1
|
Mesmar F, Muhsen M, Mirchandani R, Tourigny JP, Tennessen JM, Bondesson M. The herbicide acetochlor causes lipid peroxidation by inhibition of glutathione peroxidase activity. Toxicol Sci 2024; 202:302-313. [PMID: 39240656 PMCID: PMC11589103 DOI: 10.1093/toxsci/kfae113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024] Open
Abstract
Metabolic syndrome is increasing worldwide, particularly in rural communities, where residents have a higher risk of exposure to pesticides. We investigated whether six commonly used agricultural pesticides on corn and soy fields possess adipogenic and metabolic disruption activity. Exposure to two of these pesticides, the herbicides acetochlor and metolachlor, induced adipogenesis in vitro in mouse 3T3-L1 preadipocytes. The most potent compound, acetochlor, was selected for further studies in zebrafish. Acetochlor exposure induced morphological malformations and lethality in zebrafish larvae with an EC50 of 7.8 µM and LC50 of 12 µM. Acetochlor exposure at 10 nM resulted in lipid accumulation in zebrafish larvae when simultaneously fed a high-cholesterol diet. To decipher the molecular mechanisms behind acetochlor action, we performed transcriptomic and lipidomic analyses of exposed animals. The combined omics results suggested that acetochlor exposure increased Nrf2 activity in response to reactive oxygen species, as well as induced lipid peroxidation and ferroptosis. We further discovered that acetochlor structurally shares a chloroacetamide group with known inhibitors of glutathione peroxidase 4 (GPX4). Computational docking analysis suggested that acetochlor covalently binds to the active site of GPX4. Consistent with this prediction, Gpx activity was efficiently repressed by acetochlor in zebrafish, whereas lipid peroxidation was increased. We propose that acetochlor disrupts lipid homeostasis by inhibiting GPX activity, resulting in the accumulation of lipid peroxidation, 4-hydroxynonenal, and reactive oxygen species, which in turn activate Nrf2. Because metolachlor, among other acetanilide herbicides, also contains the chloroacetamide group, inhibition of GPX activity may represent a novel, common molecular initiating event of metabolic disruption.
Collapse
Affiliation(s)
- Fahmi Mesmar
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN 47408, United States
| | - Maram Muhsen
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN 47408, United States
| | - Rachna Mirchandani
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN 47408, United States
| | - Jason P Tourigny
- Department of Biology, Indiana University, Bloomington, IN 47405, United States
| | - Jason M Tennessen
- Department of Biology, Indiana University, Bloomington, IN 47405, United States
| | - Maria Bondesson
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN 47408, United States
| |
Collapse
|
2
|
Chen Y, Li H, Liu J, Ni J, Deng Q, He H, Wu P, Wan Y, Seeram NP, Liu C, Ma H, Zhu W. Cytotoxicity of natural and synthetic cannabinoids and their synergistic antiproliferative effects with cisplatin in human ovarian cancer cells. Front Pharmacol 2024; 15:1496131. [PMID: 39660007 PMCID: PMC11629013 DOI: 10.3389/fphar.2024.1496131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024] Open
Abstract
Introduction Cannabinoids are reported to suppress the growth of ovarian cancer cells, but it is unclear whether structural modifications can improve their cytotoxic effects. Methods Herein, an investigation into the antiproliferative effects of natural cannabinoids on human ovarian cancer Caov-3 cells identified cannabidiol (CBD) as the most promising cannabinoid. Furthermore, chemical modifications of CBD yielded a group of derivatives with enhanced cytotoxicity in Caov-3 cells. Results Two CBD piperazinyl derivatives (19 and 21) showed augmented antiproliferative effects with an IC50 of 5.5 and 4.1 µM, respectively, compared to CBD's IC50 of 22.9 µM. Further studies suggest that modulation of apoptosis and ferroptosis may contribute to the cytotoxic effects of CBD and its derivatives. In addition, CBD and its derivatives (19 and 21) were explored for their potential synergistic antiproliferative effects in combination with chemotherapeutic agent cisplatin. Compounds 19 or 21 (5 µM) combined with cisplatin (1 µM) showed a synergistic effect with a combination index of 0.23 and 0.72, respectively. This effect was supported by elevated levels of reactive oxygen species in Caov-3 cells treated with cisplatin combined with 19 or 21. Discussion Findings from this study suggest that CBD derivatives with enhanced antiproliferative effects may exert synergistic effects with chemotherapeutic drugs, providing insight into the development of cannabinoid-based adjuvant agents for the management of ovarian cancer.
Collapse
Affiliation(s)
- Ying Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, United States
| | - Huifang Li
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, United States
| | - Jia Liu
- Department of Operation Room, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jie Ni
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Qicheng Deng
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Haotian He
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, United States
| | - Panpan Wu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
| | - Yinsheng Wan
- Department of Biology, Providence College, Providence, RI, United States
| | - Navindra P. Seeram
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, United States
| | - Chang Liu
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, United States
| | - Hang Ma
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, United States
| | - Weipei Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
3
|
Mokhtari Tabar MM, Ghasemian A, Kouhpayeh A, Behmard E. Computational Discovery of Novel GPX4 Inhibitors from Herbal Sources as Potential Ferroptosis Inducers in Cancer Therapy. Arch Biochem Biophys 2024:110231. [PMID: 39603376 DOI: 10.1016/j.abb.2024.110231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/19/2024] [Accepted: 11/24/2024] [Indexed: 11/29/2024]
Abstract
Ferroptosis, a cell death regulation process dependent on iron levels, represents a promising therapeutic target in cancer treatment. However, the scarcity of potent ferroptosis inducers hinders advancement in this area. This study addresses this gap by screening the PubChem database for compounds with favorable ADMET properties to identify potential GPX4 inhibitors. A structure-based virtual screening was conducted to compare binding affinities of selected compounds to that of RSL3. The candidates-isochondrodendrine, hinokiflavone, irinotecan, and ginkgetin-were further analyzed through molecular dynamics (MD) simulations to assess their stability within the GPX4-ligand complexes. The computed binding free energies for RSL3, isochondrodendrine, hinokiflavone, irinotecan and ginkgetin were -80.12, -107.31, -132.03, and -137.52 and -91.11 kJ/mol, respectively, indicating their significantly higher inhibitory effects compared to RSL3. These findings highlight the potential for developing novel GPX4 inhibitors to promote ferroptosis, warranting further experimental validation.
Collapse
Affiliation(s)
| | - Abdolmajid Ghasemian
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Amin Kouhpayeh
- Department of Pharmacology, Faculty of Medicine, Fasa University of Medical Sciences, Fasa, Iran.
| | - Esmaeil Behmard
- School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran.
| |
Collapse
|
4
|
Cao PHA, Dominic A, Lujan FE, Senthilkumar S, Bhattacharya PK, Frigo DE, Subramani E. Unlocking ferroptosis in prostate cancer - the road to novel therapies and imaging markers. Nat Rev Urol 2024; 21:615-637. [PMID: 38627553 DOI: 10.1038/s41585-024-00869-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 04/19/2024]
Abstract
Ferroptosis is a distinct form of regulated cell death that is predominantly driven by the build-up of intracellular iron and lipid peroxides. Ferroptosis suppression is widely accepted to contribute to the pathogenesis of several tumours including prostate cancer. Results from some studies reported that prostate cancer cells can be highly susceptible to ferroptosis inducers, providing potential for an interesting new avenue of therapeutic intervention for advanced prostate cancer. In this Perspective, we describe novel molecular underpinnings and metabolic drivers of ferroptosis, analyse the functions and mechanisms of ferroptosis in tumours, and highlight prostate cancer-specific susceptibilities to ferroptosis by connecting ferroptosis pathways to the distinctive metabolic reprogramming of prostate cancer cells. Leveraging these novel mechanistic insights could provide innovative therapeutic opportunities in which ferroptosis induction augments the efficacy of currently available prostate cancer treatment regimens, pending the elimination of major bottlenecks for the clinical translation of these treatment combinations, such as the development of clinical-grade inhibitors of the anti-ferroptotic enzymes as well as non-invasive biomarkers of ferroptosis. These biomarkers could be exploited for diagnostic imaging and treatment decision-making.
Collapse
Affiliation(s)
- Pham Hong Anh Cao
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Abishai Dominic
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fabiola Ester Lujan
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Sanjanaa Senthilkumar
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Mayo Clinic Alix School of Medicine, Rochester, MN, USA
| | - Pratip K Bhattacharya
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Daniel E Frigo
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Center for Nuclear Receptors and Cell Signalling, University of Houston, Houston, TX, USA.
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA.
| | - Elavarasan Subramani
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
5
|
Zhang L, Deng R, Guo R, Jiang Y, Guan Y, Chen C, Zhao W, Huang G, Liu L, Du H, Tang D. Recent progress of methods for cuproptosis detection. Front Mol Biosci 2024; 11:1460987. [PMID: 39297074 PMCID: PMC11408227 DOI: 10.3389/fmolb.2024.1460987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/21/2024] [Indexed: 09/21/2024] Open
Abstract
Varying from other identified cell death pathways, cuproptosis is a new type of regulated cell death characterized by excess Cu ions, abnormal aggregation of lipoylated proteins in TCA cycle, loss of Fe-S cluster proteins, upregulation of HSP70, leading to proteotoxic and oxidative stress. Cuproptosis is highly concerned by scientific community and as the field of cuproptosis further develops, remarkable progress has been made in the verification and mechanism of cuproptosis, and methods used to detect cuproptosis have been continuously improved. According to the characteristic changes of cuproptosis, techniques based on cell death verification, Cu content, morphology, molecular biology of protein levels of cuproptosis-related molecules and biochemical pathways of cuproptosis-related enzyme activity and metabolites of oxidative stress, lipoic acid, TCA cycle, Fe-S cluster proteins, oxidative phosphorylation, cell respiration intensity have been subject to cuproptosis verification and research. In order to further deepen the understanding of detecting cuproptosis, the principle and application of common cuproptosis detection methods are reviewed and categorized in cellular phenomena and molecular mechanism in terms of cell death, Cu content, morphology, molecular biology, biochemical pathways with a flow chart. All the indicating results have been displayed in response to the markers of cuproptosis, their advantages and limitations are summaried, and comparison of cuproptosis and ferroptosis detection is performed in this study. Our collection of methods for cuproptosis detection will provide a great basis for cuproptosis verification and research in the future.
