1
|
Menchaca A. Assisted Reproductive Technologies (ART) and genome editing to support a sustainable livestock. Anim Reprod 2023; 20:e20230074. [PMID: 37720722 PMCID: PMC10503885 DOI: 10.1590/1984-3143-ar2023-0074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/21/2023] [Indexed: 09/19/2023] Open
Abstract
This article provides an overview of assisted reproductive technologies (ART) and genome engineering to improve livestock production systems for the contribution of global sustainability. Most ruminant production systems are conducted on grassland conditions, as is the case of South American countries that are leaders in meat and milk production worldwide with a well-established grass-feed livestock. These systems have many strengths from an environmental perspective and consumer preferences but requires certain improvements to enhance resource efficiency. Reproductive performance is one of the main challenges particularly in cow-calf operations that usually are conducted under adverse conditions and thus ART can make a great contribution. Fixed-time artificial insemination is applied in South America in large scale programs as 20 to 30% of cows receive this technology every year in each country, with greater calving rate and significant herd genetic gain occurred in this region. Sexed semen has also been increasingly implemented, enhancing resource efficiency by a) obtaining desired female replacement and improving animal welfare by avoiding newborn male sacrifice in dairy industry, or b) alternatively producing male calves for beef industry. In vitro embryo production has been massively applied, with this region showing the greatest number of embryos produced worldwide leading to significant improvement in herd genetics and productivity. Although the contribution of these technologies is considerable, further improvements will be required for a significant livestock transformation and novel biotechnologies such as genome editing are already available. Through the CRISPR/Cas-based system it is possible to enhance food yield and quality, avoid animal welfare concerns, overcome animal health threats, and control pests and invasive species harming food production. In summary, a significant enhancement in livestock productivity and resource efficiency can be made through reproductive technologies and genome editing, improving at the same time profitability for farmers, and global food security and sustainability.
Collapse
Affiliation(s)
- Alejo Menchaca
- Plataforma de Salud Animal, Instituto Nacional de Investigación Agropecuaria, Montevideo, Uruguay
- Fundación Instituto de Reproducción Animal Uruguay, Montevideo, Uruguay
| |
Collapse
|
2
|
Cutter AD. Guerrilla eugenics: gene drives in heritable human genome editing. JOURNAL OF MEDICAL ETHICS 2023:jme-2023-109061. [PMID: 37407027 DOI: 10.1136/jme-2023-109061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/18/2023] [Indexed: 07/07/2023]
Abstract
CRISPR-Cas9 genome editing can and has altered human genomes, bringing bioethical debates about this capability to the forefront of philosophical and policy considerations. Here, I consider the underexplored implications of CRISPR-Cas9 gene drives for heritable human genome editing. Modification gene drives applied to heritable human genome editing would introduce a novel form of involuntary eugenic practice that I term guerrilla eugenics. Once introduced into a genome, stealth genetic editing by a gene drive genetic element would occur each subsequent generation irrespective of whether reproductive partners consent to it and irrespective of whether the genetic change confers any benefit. By overriding the ability to 'opt in' to genome editing, gene drives compromise the autonomy of carrier individuals and their reproductive partners to choose to use or avoid genome editing and impose additional burdens on those who hope to 'opt out' of further genome editing. High incidence of an initially rare gene drive in small human communities could occur within 200 years, with evolutionary fixation globally in a timeframe that is thousands of times sooner than achievable by non-drive germline editing. Following any introduction of heritable gene drives into human genomes, practices intended for surveillance or reversal also create fundamental ethical problems. Current policy guidelines do not comment explicitly on gene drives in humans. These considerations motivate an explicit moratorium as being warranted on gene drive development in heritable human genome editing.
Collapse
Affiliation(s)
- Asher D Cutter
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Macfarlane NB, Adams J, Bennett EL, Brooks TM, Delborne JA, Eggermont H, Endy D, Esvelt KM, Kolodziejczyk B, Kuiken T, Oliva MJ, Peña Moreno S, Slobodian L, Smith RB, Thizy D, Tompkins DM, Wei W, Redford KH. Direct and indirect impacts of synthetic biology on biodiversity conservation. iScience 2022; 25:105423. [PMID: 36388962 PMCID: PMC9641226 DOI: 10.1016/j.isci.2022.105423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The world's biodiversity is in crisis. Synthetic biology has the potential to transform biodiversity conservation, both directly and indirectly, in ways that are negative and positive. However, applying these biotechnology tools to environmental questions is fraught with uncertainty and could harm cultures, rights, livelihoods, and nature. Decisions about whether or not to use synthetic biology for conservation should be understood alongside the reality of ongoing biodiversity loss. In 2022, the 196 Parties to the United Nations Convention on Biological Diversity are negotiating the post-2020 Global Biodiversity Framework that will guide action by governments and other stakeholders for the next decade to conserve the worlds' biodiversity. To date, synthetic biologists, conservationists, and policy makers have operated in isolation. At this critical time, this review brings these diverse perspectives together and emerges out of the need for a balanced and inclusive examination of the potential application of these technologies to biodiversity conservation.
