetic resonance spectroscopy. Then we discuss the effects of sequence context, chemical environment, and nucleobase modification on the structure and thermostability of MDBs. Finally, we provide perspectives on further explorations of sequence criteria and biological functions of MDBs.
Collapse
Affiliation(s)
- Yuan Liu
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Liqi Wan
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Cheuk Kit Ngai
- Department of Chemistry, The Chinese University of Hong Kong, Shatin N.T., Hong Kong, China
| | - Yang Wang
- Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC) Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Sik Lok Lam
- Department of Chemistry, The Chinese University of Hong Kong, Shatin N.T., Hong Kong, China
| | - Pei Guo
- Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC) Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
20
|
Recurrent repeat expansions in human cancer genomes. Nature 2023; 613:96-102. [PMID: 36517591 DOI: 10.1038/s41586-022-05515-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/02/2022] [Indexed: 12/16/2022]
Abstract
Expansion of a single repetitive DNA sequence, termed a tandem repeat (TR), is known to cause more than 50 diseases1,2. However, repeat expansions are often not explored beyond neurological and neurodegenerative disorders. In some cancers, mutations accumulate in short tracts of TRs, a phenomenon termed microsatellite instability; however, larger repeat expansions have not been systematically analysed in cancer3-8. Here we identified TR expansions in 2,622 cancer genomes spanning 29 cancer types. In seven cancer types, we found 160 recurrent repeat expansions (rREs), most of which (155/160) were subtype specific. We found that rREs were non-uniformly distributed in the genome with enrichment near candidate cis-regulatory elements, suggesting a potential role in gene regulation. One rRE, a GAAA-repeat expansion, located near a regulatory element in the first intron of UGT2B7 was detected in 34% of renal cell carcinoma samples and was validated by long-read DNA sequencing. Moreover, in preliminary experiments, treating cells that harbour this rRE with a GAAA-targeting molecule led to a dose-dependent decrease in cell proliferation. Overall, our results suggest that rREs may be an important but unexplored source of genetic variation in human cancer, and we provide a comprehensive catalogue for further study.
Collapse
|
21
|
Petrzilek J, Pasulka J, Malik R, Horvat F, Kataruka S, Fulka H, Svoboda P. De novo emergence, existence, and demise of a protein-coding gene in murids. BMC Biol 2022; 20:272. [PMID: 36482406 PMCID: PMC9733328 DOI: 10.1186/s12915-022-01470-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/15/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Genes, principal units of genetic information, vary in complexity and evolutionary history. Less-complex genes (e.g., long non-coding RNA (lncRNA) expressing genes) readily emerge de novo from non-genic sequences and have high evolutionary turnover. Genesis of a gene may be facilitated by adoption of functional genic sequences from retrotransposon insertions. However, protein-coding sequences in extant genomes rarely lack any connection to an ancestral protein-coding sequence. RESULTS We describe remarkable evolution of the murine gene D6Ertd527e and its orthologs in the rodent Muroidea superfamily. The D6Ertd527e emerged in a common ancestor of mice and hamsters most likely as a lncRNA-expressing gene. A major contributing factor was a long terminal repeat (LTR) retrotransposon insertion carrying an oocyte-specific promoter and a 5' terminal exon of the gene. The gene survived as an oocyte-specific lncRNA in several extant rodents while in some others the gene or its expression were lost. In the ancestral lineage of Mus musculus, the gene acquired protein-coding capacity where the bulk of the coding sequence formed through CAG (AGC) trinucleotide repeat expansion and duplications. These events generated a cytoplasmic serine-rich maternal protein. Knock-out of D6Ertd527e in mice has a small but detectable effect on fertility and the maternal transcriptome. CONCLUSIONS While this evolving gene is not showing a clear function in laboratory mice, its documented evolutionary history in Muroidea during the last ~ 40 million years provides a textbook example of how a several common mutation events can support de novo gene formation, evolution of protein-coding capacity, as well as gene's demise.
Collapse
Affiliation(s)
- Jan Petrzilek
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic
- Present address: Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Josef Pasulka
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic
| | - Radek Malik
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic
| | - Filip Horvat
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic
- Bioinformatics Group, Division of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000, Zagreb, Croatia
| | - Shubhangini Kataruka
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic
- Present address: Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Helena Fulka
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic
- Current address: Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic
| | - Petr Svoboda
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic.
| |
Collapse
|
22
|
Yousuf A, Ahmed N, Qurashi A. Non-canonical DNA/RNA structures associated with the pathogenesis of Fragile X-associated tremor/ataxia syndrome and Fragile X syndrome. Front Genet 2022; 13:866021. [PMID: 36110216 PMCID: PMC9468596 DOI: 10.3389/fgene.2022.866021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) and fragile X syndrome (FXS) are primary examples of fragile X-related disorders (FXDs) caused by abnormal expansion of CGG repeats above a certain threshold in the 5'-untranslated region of the fragile X mental retardation (FMR1) gene. Both diseases have distinct clinical manifestations and molecular pathogenesis. FXTAS is a late-adult-onset neurodegenerative disorder caused by a premutation (PM) allele (CGG expansion of 55-200 repeats), resulting in FMR1 gene hyperexpression. On the other hand, FXS is a neurodevelopmental disorder that results from a full mutation (FM) allele (CGG expansions of ≥200 repeats) leading to heterochromatization and transcriptional silencing of the FMR1 gene. The main challenge is to determine how CGG repeat expansion affects the fundamentally distinct nature of FMR1 expression in FM and PM ranges. Abnormal CGG repeat expansions form a variety of non-canonical DNA and RNA structures that can disrupt various cellular processes and cause distinct effects in PM and FM alleles. Here, we review these structures and how they are related to underlying mutations and disease pathology in FXS and FXTAS. Finally, as new CGG expansions within the genome have been identified, it will be interesting to determine their implications in disease pathology and treatment.
Collapse
Affiliation(s)
| | | | - Abrar Qurashi
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
| |
Collapse
|
23
|
van Kruistum H, Nijland R, Reznick DN, Groenen MAM, Megens HJ, Pollux BJA. Parallel Genomic Changes Drive Repeated Evolution of Placentas in Live-Bearing Fish. Mol Biol Evol 2021; 38:2627-2638. [PMID: 33620468 PMCID: PMC8136483 DOI: 10.1093/molbev/msab057] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The evolutionary origin of complex organs challenges empirical study because most organs evolved hundreds of millions of years ago. The placenta of live-bearing fish in the family Poeciliidae represents a unique opportunity to study the evolutionary origin of complex organs, because in this family a placenta evolved at least nine times independently. It is currently unknown whether this repeated evolution is accompanied by similar, repeated, genomic changes in placental species. Here, we compare whole genomes of 26 poeciliid species representing six out of nine independent origins of placentation. Evolutionary rate analysis revealed that the evolution of the placenta coincides with convergent shifts in the evolutionary rate of 78 protein-coding genes, mainly observed in transporter- and vesicle-located genes. Furthermore, differences in sequence conservation showed that placental evolution coincided with similar changes in 76 noncoding regulatory elements, occurring primarily around genes that regulate development. The unexpected high occurrence of GATA simple repeats in the regulatory elements suggests an important function for GATA repeats in developmental gene regulation. The distinction in molecular evolution observed, with protein-coding parallel changes more often found in metabolic and structural pathways, compared with regulatory change more frequently found in developmental pathways, offers a compelling model for complex trait evolution in general: changing the regulation of otherwise highly conserved developmental genes may allow for the evolution of complex traits.