Collapse
Affiliation(s)
- Ligang Zhang
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Ruiting Deng
- Beijing Mercer United International Education Consulting Co., Ltd., Guangzhou, China
| | - Raoqing Guo
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yawen Jiang
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, China
| | - Yichen Guan
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, China
| | - Caiyue Chen
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, China
| | - Wudi Zhao
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, China
| | - Guobin Huang
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, China
| | - Lian Liu
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, China
| | - Hongli Du
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Dongsheng Tang
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, China
| |
Collapse
|
6
|
Gharib E, Robichaud GA. From Crypts to Cancer: A Holistic Perspective on Colorectal Carcinogenesis and Therapeutic Strategies. Int J Mol Sci 2024; 25:9463. [PMID: 39273409 PMCID: PMC11395697 DOI: 10.3390/ijms25179463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Colorectal cancer (CRC) represents a significant global health burden, with high incidence and mortality rates worldwide. Recent progress in research highlights the distinct clinical and molecular characteristics of colon versus rectal cancers, underscoring tumor location's importance in treatment approaches. This article provides a comprehensive review of our current understanding of CRC epidemiology, risk factors, molecular pathogenesis, and management strategies. We also present the intricate cellular architecture of colonic crypts and their roles in intestinal homeostasis. Colorectal carcinogenesis multistep processes are also described, covering the conventional adenoma-carcinoma sequence, alternative serrated pathways, and the influential Vogelstein model, which proposes sequential APC, KRAS, and TP53 alterations as drivers. The consensus molecular CRC subtypes (CMS1-CMS4) are examined, shedding light on disease heterogeneity and personalized therapy implications.
Collapse
Affiliation(s)
- Ehsan Gharib
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| | - Gilles A Robichaud
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| |
Collapse
|
7
|
Lupica-Tondo GL, Arner EN, Mogilenko DA, Voss K. Immunometabolism of ferroptosis in the tumor microenvironment. Front Oncol 2024; 14:1441338. [PMID: 39188677 PMCID: PMC11345167 DOI: 10.3389/fonc.2024.1441338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/24/2024] [Indexed: 08/28/2024] Open
Abstract
Ferroptosis is an iron-dependent form of cell death that results from excess lipid peroxidation in cellular membranes. Within the last decade, physiological and pathological roles for ferroptosis have been uncovered in autoimmune diseases, inflammatory conditions, infection, and cancer biology. Excitingly, cancer cell metabolism may be targeted to induce death by ferroptosis in cancers that are resistant to other forms of cell death. Ferroptosis sensitivity is regulated by oxidative stress, lipid metabolism, and iron metabolism, which are all influenced by the tumor microenvironment (TME). Whereas some cancer cell types have been shown to adapt to these stressors, it is not clear how immune cells regulate their sensitivities to ferroptosis. In this review, we discuss the mechanisms of ferroptosis sensitivity in different immune cell subsets, how ferroptosis influences which immune cells infiltrate the TME, and how these interactions can determine epithelial-to-mesenchymal transition (EMT) and metastasis. While much focus has been placed on inducing ferroptosis in cancer cells, these are important considerations for how ferroptosis-modulating strategies impact anti-tumor immunity. From this perspective, we also discuss some promising immunotherapies in the field of ferroptosis and the challenges associated with targeting ferroptosis in specific immune cell populations.
Collapse
Affiliation(s)
- Gian Luca Lupica-Tondo
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Emily N. Arner
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Denis A. Mogilenko
- Department of Medicine, Department of Pathology, Microbiology and Immunology, Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Kelsey Voss
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Pharmacology, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
8
|
Panwar A, Lye A, Musib D, Upadhyay A, Karankumar I, Devi PB, Pal M, Maity B, Roy M. Strategic design and development of a siderophore mimic: pioneering anticancer therapy via ROS generation and ferroptosis. Dalton Trans 2024; 53:12119-12127. [PMID: 38979715 DOI: 10.1039/d4dt01461h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
We designed a tris-catecholate-based siderophore mimic, H6-T-CATL, to selectively chelate iron(III) from mitochondrial cytochromes and other iron-containing proteins within cellular matrices. This strategic sequestration aims to trigger apoptosis or ferroptosis in cancer cells through the glutathione (GSH)-dependent release of reduced iron and subsequent ROS-mediated cytotoxicity. Synthesis of H6-T-CATL involved precise peptide coupling reactions. Using the Fe(III)-porphyrin model (Fe-TPP-Cl), akin to cytochrome c, we studied H6-T-CATL's ability to extract iron(III), yielding a binding constant (Krel) of 1014 for the resulting iron(III) complex (FeIII-T-CATL)3-. This complex readily underwent GSH-mediated reduction to release bioavailable iron(II), which catalyzed Fenton-like reactions generating hydroxyl radicals (˙OH), confirmed by spectroscopic analyses. Our research underscores the potential of H6-T-CATL to induce cancer cell death by depleting iron(III) from cellular metalloproteins, releasing pro-apoptotic iron(II). Evaluation across various cancer types, including normal cells, demonstrated H6-T-CATL's cytotoxicity through ROS production, mitochondrial dysfunction, and activation of ferroptosis and DNA damage pathways. These findings propose a novel mechanism for cancer therapy, leveraging endogenous iron stores within cells. H6-T-CATL emerges as a promising next-generation anticancer agent, exploiting iron metabolism vulnerabilities to induce selective cancer cell death through ferroptosis induction.
Collapse
Affiliation(s)
- Abhishek Panwar
- Department of Chemistry, National Institute of Technology Manipur, Langol, Imphal West, 795004, Manipur, India.
| | - Anushree Lye
- Department of Systems Biology, Center of Biomedical Research (CBMR), Raebareli Road, Lucknow 226014, Uttar Pradesh, India.
| | - Dulal Musib
- Department of Chemistry, National Institute of Technology Manipur, Langol, Imphal West, 795004, Manipur, India.
| | - Aarti Upadhyay
- Department of Inorganic and Physical Chemistry, Indian Institute of Science Bangalore, Bangalore-50012, Karnataka, India
| | - Irungbam Karankumar
- Department of Chemistry, National Institute of Technology Manipur, Langol, Imphal West, 795004, Manipur, India.
| | - Paonam Bebika Devi
- Department of Chemistry, National Institute of Technology Manipur, Langol, Imphal West, 795004, Manipur, India.
| | - Maynak Pal
- Department of Chemistry, National Institute of Technology Manipur, Langol, Imphal West, 795004, Manipur, India.
| | - Biswanath Maity
- Department of Systems Biology, Center of Biomedical Research (CBMR), Raebareli Road, Lucknow 226014, Uttar Pradesh, India.
- Department of Biological Sciences, Bose Institute Unified Academic Campus, EN80, Sector V, Bidhan Nagar, Kolkata - 700091, West Bengal, India
| | - Mithun Roy
- Department of Chemistry, National Institute of Technology Manipur, Langol, Imphal West, 795004, Manipur, India.
- Department of Chemistry, National Institute of Technology Agartala, Jirania, West Tripura, Agartala, 799046, India
| |
Collapse
|
9
|
Shrestha RK, Nassar ZD, Hanson AR, Iggo R, Townley SL, Dehairs J, Mah CY, Helm M, Alizadeh-Ghodsi M, Pickering M, Ghesquière B, Watt MJ, Quek LE, Hoy AJ, Tilley WD, Swinnen JV, Butler LM, Selth LA. ACSM1 and ACSM3 Regulate Fatty Acid Metabolism to Support Prostate Cancer Growth and Constrain Ferroptosis. Cancer Res 2024; 84:2313-2332. [PMID: 38657108 DOI: 10.1158/0008-5472.can-23-1489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 02/23/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024]
Abstract
Solid tumors are highly reliant on lipids for energy, growth, and survival. In prostate cancer, the activity of the androgen receptor (AR) is associated with reprogramming of lipid metabolic processes. Here, we identified acyl-CoA synthetase medium chain family members 1 and 3 (ACSM1 and ACSM3) as AR-regulated mediators of prostate cancer metabolism and growth. ACSM1 and ACSM3 were upregulated in prostate tumors compared with nonmalignant tissues and other cancer types. Both enzymes enhanced proliferation and protected prostate cancer cells from death in vitro, whereas silencing ACSM3 led to reduced tumor growth in an orthotopic xenograft model. ACSM1 and ACSM3 were major regulators of the prostate cancer lipidome and enhanced energy production via fatty acid oxidation. Metabolic dysregulation caused by loss of ACSM1/3 led to mitochondrial oxidative stress, lipid peroxidation, and cell death by ferroptosis. Conversely, elevated ACSM1/3 activity enabled prostate cancer cells to survive toxic levels of medium chain fatty acids and promoted resistance to ferroptosis-inducing drugs and AR antagonists. Collectively, this study reveals a tumor-promoting function of medium chain acyl-CoA synthetases and positions ACSM1 and ACSM3 as key players in prostate cancer progression and therapy resistance. Significance: Androgen receptor-induced ACSM1 and ACSM3 mediate a metabolic pathway in prostate cancer that enables the utilization of medium chain fatty acids for energy production, blocks ferroptosis, and drives resistance to clinically approved antiandrogens.
Collapse
Affiliation(s)
- Raj K Shrestha
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, Australia
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, Australia
- Freemasons Centre for Male Health and Wellbeing, Flinders University, Bedford Park, Australia
| | - Zeyad D Nassar
- South Australian Health and Medical Research Institute, Adelaide, Australia
- Freemasons Centre for Male Health and Wellbeing, Adelaide Medical School, University of Adelaide, Adelaide, Australia
- South Australian immunoGENomics Cancer Institute (SAiGENCI), University of Adelaide, Adelaide, Australia
| | - Adrienne R Hanson
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, Australia
- Freemasons Centre for Male Health and Wellbeing, Flinders University, Bedford Park, Australia
| | - Richard Iggo
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, Australia
- Institut Bergonié Unicancer, INSERM, Bordeaux, France
| | - Scott L Townley
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, Australia
- Freemasons Centre for Male Health and Wellbeing, Flinders University, Bedford Park, Australia
| | - Jonas Dehairs
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Chui Y Mah
- South Australian Health and Medical Research Institute, Adelaide, Australia
- Freemasons Centre for Male Health and Wellbeing, Adelaide Medical School, University of Adelaide, Adelaide, Australia
- South Australian immunoGENomics Cancer Institute (SAiGENCI), University of Adelaide, Adelaide, Australia
| | - Madison Helm
- South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Mohammadreza Alizadeh-Ghodsi
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, Australia
- Freemasons Centre for Male Health and Wellbeing, Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Marie Pickering
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Bart Ghesquière
- Metabolomics Core Facility Leuven, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Applied Mass Spectrometry, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Matthew J Watt
- Department of Physiology, University of Melbourne, Melbourne, Australia
| | - Lake-Ee Quek
- School of Mathematics and Statistics, Charles Perkins Centre, Faculty of Science, The University of Sydney, Camperdown, Australia
| | - Andrew J Hoy
- School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
| | - Wayne D Tilley
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, Australia
- Freemasons Centre for Male Health and Wellbeing, Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Johannes V Swinnen
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Lisa M Butler
- South Australian Health and Medical Research Institute, Adelaide, Australia
- Freemasons Centre for Male Health and Wellbeing, Adelaide Medical School, University of Adelaide, Adelaide, Australia
- South Australian immunoGENomics Cancer Institute (SAiGENCI), University of Adelaide, Adelaide, Australia
| | - Luke A Selth
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, Australia
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, Australia
- Freemasons Centre for Male Health and Wellbeing, Flinders University, Bedford Park, Australia
| |
Collapse
|
10
|
Liu Y, Feng D, Shui L, Wang YJ, Yu L, Liu YQ, Tian JY. The research landscape of ferroptosis in neurodegenerative disease: a bibliometric analysis. Front Aging Neurosci 2024; 16:1417989. [PMID: 38962561 PMCID: PMC11221830 DOI: 10.3389/fnagi.2024.1417989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/06/2024] [Indexed: 07/05/2024] Open
Abstract
Background Ferroptosis, a newly proposed concept of programmed cell death, has garnered significant attention in research across different diseases in the last decade. Despite thorough citation analyses in neuroscience, there is a scarcity of information on ferroptosis research specifically related to neurodegenerative diseases. Method The Web of Science Core Collection database retrieved relevant articles and reviews. Data on publications, countries, institutions, authors, journals, citations, and keywords in the included studies were systematically analyzed using Microsoft Excel 2019 and CiteSpace 6.2.R7 software. Result A comprehensive analysis and visualization of 563 research papers on ferroptosis in neurodegenerative diseases from 2014 to 2023 revealed emerging research hotspots and trends. The number of annual publications in this field of study has displayed a pattern of stabilization in the early years of the decade, followed by a notable increase in the later years and peaking in 2023 with 196 publications. Regarding publication volume and total citations, notable research contributions were observed from countries, institutions, and authors in North America, Western Europe, and China. Current research endeavors primarily focus on understanding the intervention mechanisms of neurodegenerative diseases through the ferroptosis pathway and exploring and identifying potential therapeutic targets. Conclusion The study highlights key areas of interest and emerging trends in ferroptosis research on neurodegenerative diseases, offering valuable insights for further exploration and potential directions for diagnosing and treating such conditions.