Collapse
Affiliation(s)
| | - Jonathan Adams
- Pangolin Words, Inc., 10301 Nolan Drive, Rockville, MD 20850, USA
| | | | - Thomas M. Brooks
- IUCN, 28 rue Mauverney, 1196 Gland, Switzerland
- World Agroforestry Center (ICRAF), University of the Philippines Los Baños, Laguna 4031, The Philippines
- Institute for Marine & Antarctic Studies, University of Tasmania, Hobart, TAS 7001, Australia
| | - Jason A. Delborne
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA
- Genetic Engineering and Society Center, North Carolina State University, Raleigh, NC 27695, USA
| | - Hilde Eggermont
- Belgian Biodiversity Platform, WTC III Simon Bolivarlaan 30 Bus 7, 1000 Brussels, Belgium
- Royal Belgian Institute of Natural Sciences, Vautierstraat 29, 1000 Brussels, Belgium
| | - Drew Endy
- Stanford University, 443 Via Ortega, Shriram Center RM 252, Stanford, CA 94305, USA
| | - Kevin M. Esvelt
- Massachusetts Institute of Technology, Media Lab, 77 Massachusetts Avenue, Cambridge, MA 02464, USA
| | | | - Todd Kuiken
- Genetic Engineering and Society Center, North Carolina State University, Raleigh, NC 27695, USA
| | - Maria Julia Oliva
- Union for Ethical BioTrade (UEBT), De Ruijterkade 6b, 1013 AA Amsterdam, the Netherlands
| | | | - Lydia Slobodian
- Georgetown University Law Center, 600 New Jersey Avenue NW, Washington, DC 20001, USA
| | - Risa B. Smith
- IUCN World Commission on Protected Areas, 19915 Porlier Pass, Galiano, BC V0N1P0, Canada
| | - Delphine Thizy
- Imperial College London, Exhibition Road, South Kensington, London SW7 2BX, UK
- Delphine Thizy Consulting Scomm, rue Alphonse Hottat 35, 1050 Ixelles, Belgium
| | | | - Wei Wei
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing, China
| | - Kent H. Redford
- Archipelago Consulting, Portland, ME 04112, USA
- Department of Environmental Studies, University of New England, Biddeford, ME 04005, USA
| |
Collapse
|
4
|
Birand A, Cassey P, Ross JV, Thomas PQ, Prowse TAA. Scalability of genetic biocontrols for eradicating invasive alien mammals. NEOBIOTA 2022. [DOI: 10.3897/neobiota.74.82394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
CRISPR-based gene drives offer novel solutions for controlling invasive alien species, which could ultimately extend eradication efforts to continental scales. Gene drives for suppressing invasive alien vertebrates are now under development. Using a landscape-scale individual-based model, we present the first estimates of times to eradication for long-lived alien mammals. We show that demography and life-history traits interact to determine the scalability of gene drives for vertebrate pest eradication. Notably, optimism around eradicating smaller-bodied pests (rodents and rabbits) with gene-drive technologies does not easily translate into eradication of larger-bodied alien species (cats and foxes).
Collapse
|
5
|
Metchanun N, Borgemeister C, Amzati G, von Braun J, Nikolov M, Selvaraj P, Gerardin J. Modeling impact and cost-effectiveness of driving-Y gene drives for malaria elimination in the Democratic Republic of the Congo. Evol Appl 2022; 15:132-148. [PMID: 35126652 PMCID: PMC8792473 DOI: 10.1111/eva.13331] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 11/15/2021] [Accepted: 11/29/2021] [Indexed: 12/17/2022] Open
Abstract
Malaria elimination will be challenging in countries that currently continue to bear high malaria burden. Sex-ratio-distorting gene drives, such as driving-Y, could play a role in an integrated elimination strategy if they can effectively suppress vector populations. Using a spatially explicit, agent-based model of malaria transmission in eight provinces spanning the range of transmission intensities across the Democratic Republic of the Congo, we predict the impact and cost-effectiveness of integrating driving-Y gene drive mosquitoes in malaria elimination strategies that include existing interventions such as insecticide-treated nets and case management of symptomatic malaria. Gene drive mosquitoes could eliminate malaria and were the most cost-effective intervention overall if the drive component was highly effective with at least 95% X-shredder efficiency at relatively low fertility cost, and associated cost of deployment below 7.17 $int per person per year. Suppression gene drive could be a cost-effective supplemental intervention for malaria elimination, but tight constraints on drive effectiveness and cost ceilings may limit its feasibility.
Collapse
Affiliation(s)
| | | | - Gaston Amzati
- Université Evangélique en AfriqueBukavuDemocratic Republic of the Congo
| | | | | | | | - Jaline Gerardin
- Institute for Disease ModelingBellevueWashingtonUSA
- Department of Preventive Medicine and Institute for Global HealthNorthwestern UniversityChicagoIllinoisUSA
| |
Collapse
|
6
|
St. Leger RJ. From the Lab to the Last Mile: Deploying Transgenic Approaches Against Mosquitoes. FRONTIERS IN TROPICAL DISEASES 2021. [DOI: 10.3389/fitd.2021.804066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Ingenious exploitation of transgenic approaches to produce malaria resistant or sterile mosquitoes, or hypervirulent mosquito pathogens, has produced many potential solutions to vector borne diseases. However, in spite of technological feasibility, it has not been determined how well these new methods will work, and how they should be tested and regulated. Some self-limiting transgenic fungal pathogens and mosquitoes are almost field ready, and may be easier to regulate than self-sustaining strategies. However, they require repeat sales and so must show business viability; low-cost mass production is just one of a number of technical constraints that are sometimes treated as an afterthought in technology deployment. No transgenic self-sustaining approach to anopheline control has ever been deployed because of unresolved ethical, social and regulatory issues. These overlapping issues include: 1) the transparency challenge, which requires public discourse, particularly in Africa where releases are proposed, to determine what society is willing to risk given the potential benefits; 2) the transboundary challenge, self-sustaining mosquitoes or pathogens are potentially capable of crossing national boundaries and irreversibly altering ecosystems, and 3) the risk assessment challenge. The polarized debate as to whether these technologies will ever be used to save lives is ongoing; they will founder without a political answer as to how do we interpret the precautionary principle, as exemplified in the Cartagena protocol, in the global context of technological changes.
Collapse
|
7
|
Palmer S, Dearden PK, Mercier OR, King-Hunt A, Lester PJ. Gene drive and RNAi technologies: a bio-cultural review of next-generation tools for pest wasp management in New Zealand. J R Soc N Z 2021; 52:508-525. [PMID: 39440191 PMCID: PMC11485957 DOI: 10.1080/03036758.2021.1985531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 09/22/2021] [Indexed: 10/20/2022]
Abstract
There is a global need for novel, next-generation technologies and techniques to manage pest species. We review work on potential step-changing technologies for large landscape (>1000 hectares) pest management of social Vespula wasps. We also review Māori perspectives on these controls to gauge social and cultural acceptability to research, test and use of novel controls. Approaches discussed are the use of gene silencing (RNAi) and gene drives (CRISPR-Cas 9) involving genetic modification, which has potential for pest control but vary in feasibility, cost, benefits and off-target risks. RNAi may be better suited for wasp control in high-value cropping systems due to scaling inefficiencies. Gene drives offer potential for large-scale control but would require legislative and wide social deliberation due to their status as genetic modification. Both RNAi and gene drives will require consultation with tangata whenua. Māori interest groups agreed that exotic wasps must be controlled and expressed aversion to non-targeted traditional control methods. We present a diversity of opinions in parallel with scientific research underscoring the need for continued dialogue with Māori. Novel biotechnological controls must satisfy a broad range of social and cultural criteria, receive regulatory approval, along with being demonstrated as safe, selective, and cost-effective.