Collapse
Affiliation(s)
- Henri van Kruistum
- Animal Breeding and Genomics Group, Wageningen University, Wageningen, The Netherlands.,Experimental Zoology Group, Wageningen University, Wageningen, The Netherlands
| | - Reindert Nijland
- Marine Animal Ecology Group, Wageningen University, Wageningen, The Netherlands
| | - David N Reznick
- Department of Biology, University of California, Riverside, CA, USA
| | - Martien A M Groenen
- Animal Breeding and Genomics Group, Wageningen University, Wageningen, The Netherlands
| | - Hendrik-Jan Megens
- Animal Breeding and Genomics Group, Wageningen University, Wageningen, The Netherlands.,Aquaculture and Fisheries Group, Wageningen University, Wageningen, The Netherlands
| | - Bart J A Pollux
- Experimental Zoology Group, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
24
|
Replication initiation: Implications in genome integrity. DNA Repair (Amst) 2021; 103:103131. [PMID: 33992866 DOI: 10.1016/j.dnarep.2021.103131] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 02/01/2023]
Abstract
In every cell cycle, billions of nucleotides need to be duplicated within hours, with extraordinary precision and accuracy. The molecular mechanism by which cells regulate the replication event is very complicated, and the entire process begins way before the onset of S phase. During the G1 phase of the cell cycle, cells prepare by assembling essential replication factors to establish the pre-replicative complex at origins, sites that dictate where replication would initiate during S phase. During S phase, the replication process is tightly coupled with the DNA repair system to ensure the fidelity of replication. Defects in replication and any error must be recognized by DNA damage response and checkpoint signaling pathways in order to halt the cell cycle before cells are allowed to divide. The coordination of these processes throughout the cell cycle is therefore critical to achieve genomic integrity and prevent diseases. In this review, we focus on the current understanding of how the replication initiation events are regulated to achieve genome stability.
Collapse
|
25
|
Nayak S, Calvo JA, Cantor SB. Targeting translesion synthesis (TLS) to expose replication gaps, a unique cancer vulnerability. Expert Opin Ther Targets 2021; 25:27-36. [PMID: 33416413 PMCID: PMC7837368 DOI: 10.1080/14728222.2021.1864321] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/11/2020] [Indexed: 02/09/2023]
Abstract
Introduction: Translesion synthesis (TLS) is a DNA damage tolerance (DDT) mechanism that employs error-prone polymerases to bypass replication blocking DNA lesions, contributing to a gain in mutagenesis and chemo-resistance. However, recent findings illustrate an emerging role for TLS in replication gap suppression (RGS), distinct from its role in post-replication gap filling. Here, TLS protects cells from replication stress (RS)-induced toxic single-stranded DNA (ssDNA) gaps that accumulate in the wake of active replication. Intriguingly, TLS-mediated RGS is specifically observed in several cancer cell lines and contributes to their survival. Thus, targeting TLS has the potential to uniquely eradicate tumors without harming non-cancer tissues. Areas Covered: This review provides an innovative perspective on the role of TLS beyond its canonical function of lesion bypass or post-replicative gap filling. We provide a comprehensive analysis that underscores the emerging role of TLS as a cancer adaptation necessary to overcome the replication stress response (RSR), an anti-cancer barrier. Expert Opinion: TLS RGS is critical for tumorigenesis and is a new hallmark of cancer. Although the exact mechanism and extent of TLS dependency in cancer is still emerging, TLS inhibitors have shown promise as an anti-cancer therapy in selectively targeting this unique cancer vulnerability.
Collapse
Affiliation(s)
- Sumeet Nayak
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School , Worcester, MA USA
| | - Jennifer A Calvo
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School , Worcester, MA USA
| | - Sharon B Cantor
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School , Worcester, MA USA
| |
Collapse
|
26
|
Zhang J, Fakharzadeh A, Pan F, Roland C, Sagui C. Atypical structures of GAA/TTC trinucleotide repeats underlying Friedreich's ataxia: DNA triplexes and RNA/DNA hybrids. Nucleic Acids Res 2020; 48:9899-9917. [PMID: 32821947 PMCID: PMC7515735 DOI: 10.1093/nar/gkaa665] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/27/2020] [Accepted: 08/04/2020] [Indexed: 11/13/2022] Open
Abstract
Expansion of the GAA/TTC repeats in the first intron of the FXN gene causes Friedreich's ataxia. Non-canonical structures are linked to this expansion. DNA triplexes and R-loops are believed to arrest transcription, which results in frataxin deficiency and eventual neurodegeneration. We present a systematic in silico characterization of the possible DNA triplexes that could be assembled with GAA and TTC strands; the two hybrid duplexes [r(GAA):d(TTC) and d(GAA):r(UUC)] in an R-loop; and three hybrid triplexes that could form during bidirectional transcription when the non-template DNA strand bonds with the hybrid duplex (collapsed R-loops, where the two DNA strands remain antiparallel). For both Y·R:Y and R·R:Y DNA triplexes, the parallel third strand orientation is more stable; both parallel and antiparallel protonated d(GA+A)·d(GAA):d(TTC) triplexes are stable. Apparent contradictions in the literature about the R·R:Y triplex stability is probably due to lack of molecular resolution, since shifting the third strand by a single nucleotide alters the stability ranking. In the collapsed R-loops, antiparallel d(TTC+)·d(GAA):r(UUC) is unstable, while parallel d(GAA)·r(GAA):d(TTC) and d(GA+A)·r(GAA):d(TTC) are stable. In addition to providing new structural perspectives for specific therapeutic aims, our results contribute to a systematic structural basis for the emerging field of quantitative R-loop biology.