Collapse
Affiliation(s)
- Yun Liu
- First Clinical Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Dan Feng
- First Clinical Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Ling Shui
- Department of General Practice, Guizhou Provincial People's Hospital, Guiyang, China
| | - Yu-jie Wang
- First Clinical Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Li Yu
- First Clinical Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yu-qi Liu
- First Clinical Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Jin-yong Tian
- Department of General Practice, Guizhou Provincial People's Hospital, Guiyang, China
| |
Collapse
|
11
|
Chiang CC, Anne R, Chawla P, Shaw RM, He S, Rock EC, Zhou M, Cheng J, Gong YN, Chen YC. Deep learning unlocks label-free viability assessment of cancer spheroids in microfluidics. LAB ON A CHIP 2024; 24:3169-3182. [PMID: 38804084 PMCID: PMC11165951 DOI: 10.1039/d4lc00197d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
Despite recent advances in cancer treatment, refining therapeutic agents remains a critical task for oncologists. Precise evaluation of drug effectiveness necessitates the use of 3D cell culture instead of traditional 2D monolayers. Microfluidic platforms have enabled high-throughput drug screening with 3D models, but current viability assays for 3D cancer spheroids have limitations in reliability and cytotoxicity. This study introduces a deep learning model for non-destructive, label-free viability estimation based on phase-contrast images, providing a cost-effective, high-throughput solution for continuous spheroid monitoring in microfluidics. Microfluidic technology facilitated the creation of a high-throughput cancer spheroid platform with approximately 12 000 spheroids per chip for drug screening. Validation involved tests with eight conventional chemotherapeutic drugs, revealing a strong correlation between viability assessed via LIVE/DEAD staining and phase-contrast morphology. Extending the model's application to novel compounds and cell lines not in the training dataset yielded promising results, implying the potential for a universal viability estimation model. Experiments with an alternative microscopy setup supported the model's transferability across different laboratories. Using this method, we also tracked the dynamic changes in spheroid viability during the course of drug administration. In summary, this research integrates a robust platform with high-throughput microfluidic cancer spheroid assays and deep learning-based viability estimation, with broad applicability to various cell lines, compounds, and research settings.
Collapse
Affiliation(s)
- Chun-Cheng Chiang
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA.
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
| | - Rajiv Anne
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA.
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA 15260, USA
| | - Pooja Chawla
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA 15260, USA
| | - Rachel M Shaw
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA 15260, USA
| | - Sarah He
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA.
- Carnegie Mellon University, Department of Biological Sciences, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
| | - Edwin C Rock
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA 15260, USA
| | - Mengli Zhou
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA.
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
- Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Jinxiong Cheng
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA.
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA 15260, USA
| | - Yi-Nan Gong
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA.
- Department of Immunology, University of Pittsburgh School of Medicine, 3420 Forbes Avenue, Pittsburgh, PA, 15260, USA
| | - Yu-Chih Chen
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA.
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA 15260, USA
- CMU-Pitt Ph.D. Program in Computational Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
| |
Collapse
|
12
|
Roy N, Paira P. Glutathione Depletion and Stalwart Anticancer Activity of Metallotherapeutics Inducing Programmed Cell Death: Opening a New Window for Cancer Therapy. ACS OMEGA 2024; 9:20670-20701. [PMID: 38764686 PMCID: PMC11097382 DOI: 10.1021/acsomega.3c08890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/22/2024] [Accepted: 04/05/2024] [Indexed: 05/21/2024]
Abstract
The cellular defense system against exogenous substances makes therapeutics inefficient as intracellular glutathione (GSH) exhibits an astounding antioxidant activity in scavenging reactive oxygen species (ROS) or reactive nitrogen species (RNS) or other free radicals produced by the therapeutics. In the cancer cell microenvironment, the intracellular GSH level becomes exceptionally high to fight against oxidative stress created by the production of ROS/RNS or any free radicals, which are the byproducts of intracellular redox reactions or cellular respiration processes. Thus, in order to maintain redox homeostasis for survival of cancer cells and their rapid proliferation, the GSH level starts to escalate. In this circumstance, the administration of anticancer therapeutics is in vain, as the elevated GSH level reduces their potential by reduction or by scavenging the ROS/RNS they produce. Therefore, in order to augment the therapeutic potential of anticancer agents against elevated GSH condition, the GSH level must be depleted by hook or by crook. Hence, this Review aims to compile precisely the role of GSH in cancer cells, the importance of its depletion for cancer therapy and examples of anticancer activity of a few selected metal complexes which are able to trigger cancer cell death by depleting the GSH level.
Collapse
Affiliation(s)
- Nilmadhab Roy
- Department of Chemistry, School of
Advanced Sciences, Vellore Institute of
Technology, Vellore-632014, Tamilnadu, India
| | - Priyankar Paira
- Department of Chemistry, School of
Advanced Sciences, Vellore Institute of
Technology, Vellore-632014, Tamilnadu, India
| |
Collapse
|
13
|
Pang Q, Tang Z, Luo L. The crosstalk between oncogenic signaling and ferroptosis in cancer. Crit Rev Oncol Hematol 2024; 197:104349. [PMID: 38626848 DOI: 10.1016/j.critrevonc.2024.104349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 03/13/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024] Open
Abstract
Ferroptosis, a novel form of cell death regulation, was identified in 2012. It is characterized by unique features that differentiate it from other types of cell death, including necrosis, apoptosis, autophagy, and pyroptosis. Ferroptosis is defined by an abundance of iron ions and lipid peroxidation, resulting in alterations in subcellular structures, an elevation in reactive oxygen species (ROS), a reduction in glutathione (GSH) levels, and an augmentation in Fe (II) cytokines. Ferroptosis, a regulated process, is controlled by an intricate network of signaling pathways, where multiple stimuli can either enhance or hinder the process. This review primarily examines the defensive mechanisms of ferroptosis and its interaction with the tumor microenvironment. The analysis focuses on the pathways that involve AMPK, p53, NF2, mTOR, System Xc-, Wnt, Hippo, Nrf2, and cGAS-STING. The text discusses the possibilities of employing a combination therapy that targets several pathways for the treatment of cancer. It emphasizes the necessity for additional study in this field.
Collapse
Affiliation(s)
- Qianghu Pang
- The First Clinical College, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Zhirou Tang
- The First Clinical College, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Lianxiang Luo
- The Marine Biomedical Research Institute of Guangdong Zhanjiang,School of Ocean and Tropical Medicine. Guangdong Medical University, Zhanjiang, Guangdong 524023, China.
| |
Collapse
|
14
|
Puerta A, González-Bakker A, Brandão P, Pineiro M, Burke AJ, Giovannetti E, Fernandes MX, Padrón JM. Early pharmacological profiling of isatin derivatives as potent and selective cytotoxic agents. Biochem Pharmacol 2024; 222:116059. [PMID: 38364984 DOI: 10.1016/j.bcp.2024.116059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
Isatin derivatives have attracted a lot of interest for their potential in the development of new anticancer drugs. A library of 38 isatin derivatives, created through an Ugi four-component reaction, underwent an initial screening in a panel of six human solid tumor cell lines. The four most active derivatives were then selected for further testing. These compounds showed selectivity towards the non-small cell lung cancer (NSCLC) cell line SW1573, whilst NSCLC A549 cells were barely affected. The combination of phenotypic assays, including wound healing, clonogenic and continuous live cell imaging provided a deeper understanding of the compounds' mode of action. In particular, the latter demonstrated that isatin derivatives were able to induce necroptosis in SW1573 cells. The kinetics of cell death showed that necroptosis appeared after 2.5 h of exposure, which could be delayed to 7 h when co-treated with necrostatin-1. Interaction between the isatin derivatives and the KRAS G12C protein variant was discarded after in silico studies. Further studies are warranted to identify the cellular target responsible for the observed selectivity among cell lines.
Collapse
Affiliation(s)
- Adrián Puerta
- BioLab, Instituto Universitario de Bio-Orgánica Antonio González (IUBO-AG), Universidad de La Laguna, PO Box 456, 38200 La Laguna, Spain
| | - Aday González-Bakker
- BioLab, Instituto Universitario de Bio-Orgánica Antonio González (IUBO-AG), Universidad de La Laguna, PO Box 456, 38200 La Laguna, Spain
| | - Pedro Brandão
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, 2829-511 Almada, Portugal; iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, and Associate Laboratory i4HB-Institute for Health and Bio-Economy, Instituto Superior Técnico, University of Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; Centro de Química de Coimbra - Institute of Molecular Sciences (CQC-IMS), Departamento de Química, Faculdade de Ciências e Tecnologia, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Marta Pineiro
- Centro de Química de Coimbra - Institute of Molecular Sciences (CQC-IMS), Departamento de Química, Faculdade de Ciências e Tecnologia, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Anthony J Burke
- Centro de Química de Coimbra - Institute of Molecular Sciences (CQC-IMS), Departamento de Química, Faculdade de Ciências e Tecnologia, University of Coimbra, 3004-535 Coimbra, Portugal; Faculty Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Centers (Amsterdam UMC), Vrije Universiteit Amsterdam, The Netherlands; Cancer Pharmacology Lab, Fondazione Pisana per la Scienza, Pisa, Italy
| | - Miguel X Fernandes
- Department of Engineering and Chemical Sciences, Karlstad University, 65188 Karlstad, Sweden
| | - José M Padrón
- BioLab, Instituto Universitario de Bio-Orgánica Antonio González (IUBO-AG), Universidad de La Laguna, PO Box 456, 38200 La Laguna, Spain.
| |
Collapse
|
15
|
Wu A, Li M, Chen Y, Zhang W, Li H, Chen J, Gu K, Wang X. Multienzyme Active Manganese Oxide Alleviates Acute Liver Injury by Mimicking Redox Regulatory System and Inhibiting Ferroptosis. Adv Healthc Mater 2024; 13:e2302556. [PMID: 38238011 DOI: 10.1002/adhm.202302556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 01/11/2024] [Indexed: 01/28/2024]
Abstract
Drug-induced liver injury (DILI) is a severe condition characterized by impaired liver function and the excessive activation of ferroptosis. Unfortunately, there are limited options currently available for preventing or treating DILI. In this study, MnO2 nanoflowers (MnO2Nfs) with remarkable capabilities of mimicking essential antioxidant enzymes, including catalase, superoxide dismutase (SOD), and glutathione peroxidase are successfully synthesized, and SOD is the dominant enzyme among them by density functional theory. Notably, MnO2Nfs demonstrate high efficiency in effectively eliminating diverse reactive oxygen species (ROS) such as hydrogen peroxide (H2O2), superoxide anion (O2 •-), and hydroxyl radical (•OH). Through in vitro experiments, it is demonstrated that MnO2Nfs significantly enhance the recovery of intracellular glutathione content, acting as a potent inhibitor of ferroptosis even in the presence of ferroptosis activators. Moreover, MnO2Nfs exhibit excellent liver accumulation properties, providing robust protection against oxidative damage. Specifically, they attenuate acetaminophen-induced ferroptosis by inhibiting ferritinophagy and activating the P62-NRF2-GPX4 antioxidation signaling pathways. These findings highlight the remarkable ROS scavenging ability of MnO2Nfs and hold great promise as an innovative and potential clinical therapy for DILI and other ROS-related liver diseases.