Collapse
Affiliation(s)
- Symon Palmer
- Te Kawa a Māui – School of Māori Studies, Te Herenga Waka – Victoria University of Wellington, Wellington, New Zealand
| | - Peter K. Dearden
- Genomics Aotearoa, Bioprotection Research Centre, and Biochemistry Department, University of Otago, Dunedin, New Zealand
| | - Ocean R. Mercier
- Te Kawa a Māui – School of Māori Studies, Te Herenga Waka – Victoria University of Wellington, Wellington, New Zealand
| | - Alan King-Hunt
- Te Kawa a Māui – School of Māori Studies, Te Herenga Waka – Victoria University of Wellington, Wellington, New Zealand
| | - Phillip J. Lester
- School of Biology, Te Herenga Waka – Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
8
|
Sustainable Food Production: The Contribution of Genome Editing in Livestock. SUSTAINABILITY 2021. [DOI: 10.3390/su13126788] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The growing demand for animal source foods to feed people has been pushing the livestock industry to increase productivity, a tendency that will continue throughout this century. The challenge for the coming years is to increase the food supply to ensure equity in access to high quality food, while maintaining global sustainability including combating climate change, avoiding deforestation, and conserving biodiversity, as well as ensuring animal health and welfare. The question is, how do we produce more with less? Classical methods to enhance livestock productivity based on the improvement of animal health, nutrition, genetics, reproductive technologies and management have made important contributions; however, this is not going to be enough and thus disruptive approaches are required. Genome editing with CRISPR may be a powerful contributor to global livestock transformation. This article is focused on the scope and perspectives for the application of this technology, which includes improving production traits, enhancing animal welfare through adaptation and resilience, conferring resistance to infectious diseases, and suppressing pests and invasive species that threaten livestock. The main advantages and concerns that should be overcome by science, policy and people are discussed with the aim that this technology can make a real contribution to our collective future. This review is part of the special issue “Genome Editing in Animal Systems to Support Sustainable Farming and Pest Control”.
Collapse
|
9
|
Piergentili R, Del Rio A, Signore F, Umani Ronchi F, Marinelli E, Zaami S. CRISPR-Cas and Its Wide-Ranging Applications: From Human Genome Editing to Environmental Implications, Technical Limitations, Hazards and Bioethical Issues. Cells 2021; 10:cells10050969. [PMID: 33919194 PMCID: PMC8143109 DOI: 10.3390/cells10050969] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 12/14/2022] Open
Abstract
The CRISPR-Cas system is a powerful tool for in vivo editing the genome of most organisms, including man. During the years this technique has been applied in several fields, such as agriculture for crop upgrade and breeding including the creation of allergy-free foods, for eradicating pests, for the improvement of animal breeds, in the industry of bio-fuels and it can even be used as a basis for a cell-based recording apparatus. Possible applications in human health include the making of new medicines through the creation of genetically modified organisms, the treatment of viral infections, the control of pathogens, applications in clinical diagnostics and the cure of human genetic diseases, either caused by somatic (e.g., cancer) or inherited (mendelian disorders) mutations. One of the most divisive, possible uses of this system is the modification of human embryos, for the purpose of preventing or curing a human being before birth. However, the technology in this field is evolving faster than regulations and several concerns are raised by its enormous yet controversial potential. In this scenario, appropriate laws need to be issued and ethical guidelines must be developed, in order to properly assess advantages as well as risks of this approach. In this review, we summarize the potential of these genome editing techniques and their applications in human embryo treatment. We will analyze CRISPR-Cas limitations and the possible genome damage caused in the treated embryo. Finally, we will discuss how all this impacts the law, ethics and common sense.
Collapse
Affiliation(s)
- Roberto Piergentili
- Institute of Molecular Biology and Pathology, Italian National Research Council (CNR-IBPM), 00185 Rome, Italy;
| | - Alessandro Del Rio
- Department of Anatomical, Histological, Forensic, and Orthopedic Sciences, Sapienza University of Rome, 00161 Rome, Italy; (F.U.R.); (E.M.); (S.Z.)
- Correspondence: or
| | - Fabrizio Signore
- Obstetrics and Gynecology Department, USL Roma2, Sant’Eugenio Hospital, 00144 Rome, Italy;
| | - Federica Umani Ronchi
- Department of Anatomical, Histological, Forensic, and Orthopedic Sciences, Sapienza University of Rome, 00161 Rome, Italy; (F.U.R.); (E.M.); (S.Z.)
| | - Enrico Marinelli
- Department of Anatomical, Histological, Forensic, and Orthopedic Sciences, Sapienza University of Rome, 00161 Rome, Italy; (F.U.R.); (E.M.); (S.Z.)
| | - Simona Zaami
- Department of Anatomical, Histological, Forensic, and Orthopedic Sciences, Sapienza University of Rome, 00161 Rome, Italy; (F.U.R.); (E.M.); (S.Z.)