Collapse
Affiliation(s)
- Jiahui Zhang
- Department of Physics, North Carolina State University, Raleigh, NC 27695-8202, USA
| | - Ashkan Fakharzadeh
- Department of Physics, North Carolina State University, Raleigh, NC 27695-8202, USA
| | - Feng Pan
- Department of Physics, North Carolina State University, Raleigh, NC 27695-8202, USA.,Department of Statistics, Florida State University, Tallahassee, FL 32306, USA
| | - Christopher Roland
- Department of Physics, North Carolina State University, Raleigh, NC 27695-8202, USA
| | - Celeste Sagui
- Department of Physics, North Carolina State University, Raleigh, NC 27695-8202, USA
| |
Collapse
|
27
|
Gadgil RY, Romer EJ, Goodman CC, Rider SD, Damewood FJ, Barthelemy JR, Shin-Ya K, Hanenberg H, Leffak M. Replication stress at microsatellites causes DNA double-strand breaks and break-induced replication. J Biol Chem 2020; 295:15378-15397. [PMID: 32873711 DOI: 10.1074/jbc.ra120.013495] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 08/23/2020] [Indexed: 12/12/2022] Open
Abstract
Short tandemly repeated DNA sequences, termed microsatellites, are abundant in the human genome. These microsatellites exhibit length instability and susceptibility to DNA double-strand breaks (DSBs) due to their tendency to form stable non-B DNA structures. Replication-dependent microsatellite DSBs are linked to genome instability signatures in human developmental diseases and cancers. To probe the causes and consequences of microsatellite DSBs, we designed a dual-fluorescence reporter system to detect DSBs at expanded (CTG/CAG) n and polypurine/polypyrimidine (Pu/Py) mirror repeat structures alongside the c-myc replication origin integrated at a single ectopic chromosomal site. Restriction cleavage near the (CTG/CAG)100 microsatellite leads to homology-directed single-strand annealing between flanking AluY elements and reporter gene deletion that can be detected by flow cytometry. However, in the absence of restriction cleavage, endogenous and exogenous replication stressors induce DSBs at the (CTG/CAG)100 and Pu/Py microsatellites. DSBs map to a narrow region at the downstream edge of the (CTG)100 lagging-strand template. (CTG/CAG) n chromosome fragility is repeat length-dependent, whereas instability at the (Pu/Py) microsatellites depends on replication polarity. Strikingly, restriction-generated DSBs and replication-dependent DSBs are not repaired by the same mechanism. Knockdown of DNA damage response proteins increases (Rad18, polymerase (Pol) η, Pol κ) or decreases (Mus81) the sensitivity of the (CTG/CAG)100 microsatellites to replication stress. Replication stress and DSBs at the ectopic (CTG/CAG)100 microsatellite lead to break-induced replication and high-frequency mutagenesis at a flanking thymidine kinase gene. Our results show that non-B structure-prone microsatellites are susceptible to replication-dependent DSBs that cause genome instability.
Collapse
Affiliation(s)
- Rujuta Yashodhan Gadgil
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, USA
| | - Eric J Romer
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, USA
| | - Caitlin C Goodman
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, USA
| | - S Dean Rider
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, USA
| | - French J Damewood
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, USA
| | - Joanna R Barthelemy
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, USA
| | - Kazuo Shin-Ya
- Biomedical Information Research Center, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| | - Helmut Hanenberg
- Department of Otorhinolaryngology and Head/Neck Surgery, Heinrich Heine University, Düsseldorf, Germany; Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Michael Leffak
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, USA.
| |
Collapse
|
28
|
Nair RR, Tibbit C, Thompson D, McLeod R, Nakhuda A, Simon MM, Baloh RH, Fisher EMC, Isaacs AM, Cunningham TJ. Sizing, stabilising, and cloning repeat-expansions for gene targeting constructs. Methods 2020; 191:15-22. [PMID: 32721467 PMCID: PMC8215685 DOI: 10.1016/j.ymeth.2020.07.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/15/2020] [Accepted: 07/16/2020] [Indexed: 11/29/2022] Open
Abstract
Large GGGGCC repeat expansions within BAC vectors are highly unstable. CRISPR-Cas9 screening of BAC vector clones to determine repeat length. CRISPR-Cas9 cloning of GGGGCC repeat expansion regions into the linear pJazz vector. pJazz dramatically stabilizes GGGGCC repeat expansions over 4 kb in length.
Aberrant microsatellite repeat-expansions at specific loci within the human genome cause several distinct, heritable, and predominantly neurological, disorders. Creating models for these diseases poses a challenge, due to the instability of such repeats in bacterial vectors, especially with large repeat expansions. Designing constructs for more precise genome engineering projects, such as engineering knock-in mice, proves a greater challenge still, since these unstable repeats require numerous cloning steps in order to introduce homology arms or selection cassettes. Here, we report our efforts to clone a large hexanucleotide repeat in the C9orf72 gene, originating from within a BAC construct, derived from a C9orf72-ALS patient. We provide detailed methods for efficient repeat sizing and growth conditions in bacteria to facilitate repeat retention during growth and sub-culturing. We report that sub-cloning into a linear vector dramatically improves stability, but is dependent on the relative orientation of DNA replication through the repeat, consistent with previous studies. We envisage the findings presented here provide a relatively straightforward route to maintaining large-range microsatellite repeat-expansions, for efficient cloning into vectors.
Collapse
Affiliation(s)
- Remya R Nair
- Mammalian Genetics Unit, MRC Harwell Institute, Oxfordshire OX11 0RD, UK
| | - Charlotte Tibbit
- Mammalian Genetics Unit, MRC Harwell Institute, Oxfordshire OX11 0RD, UK
| | - David Thompson
- Mammalian Genetics Unit, MRC Harwell Institute, Oxfordshire OX11 0RD, UK
| | - Ross McLeod
- Mammalian Genetics Unit, MRC Harwell Institute, Oxfordshire OX11 0RD, UK
| | - Asif Nakhuda
- Mammalian Genetics Unit, MRC Harwell Institute, Oxfordshire OX11 0RD, UK
| | - Michelle M Simon
- Mammalian Genetics Unit, MRC Harwell Institute, Oxfordshire OX11 0RD, UK
| | - Robert H Baloh
- Board of Governors Regenerative Medicine Institute, Los Angeles, CA, USA; Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Elizabeth M C Fisher
- Department of Neuromuscular Diseases, UCL Institute of Neurology, London WC1N 3BG, UK
| | - Adrian M Isaacs
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London WC1N 3BG, UK; UK Dementia Research Institute at UCL, UCL Institute of Neurology, London WC1N 3BG, UK
| | | |
Collapse
|
29
|
Contractions of the C-Terminal Domain of Saccharomyces cerevisiae Rpb1p Are Mediated by Rad5p. G3-GENES GENOMES GENETICS 2020; 10:2543-2551. [PMID: 32467128 PMCID: PMC7341143 DOI: 10.1534/g3.120.401409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The C-terminal domain (CTD) is an essential domain of the largest subunit of RNA polymerase II, Rpb1p, and is composed of 26 tandem repeats of a seven-amino acid sequence, YSPTSPS. Despite being an essential domain within an essential gene, we have previously demonstrated that the CTD coding region is genetically unstable. Furthermore, yeast with a truncated or mutated CTD sequence are capable of promoting spontaneous genetic expansion or contraction of this coding region to improve fitness. We investigated the mechanism by which the CTD contracts using a tet-off reporter system for RPB1 to monitor genetic instability within the CTD coding region. We report that contractions require the post-replication repair factor Rad5p but, unlike expansions, not the homologous recombination factors Rad51p and Rad52p. Sequence analysis of contraction events reveals that deleted regions are flanked by microhomologies. We also find that G-quadruplex forming sequences predicted by the QGRS Mapper are enriched on the noncoding strand of the CTD compared to the body of RPB1. Formation of G-quadruplexes in the CTD coding region could block the replication fork, necessitating post-replication repair. We propose that contractions of the CTD result when microhomologies misalign during Rad5p-dependent template switching via fork reversal.