Collapse
Affiliation(s)
- Aimin Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, China
| | - Min Li
- College of Science, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yinyin Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Wei Zhang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Haoran Li
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Junzhou Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ke Gu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xianxiang Wang
- College of Science, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| |
Collapse
|
16
|
Kerkhove L, Geirnaert F, Dufait I, De Ridder M. Ferroptosis: Frenemy of Radiotherapy. Int J Mol Sci 2024; 25:3641. [PMID: 38612455 PMCID: PMC11011408 DOI: 10.3390/ijms25073641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 04/14/2024] Open
Abstract
Recently, it was established that ferroptosis, a type of iron-dependent regulated cell death, plays a prominent role in radiotherapy-triggered cell death. Accordingly, ferroptosis inducers attracted a lot of interest as potential radio-synergizing drugs, ultimately enhancing radioresponses and patient outcomes. Nevertheless, the tumor microenvironment seems to have a major impact on ferroptosis induction. The influence of hypoxic conditions is an area of interest, as it remains the principal hurdle in the field of radiotherapy. In this review, we focus on the implications of hypoxic conditions on ferroptosis, contemplating the plausibility of using ferroptosis inducers as clinical radiosensitizers. Furthermore, we dive into the prospects of drug repurposing in the domain of ferroptosis inducers and radiosensitizers. Lastly, the potential adverse effects of ferroptosis inducers on normal tissue were discussed in detail. This review will provide an important framework for subsequent ferroptosis research, ascertaining the feasibility of ferroptosis inducers as clinical radiosensitizers.
Collapse
Affiliation(s)
| | | | | | - Mark De Ridder
- Department of Radiotherapy, UZ Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium; (L.K.); (F.G.); (I.D.)
| |
Collapse
|
17
|
Oryani MA, Nosrati S, Javid H, Mehri A, Hashemzadeh A, Karimi-Shahri M. Targeted cancer treatment using folate-conjugated sponge-like ZIF-8 nanoparticles: a review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1377-1404. [PMID: 37715816 DOI: 10.1007/s00210-023-02707-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/02/2023] [Indexed: 09/18/2023]
Abstract
ZIF-8 (zeolitic imidazolate framework-8) is a potential drug delivery system because of its unique properties, which include a large surface area, a large pore capacity, a large loading capacity, and outstanding stability under physiological conditions. ZIF-8 nanoparticles may be readily functionalized with targeting ligands for the identification and absorption of particular cancer cells, enhancing the efficacy of chemotherapeutic medicines and reducing adverse effects. ZIF-8 is also pH-responsive, allowing medication release in the acidic milieu of cancer cells. Because of its tunable structure, it can be easily functionalized to design cancer-specific targeted medicines. The delivery of ZIF-8 to cancer cells can be facilitated by folic acid-conjugation. Hence, it can bind to overexpressed folate receptors on the surface of cancer cells, which holds the promise of reducing unwanted deliveries. As a result of its importance in cancer treatment, the folate-conjugated ZIF-8 was the major focus of this review.
Collapse
Affiliation(s)
- Mahsa Akbari Oryani
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shamim Nosrati
- Department of Clinical Biochemistry, Faculty of Medicine, Azad Shahroud University, Shahroud, Iran
| | - Hossein Javid
- Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran.
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Ali Mehri
- Endoscopic and Minimally Invasive Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Hashemzadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehdi Karimi-Shahri
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Pathology, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran.
| |
Collapse
|
18
|
Feng D, Tuo Z, Wang J, Ye L, Li D, Wu R, Wei W, Yang Y, Zhang C. Establishment of novel ferroptosis-related prognostic subtypes correlating with immune dysfunction in prostate cancer patients. Heliyon 2024; 10:e23495. [PMID: 38187257 PMCID: PMC10770465 DOI: 10.1016/j.heliyon.2023.e23495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/19/2023] [Accepted: 12/05/2023] [Indexed: 01/09/2024] Open
Abstract
Background We aimed to identify two new prognostic subtypes and create a predictive index for prostate cancer (PCa) patients based on ferroptosis database. Methods The nonnegative matrix factorization approach was used to identify molecular subtypes. We investigate the differences between cluster 1 and cluster 2 in terms of clinical features, functional pathways, tumour stemness, tumour heterogeneity, gene mutation and tumour immune microenvironment score after identifying the two molecular subtypes. Colony formation assay and flow cytometry assay were performed. Results The stratification of two clusters was closely connected to BCR-free survival using the nonnegative matrix factorization method, which was validated in the other three datasets. Furthermore, multivariate Cox regression analysis revealed that this classification was an independent risk factor for patients with PCa. Ribosome, aminoacyl tRNA production, oxidative phosphorylation, and Parkinson's disease-related pathways were shown to be highly enriched in cluster 1. In comparison to cluster 2, patients in cluster 1 exhibited significantly reduced CD4+ T cells, CD8+ T cells, neutrophils, dendritic cells and tumor immune microenvironment scores. Only HHLA2 was more abundant in cluster 1. Moreover, we found that P4HB downregulation could significantly inhibit the colony formation ability and contributed to cell apoptosis of C4-2B and DU145 cell lines. Conclusions We discovered two new prognostic subtypes associated with immunological dysfunction in PCa patients based on ferroptosis-related genes and found that P4HB downregulation could significantly inhibit the colony formation ability and contributed to cell apoptosis of PCa cell lines.
Collapse
Affiliation(s)
- Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Zhouting Tuo
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Jie Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Luxia Ye
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Dengxiong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ruicheng Wu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wuran Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yubo Yang
- Department of Urology, Three Gorges Hospital, Chongqing University, Wanzhou, Chongqing, 404000, China
| | - Chi Zhang
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| |
Collapse
|
19
|
Yang F, Gong H, Chen S, Li J, Huang N, Wang M. Depletion of SLC7A11 Sensitizes Nasopharyngeal Carcinoma Cells to Ionizing Radiation. Protein Pept Lett 2024; 31:323-331. [PMID: 38779733 DOI: 10.2174/0109298665308572240513113105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Radiotherapy is the primary treatment choice for Nasopharyngeal Carcinoma (NPC). However, its efficacy is compromised due to radioresistance. Ferroptosis, a novel iron-dependent regulated cell death induced by Ionizing Radiation (IR), plays a role in promoting cancer cell death. Yet, the relationship between enhanced ferroptosis and increased sensitivity of NPC cells to IR remains poorly understood. OBJECTIVE This study aimed to explore the association between IR and ferroptosis in NPC, as well as the role of the ferroptosis repressor SLC7A11 in IR-treated NPC cells. METHODS CNE1 and HNE-2 NPC cells were subjected to IR treatment. We performed qPCR and western blotting to evaluate the expression of ferroptosis-related genes in both control and IR-treated NPC cells. Additionally, we used the MTT assay to measure the viability of these NPC cells. JC-1 and DCFH-DA staining were employed to assess mitochondrial membrane potential and Reactive Oxygen Species (ROS) levels in both control and IR-treated NPC cells. Furthermore, we examined the levels of Fe2+, Malondialdehyde (MDA), reduced Glutathione (GSH), and oxidized glutathione (GSSG) in these cells. Moreover, we depleted SLC7A11 in IR-treated NPC cells to investigate its impact on the ferroptosis of these cells. RESULTS IR upregulated the expression of ferroptosis-related genes, including SLC7A11, ACSL4, COX2, FTH1, and GPX4, in CNE1 and HNE-2 cells. IR treatment also resulted in decreased cell viability, disrupted mitochondrial membrane potential, increased ROS levels, altered glutathione levels, and elevated Fe2+ levels. Knockdown of SLC7A11 enhanced the sensitivity of NPC cells to IR. CONCLUSION IR may induce ferroptosis in NPC cells, and stimulating ferroptosis could potentially serve as a therapeutic strategy to enhance the efficacy of IR in treating NPC patients.
Collapse
Affiliation(s)
- Fan Yang
- Department of Otorhinolaryngology - Head and Neck, Fuzong Clinical College of Fujian Medical University, the 900th Hospital of Joint Logistic Support Force of PLA, Fuzhou 350025, China
| | - Hongxun Gong
- Department of Otorhinolaryngology - Head and Neck, Fuzong Clinical College of Fujian Medical University, the 900th Hospital of Joint Logistic Support Force of PLA, Fuzhou 350025, China
| | - Shiyan Chen
- Department of Otorhinolaryngology - Head and Neck, Fuzong Clinical College of Fujian Medical University, the 900th Hospital of Joint Logistic Support Force of PLA, Fuzhou 350025, China
| | - Jianzhong Li
- Department of Otorhinolaryngology - Head and Neck, Fuzong Clinical College of Fujian Medical University, the 900th Hospital of Joint Logistic Support Force of PLA, Fuzhou 350025, China
| | - Ning Huang
- Department of Otorhinolaryngology - Head and Neck, Fuzong Clinical College of Fujian Medical University, the 900th Hospital of Joint Logistic Support Force of PLA, Fuzhou 350025, China
| | - Maoxin Wang
- Department of Otorhinolaryngology - Head and Neck, Fuzong Clinical College of Fujian Medical University, the 900th Hospital of Joint Logistic Support Force of PLA, Fuzhou 350025, China
| |
Collapse
|
20
|
Žalytė E. Ferroptosis, Metabolic Rewiring, and Endometrial Cancer. Int J Mol Sci 2023; 25:75. [PMID: 38203246 PMCID: PMC10778781 DOI: 10.3390/ijms25010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Ferroptosis is a newly discovered form of regulated cell death. The main feature of ferroptosis is excessive membrane lipid peroxidation caused by iron-mediated chemical and enzymatic reactions. In normal cells, harmful lipid peroxides are neutralized by glutathione peroxidase 4 (GPX4). When GPX4 is inhibited, ferroptosis occurs. In mammalian cells, ferroptosis serves as a tumor suppression mechanism. Not surprisingly, in recent years, ferroptosis induction has gained attention as a potential anticancer strategy, alone or in combination with other conventional therapies. However, sensitivity to ferroptosis inducers depends on the metabolic state of the cell. Endometrial cancer (EC) is the sixth most common cancer in the world, with more than 66,000 new cases diagnosed every year. Out of all gynecological cancers, carcinogenesis of EC is mostly dependent on metabolic abnormalities. Changes in the uptake and catabolism of iron, lipids, glucose, and glutamine affect the redox capacity of EC cells and, consequently, their sensitivity to ferroptosis-inducing agents. In addition to this, in EC cells, ferroptosis-related genes are usually mutated and overexpressed, which makes ferroptosis a promising target for EC prediction, diagnosis, and therapy. However, for a successful application of ferroptosis, the connection between metabolic rewiring and ferroptosis in EC needs to be deciphered, which is the focus of this review.