| |
Collapse
|
10
|
Fleming PA, Crawford HM, Auckland C, Calver MC. Nine ways to score nine lives – identifying appropriate methods to age domestic cats (
Felis catus
). J Zool (1987) 2021. [DOI: 10.1111/jzo.12869] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Patricia A. Fleming
- Environmental and Conservation Sciences Harry Butler Institute Murdoch University Murdoch WA Australia
| | - Heather M. Crawford
- Environmental and Conservation Sciences Harry Butler Institute Murdoch University Murdoch WA Australia
| | - Clare Auckland
- Environmental and Conservation Sciences Harry Butler Institute Murdoch University Murdoch WA Australia
| | - Michael C. Calver
- Environmental and Conservation Sciences Harry Butler Institute Murdoch University Murdoch WA Australia
| |
Collapse
|
11
|
Simberloff D. Maintenance management and eradication of established aquatic invaders. HYDROBIOLOGIA 2021; 848:2399-2420. [PMID: 32836349 PMCID: PMC7407435 DOI: 10.1007/s10750-020-04352-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/01/2020] [Accepted: 07/08/2020] [Indexed: 05/04/2023]
Abstract
Although freshwater invasions have not been targeted for maintenance management or eradication as often as terrestrial invasions have, attempts to do so are frequent. Failures as well as successes abound, but several methods have been improved and new approaches are on the horizon. Many freshwater fish and plant invaders have been eliminated, especially by chemical and physical methods for fishes and herbicides for plants. Efforts to maintain invasive freshwater fishes at low levels have sometimes succeeded, although continuing the effort has proven challenging. By contrast, successful maintenance management of invasive freshwater plants is uncommon, although populations of several species have been managed by biological control. Invasive crayfish populations have rarely been controlled for long. Marine invasions have proven far less tractable than those in fresh water, with a few striking eradications of species detected before they had spread widely, and no marine invasions have been substantially managed for long at low levels. The rapid development of technologies based on genetics has engendered excitement about possibly eradicating or controlling terrestrial invaders, and such technologies may also prove useful for certain aquatic invaders. Methods of particular interest, alone or in various combinations, are gene-silencing, RNA-guided gene drives, and the use of transgenes.
Collapse
Affiliation(s)
- Daniel Simberloff
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN 37996 USA
| |
Collapse
|
12
|
Moro D, Morris K, van Leeuwen S, Davie H. A framework of integrated research for managing introduced predators in the Pilbara bioregion, Western Australia. AUSTRALIAN MAMMALOGY 2021. [DOI: 10.1071/am20025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The effective control of wild dogs, feral cats and foxes is of primary interest to land managers, both for biodiversity conservation and for the protection of livestock. Control programs primarily target single species within the context of biodiversity conservation or livestock practices, but their effectiveness in depressing predator densities is unclear because monitoring is limited or not conducted. Here, we review and discuss the outcomes of a workshop to identify research priorities for managing predation on native fauna by introduced predators in the Pilbara bioregion in Western Australia. We suggest that the control of introduced predators will be most effective if it is implemented at a landscape-scale comprising integrated predator management that considers interspecific (predator) interactions combined with standardised monitoring to measure the effectiveness and benefits of control. Four research themes were identified: (1) collation and collection of baseline data, (2) effective monitoring of introduced predators, (3) understanding functional (ecological) roles of introduced predators within the different ecosystem contexts, and (4) identifying novel complementary approaches to protect threatened species. These themes collectively include research areas that invest in foundational, ecological and alternative biological parameters in research to close knowledge gaps related to the functional roles of introduced predators in the landscape. Addressing these research themes will assist land managers to achieve outcomes that address the needs of both biodiversity conservation and pastoral production. This framework is timely given the ongoing investment in offset funding being mobilised in the region.
Collapse
|
13
|
Palmas P, Gouyet R, Oedin M, Millon A, Cassan JJ, Kowi J, Bonnaud E, Vidal E. Rapid recolonisation of feral cats following intensive culling in a semi-isolated context. NEOBIOTA 2020. [DOI: 10.3897/neobiota.63.58005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Invasive feral cats threaten biodiversity at a global scale. Mitigating feral cat impacts and reducing their populations has therefore become a global conservation priority, especially on islands housing high endemic biodiversity. The New Caledonian archipelago is a biodiversity hotspot showing outstanding terrestrial species richness and endemism. Feral cats prey upon at least 44 of its native vertebrate species, 20 of which are IUCN Red-listed threatened species. To test the feasibility and efficiency of culling, intensive culling was conducted in a peninsula of New Caledonia (25.6 km²) identified as a priority site for feral cat management. Live-trapping over 38 days on a 10.6 km² area extirpated 36 adult cats, an estimated 44% of the population. However, three months after culling, all indicators derived from camera-trapping (e.g., abundance, minimum number of individuals and densities) suggest a return to pre-culling levels. Compensatory immigration appears to explain this unexpectedly rapid population recovery in a semi-isolated context. Since culling success does not guarantee a long-term effect, complementary methods like fencing and innovative automated traps need to be used, in accordance with predation thresholds identified through modelling, to preserve island biodiversity. Testing general assumptions on cat management, this article contributes important insights into a challenging conservation issue for islands and biodiversity hotspots worldwide.
Collapse
|
14
|
Dhole S, Lloyd AL, Gould F. Gene Drive Dynamics in Natural Populations: The Importance of Density Dependence, Space, and Sex. ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2020; 51:505-531. [PMID: 34366722 PMCID: PMC8340601 DOI: 10.1146/annurev-ecolsys-031120-101013] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The spread of synthetic gene drives is often discussed in the context of panmictic populations connected by gene flow and described with simple deterministic models. Under such assumptions, an entire species could be altered by releasing a single individual carrying an invasive gene drive, such as a standard homing drive. While this remains a theoretical possibility, gene drive spread in natural populations is more complex and merits a more realistic assessment. The fate of any gene drive released in a population would be inextricably linked to the population's ecology. Given the uncertainty often involved in ecological assessment of natural populations, understanding the sensitivity of gene drive spread to important ecological factors is critical. Here we review how different forms of density dependence, spatial heterogeneity, and mating behaviors can impact the spread of self-sustaining gene drives. We highlight specific aspects of gene drive dynamics and the target populations that need further research.