Collapse
|
30
|
Pećina-Šlaus N, Kafka A, Salamon I, Bukovac A. Mismatch Repair Pathway, Genome Stability and Cancer. Front Mol Biosci 2020; 7:122. [PMID: 32671096 PMCID: PMC7332687 DOI: 10.3389/fmolb.2020.00122] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/25/2020] [Indexed: 01/02/2023] Open
Abstract
The acquisition of genomic instability is one of the key characteristics of the cancer cell, and microsatellite instability (MSI) is an important segment of this phenomenon. This review aims to describe the mismatch DNA repair (MMR) system whose deficiency is responsible for MSI and discuss the cellular roles of MMR genes. Malfunctioning of the MMR repair pathway increases the mutational burden of specific cancers and is often involved in its etiology, sometimes as an influential bystander and sometimes as the main driving force. Detecting the presence of MSI has for a long time been an important part of clinical diagnostics, but has still not achieved its full potential. The MSI blueprints of specific tumors are useful for precize grading, evaluation of cancer chance and prognosis and to help us understand how and why therapy-resistant cancers arise. Furthermore, evidence indicates that MSI is an important predictive biomarker for the application of immunotherapy.
Collapse
Affiliation(s)
- Nives Pećina-Šlaus
- Laboratory of Neurooncology, Croatian Institute for Brain Research, School of Medicine University of Zagreb, Zagreb, Croatia.,Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Anja Kafka
- Laboratory of Neurooncology, Croatian Institute for Brain Research, School of Medicine University of Zagreb, Zagreb, Croatia.,Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Iva Salamon
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States
| | - Anja Bukovac
- Laboratory of Neurooncology, Croatian Institute for Brain Research, School of Medicine University of Zagreb, Zagreb, Croatia.,Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
31
|
Nelson PT, Fardo DW, Katsumata Y. The MUC6/AP2A2 Locus and Its Relevance to Alzheimer's Disease: A Review. J Neuropathol Exp Neurol 2020; 79:568-584. [PMID: 32357373 PMCID: PMC7241941 DOI: 10.1093/jnen/nlaa024] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/10/2020] [Indexed: 12/11/2022] Open
Abstract
We recently reported evidence of Alzheimer's disease (AD)-linked genetic variation within the mucin 6 (MUC6) gene on chromosome 11p, nearby the adaptor-related protein complex 2 subunit alpha 2 (AP2A2) gene. This locus has interesting features related to human genomics and clinical research. MUC6 gene variants have been reported to potentially influence viral-including herpesvirus-immunity and the gut microbiome. Within the MUC6 gene is a unique variable number of tandem repeat (VNTR) region. We discovered an association between MUC6 VNTR repeat expansion and AD pathologic severity, particularly tau proteinopathy. Here, we review the relevant literature. The AD-linked VNTR polymorphism may also influence AP2A2 gene expression. AP2A2 encodes a polypeptide component of the adaptor protein complex, AP-2, which is involved in clathrin-coated vesicle function and was previously implicated in AD pathogenesis. To provide background information, we describe some key knowledge gaps in AD genetics research. The "missing/hidden heritability problem" of AD is highlighted. Extensive portions of the human genome, including the MUC6 VNTR, have not been thoroughly evaluated due to limitations of existing high-throughput sequencing technology. We present and discuss additional data, along with cautionary considerations, relevant to the hypothesis that MUC6 repeat expansion influences AD pathogenesis.
Collapse
Affiliation(s)
- Peter T Nelson
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky
- Department of Pathology, University of Kentucky, Lexington, Kentucky
| | - David W Fardo
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky
- Department of Biostatistics, University of Kentucky, Lexington, Kentucky
| | - Yuriko Katsumata
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky
- Department of Biostatistics, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
32
|
Xu P, Pan F, Roland C, Sagui C, Weninger K. Dynamics of strand slippage in DNA hairpins formed by CAG repeats: roles of sequence parity and trinucleotide interrupts. Nucleic Acids Res 2020; 48:2232-2245. [PMID: 31974547 PMCID: PMC7049705 DOI: 10.1093/nar/gkaa036] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 12/11/2019] [Accepted: 01/15/2020] [Indexed: 01/08/2023] Open
Abstract
DNA trinucleotide repeats (TRs) can exhibit dynamic expansions by integer numbers of trinucleotides that lead to neurodegenerative disorders. Strand slipped hairpins during DNA replication, repair and/or recombination may contribute to TR expansion. Here, we combine single-molecule FRET experiments and molecular dynamics studies to elucidate slipping dynamics and conformations of (CAG)n TR hairpins. We directly resolve slipping by predominantly two CAG units. The slipping kinetics depends on the even/odd repeat parity. The populated states suggest greater stability for 5′-AGCA-3′ tetraloops, compared with alternative 5′-CAG-3′ triloops. To accommodate the tetraloop, even(odd)-numbered repeats have an even(odd) number of hanging bases in the hairpin stem. In particular, a paired-end tetraloop (no hanging TR) is stable in (CAG)n = even, but such situation cannot occur in (CAG)n = odd, where the hairpin is “frustrated’’ and slips back and forth between states with one TR hanging at the 5′ or 3′ end. Trinucleotide interrupts in the repeating CAG pattern associated with altered disease phenotypes select for specific conformers with favorable loop sequences. Molecular dynamics provide atomic-level insight into the loop configurations. Reducing strand slipping in TR hairpins by sequence interruptions at the loop suggests disease-associated variations impact expansion mechanisms at the level of slipped hairpins.
Collapse
Affiliation(s)
- Pengning Xu
- Department of Physics, North Carolina State University, Raleigh, NC 27695-8202, USA
| | - Feng Pan
- Department of Physics, North Carolina State University, Raleigh, NC 27695-8202, USA
| | - Christopher Roland
- Department of Physics, North Carolina State University, Raleigh, NC 27695-8202, USA
| | - Celeste Sagui
- Department of Physics, North Carolina State University, Raleigh, NC 27695-8202, USA
| | - Keith Weninger
- Department of Physics, North Carolina State University, Raleigh, NC 27695-8202, USA
| |
Collapse
|
33
|
Khristich AN, Mirkin SM. On the wrong DNA track: Molecular mechanisms of repeat-mediated genome instability. J Biol Chem 2020; 295:4134-4170. [PMID: 32060097 PMCID: PMC7105313 DOI: 10.1074/jbc.rev119.007678] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Expansions of simple tandem repeats are responsible for almost 50 human diseases, the majority of which are severe, degenerative, and not currently treatable or preventable. In this review, we first describe the molecular mechanisms of repeat-induced toxicity, which is the connecting link between repeat expansions and pathology. We then survey alternative DNA structures that are formed by expandable repeats and review the evidence that formation of these structures is at the core of repeat instability. Next, we describe the consequences of the presence of long structure-forming repeats at the molecular level: somatic and intergenerational instability, fragility, and repeat-induced mutagenesis. We discuss the reasons for gender bias in intergenerational repeat instability and the tissue specificity of somatic repeat instability. We also review the known pathways in which DNA replication, transcription, DNA repair, and chromatin state interact and thereby promote repeat instability. We then discuss possible reasons for the persistence of disease-causing DNA repeats in the genome. We describe evidence suggesting that these repeats are a payoff for the advantages of having abundant simple-sequence repeats for eukaryotic genome function and evolvability. Finally, we discuss two unresolved fundamental questions: (i) why does repeat behavior differ between model systems and human pedigrees, and (ii) can we use current knowledge on repeat instability mechanisms to cure repeat expansion diseases?