Collapse
Affiliation(s)
- Eglė Žalytė
- Institute of Biosciences, Life Sciences Center, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania
| |
Collapse
|
21
|
Chen B, Zhao L, Yang R, Xu T. The recent advancements of ferroptosis in the diagnosis, treatment and prognosis of ovarian cancer. Front Genet 2023; 14:1275154. [PMID: 38028615 PMCID: PMC10665572 DOI: 10.3389/fgene.2023.1275154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
Ovarian cancer affects the female reproductive system and is the primary cause of cancer related mortality globally. The imprecise and non-specific nature of ovarian cancer symptoms often results in patients being diagnosed at an advanced stage, with metastatic lesions extending beyond the ovary. This presents a significant clinical challenge and imposes a substantial economic burden on both patients and society. Despite advancements in surgery, chemotherapy, and immunotherapy, the prognosis for most patients with ovarian cancer remains unsatisfactory. Therefore, the development of novel treatment strategies is imperative. Ferroptosis, a distinct form of regulated cell death, characterized by iron-dependent lipid peroxidation, differs from autophagy, apoptosis, and necrosis, and may hold promise as a novel cell death. Numerous studies have demonstrated the involvement of ferroptosis in various conventional signaling pathways and biological processes. Recent investigations have revealed the significant contribution of ferroptosis in the initiation, progression, and metastasis of diverse malignant tumors, including ovarian cancer. Moreover, ferroptosis exhibits a synergistic effect with chemotherapy, radiotherapy, and immunotherapy in restraining the proliferation of ovarian cancer cells. The aforementioned implies that ferroptosis holds considerable importance in the management of ovarian cancer and has the potential to serve as a novel therapeutic target. The present review provides a comprehensive overview of the salient features of ferroptosis, encompassing its underlying mechanisms and functional role in ovarian cancer, along with the associated signaling pathways and genes. Furthermore, the review highlights the prospective utility of ferroptosis in the treatment of ovarian cancer.
Collapse
Affiliation(s)
| | | | | | - Tianmin Xu
- The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
22
|
Rajput D, Mahalingavelar P, Soppina V, Kanvah S. Improved lipophilic probe for visualizing lipid droplets in erastin-induced ferroptosis. Org Biomol Chem 2023; 21:8554-8562. [PMID: 37853800 DOI: 10.1039/d3ob01545a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Studying the viscosity of lipid droplets (LDs) provides insights into various diseases associated with LD viscosity. Ferroptosis is one such process in which LD viscosity increases due to the abnormal accumulation of lipid ROS (reactive oxygen species) caused by peroxidation. For investigating the LD imaging and ferroptosis, we developed two molecules (NNS and DNS) that show significant Stokes shifts (182-232 nm) and utilized them for sub-cellular imaging. Excellent localization is noted with the lipid droplets. Subsequently, DNS was used to monitor the variations in the LD viscosity during erastin-induced ferroptosis followed by ferroptosis inhibition. Additionally, we explored variations in the LD quantity, size, and accumulation when subjected to oleic acid stimulation. Extensive DFT and TDDFT investigations have been employed to understand the effect of NO2 substitution on the linear and branched molecular derivatives. Our results with the improved lipophilic fluorophore, exhibiting excellent colocalization with LDs, offer valuable insights into sensing erastin-induced ferroptosis and have the potential for real-time diagnostic applications.
Collapse
Affiliation(s)
- Deeksha Rajput
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat - 382055, India.
| | | | - Virupakshi Soppina
- Department of Biological Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat-382055, India.
| | - Sriram Kanvah
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat - 382055, India.
| |
Collapse
|
23
|
Zhang F, Wu L, Feng S, Zhao Z, Zhang K, Thakur A, Xu Z, Liang Q, Liu Y, Liu W, Yan Y. FHOD1 is upregulated in glioma cells and attenuates ferroptosis of glioma cells by targeting HSPB1 signaling. CNS Neurosci Ther 2023; 29:3351-3363. [PMID: 37211949 PMCID: PMC10580363 DOI: 10.1111/cns.14264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 05/23/2023] Open
Abstract
BACKGROUND As a new type of regulatory cell death, ferroptosis has been proven to be involved in cancer pathogenesis and therapeutic response. However, the detailed roles of ferroptosis or ferroptosis-associated genes in glioma remain to be clarified. METHODS Here, we performed the TMT/iTRAQ-Based Quantitative Proteomic Approach to identify the differentially expressed proteins between glioma specimens and adjacent tissues. Kaplan-Meier survival was used to estimate the survival values. We also explored the regulatory roles of abnormally expressed formin homology 2 domain-containing protein 1 (FHOD1) in glioma ferroptosis sensitivity. RESULTS In our study, FHOD1 was identified to be the most significantly upregulated protein in glioma tissues. Multiple glioma datasets revealed that the glioma patients with low FHOD1 expression displayed favorable survival time. Functional analysis proved that the knockdown of FHOD1 inhibited cell growth and improved the cellular sensitivity to ferroptosis in glioma cells T98G and U251. Mechanically, we found the up-regulation and hypomethylation of HSPB1, a negative regulator of ferroptosis, in glioma tissues. FHOD1 knockdown could enhance the ferroptosis sensitivity of glioma cells via up-regulating the methylated heat-shock protein B (HSPB1). Overexpression of HSPB1 significantly reversed FHOD1 knockdown-mediated ferroptosis. CONCLUSIONS In summary, this study demonstrated that the FHOD1-HSPB1 axis exerts marked regulatory effects on ferroptosis, and might affect the prognosis and therapeutic response in glioma.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Gynecology, Xiangya HospitalCentral South UniversityChangshaChina
- Department of Physiology, School of Basic Medical ScienceCentral South UniversityChangshaChina
| | - Lixiang Wu
- Department of Physiology, School of Basic Medical ScienceCentral South UniversityChangshaChina
| | - Songshan Feng
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
| | - Zijin Zhao
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
| | - Kui Zhang
- State Key Laboratory of Silkworm Genome Biology, Medical Research InstituteSouthwest UniversityChongqingChina
| | - Abhimanyu Thakur
- Pritzker School of Molecular Engineering, Ben May Department for Cancer ResearchUniversity of ChicagoChicagoIllinoisUSA
| | - Zhijie Xu
- Department of Pathology, Xiangya HospitalCentral South UniversityChangshaChina
| | - Qiuju Liang
- Department of Pharmacy, Xiangya HospitalCentral South UniversityChangshaChina
| | - Yuanhong Liu
- Department of Pharmacy, Xiangya HospitalCentral South UniversityChangshaChina
| | - Wei Liu
- Department of Pathology, Xiangya HospitalCentral South UniversityChangshaChina
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
| |
Collapse
|
24
|
Wang W, Ma F, Cheung YT, Zeng G, Zhou Y, Chen Z, Liang L, Luo T, Tong R. Marine Alkaloid Lepadins E and H Induce Ferroptosis for Cancer Chemotherapy. J Med Chem 2023; 66:11201-11215. [PMID: 37578947 DOI: 10.1021/acs.jmedchem.3c00659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Induction of ferroptosis emerges as an effective method for cancer treatment. With massive efforts to elucidate the ferroptosis mechanism, the development of new ferroptosis inducers proceeds rather slowly, with only a few small molecules identified. Herein, we report our discovery of marine alkaloid lepadins E and H as a new class of ferroptosis inducers. Our in vitro studies show that lepadins E and H exhibit significant cytotoxicity, promote p53 expression, increase ROS production and lipid peroxides, reduce SLC7A11 and GPX4 levels, and upregulate ACSL4 expression, all of which consistently support induction of ferroptosis through the classical p53-SLC7A11-GPX4 pathway. Our animal model study of lepadin H confirms its in vivo antitumor efficacy with negligible toxicity to normal organs. This work elucidates the mode of action of lepadins (E and H) and verifies their in vivo efficacy as a new class of ferroptosis inducers for anticancer therapy with translational potential.
Collapse
Affiliation(s)
- Wenjun Wang
- Department of Chemistry, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong 999077, China
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518055, China
| | - Foqing Ma
- Department of Chemistry, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Yuen Tsz Cheung
- Department of Chemistry, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Guihua Zeng
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518055, China
| | - Yiqin Zhou
- Department of Chemistry, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Zijing Chen
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Lixin Liang
- Department of Chemistry, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Tuoping Luo
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518055, China
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Rongbiao Tong
- Department of Chemistry, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong 999077, China
| |
Collapse
|
25
|
Feng D, Li L, Li D, Wu R, Zhu W, Wang J, Ye L, Han P. Prolyl 4-hydroxylase subunit beta (P4HB) could serve as a prognostic and radiosensitivity biomarker for prostate cancer patients. Eur J Med Res 2023; 28:245. [PMID: 37480146 PMCID: PMC10362756 DOI: 10.1186/s40001-023-01215-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 07/08/2023] [Indexed: 07/23/2023] Open
Abstract
BACKGROUND Prolyl 4-hydroxylase subunit beta (P4HB) has been reported as a suppressor in ferroptosis. However, no known empirical research has focused on exploring relationships between P4HB and prostate cancer (PCa). In this research, we initially examine the function of P4HB in PCa by thorough analysis of numerous databases and proliferation experiment. METHODS We analyzed the correlations of P4HB expression with prognosis, clinical features, mutation genes, tumor heterogeneity, stemness, tumor immune microenvironment and PCa cells using multiple databases and in vitro experiment with R 3.6.3 software and its suitable packages. RESULTS P4HB was significantly upregulated in tumor tissues compared to normal tissues and was closely related to biochemical recurrence-free survival. In terms of clinical correlations, we found that higher P4HB expression was significantly related to older age, higher Gleason score, advanced T stage and residual tumor. Surprisingly, P4HB had highly diagnostic accuracy of radiotherapy resistance (AUC 0.938). TGF beta signaling pathway and dorso ventral axis formation were upregulated in the group of low-expression P4HB. For tumor stemness, P4HB expression was positively related to EREG.EXPss and RNAss, but was negatively associated with ENHss and DNAss with statistical significance. For tumor heterogeneity, P4HB expression was positively related to MATH, but was negatively associated with tumor ploidy and microsatellite instability. For the overall assessment of TME, we observed that P4HB expression was negatively associated with all parameters, including B cells, CD4+ T cells, CD8+ T cells, neutrophils, macrophages, dendritic cells, stromal score, immune score and ESTIMATE score. Spearman analysis showed that P4HB expression was negatively related to TIDE score with statistical significance. In vitro experiment, RT-qPCR and western blot showed that three siRNAs of P4HB were effective on the knockdown of P4HB expression. Furthermore, we observed that the downregulation of P4HB had significant influence on the cell proliferation of six PCa cell lines, including LNCap, C4-2, C4-2B, PC3, DU145 and 22RV1 cells. CONCLUSIONS In this study, we found that P4HB might serve as a prognostic biomarker and predict radiotherapy resistance for PCa patients. Downregulation of P4HB expression could inhibit the cell proliferation of PCa cells.