Collapse
Affiliation(s)
- Sumit Dhole
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Alun L Lloyd
- Biomathematics Graduate Program and Department of Mathematics, North Carolina State University, Raleigh, North Carolina 27695-8213, USA
- Genetic Engineering and Society Center, North Carolina State University, Raleigh, North Carolina 27695-7565, USA
| | - Fred Gould
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina 27695, USA
- Genetic Engineering and Society Center, North Carolina State University, Raleigh, North Carolina 27695-7565, USA
| |
Collapse
|
15
|
Pyšek P, Hulme PE, Simberloff D, Bacher S, Blackburn TM, Carlton JT, Dawson W, Essl F, Foxcroft LC, Genovesi P, Jeschke JM, Kühn I, Liebhold AM, Mandrak NE, Meyerson LA, Pauchard A, Pergl J, Roy HE, Seebens H, van Kleunen M, Vilà M, Wingfield MJ, Richardson DM. Scientists' warning on invasive alien species. Biol Rev Camb Philos Soc 2020; 95:1511-1534. [PMID: 32588508 PMCID: PMC7687187 DOI: 10.1111/brv.12627] [Citation(s) in RCA: 488] [Impact Index Per Article: 122.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 05/30/2020] [Accepted: 06/03/2020] [Indexed: 12/12/2022]
Abstract
Biological invasions are a global consequence of an increasingly connected world and the rise in human population size. The numbers of invasive alien species – the subset of alien species that spread widely in areas where they are not native, affecting the environment or human livelihoods – are increasing. Synergies with other global changes are exacerbating current invasions and facilitating new ones, thereby escalating the extent and impacts of invaders. Invasions have complex and often immense long‐term direct and indirect impacts. In many cases, such impacts become apparent or problematic only when invaders are well established and have large ranges. Invasive alien species break down biogeographic realms, affect native species richness and abundance, increase the risk of native species extinction, affect the genetic composition of native populations, change native animal behaviour, alter phylogenetic diversity across communities, and modify trophic networks. Many invasive alien species also change ecosystem functioning and the delivery of ecosystem services by altering nutrient and contaminant cycling, hydrology, habitat structure, and disturbance regimes. These biodiversity and ecosystem impacts are accelerating and will increase further in the future. Scientific evidence has identified policy strategies to reduce future invasions, but these strategies are often insufficiently implemented. For some nations, notably Australia and New Zealand, biosecurity has become a national priority. There have been long‐term successes, such as eradication of rats and cats on increasingly large islands and biological control of weeds across continental areas. However, in many countries, invasions receive little attention. Improved international cooperation is crucial to reduce the impacts of invasive alien species on biodiversity, ecosystem services, and human livelihoods. Countries can strengthen their biosecurity regulations to implement and enforce more effective management strategies that should also address other global changes that interact with invasions.
Collapse
Affiliation(s)
- Petr Pyšek
- Czech Academy of Sciences, Institute of Botany, Department of Invasion Ecology, Průhonice, CZ-252 43, Czech Republic.,Department of Ecology, Faculty of Science, Charles University, Viničná 7, Prague, CZ-128 44, Czech Republic.,Centre for Invasion Biology, Department of Botany & Zoology, Stellenbosch University, Matieland, 7602, South Africa
| | - Philip E Hulme
- Bio-Protection Research Centre, Lincoln University, Canterbury, New Zealand
| | - Dan Simberloff
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, U.S.A
| | - Sven Bacher
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Tim M Blackburn
- Centre for Invasion Biology, Department of Botany & Zoology, Stellenbosch University, Matieland, 7602, South Africa.,Centre for Biodiversity and Environment Research, Department of Genetics, Evolution, and Environment, University College London, London, WC1E 6BT, U.K.,Institute of Zoology, Zoological Society of London, Regent's Park, London, NW1 4RY, U.K
| | - James T Carlton
- Maritime Studies Program, Williams College - Mystic Seaport, 75 Greenmanville, Mystic, CT, 06355, U.S.A
| | - Wayne Dawson
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, U.K
| | - Franz Essl
- Centre for Invasion Biology, Department of Botany & Zoology, Stellenbosch University, Matieland, 7602, South Africa.,Division of Conservation Biology, Vegetation and Landscape Ecology, Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Llewellyn C Foxcroft
- Centre for Invasion Biology, Department of Botany & Zoology, Stellenbosch University, Matieland, 7602, South Africa.,Conservation Services, South African National Parks, Private Bag X402, Skukuza, 1350, South Africa
| | - Piero Genovesi
- Centre for Invasion Biology, Department of Botany & Zoology, Stellenbosch University, Matieland, 7602, South Africa.,ISPRA, Institute for Environmental Protection and Research and Chair IUCN SSC Invasive Species Specialist Group, Rome, Italy
| | - Jonathan M Jeschke
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, Berlin, 12587, Germany.,Institute of Biology, Freie Universität Berlin, Königin-Luise-Str. 1-3, Berlin, 14195, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Königin-Luise-Str. 2-4, Berlin, 14195, Germany
| | - Ingolf Kühn
- Department Community Ecology, Helmholtz Centre for Environmental Research - UFZ, Theodor-Lieser-Str. 4, Halle, 06120, Germany.,Geobotany & Botanical Garden, Martin Luther University Halle-Wittenberg, Am Kirchtor 1, Halle, 06108, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, Leipzig, 04103, Germany
| | - Andrew M Liebhold
- US Forest Service Northern Research Station, 180 Canfield St., Morgantown, West Virginia, U.S.A.,Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, CZ-165 00, Czech Republic
| | - Nicholas E Mandrak
- Department of Biological Sciences, University of Toronto, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada
| | - Laura A Meyerson
- Department of Natural Resources Science, The University of Rhode Island, Kingston, Rhode Island, 02881, U.S.A
| | - Aníbal Pauchard
- Facultad de Ciencias Forestales, Universidad de Concepción, Concepción, Chile.,Institute of Ecology and Biodiversity, Santiago, Chile
| | - Jan Pergl
- Czech Academy of Sciences, Institute of Botany, Department of Invasion Ecology, Průhonice, CZ-252 43, Czech Republic
| | - Helen E Roy
- U.K. Centre for Ecology & Hydrology, Wallingford, OX10 8BB, U.K
| | - Hanno Seebens
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, Frankfurt am Main, 60325, Germany
| | - Mark van Kleunen
- Ecology, Department of Biology, University of Konstanz, Universitätsstrasse 10, Constance, 78457, Germany.,Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, 318000, China
| | - Montserrat Vilà