Collapse
Affiliation(s)
| | - Sergei M Mirkin
- Department of Biology, Tufts University, Medford, Massachusetts 02155.
| |
Collapse
|
34
|
Structural variation and its potential impact on genome instability: Novel discoveries in the EGFR landscape by long-read sequencing. PLoS One 2020; 15:e0226340. [PMID: 31940362 PMCID: PMC6961855 DOI: 10.1371/journal.pone.0226340] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 11/25/2019] [Indexed: 12/29/2022] Open
Abstract
Structural variation (SV) is typically defined as variation within the human genome that exceeds 50 base pairs (bp). SV may be copy number neutral or it may involve duplications, deletions, and complex rearrangements. Recent studies have shown SV to be associated with many human diseases. However, studies of SV have been challenging due to technological constraints. With the advent of third generation (long-read) sequencing technology, exploration of longer stretches of DNA not easily examined previously has been made possible. In the present study, we utilized third generation (long-read) sequencing techniques to examine SV in the EGFR landscape of four haplotypes derived from two human samples. We analyzed the EGFR gene and its landscape (+/- 500,000 base pairs) using this approach and were able to identify a region of non-coding DNA with over 90% similarity to the most common activating EGFR mutation in non-small cell lung cancer. Based on previously published Alu-element genome instability algorithms, we propose a molecular mechanism to explain how this non-coding region of DNA may be interacting with and impacting the stability of the EGFR gene and potentially generating this cancer-driver gene. By these techniques, we were also able to identify previously hidden structural variation in the four haplotypes and in the human reference genome (hg38). We applied previously published algorithms to compare the relative stabilities of these five different EGFR gene landscape haplotypes to estimate their relative potentials to generate the EGFR exon 19, 15 bp canonical deletion. To our knowledge, the present study is the first to use the differences in genomic architecture between targeted cancer-linked phased haplotypes to estimate their relative potentials to form a common cancer-linked driver mutation.
Collapse
|
35
|
Viterbo D, Richard GF. Quantifying Replication Fork Progression at CTG Repeats by 2D Gel Electrophoresis. Methods Mol Biol 2020; 2056:69-81. [PMID: 31586341 DOI: 10.1007/978-1-4939-9784-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Physical separation of branched DNA from linear molecules is based on the difference of mobility of linear versus branched DNA during two-dimensional agarose gel electrophoresis. Structured DNA migrates as slower species when compared to linear DNA of similar molecular weight. Metabolic processes such as S phase replication or double strand-break repair may generate branched DNA molecules. Trinucleotide repeats are naturally prone to form secondary structures that can modify their migration through an agarose gel matrix. These structures may also interfere in vivo with replication, by slowing down replication-fork progression, transiently stalling forks, possibly leading to secondary structure such as Holliday junctions or hemicatenanes. Alternatively, reversed replication forks may occur following fork stalling, disrupting replication dynamics and modifying DNA migration on agarose gel. So although two-dimensional agarose gel electrophoresis theoretically allows to resolve a mixture of structured DNA molecules and quantify them by radioactive hybridization, its practical application to trinucleotide repeats faces some serious technical challenges.
Collapse
Affiliation(s)
- David Viterbo
- Department Genomes & Genetics, Institut Pasteur, CNRS, UMR3525, Paris, France.
| | - Guy-Franck Richard
- Department Genomes & Genetics, Institut Pasteur, CNRS, UMR3525, Paris, France
| |
Collapse
|
36
|
Williams GM, Petrides AK, Balakrishnan L, Surtees JA. Tracking Expansions of Stable and Threshold Length Trinucleotide Repeat Tracts In Vivo and In Vitro Using Saccharomyces cerevisiae. Methods Mol Biol 2020; 2056:25-68. [PMID: 31586340 DOI: 10.1007/978-1-4939-9784-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Trinucleotide repeat (TNR) tracts are inherently unstable during DNA replication, leading to repeat expansions and/or contractions. Expanded tracts are the cause of over 40 neurodegenerative and neuromuscular diseases. In this chapter, we focus on the (CAG)n and (CTG)n repeat sequences that, when expanded, lead to Huntington's disease (HD) and myotonic dystrophy type 1 (DM1), respectively, as well as a number of other neurodegenerative diseases. TNR tracts in most individuals are relatively small and stable in terms of length. However, TNR tracts become increasingly prone to expansion as tract length increases, eventually leading to very long tracts that disrupt coding (e.g. HD) or noncoding (e.g., DM1) regions of the genome. It is important to understand the early stages in TNR expansions, that is, the transition from small, stable lengths to susceptible threshold lengths. We describe PCR-based in vivo assays, using the model system Saccharomyces cerevisiae, to determine and characterize the dynamic behavior of TNR tracts in the stable and threshold ranges. We also describe a simple in vitro system to assess tract dynamics during 5' single-stranded DNA (ssDNA) flap processing and to assess the role of different DNA metabolism proteins in these dynamics. These assays can ultimately be used to determine factors that influence the early stages of TNR tract expansion.
Collapse
Affiliation(s)
- Gregory M Williams
- Centre for Chromosome Biology, National University of Ireland, Galway, Galway, Ireland
- Galway Neuroscience Centre, National Universityof Ireland, Galway, Galway, Ireland
| | | | - Lata Balakrishnan
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Jennifer A Surtees
- Department of Biochemistry, JacobsSchool of Medicine and BiomedicalSciences, State University of New York atBuffalo, Buffalo, NY, USA.
- Genetics, Genomics and Bioinformatics Program, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
37
|
House NC, Polleys EJ, Quasem I, De la Rosa Mejia M, Joyce CE, Takacsi-Nagy O, Krebs JE, Fuchs SM, Freudenreich CH. Distinct roles for S. cerevisiae H2A copies in recombination and repeat stability, with a role for H2A.1 threonine 126. eLife 2019; 8:53362. [PMID: 31804179 PMCID: PMC6927750 DOI: 10.7554/elife.53362] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 11/26/2019] [Indexed: 01/14/2023] Open
Abstract
CAG/CTG trinuncleotide repeats are fragile sequences that when expanded form DNA secondary structures and cause human disease. We evaluated CAG/CTG repeat stability and repair outcomes in histone H2 mutants in S. cerevisiae. Although the two copies of H2A are nearly identical in amino acid sequence, CAG repeat stability depends on H2A copy 1 (H2A.1) but not copy 2 (H2A.2). H2A.1 promotes high-fidelity homologous recombination, sister chromatid recombination (SCR), and break-induced replication whereas H2A.2 does not share these functions. Both decreased SCR and the increase in CAG expansions were due to the unique Thr126 residue in H2A.1 and hta1Δ or hta1-T126A mutants were epistatic to deletion of the Polδ subunit Pol32, suggesting a role for H2A.1 in D-loop extension. We conclude that H2A.1 plays a greater repair-specific role compared to H2A.2 and may be a first step towards evolution of a repair-specific function for H2AX compared to H2A in mammalian cells.