Collapse
Affiliation(s)
- Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041 Sichuan People’s Republic of China
| | - Li Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041 Sichuan People’s Republic of China
| | - Dengxiong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041 Sichuan People’s Republic of China
| | - Ruicheng Wu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041 Sichuan People’s Republic of China
| | - Weizhen Zhu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041 Sichuan People’s Republic of China
| | - Jie Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041 Sichuan People’s Republic of China
| | - Luxia Ye
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Ping Han
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041 Sichuan People’s Republic of China
| |
Collapse
|
26
|
Gu H, Liu Y, Zhao Y, Qu H, Li Y, Ahmed AA, Liu HY, Hu P, Cai D. Hepatic Anti-Oxidative Genes CAT and GPX4 Are Epigenetically Modulated by RORγ/NRF2 in Alphacoronavirus-Exposed Piglets. Antioxidants (Basel) 2023; 12:1305. [PMID: 37372035 DOI: 10.3390/antiox12061305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/12/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
As a member of alpha-coronaviruses, PEDV could lead to severe diarrhea and dehydration in newborn piglets. Given that lipid peroxides in the liver are key mediators of cell proliferation and death, the role and regulation of endogenous lipid peroxide metabolism in response to coronavirus infection need to be illuminated. The enzymatic activities of SOD, CAT, mitochondrial complex-I, complex-III, and complex-V, along with the glutathione and ATP contents, were significantly decreased in the liver of PEDV piglets. In contrast, the lipid peroxidation biomarkers, malondialdehyde, and ROS were markedly elevated. Moreover, we found that the peroxisome metabolism was inhibited by the PEDV infection using transcriptome analysis. These down-regulated anti-oxidative genes, including GPX4, CAT, SOD1, SOD2, GCLC, and SLC7A11, were further validated by qRT-PCR and immunoblotting. Because the nuclear receptor RORγ-driven MVA pathway is critical for LPO, we provided new evidence that RORγ also controlled the genes CAT and GPX4 involved in peroxisome metabolism in the PEDV piglets. We found that RORγ directly binds to these two genes using ChIP-seq and ChIP-qPCR analysis, where PEDV strongly repressed the binding enrichments. The occupancies of histone active marks such as H3K9/27ac and H3K4me1/2, together with active co-factor p300 and polymerase II at the locus of CAT and GPX4, were significantly decreased. Importantly, PEDV infection disrupted the physical association between RORγ and NRF2, facilitating the down-regulation of the CAT and GPX4 genes at the transcriptional levels. RORγ is a potential factor in modulating the CAT and GPX4 gene expressions in the liver of PEDV piglets by interacting with NRF2 and histone modifications.
Collapse
Affiliation(s)
- Haotian Gu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yaya Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yahui Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Huan Qu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yanhua Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Abdelkareem A Ahmed
- Biomedical Research Institute, Darfur University College, Nyala 56022, Sudan
| | - Hao-Yu Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225009, China
| | - Ping Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225009, China
| | - Demin Cai
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225009, China
| |
Collapse
|
27
|
Kalkavan H, Rühl S, Shaw JJP, Green DR. Non-lethal outcomes of engaging regulated cell death pathways in cancer. NATURE CANCER 2023; 4:795-806. [PMID: 37277528 PMCID: PMC10416134 DOI: 10.1038/s43018-023-00571-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 04/27/2023] [Indexed: 06/07/2023]
Abstract
Regulated cell death (RCD) is essential for successful systemic cancer therapy. Yet, the engagement of RCD pathways does not inevitably result in cell death. Instead, RCD pathways can take part in diverse biological processes if the cells survive. Consequently, these surviving cells, for which we propose the term 'flatliners', harbor important functions. These evolutionarily conserved responses can be exploited by cancer cells to promote their own survival and growth, with challenges and opportunities for cancer therapy.
Collapse
Affiliation(s)
- Halime Kalkavan
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
- West German Cancer Center, Department of Medical Oncology, University Hospital Essen, Essen, Germany
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany
| | - Sebastian Rühl
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
- T3 Pharmaceuticals AG, Allschwil, Switzerland
| | - Jeremy J P Shaw
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Douglas R Green
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
28
|
Wang S, Yu H, Li L, Zhang M, Fu Y, Lin Z, Li J, Zhong F, Liu H, Wu Y. Fluorescent Turn-On Probes for Visualizing GPx4 Levels in Live Cells and Predicting Drug Sensitivity. Anal Chem 2023. [PMID: 37256969 DOI: 10.1021/acs.analchem.3c00864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Glutathione peroxidase 4 (GPx4) is the membrane peroxidase in mammals that is essential for protecting cells against oxidative damage and critical for ferroptosis. However, no live cell probe is currently available to specifically label GPx4. Herein, we report both inhibitory and noninhibitory fluorescent turn-on probes for specific labeling of GPx4 in live cells. With these probes, the GPx4 expression levels and degradation kinetics in live cells could be visualized, and their real-time responses to the cellular selenium availability were revealed. These probes could also potentially serve as staining reagents to predict the sensitivity of GPx4-related ferroptosis drugs. In view of these features, these GPx4-selective probes will offer opportunities for a deeper understanding of GPx4 function in natural habitats and hold great promise for biomedical applications.
Collapse
Affiliation(s)
- Shuangshuang Wang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Huaibin Yu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Longjie Li
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Meizhou Zhang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yu Fu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Zi'an Lin
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jinsheng Li
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Fangrui Zhong
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hongmei Liu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518057, China
| | - Yuzhou Wu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
29
|
Lu Y, Hu J, Chen L, Li S, Yuan M, Tian X, Cao P, Qiu Z. Ferroptosis as an emerging therapeutic target in liver diseases. Front Pharmacol 2023; 14:1196287. [PMID: 37256232 PMCID: PMC10225528 DOI: 10.3389/fphar.2023.1196287] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/02/2023] [Indexed: 06/01/2023] Open
Abstract
Ferroptosis is an iron-dependently nonapoptotic cell death characterized by excessive accumulation of lipid peroxides and cellular iron metabolism disturbances. Impaired iron homeostasis and dysregulation of metabolic pathways are contributors to ferroptosis. As a major metabolic hub, the liver synthesizes and transports plasma proteins and endogenous fatty acids. Also, it acts as the primary location of iron storage for hepcidin generation and secretion. To date, although the intricate correlation between ferroptosis and liver disorders needs to be better defined, there is no doubt that ferroptosis participates in the pathogenesis of liver diseases. Accordingly, pharmacological induction and inhibition of ferroptosis show significant potential for the treatment of hepatic disorders involved in lipid peroxidation. In this review, we outline the prominent features, molecular mechanisms, and modulatory networks of ferroptosis and its physiopathologic functions in the progression of liver diseases. Further, this review summarizes the underlying mechanisms by which ferroptosis inducers and inhibitors ameliorate liver diseases. It is noteworthy that natural active ingredients show efficacy in preclinical liver disease models by regulating ferroptosis. Finally, we analyze crucial concepts and urgent issues concerning ferroptosis as a novel therapeutic target in the diagnosis and therapy of liver diseases.
Collapse
Affiliation(s)
- Yuzhen Lu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Junjie Hu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Liang Chen
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Shan Li
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China
- Department of Biochemistry, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Ming Yuan
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Xianxiang Tian
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Peng Cao
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenpeng Qiu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
30
|
Elkateb AS, Nofal S, Ali SA, Atya HB. Camptothecin Sensitizes Hepatocellular Carcinoma Cells to Sorafenib- Induced Ferroptosis Via Suppression of Nrf2. Inflammation 2023:10.1007/s10753-023-01823-4. [PMID: 37171695 PMCID: PMC10359394 DOI: 10.1007/s10753-023-01823-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 05/13/2023]
Abstract
Sorafenib is a potent inducer of ferroptosis used to manage hepatocellular carcinoma (HCC). The ferroptosis induced by sorafenib activates the p62-Keap1-Nrf2 pathway. Abnormal activation of Nrf2 reduces sorafenib's efficiency and ferroptosis action and induces sorafenib's resistance. Consequently, our study tried to study the effect of a novel combination of sorafenib and Camptothecin (CPT, Nrf2 inhibitor) to improve sorafenib's ferroptosis action and reduce sorafenib resistance in the treatment of HCC. We evaluated the efficacy of sorafenib and/or CPT using HepG2 and Huh7 cell lines. MTT assay evaluated the anti-proliferation effects. The combination index (CI) and dose reduction index (DRI) were calculated using Isobologram analysis. Malondialdehyde (MDA), total antioxidant capacity (TAC), iron concentration, glutathione peroxidase (GPX4), and glutathione reductase (GR) activity assays were used to determine the ferroptosis action of drugs. Western blot was used to investigate the expression of the implicated proteins. Bioinformatics tools were used to determine the correlation between these proteins. Finally, the HPLC technique is used to measure cellular drug uptake. Our results revealed a strong synergism between sorafenib and CPT. The synergetic combination significantly increases lipid peroxidation and iron concentration, decreases TAC, GPX4 and GR activity, and reduces the expression of both Nrf2 and SLC7A11. The downregulation of Nrf2 expression has a vital role in the reduction of resistance mediators to sorafenib against HCC cells like (p62, MT1G, and ABCG2) and improves the cellular uptake of sorafenib. The current study provided evidence that Nrf2 inhibition by CPT improves sorafenib's sensitivity and reduces sorafenib's resistance via the augmentation of sorafenib's ferroptosis action.