- Estación Biológica de Doñana (EBD-CSIC), Avd. Américo Vespucio 26, Isla de la Cartuja, Sevilla, 41092, Spain.,Department of Plant Biology and Ecology, University of Sevilla, Sevilla, Spain
| | - Michael J Wingfield
- Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - David M Richardson
- Centre for Invasion Biology, Department of Botany & Zoology, Stellenbosch University, Matieland, 7602, South Africa
| |
Collapse
|
16
|
Sjodin BMF, Irvine RL, Ford AT, Howald GR, Russello MA. Rattus population genomics across the Haida Gwaii archipelago provides a framework for guiding invasive species management. Evol Appl 2020; 13:889-904. [PMID: 32431741 PMCID: PMC7232760 DOI: 10.1111/eva.12907] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/18/2019] [Accepted: 12/05/2019] [Indexed: 11/29/2022] Open
Abstract
Invasive species have led to precipitous declines in biodiversity, especially in island systems. Brown (Rattus norvegicus) and black rats (R. rattus) are among the most invasive animals on the planet, with eradication being the primary tool for established island populations. The need for increased research for defining eradication units and monitoring outcomes has been highlighted as a means to maximize success. Haida Gwaii is an archipelago ~100 km off the northern coast of British Columbia, Canada, that hosts globally significant breeding populations of seabirds that are at risk due to invasive rats. Here, we paired sampling of brown (n = 287) and black (n = 291) rats across the Haida Gwaii archipelago with genotyping by sequencing (10,770-27,686 SNPs) to investigate patterns of population connectivity and infer levels/direction of gene flow among invasive rat populations in Haida Gwaii. We reconstructed three regional clusters for both species (north, central and south), with proximate populations within regions being largely more related than those that were more distant, consistent with predictions from island biogeography theory. Population assignment of recently detected individuals post-eradication on Faraday, Murchison and the Bischof Islands revealed all were re-invaders from Lyell Island, rather than being on-island survivors. Based on these results, we identified six eradication units constituting single or clusters of islands that would limit the potential for reinvasion, some of which will need to be combined with biosecurity measures. Overall, our results highlight the importance of targeted research prior to conducting eradications and demonstrate a framework for applying population genomics for guiding invasive species management in island systems.
Collapse
Affiliation(s)
| | - Robyn L. Irvine
- Gwaii Haanas National Park ReserveNational Marine Conservation Area Reserve and Haida Heritage SiteSkidegateBCCanada
| | - Adam T. Ford
- Department of BiologyUniversity of British ColumbiaKelownaBCCanada
| | | | | |
Collapse
|
17
|
Serr ME, Valdez RX, Barnhill-Dilling KS, Godwin J, Kuiken T, Booker M. Scenario analysis on the use of rodenticides and sex-biasing gene drives for the removal of invasive house mice on islands. Biol Invasions 2020. [DOI: 10.1007/s10530-019-02192-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
18
|
Mitchell HJ, Bartsch D. Regulation of GM Organisms for Invasive Species Control. Front Bioeng Biotechnol 2020; 7:454. [PMID: 32039172 PMCID: PMC6985037 DOI: 10.3389/fbioe.2019.00454] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/19/2019] [Indexed: 11/13/2022] Open
Abstract
Invasive species can cause significant harm to the environment, agriculture, and human health, but there are often very limited tools available to control their populations. Gene drives (GD) have been proposed as a new tool which could be used to control or eliminate such species. Here, GD describes a variety of molecular biology applications which all enable the introduction of genetic elements at a higher than expected frequency. These elements can change the genotypes in target populations rapidly with consequences either for (intrinsic) fitness or host-parasite interaction, or both. Beneficial applications are foreseen for human and animal health, agriculture, or nature conservation. This rapidly developing technology is likely to have major impacts in the fight against various diseases, pests, and invasive species. The majority of GD applications involve genetic engineering and novel traits. Therefore, applicants and GMO regulators need to interact to achieve the benefits in innovation while cautiously avoiding unacceptable risks. The release into the environment may include transboundary movement and replacement of target populations, with potential impact on human/animal health and the environment. This article summarizes knowledge-based discussions to identify information gaps and analyzes scenarios for responsible introduction of GD organisms into the environment. It aims to connect the latest scientific developments with regulatory approaches and decision-making.
Collapse
Affiliation(s)
- Heidi J. Mitchell
- Office of the Gene Technology Regulator, Australian Government Department of Health, Canberra, ACT, Australia
| | - Detlef Bartsch
- Federal Office of Consumer Protection and Food Safety, Bundesamt für Verbraucherschutz und Lebensmittelsicherheit, Berlin, Germany
| |
Collapse
|
19
|
|
20
|
Martinez B, Reaser JK, Dehgan A, Zamft B, Baisch D, McCormick C, Giordano AJ, Aicher R, Selbe S. Technology innovation: advancing capacities for the early detection of and rapid response to invasive species. Biol Invasions 2019. [DOI: 10.1007/s10530-019-02146-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
AbstractThe 2016–2018National Invasive Species Council (NISC) Management Plan and Executive Order 13751 call for US federal agencies to foster technology development and application to address invasive species and their impacts. This paper complements and draws on an Innovation Summit, review of advanced biotechnologies applicable to invasive species management, and a survey of federal agencies that respond to these high-level directives. We provide an assessment of federal government capacities for the early detection of and rapid response to invasive species (EDRR) through advances in technology application; examples of emerging technologies for the detection, identification, reporting, and response to invasive species; and guidance for fostering further advancements in applicable technologies. Throughout the paper, we provide examples of how federal agencies are applying technologies to improve programmatic effectiveness and cost-efficiencies. We also highlight the outstanding technology-related needs identified by federal agencies to overcome barriers to enacting EDRR. Examples include improvements in research facility infrastructure, data mobilization across a wide range of invasive species parameters (from genetic to landscape scales), promotion of and support for filling key gaps in technological capacity (e.g., portable, field-ready devices with automated capacities), and greater investments in technology prizes and challenge competitions.