Collapse
Affiliation(s)
- Nealia Cm House
- Department of Biology, Tufts University, Medford, United States
| | - Erica J Polleys
- Department of Biology, Tufts University, Medford, United States
| | | | | | - Cailin E Joyce
- Department of Biology, Tufts University, Medford, United States
| | | | - Jocelyn E Krebs
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, United States
| | - Stephen M Fuchs
- Department of Biology, Tufts University, Medford, United States
| | - Catherine H Freudenreich
- Department of Biology, Tufts University, Medford, United States.,Program in Genetics, Graduate School of Biomedical Sciences, Tufts University, Boston, United States
| |
Collapse
|
38
|
Asymmetric Processing of DNA Ends at a Double-Strand Break Leads to Unconstrained Dynamics and Ectopic Translocation. Cell Rep 2019; 24:2614-2628.e4. [PMID: 30184497 DOI: 10.1016/j.celrep.2018.07.102] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 06/07/2018] [Accepted: 07/27/2018] [Indexed: 01/10/2023] Open
Abstract
Multiple pathways regulate the repair of double-strand breaks (DSBs) to suppress potentially dangerous ectopic recombination. Both sequence and chromatin context are thought to influence pathway choice between non-homologous end-joining (NHEJ) and homology-driven recombination. To test the effect of repetitive sequences on break processing, we have inserted TG-rich repeats on one side of an inducible DSB at the budding yeast MAT locus on chromosome III. Five clustered Rap1 sites within a break-proximal TG repeat are sufficient to block Mre11-Rad50-Xrs2 recruitment, impair resection, and favor elongation by telomerase. The two sides of the break lose end-to-end tethering and show enhanced, uncoordinated movement. Only the TG-free side is resected and shifts to the nuclear periphery. In contrast to persistent DSBs without TG repeats that are repaired by imprecise NHEJ, nearly all survivors of repeat-proximal DSBs repair the break by a homology-driven, non-reciprocal translocation from ChrIII-R to ChrVII-L. This suppression of imprecise NHEJ at TG-repeat-flanked DSBs requires the Uls1 translocase activity.
Collapse
|
39
|
Gellon L, Kaushal S, Cebrián J, Lahiri M, Mirkin SM, Freudenreich CH. Mrc1 and Tof1 prevent fragility and instability at long CAG repeats by their fork stabilizing function. Nucleic Acids Res 2019; 47:794-805. [PMID: 30476303 PMCID: PMC6344861 DOI: 10.1093/nar/gky1195] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 11/13/2018] [Indexed: 12/14/2022] Open
Abstract
Fork stabilization at DNA impediments is key to maintaining replication fork integrity and preventing chromosome breaks. Mrc1 and Tof1 are two known stabilizers that travel with the replication fork. In addition to a structural role, Mrc1 has a DNA damage checkpoint function. Using a yeast model system, we analyzed the role of Mrc1 and Tof1 at expanded CAG repeats of medium and long lengths, which are known to stall replication forks and cause trinucleotide expansion diseases such as Huntington's disease and myotonic dystrophy. We demonstrate that the fork stabilizer but not the checkpoint activation function of Mrc1 is key for preventing DNA breakage and death of cells containing expanded CAG tracts. In contrast, both Mrc1 functions are important in preventing repeat length instability. Mrc1 has a general fork protector role that is evident at forks traversing both repetitive and non-repetitive DNA, though it becomes crucial at long CAG repeat lengths. In contrast, the role of Tof1 in preventing fork breakage is specific to long CAG tracts of 85 or more repeats. Our results indicate that long CAG repeats have a particular need for Tof1 and highlight the importance of fork stabilizers in maintaining fork integrity during replication of structure-forming repeats.
Collapse
Affiliation(s)
- Lionel Gellon
- Department of Biology, Tufts University, Suite 4700, 200 Boston Ave, Medford, MA 02155, USA
| | - Simran Kaushal
- Department of Biology, Tufts University, Suite 4700, 200 Boston Ave, Medford, MA 02155, USA
| | - Jorge Cebrián
- Department of Biology, Tufts University, Suite 4700, 200 Boston Ave, Medford, MA 02155, USA
| | - Mayurika Lahiri
- Department of Biology, Tufts University, Suite 4700, 200 Boston Ave, Medford, MA 02155, USA
| | - Sergei M Mirkin
- Department of Biology, Tufts University, Suite 4700, 200 Boston Ave, Medford, MA 02155, USA
| | | |
Collapse
|
40
|
Zaher MS, Rashid F, Song B, Joudeh LI, Sobhy MA, Tehseen M, Hingorani MM, Hamdan SM. Missed cleavage opportunities by FEN1 lead to Okazaki fragment maturation via the long-flap pathway. Nucleic Acids Res 2019; 46:2956-2974. [PMID: 29420814 PMCID: PMC5888579 DOI: 10.1093/nar/gky082] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 01/27/2018] [Indexed: 12/11/2022] Open
Abstract
RNA–DNA hybrid primers synthesized by low fidelity DNA polymerase α to initiate eukaryotic lagging strand synthesis must be removed efficiently during Okazaki fragment (OF) maturation to complete DNA replication. In this process, each OF primer is displaced and the resulting 5′-single-stranded flap is cleaved by structure-specific 5′-nucleases, mainly Flap Endonuclease 1 (FEN1), to generate a ligatable nick. At least two models have been proposed to describe primer removal, namely short- and long-flap pathways that involve FEN1 or FEN1 along with Replication Protein A (RPA) and Dna2 helicase/nuclease, respectively. We addressed the question of pathway choice by studying the kinetic mechanism of FEN1 action on short- and long-flap DNA substrates. Using single molecule FRET and rapid quench-flow bulk cleavage assays, we showed that unlike short-flap substrates, which are bound, bent and cleaved within the first encounter between FEN1 and DNA, long-flap substrates can escape cleavage even after DNA binding and bending. Notably, FEN1 can access both substrates in the presence of RPA, but bending and cleavage of long-flap DNA is specifically inhibited. We propose that FEN1 attempts to process both short and long flaps, but occasional missed cleavage of the latter allows RPA binding and triggers the long-flap OF maturation pathway.