Collapse
Affiliation(s)
- Ahmed S Elkateb
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, P.O. Box 11795, Cairo, Egypt
| | - Shahira Nofal
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Helwan University, P.O. Box 11795, Cairo, Egypt
| | - Sahar A Ali
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, P.O. Box 11795, Cairo, Egypt
| | - Hanaa B Atya
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, P.O. Box 11795, Cairo, Egypt.
| |
Collapse
|
31
|
Bayır H, Dixon SJ, Tyurina YY, Kellum JA, Kagan VE. Ferroptotic mechanisms and therapeutic targeting of iron metabolism and lipid peroxidation in the kidney. Nat Rev Nephrol 2023; 19:315-336. [PMID: 36922653 DOI: 10.1038/s41581-023-00689-x] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2023] [Indexed: 03/17/2023]
Abstract
Ferroptosis is a mechanism of regulated necrotic cell death characterized by iron-dependent, lipid peroxidation-driven membrane destruction that can be inhibited by glutathione peroxidase 4. Morphologically, it is characterized by cellular, organelle and cytoplasmic swelling and the loss of plasma membrane integrity, with the release of intracellular components. Ferroptosis is triggered in cells with dysregulated iron and thiol redox metabolism, whereby the initial robust but selective accumulation of hydroperoxy polyunsaturated fatty acid-containing phospholipids is further propagated through enzymatic and non-enzymatic secondary mechanisms, leading to formation of oxidatively truncated electrophilic species and their adducts with proteins. Thus, ferroptosis is dependent on the convergence of iron, thiol and lipid metabolic pathways. The kidney is particularly susceptible to redox imbalance. A growing body of evidence has linked ferroptosis to acute kidney injury in the context of diverse stimuli, such as ischaemia-reperfusion, sepsis or toxins, and to chronic kidney disease, suggesting that ferroptosis may represent a novel therapeutic target for kidney disease. However, further work is needed to address gaps in our understanding of the triggers, execution and spreading mechanisms of ferroptosis.
Collapse
Affiliation(s)
- Hülya Bayır
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA.
- Center for Free Radical and Antioxidant Health, Departments of Environmental Health, Pharmacology and Chemical Biology, Chemistry, Radiation Oncology, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Pediatrics, Division of Critical Care and Hospital Medicine, Redox Health Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
| | - Scott J Dixon
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Yulia Y Tyurina
- Center for Free Radical and Antioxidant Health, Departments of Environmental Health, Pharmacology and Chemical Biology, Chemistry, Radiation Oncology, University of Pittsburgh, Pittsburgh, PA, USA
| | - John A Kellum
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Valerian E Kagan
- Center for Free Radical and Antioxidant Health, Departments of Environmental Health, Pharmacology and Chemical Biology, Chemistry, Radiation Oncology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
32
|
Chen H, Zhao R, Ge M, Sun Y, Li Y, Shan L. Gliotoxin, a natural product with ferroptosis inducing properties. Bioorg Chem 2023; 133:106415. [PMID: 36801787 DOI: 10.1016/j.bioorg.2023.106415] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
As one of the mycotoxins produced by Aspergillus fumigatus, gliotoxin has a variety of pharmacological effects, such as anti-tumor, antibacterial, immunosuppressive. Antitumor drugs induce tumor cell death in several forms, including apoptosis, autophagy, necrosis and ferroptosis. Ferroptosis is a recently identified unique form of programmed cell death characterized by iron-dependent accumulation of lethal lipid peroxides, which induces cell death. A large amount of preclinical evidence suggests that ferroptosis inducers may enhance the sensitivity of chemotherapy and the induction of ferroptosis may be an effective therapeutic strategy to prevent acquired drug resistance. In our study, gliotoxin was characterized as a ferroptosis inducer and showed strong anti-tumor activity with IC50 of 0.24 μM and 0.45 μM in H1975 and MCF-7 cells at 72 h, respectively. Gliotoxin may provide a new natural template for the designing of ferroptosis inducers.
Collapse
Affiliation(s)
- Huabin Chen
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Ruiyun Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Meng Ge
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Ying Sun
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yaru Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Lihong Shan
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou 450001 China.
| |
Collapse
|
33
|
Randolph JT, O'Connor MJ, Han F, Hutchins CW, Siu YA, Cho M, Zheng Y, Hickson JA, Markley JL, Manaves V, Algire M, Baker KA, Chapman AM, Gopalakrishnan SM, Panchal SC, Foster-Duke K, Stolarik DF, Kempf-Grote A, Dammeier D, Fossey S, Sun Q, Sun C, Shen Y, Dart MJ, Kati WM, Lai A, Firestone AJ, Kort ME. Discovery of a Potent Chloroacetamide GPX4 Inhibitor with Bioavailability to Enable Target Engagement in Mice, a Potential Tool Compound for Inducing Ferroptosis In Vivo. J Med Chem 2023; 66:3852-3865. [PMID: 36877935 DOI: 10.1021/acs.jmedchem.2c01415] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Compounds that inhibit glutathione peroxidase 4 (GPX4) hold promise as cancer therapeutics in their ability to induce a form of nonapoptotic cell death called ferroptosis. Our research identified 24, a structural analog of the potent GPX4 inhibitor RSL3, that has much better plasma stability (t1/2 > 5 h in mouse plasma). The bioavailability of 24 provided efficacious plasma drug concentrations with IP dosing, thus enabling in vivo studies to assess tolerability and efficacy. An efficacy study in mouse using a GPX4-sensitive tumor model found that doses of 24 up to 50 mg/kg were tolerated for 20 days but had no effect on tumor growth, although partial target engagement was observed in tumor homogenate.
Collapse
Affiliation(s)
| | | | - Fei Han
- Abbvie Inc., North Chicago, Illinois 60064, United States
| | | | - Y Amy Siu
- Abbvie Inc., North Chicago, Illinois 60064, United States
| | - Min Cho
- Calico Life Sciences LLC, South San Francisco, California 94080, United States
| | - Yunan Zheng
- Abbvie Inc., North Chicago, Illinois 60064, United States
| | | | - Jana L Markley
- Abbvie Inc., North Chicago, Illinois 60064, United States
| | | | - Mikkel Algire
- Abbvie Inc., North Chicago, Illinois 60064, United States
| | - Kenton A Baker
- Abbvie Inc., North Chicago, Illinois 60064, United States
| | - Alex M Chapman
- Abbvie Inc., North Chicago, Illinois 60064, United States
| | | | | | | | | | | | - Darby Dammeier
- Abbvie Inc., North Chicago, Illinois 60064, United States
| | - Stacey Fossey
- Abbvie Inc., North Chicago, Illinois 60064, United States
| | - Qi Sun
- Abbvie Inc., North Chicago, Illinois 60064, United States
| | - Chaohong Sun
- Abbvie Inc., North Chicago, Illinois 60064, United States
| | - Yu Shen
- Abbvie Inc., North Chicago, Illinois 60064, United States
| | - Michael J Dart
- Abbvie Inc., North Chicago, Illinois 60064, United States
| | - Warren M Kati
- Abbvie Inc., North Chicago, Illinois 60064, United States
| | - Albert Lai
- Abbvie Inc., North Chicago, Illinois 60064, United States
| | - Ari J Firestone
- Calico Life Sciences LLC, South San Francisco, California 94080, United States
| | - Michael E Kort
- Abbvie Inc., North Chicago, Illinois 60064, United States
| |
Collapse
|
34
|
4-Octyl itaconate inhibits aerobic glycolysis by targeting GAPDH to promote cuproptosis in colorectal cancer. Biomed Pharmacother 2023; 159:114301. [PMID: 36706634 DOI: 10.1016/j.biopha.2023.114301] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Cuproptosis, a novel copper-induced cell death pathway, is linked to mitochondrial respiration and mediated by protein lipoylation. The discovery of cuproptosis unfolds new areas of investigation, particularly in cancers. The present study aimed to explore the role of cuproptosis in colorectal cancer progression. The genetic alterations of cuproptosis in colon cancer were evaluated using a database. MTT assays, colony formation, and flow cytometry were used to examine the effect of elesclomol-Cu and 4-Octyl itaconate (4-OI) on colorectal cancer cell and oxaliplatin-resistant cell viability. The anti-tumor effect of elesclomol with 4-OI was verified in vivo assay. The results showed that FDX1, SDHB, DLAT, and DLST genes were more highly expressed in normal tissues than those in primary tumor tissues. Patients with high expressions of these genes in tumor tissues had a better prognosis. Using MTT assay and colony formation analysis, elesclomol-Cu pulse treatment showed significant inhibition of cell viability in HCT116, LoVo, and HCT116-R cells. In addition, flow cytometry revealed elesclomol-Cu significantly promoted apoptosis. Tetrathiomolybdate, a copper chelator, markedly inhibited cuproptosis. Subsequently, we found 2-deoxy-D-glucose, a glucose metabolism inhibitor, sensitized cuproptosis. Furthermore, galactose further promoted cuproptosis. Interestingly, 4-OI significantly enhanced cuproptosis which was irrelevant to ROS production, apoptosis, necroptosis, or pyroptosis pathways. Aerobic glycolysis was inhibited by 4-OI through GAPDH, one of the key enzymes of glycolysis, sensitizing cuproptosis. Meanwhile, FDX1 knockdown weakened the ability of 4-OI to promote cuproptosis. In vivo experiments, 4-OI with elesclomol-Cu showed better anti-tumor effects. These results indicated that elesclomol-Cu rapidly halted cell growth in colorectal cancer cells and oxaliplatin-resistant cell line. Importantly, we revealed that 4-OI inhibited aerobic glycolysis by targeting GAPDH to promote cuproptosis.
Collapse
|
35
|
He Z, Guo Y, Chen J, Luo H, Liu X, Zhang X, Sun Y, Ge D, Ye S, Shi W. Unsaturated phospholipid modified FeOCl nanosheets for enhancing tumor ferroptosis. J Mater Chem B 2023; 11:1891-1903. [PMID: 36744515 DOI: 10.1039/d2tb01854c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Iron-dependent accumulation of reactive oxygen species (ROS) and lipid peroxidation play key roles in ferroptosis, which has been an attractive strategy to kill tumor cells. However, the rapid annihilation of hydroxyl radicals (˙OH) produced from the Fenton reaction has become a major obstacle in inducing lipid peroxidation in cells. In this study, we develop a nano-delivery system of unsaturated phospholipid (Lip) and polyacrylic acid (PAA) functionalized FeOCl nanosheets (FeOCl@PAA-Lip). In this system, the ˙OH radicals produced from the Fenton reaction between FeOCl nanosheets and endogenous H2O2 of tumor cells attack Lip on the nanosheets in situ to initiate the lipid peroxidation chain reaction, which not only realizes free radical conversion but also leads to the amplification of ROS and lipid peroxides, thus enhancing tumor ferroptosis. The in vitro and in vivo results confirmed that FeOCl@PAA-Lip nanosheets exhibited specific tumor cell-killing effects, good biocompatibility, long circulation time, low side effects, high tumor targeting and an excellent tumor inhibition rate (73%). The Lip functionalization strategy offers a paradigm of enhancing ferroptosis treatment by conversion of ˙OH/phospholipid radicals/lipid peroxyl radicals and strengthening lipid peroxidation.