Collapse
|
21
|
Godwin J, Serr M, Barnhill-Dilling SK, Blondel DV, Brown PR, Campbell K, Delborne J, Lloyd AL, Oh KP, Prowse TAA, Saah R, Thomas P. Rodent gene drives for conservation: opportunities and data needs. Proc Biol Sci 2019; 286:20191606. [PMID: 31690240 PMCID: PMC6842857 DOI: 10.1098/rspb.2019.1606] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/11/2019] [Indexed: 12/18/2022] Open
Abstract
Invasive rodents impact biodiversity, human health and food security worldwide. The biodiversity impacts are particularly significant on islands, which are the primary sites of vertebrate extinctions and where we are reaching the limits of current control technologies. Gene drives may represent an effective approach to this challenge, but knowledge gaps remain in a number of areas. This paper is focused on what is currently known about natural and developing synthetic gene drive systems in mice, some key areas where key knowledge gaps exist, findings in a variety of disciplines relevant to those gaps and a brief consideration of how engagement at the regulatory, stakeholder and community levels can accompany and contribute to this effort. Our primary species focus is the house mouse, Mus musculus, as a genetic model system that is also an important invasive pest. Our primary application focus is the development of gene drive systems intended to reduce reproduction and potentially eliminate invasive rodents from islands. Gene drive technologies in rodents have the potential to produce significant benefits for biodiversity conservation, human health and food security. A broad-based, multidisciplinary approach is necessary to assess this potential in a transparent, effective and responsible manner.
Collapse
Affiliation(s)
- John Godwin
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
- Genetic Engineering and Society Center, North Carolina State University, Raleigh, NC 27695, USA
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Megan Serr
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | | | - Dimitri V. Blondel
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Peter R. Brown
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Canberra, Australian Capital Territory, Australia
| | - Karl Campbell
- Island Conservation, Charles Darwin Avenue, Puerto Ayora, Galapagos Islands, Ecuador
- School of Agriculture and Food Sciences, The University of Queensland, Gatton, Queensland, Australia
| | - Jason Delborne
- Genetic Engineering and Society Center, North Carolina State University, Raleigh, NC 27695, USA
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA
| | - Alun L. Lloyd
- Department of Mathematics, North Carolina State University, Raleigh, NC 27695, USA
| | - Kevin P. Oh
- National Wildlife Research Center, US Department of Agriculture, Fort Collins, CO 80521, USA
| | - Thomas A. A. Prowse
- School of Mathematical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Royden Saah
- Genetic Engineering and Society Center, North Carolina State University, Raleigh, NC 27695, USA
- Island Conservation, Charles Darwin Avenue, Puerto Ayora, Galapagos Islands, Ecuador
| | - Paul Thomas
- School of Medicine, The University of Adelaide, Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| |
Collapse
|
22
|
Backus GA, Delborne JA. Threshold-Dependent Gene Drives in the Wild: Spread, Controllability, and Ecological Uncertainty. Bioscience 2019. [DOI: 10.1093/biosci/biz098] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AbstractGene drive technology could allow the intentional spread of a desired gene throughout an entire wild population in relatively few generations. However, there are major concerns that gene drives could either fail to spread or spread without restraint beyond the targeted population. One potential solution is to use more localized threshold-dependent drives, which only spread when they are released in a population above a critical frequency. However, under certain conditions, small changes in gene drive fitness could lead to divergent outcomes in spreading behavior. In the face of ecological uncertainty, the inability to estimate gene drive fitness in a real-world context could prove problematic because gene drives designed to be localized could spread to fixation in neighboring populations if ecological conditions unexpectedly favor the gene drive. This perspective offers guidance to developers and managers because navigating gene drive spread and controllability could be risky without detailed knowledge of ecological contexts.
Collapse
|
23
|
Peltzer DA, Bellingham PJ, Dickie IA, Houliston G, Hulme PE, Lyver PO, McGlone M, Richardson SJ, Wood J. Scale and complexity implications of making New Zealand predator-free by 2050. J R Soc N Z 2019. [DOI: 10.1080/03036758.2019.1653940] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
| | | | - Ian A. Dickie
- Bio-Protection Research Centre, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | | | - Philip E. Hulme
- Bio-Protection Research Centre, Lincoln University, Lincoln, New Zealand
| | | | | | | | | |
Collapse
|
24
|
A Case of Letting the Cat out of The Bag-Why Trap-Neuter-Return Is Not an Ethical Solution for Stray Cat ( Felis catus) Management. Animals (Basel) 2019; 9:ani9040171. [PMID: 30995809 PMCID: PMC6523511 DOI: 10.3390/ani9040171] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/01/2019] [Accepted: 04/10/2019] [Indexed: 11/16/2022] Open
Abstract
Trap-Neuter-Return (TNR) programs, in which stray cats are captured, neutered and returned to the environment are advocated as a humane, ethical alternative to euthanasia. We review the TNR literature in light of current debate over whether or not there should be further TNR trials in Australia. We revisit the problems arising from stray cats living in association with human habitation and estimate how many stray cats would have to be processed through a scientifically-guided TNR program to avoid high euthanasia rates. We also identify 10 ethical and welfare challenges that have to be addressed: we consider the quality of life for stray cats, where they would live, whether the TNR process itself is stressful, whether TNR cats are vulnerable to injury, parasites and disease, can be medically treated, stray cats' body condition and diet, and their impacts on people, pet cats, and urban wildlife, especially endemic fauna. We conclude that TNR is unsuitable for Australia in almost all situations because it is unlikely to resolve problems caused by stray cats or meet ethical and welfare challenges. Targeted adoption, early-age desexing, community education initiatives and responsible pet ownership have greater promise to minimize euthanasia, reduce numbers rapidly, and address the identified issues.