Collapse
Affiliation(s)
- Manal S Zaher
- King Abdullah University of Science and Technology, Division of Biological and Environmental Science and Engineering, Thuwal 23955, Saudi Arabia
| | - Fahad Rashid
- King Abdullah University of Science and Technology, Division of Biological and Environmental Science and Engineering, Thuwal 23955, Saudi Arabia
| | - Bo Song
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06459, USA
| | - Luay I Joudeh
- King Abdullah University of Science and Technology, Division of Biological and Environmental Science and Engineering, Thuwal 23955, Saudi Arabia
| | - Mohamed A Sobhy
- King Abdullah University of Science and Technology, Division of Biological and Environmental Science and Engineering, Thuwal 23955, Saudi Arabia
| | - Muhammad Tehseen
- King Abdullah University of Science and Technology, Division of Biological and Environmental Science and Engineering, Thuwal 23955, Saudi Arabia
| | - Manju M Hingorani
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06459, USA
| | - Samir M Hamdan
- King Abdullah University of Science and Technology, Division of Biological and Environmental Science and Engineering, Thuwal 23955, Saudi Arabia
| |
Collapse
|
41
|
Pan F, Zhang Y, Man VH, Roland C, Sagui C. E-motif formed by extrahelical cytosine bases in DNA homoduplexes of trinucleotide and hexanucleotide repeats. Nucleic Acids Res 2019; 46:942-955. [PMID: 29190385 PMCID: PMC5778509 DOI: 10.1093/nar/gkx1186] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 11/13/2017] [Indexed: 12/01/2022] Open
Abstract
Atypical DNA secondary structures play an important role in expandable trinucleotide repeat (TR) and hexanucleotide repeat (HR) diseases. The cytosine mismatches in C-rich homoduplexes and hairpin stems are weakly bonded; experiments show that for certain sequences these may flip out of the helix core, forming an unusual structure termed an ‘e-motif’. We have performed molecular dynamics simulations of C-rich TR and HR DNA homoduplexes in order to characterize the conformations, stability and dynamics of formation of the e-motif, where the mismatched cytosines symmetrically flip out in the minor groove, pointing their base moieties towards the 5′-direction in each strand. TRs have two non-equivalent reading frames, (GCC)n and (CCG)n; while HRs have three: (CCCGGC)n, (CGGCCC)n, (CCCCGG)n. We define three types of pseudo basepair steps related to the mismatches and show that the e-motif is only stable in (GCC)n and (CCCGGC)n homoduplexes due to the favorable stacking of pseudo GpC steps (whose nature depends on whether TRs or HRs are involved) and the formation of hydrogen bonds between the mismatched cytosine at position i and the cytosine (TRs) or guanine (HRs) at position i − 2 along the same strand. We also characterize the extended e-motif, where all mismatched cytosines are extruded, their extra-helical stacking additionally stabilizing the homoduplexes.
Collapse
Affiliation(s)
- Feng Pan
- Department of Physics, North Carolina State University, Raleigh, NC 27695-8202, USA
| | - Yuan Zhang
- Department of Physics, North Carolina State University, Raleigh, NC 27695-8202, USA
| | - Viet Hoang Man
- Department of Physics, North Carolina State University, Raleigh, NC 27695-8202, USA
| | - Christopher Roland
- Department of Physics, North Carolina State University, Raleigh, NC 27695-8202, USA
| | - Celeste Sagui
- Department of Physics, North Carolina State University, Raleigh, NC 27695-8202, USA
| |
Collapse
|
42
|
Development of novel macrocyclic small molecules that target CTG trinucleotide repeats. Bioorg Med Chem 2019; 27:2978-2984. [PMID: 31113691 DOI: 10.1016/j.bmc.2019.05.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 05/07/2019] [Accepted: 05/13/2019] [Indexed: 11/23/2022]
Abstract
We describe the molecular design, synthesis, and investigation of a series of acridine-triaminotriazine macrocycles that selectively bind to CTG trinucleotide repeats in DNA with minimal nonspecific binding. The limited conformational flexibility enforces the stacking of the triaminotriazine and acridine units. Isothermal titration calorimetry studies and Job plot analyses revealed that the ligands bound to d(CTG) mismatched sites. The acridine and triaminotriazine units were shown to intramolecularly π-stack in aqueous solutions. Compared to a noncyclic analog, the macrocycles showed an almost 10-fold lower cytotoxicity in HeLa cells and up to 4-fold higher transcription inhibition of d(CTG·CAG)74.
Collapse
|
43
|
Fernandes JB, Wlodzimierz P, Henderson IR. Meiotic recombination within plant centromeres. CURRENT OPINION IN PLANT BIOLOGY 2019; 48:26-35. [PMID: 30954771 DOI: 10.1016/j.pbi.2019.02.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/21/2019] [Accepted: 02/28/2019] [Indexed: 05/18/2023]
Abstract
Meiosis is a conserved eukaryotic cell division that increases genetic diversity in sexual populations. During meiosis homologous chromosomes pair and undergo recombination that can result in reciprocal genetic exchange, termed crossover. The frequency of crossover is highly variable along chromosomes, with hot spots and cold spots. For example, the centromeres that contain the kinetochore, which attach chromosomes to the microtubular spindle, are crossover cold spots. Plant centromeres typically consist of large tandemly repeated arrays of satellite sequences and retrotransposons, a subset of which assemble CENH3-variant nucleosomes, which bind to kinetochore proteins. Although crossovers are suppressed in centromeres, there is abundant evidence for gene conversion and homologous recombination between repeats, which plays a role in satellite array change. We review the evidence for recombination within plant centromeres and the implications for satellite sequence evolution. We speculate on the genetic and epigenetic features of centromeres that may influence meiotic recombination in these regions. We also highlight unresolved questions relating to centromere function and sequence change and how the advent of new technologies promises to provide insights.
Collapse
Affiliation(s)
- Joiselle B Fernandes
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Piotr Wlodzimierz
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Ian R Henderson
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
44
|
Kaushal S, Freudenreich CH. The role of fork stalling and DNA structures in causing chromosome fragility. Genes Chromosomes Cancer 2019; 58:270-283. [PMID: 30536896 DOI: 10.1002/gcc.22721] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/13/2018] [Accepted: 12/03/2018] [Indexed: 12/19/2022] Open
Abstract
Alternative non-B form DNA structures, also called secondary structures, can form in certain DNA sequences under conditions that produce single-stranded DNA, such as during replication, transcription, and repair. Direct links between secondary structure formation, replication fork stalling, and genomic instability have been found for many repeated DNA sequences that cause disease when they expand. Common fragile sites (CFSs) are known to be AT-rich and break under replication stress, yet the molecular basis for their fragility is still being investigated. Over the past several years, new evidence has linked both the formation of secondary structures and transcription to fork stalling and fragility of CFSs. How these two events may synergize to cause fragility and the role of nuclease cleavage at secondary structures in rare and CFSs are discussed here. We also highlight evidence for a new hypothesis that secondary structures at CFSs not only initiate fragility but also inhibit healing, resulting in their characteristic appearance.
Collapse
Affiliation(s)
- Simran Kaushal
- Department of Biology, Tufts University, Medford, Massachusetts
| | - Catherine H Freudenreich
- Department of Biology, Tufts University, Medford, Massachusetts.,Program in Genetics, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts
| |
Collapse
|
45
|
Voutsinos V, Munk SHN, Oestergaard VH. Common Chromosomal Fragile Sites-Conserved Failure Stories. Genes (Basel) 2018; 9:E580. [PMID: 30486458 PMCID: PMC6315858 DOI: 10.3390/genes9120580] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/19/2018] [Accepted: 11/21/2018] [Indexed: 12/17/2022] Open
Abstract
In order to pass on an intact copy of the genome during cell division, complete and faithful DNA replication is crucial. Yet, certain areas of the genome are intrinsically challenging to replicate, which manifests as high local mutation propensity. Such regions include trinucleotide repeat sequences, common chromosomal fragile sites (CFSs), and early replicating fragile sites (ERFSs). Despite their genomic instability CFSs are conserved, suggesting that they have a biological function. To shed light on the potential function of CFSs, this review summarizes the similarities and differences of the regions that challenge DNA replication with main focus on CFSs. Moreover, we review the mechanisms that operate when CFSs fail to complete replication before entry into mitosis. Finally, evolutionary perspectives and potential physiological roles of CFSs are discussed with emphasis on their potential role in neurogenesis.
Collapse
Affiliation(s)
- Vasileios Voutsinos
- Department of Biology, University of Copenhagen, 2200 Copenhagen N, Denmark.
| | - Sebastian H N Munk
- Department of Biology, University of Copenhagen, 2200 Copenhagen N, Denmark.
| | - Vibe H Oestergaard
- Department of Biology, University of Copenhagen, 2200 Copenhagen N, Denmark.
| |
Collapse
|
46
|
MutLγ promotes repeat expansion in a Fragile X mouse model while EXO1 is protective. PLoS Genet 2018; 14:e1007719. [PMID: 30312299 PMCID: PMC6200270 DOI: 10.1371/journal.pgen.1007719] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 10/24/2018] [Accepted: 09/26/2018] [Indexed: 12/19/2022] Open
Abstract
The Fragile X-related disorders (FXDs) are Repeat Expansion Diseases resulting from an expansion of a CGG-repeat tract at the 5’ end of the FMR1 gene. The mechanism responsible for this unusual mutation is not fully understood. We have previously shown that mismatch repair (MMR) complexes, MSH2/MSH3 (MutSβ) and MSH2/MSH6 (MutSα), together with Polβ, a DNA polymerase important for base excision repair (BER), are important for expansions in a mouse model of these disorders. Here we show that MLH1/MLH3 (MutLγ), a protein complex that can act downstream of MutSβ in MMR, is also required for all germ line and somatic expansions. However, exonuclease I (EXO1), which acts downstream of MutL proteins in MMR, is not required. In fact, a null mutation in Exo1 results in more extensive germ line and somatic expansions than is seen in Exo1+/+ animals. Furthermore, mice homozygous for a point mutation (D173A) in Exo1 that eliminates its nuclease activity but retains its native conformation, shows a level of expansion that is intermediate between Exo1+/+and Exo1-/- animals. Thus, our data suggests that expansion of the FX repeat in this mouse model occurs via a MutLγ-dependent, EXO1-independent pathway, with EXO1 protecting against expansion both in a nuclease-dependent and a nuclease-independent manner. Our data thus have implications for the expansion mechanism and add to our understanding of the genetic factors that may be modifiers of expansion risk in humans. The Fragile X-related disorders arise from expansion of a tandem repeat or microsatellite consisting of CGG-repeat units. The expansion mutation is not well understood, but our previous data suggests that MutSα and MutSβ, mismatch repair (MMR) proteins that normally protect the genome against microsatellite instability, are actually responsible for these mutations in a knockin mouse model of these disorders. In this manuscript we describe the role in expansion of two proteins that act downstream of the MutS proteins in MMR, MutLγ and EXO1. Our data suggests that expansion occurs via a MutLγ-dependent, EXO1-independent pathway, with EXO1 playing both a nuclease-dependent and a nuclease-independent role in preventing expansions.
Collapse
|
47
|
Liao H, Ji F, Helleday T, Ying S. Mechanisms for stalled replication fork stabilization: new targets for synthetic lethality strategies in cancer treatments. EMBO Rep 2018; 19:embr.201846263. [PMID: 30108055 DOI: 10.15252/embr.201846263] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/06/2018] [Accepted: 07/20/2018] [Indexed: 01/24/2023] Open
Abstract
Timely and faithful duplication of the entire genome depends on completion of replication. Replication forks frequently encounter obstacles that may cause genotoxic fork stalling. Nevertheless, failure to complete replication rarely occurs under normal conditions, which is attributed to an intricate network of proteins that serves to stabilize, repair and restart stalled forks. Indeed, many of the components in this network are encoded by tumour suppressor genes, and their loss of function by mutation or deletion generates genomic instability, a hallmark of cancer. Paradoxically, the same fork-protective network also confers resistance of cancer cells to chemotherapeutic drugs that induce high-level replication stress. Here, we review the mechanisms and major pathways rescuing stalled replication forks, with a focus on fork stabilization preventing fork collapse. A coherent understanding of how cells protect their replication forks will not only provide insight into how cells maintain genome stability, but also unravel potential therapeutic targets for cancers refractory to conventional chemotherapies.
Collapse
Affiliation(s)
- Hongwei Liao
- Department of Pharmacology & Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Institute of Respiratory Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Fang Ji
- Department of Pharmacology & Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Institute of Respiratory Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Thomas Helleday
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden .,Sheffield Cancer Centre, Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Songmin Ying
- Department of Pharmacology & Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Institute of Respiratory Diseases, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
48
|
Mechanisms of genetic instability caused by (CGG) n repeats in an experimental mammalian system. Nat Struct Mol Biol 2018; 25:669-676. [PMID: 30061600 PMCID: PMC6082162 DOI: 10.1038/s41594-018-0094-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 06/19/2018] [Indexed: 12/17/2022]
Abstract
We describe a new experimental system to study genome instability caused by fragile X (CGG)n repeats in mammalian cells. It is based on a selectable cassette carrying the HyTK gene under the control of the FMR1 promoter with (CGG)n repeats in its 5′-UTR, which was integrated into the unique RL5 site in murine erythroid leukemia cells. Carrier-size (CGG)n repeats dramatically elevate the frequency of the reporter’s inactivation making cells ganciclovir-resistant. These resistant clones have a unique mutational signature: a change in the repeat length concurrent with mutagenesis in the reporter gene. Inactivation of genes implicated in break-induced replication including POLD3, POLD4, RAD52, RAD51 and SMARCAL1, reduced the frequency of ganciclovir-resistant clones to the baseline level that was observed in the absence of (CGG)n repeats. We propose that replication fork collapse at carrier-size (CGG)n repeats can trigger break-induced replication, which result in simultaneous repeat length changes and mutagenesis at a distance.
Collapse
|
49
|
Trinucleotide repeat instability during double-strand break repair: from mechanisms to gene therapy. Curr Genet 2018; 65:17-28. [DOI: 10.1007/s00294-018-0865-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/25/2018] [Accepted: 07/01/2018] [Indexed: 12/26/2022]
|
50
|
McGinty RJ, Mirkin SM. Cis- and Trans-Modifiers of Repeat Expansions: Blending Model Systems with Human Genetics. Trends Genet 2018; 34:448-465. [PMID: 29567336 PMCID: PMC5959756 DOI: 10.1016/j.tig.2018.02.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/15/2018] [Accepted: 02/19/2018] [Indexed: 12/30/2022]
Abstract
Over 30 hereditary diseases are caused by the expansion of microsatellite repeats. The length of the expandable repeat is the main hereditary determinant of these disorders. They are also affected by numerous genomic variants that are either nearby (cis) or physically separated from (trans) the repetitive locus, which we review here. These genetic variants have largely been elucidated in model systems using gene knockouts, while a few have been directly observed as single-nucleotide polymorphisms (SNPs) in patients. There is a notable disconnect between these two bodies of knowledge: knockouts poorly approximate the SNP-level variation in human populations that gives rise to medically relevant cis- and trans-modifiers, while the rarity of these diseases limits the statistical power of SNP-based analysis in humans. We propose that high-throughput SNP-based screening in model systems could become a useful approach to quickly identify and characterize modifiers of clinical relevance for patients.
Collapse
Affiliation(s)
- Ryan J McGinty
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Sergei M Mirkin
- Department of Biology, Tufts University, Medford, MA 02155, USA.
| |
Collapse
|