Collapse
|
25
|
Rode NO, Estoup A, Bourguet D, Courtier-Orgogozo V, Débarre F. Population management using gene drive: molecular design, models of spread dynamics and assessment of ecological risks. CONSERV GENET 2019. [DOI: 10.1007/s10592-019-01165-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
26
|
Prowse TA, Adikusuma F, Cassey P, Thomas P, Ross JV. A Y-chromosome shredding gene drive for controlling pest vertebrate populations. eLife 2019; 8:41873. [PMID: 30767891 PMCID: PMC6398975 DOI: 10.7554/elife.41873] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 02/13/2019] [Indexed: 11/16/2022] Open
Abstract
Self-replicating gene drives that modify sex ratios or infer a fitness cost could be used to control populations of invasive alien species. The targeted deletion of Y sex chromosomes using CRISPR technology offers a new approach for sex bias that could be incorporated within gene-drive designs. We introduce a novel gene-drive strategy termed Y-CHromosome deletion using Orthogonal Programmable Endonucleases (Y-CHOPE), incorporating a programmable endonuclease that ‘shreds’ the Y chromosome, thereby converting XY males into fertile XO females. Firstly, we demonstrate that the CRISPR/Cas12a system can eliminate the Y chromosome in embryonic stem cells with high efficiency (c. 90%). Next, using stochastic, individual-based models of a pest mouse population, we show that a Y-shredding drive that progressively depletes the pool of XY males could effect population eradication through mate limitation. Our molecular and modeling data suggest that a Y-CHOPE gene drive could be a viable tool for vertebrate pest control.
Collapse
Affiliation(s)
- Thomas Aa Prowse
- School of Mathematical Sciences, The University of Adelaide, Adelaide, Australia
| | - Fatwa Adikusuma
- School of Medicine, The University of Adelaide, Adelaide, Australia.,South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Phillip Cassey
- The Centre for Applied Conservation Science, The University of Adelaide, Adelaide, Australia.,School of Biological Sciences, The University of Adelaide, Adelaide, Australia
| | - Paul Thomas
- School of Medicine, The University of Adelaide, Adelaide, Australia.,South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Joshua V Ross
- School of Mathematical Sciences, The University of Adelaide, Adelaide, Australia
| |
Collapse
|
27
|
Byers KA, Lee MJ, Patrick DM, Himsworth CG. Rats About Town: A Systematic Review of Rat Movement in Urban Ecosystems. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00013] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
28
|
Lester PJ, Beggs JR. Invasion Success and Management Strategies for Social Vespula Wasps. ANNUAL REVIEW OF ENTOMOLOGY 2019; 64:51-71. [PMID: 30256668 DOI: 10.1146/annurev-ento-011118-111812] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Three species of Vespula have become invasive in Australia, Hawai'i, New Zealand, and North and South America and continue to spread. These social wasp species can achieve high nest densities, and their behavioral plasticity has led to substantial impacts on recipient communities. Ecologically, they affect all trophic levels, restructuring communities and altering resource flows. Economically, their main negative effect is associated with pollination and the apicultural industry. Climate change is likely to exacerbate their impacts in many regions. Introduced Vespula spp. likely experience some degree of enemy release from predators or parasites, although they are exposed to a wide range of microbial pathogens in both their native and introduced range. Toxic baits have been significantly improved over the last decade, enabling effective landscape-level control. Although investigated extensively, no effective biological control agents have yet been found. Emerging technologies such as gene drives are under consideration.
Collapse
Affiliation(s)
- Philip J Lester
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand;
| | - Jacqueline R Beggs
- Centre for Biodiversity and Biosecurity, School of Biological Sciences, University of Auckland, Auckland 1072, New Zealand;
| |
Collapse
|
29
|
Goold HD, Wright P, Hailstones D. Emerging Opportunities for Synthetic Biology in Agriculture. Genes (Basel) 2018; 9:E341. [PMID: 29986428 PMCID: PMC6071285 DOI: 10.3390/genes9070341] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 06/27/2018] [Accepted: 07/03/2018] [Indexed: 12/11/2022] Open
Abstract
Rapid expansion in the emerging field of synthetic biology has to date mainly focused on the microbial sciences and human health. However, the zeitgeist is that synthetic biology will also shortly deliver major outcomes for agriculture. The primary industries of agriculture, fisheries and forestry, face significant and global challenges; addressing them will be assisted by the sector’s strong history of early adoption of transformative innovation, such as the genetic technologies that underlie synthetic biology. The implementation of synthetic biology within agriculture may, however, be hampered given the industry is dominated by higher plants and mammals, where large and often polyploid genomes and the lack of adequate tools challenge the ability to deliver outcomes in the short term. However, synthetic biology is a rapidly growing field, new techniques in genome design and synthesis, and more efficient molecular tools such as CRISPR/Cas9 may harbor opportunities more broadly than the development of new cultivars and breeds. In particular, the ability to use synthetic biology to engineer biosensors, synthetic speciation, microbial metabolic engineering, mammalian multiplexed CRISPR, novel anti microbials, and projects such as Yeast 2.0 all have significant potential to deliver transformative changes to agriculture in the short, medium and longer term. Specifically, synthetic biology promises to deliver benefits that increase productivity and sustainability across primary industries, underpinning the industry’s prosperity in the face of global challenges.
Collapse
Affiliation(s)
- Hugh Douglas Goold
- Department of Molecular Sciences, Macquarie University, North Ryde, NSW 2109, Australia.
- New South Wales Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Woodbridge Road, Menangle, NSW 2568, Australia.
| | - Philip Wright
- New South Wales Department of Primary Industries, Locked Bag 21, 161 Kite St, Orange, NSW 2800, Australia.
| | - Deborah Hailstones
- New South Wales Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Woodbridge Road, Menangle, NSW 2568, Australia.
| |
Collapse
|
30
|
Gillum D, Carrera LAO, Mendoza IA, Bates P, Bowens D, Jetson Z, Maldonado J, Mancini C, Miraldi M, Moritz R, O’Donnell M, Kiani S. The 2017 Arizona Biosecurity Workshop. APPLIED BIOSAFETY 2018. [DOI: 10.1177/1535676018781854] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
| | - Luis Alberto Ochoa Carrera
- National Reference Laboratory, Institute for Epidemiological Diagnosis and Reference, InDRE, Colonia Lomas de Plateros, Delegación Álvaro Obregón, Ciudad de México, Mexico City, Mexico
| | | | | | | | | | - Juan Maldonado
- Arizona State University Biodesign Institute, Tempe, AZ, USA
| | | | | | | | | | | |
Collapse
|