Collapse
Affiliation(s)
- Zi He
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province/Research Center of Biomedical Engineering of Xiamen, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China.
| | - Yijun Guo
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province/Research Center of Biomedical Engineering of Xiamen, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China.
| | - Jinzhu Chen
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province/Research Center of Biomedical Engineering of Xiamen, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China.
| | - Huiling Luo
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province/Research Center of Biomedical Engineering of Xiamen, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China.
| | - Xinxin Liu
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province/Research Center of Biomedical Engineering of Xiamen, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China.
| | - Xiuming Zhang
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province/Research Center of Biomedical Engineering of Xiamen, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China.
| | - Yanan Sun
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province/Research Center of Biomedical Engineering of Xiamen, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China.
| | - Dongtao Ge
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province/Research Center of Biomedical Engineering of Xiamen, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China.
| | - Shefang Ye
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province/Research Center of Biomedical Engineering of Xiamen, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China.
| | - Wei Shi
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province/Research Center of Biomedical Engineering of Xiamen, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
36
|
Wang C, Zheng C, Wang H, Shui S, Jin H, Liu G, Xu F, Liu Z, Zhang L, Sun D, Xu P. Dual degradation mechanism of GPX4 degrader in induction of ferroptosis exerting anti-resistant tumor effect. Eur J Med Chem 2023; 247:115072. [PMID: 36603510 DOI: 10.1016/j.ejmech.2022.115072] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022]
Abstract
Targeting Glutathione peroxidase 4 (GPX4) has become a promising strategy for drug-resistant cancer therapy via ferroptosis induction. It was found that the GPX4 inhibitors such as RSL3 have GPX4 degradation ability via not only autophagy-lysosome pathway but also ubiquitin-proteasome system (UPS). Proteolysis targeting chimeras (PROTACs) using small molecule with both inhibition and degradation ability as the ligand of protein of interest (POI) have not been reported. To obtain better compounds with effective disturbance of GPX4 activity, and compare the difference between GPX4 inhibitors with degradation ability and their related PROTACs, we designed and synthesized a series of GPX4 degraders using PROTAC technology in terms of its excellent characteristics such as high efficiency and selectivity and the capacity of overcoming resistance. Hence, 8e was discovered as a potent and highly efficacious GPX4 degrader based upon the inhibitor RSL3. It was 2-3 times more potent than RSL3 in all the in vitro anti-tumor assays, indicating the importance of the PROTAC ternary complex of GPX4, 8e and E3 ligase ligand. 8e revealed better potency in resistant tumor cells than in wide type cells. Furthermore, we discovered for the first time that degrader 8e exhibit GPX4 degradation activity via ubiquitin-proteasome system (UPS) and autophagy-lysosome pathway with UPS plays the major role in the process. Our data also suggested that 8e and RSL3 could potently induce ferroptosis of HT1080 cells via GPX4 inhibition and degradation. In summary, our data revealed that the GPX4 degrader 8e achieves better degradation and anti-tumor effects compared to its related GPX4 inhibitor RSL3. Thus, an efficient strategy to induce GPX4 degradation and subsequent ferroptosis was established in this study for malignant cancer treatment in the future.
Collapse
Affiliation(s)
- Chao Wang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University, Beijing, China.
| | - Cangxin Zheng
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Han Wang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Sufang Shui
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Hongwei Jin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Guoquan Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Fengrong Xu
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Zhenming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Liangren Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Dan Sun
- Department of Geriatrics, Peking University First Hospital, Beijing, China.
| | - Ping Xu
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University, Beijing, China.
| |
Collapse
|
37
|
Park JS, Kim DH, Choi HI, Kim CS, Bae EH, Ma SK, Kim SW. 3-Carboxy-4-methyl-5-propyl-2-furanpropanoic acid (CMPF) induces cell death through ferroptosis and acts as a trigger of apoptosis in kidney cells. Cell Death Dis 2023; 14:78. [PMID: 36732325 PMCID: PMC9894909 DOI: 10.1038/s41419-023-05601-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 02/04/2023]
Abstract
Ferroptosis is a cell death mechanism characterized by intracellular iron accumulation and lipid peroxidation. Effects of uremic toxins on ferroptosis in the kidney are not well understood. We investigated whether protein-bound uremic toxins induce ferroptosis, resulting in cell death, using the bilateral ureteral obstruction (BUO) mouse model and kidney cells. In BUO mice, we observed elevated lipid peroxidation, increased iron concentration, and decreased glutathione peroxidase 4 (GPX4) expression. Levels of transferrin receptor 1 and system Xc-, which are involved in iron transport and storage, were also elevated, while those of ferritin heavy and light chains (FHC and FLC) were reduced. Treatment of HK-2 and NRK49F kidney cells with CMPF decreased GSH levels and the expression of GPX4, FHC, and FLC, and increased levels of ROS, lipid peroxidation, and intracellular iron concentration. CMPF-induced and erastin-induced decreases in GPX4 levels and increases in Bax and cytochrome C levels were counteracted by ferrostatin-1 pretreatment. However, GPX4 mRNA levels, protein abundance, or promoter activity were not restored by Z-VAD-FMK, a multi-caspase inhibitor. These results suggest that ferroptosis induced by CMPF treatment induces apoptosis, and inhibition of ferroptosis reduces apoptosis, suggesting that ferroptosis plays a role in triggering cell death by apoptosis.
Collapse
Affiliation(s)
- Jung Sun Park
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, 61469, Korea
| | - Dong-Hyun Kim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, 61469, Korea
| | - Hoon-In Choi
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, 61469, Korea
| | - Chang Seong Kim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, 61469, Korea
| | - Eun Hui Bae
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, 61469, Korea
| | - Seong Kwon Ma
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, 61469, Korea
| | - Soo Wan Kim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, 61469, Korea.
| |
Collapse
|
38
|
Eom J, Choi J, Suh SS, Seo JB. SLC3A2 and SLC7A2 Mediate the Exogenous Putrescine-Induced Adipocyte Differentiation. Mol Cells 2022; 45:963-975. [PMID: 36572564 PMCID: PMC9794554 DOI: 10.14348/molcells.2022.0123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 12/28/2022] Open
Abstract
Exogenous polyamines are able to induce life span and improve glucose homeostasis and insulin sensitivity. However, the effects of exogenous polyamines on adipocyte differentiation and which polyamine transporters mediate them have not been elucidated yet. Here, we identified for the first time that exogenous polyamines can clearly stimulate adipocyte differentiation through polyamine transporters, solute carrier family 3 member A2 (SLC3A2) and SLC7A1. Exogenous polyamines markedly promote 3T3-L1 adipocyte differentiation by increasing the intracellular lipid accumulation and the expression of both adipogenic and lipogenic genes in a concentration-dependent manner. In particular, exogenous putrescine mainly regulates adipocyte differentiation in the early and intermediate stages. Moreover, we have assessed the expression of polyamine transporter genes in 3T3-L1 preadipocytes and adipocytes. Interestingly, the putrescine-induced adipocyte differentiation was found to be significantly suppressed in response to a treatment with a polyamine transporter inhibitor (AMXT-1501). Furthermore, knockdown experiments using siRNA that specifically targeted SLC3A2 or SLC7A2, revealed that both SLC3A2 and SLC7A2 act as important transporters in the cellular importing of exogenous putrescine. Thus, the exogenous putrescine entering the adipocytes via cellular transporters is involved in adipogenesis through a modulation of both the mitotic clonal expansion and the expression of master transcription factors. Taken together, these results suggest that exogenous polyamines (such as putrescine) entering the adipocytes through polyamine transporters, can stimulate adipogenesis.
Collapse
Affiliation(s)
- Jin Eom
- Department of Biosciences, Mokpo National University, Muan 58554, Korea
| | - Juhyun Choi
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Muan 58554, Korea
| | - Sung-Suk Suh
- Department of Biosciences, Mokpo National University, Muan 58554, Korea
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Muan 58554, Korea
| | - Jong Bae Seo
- Department of Biosciences, Mokpo National University, Muan 58554, Korea
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Muan 58554, Korea
| |
Collapse
|
39
|
Li H, Lin L, Xia YL, Xie Y, Yang X. Research progress on the role of ferroptosis in cardiovascular disease. Front Cardiovasc Med 2022; 9:1077332. [PMID: 36620630 PMCID: PMC9815775 DOI: 10.3389/fcvm.2022.1077332] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
The cardiovascular disease pathogenesis is extremely complex and seriously threatens human health. Cardiomyocyte death plays a significant role in cardiovascular disease occurrence and development. In addition to the previously revealed modes of cell death (apoptosis, autophagy, and pyroptosis), ferroptosis is highly related to the development of cardiovascular diseases, including arrhythmia, atherosclerosis, and myocardial ischemia/reperfusion. Ferroptosis is a novel cell death pathway driven by lipid peroxidation and iron overload. Lipid, amino acid, and iron metabolism regulate the ferroptosis pathway. Small molecule compounds (iron chelators, antioxidants, and ferroptosis inhibitors) and genetic programming can alleviate or prevent cardiovascular disease by inhibiting the ferroptosis pathway. Ferroptosis plays a key role in various cardiovascular disease occurrence and development, and inhibiting ferroptosis in cardiomyocytes is expected to become a feasible treatment method. In this mini-review, we systematically summarize the molecular mechanisms of ferroptosis in different cardiovascular diseases, delineate the regulatory network between ferroptosis and cardiovascular diseases, and highlight its potential therapeutic targets.
Collapse
Affiliation(s)
- Han Li
- Institute of Cardiovascular Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Li Lin
- Institute of Cardiovascular Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yun-Long Xia
- Institute of Cardiovascular Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, China,Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yunpeng Xie
- Institute of Cardiovascular Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, China,*Correspondence: Yunpeng Xie,
| | - Xiaolei Yang
- Institute of Cardiovascular Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, China,Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China,Xiaolei Yang,
| |
Collapse
|
40
|
Kalyanaraman B. NAC, NAC, Knockin' on Heaven's door: Interpreting the mechanism of action of N-acetylcysteine in tumor and immune cells. Redox Biol 2022; 57:102497. [PMID: 36242913 PMCID: PMC9563555 DOI: 10.1016/j.redox.2022.102497] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/05/2022] [Indexed: 11/17/2022] Open
Abstract
N-acetylcysteine (NAC) has been used as a direct scavenger of reactive oxygen species (hydrogen peroxide, in particular) and an antioxidant in cancer biology and immuno-oncology. NAC is the antioxidant drug most frequently employed in studies using tumor cells, immune cells, and preclinical mouse xenografts. Most studies use redox-active fluorescent probes such as dichlorodihydrofluorescein, hydroethidine, mitochondria-targeted hydroethidine, and proprietary kit-based probes (i.e., CellROX Green and CellROX Red) for intracellular detection of superoxide or hydrogen peroxide. Inhibition of fluorescence by NAC was used as a key experimental observation to support the formation of reactive oxygen species and redox mechanisms proposed for ferroptosis, tumor metastasis, and redox signaling in the tumor microenvironment. Reactive oxygen species such as superoxide and hydrogen peroxide stimulate or abrogate tumor cells and immune cells depending on multiple factors. Understanding the mechanism of antioxidants is crucial for interpretation of the results. Because neither NAC nor the fluorescent probes indicated above react directly with hydrogen peroxide, it is critically important to reinterpret the results to advance our understanding of the mechanism of action of NAC and shed additional mechanistic insight on redox-regulated signaling in tumor biology. To this end, this review is focused on how NAC could affect multiple pathways in cancer cells, including iron signaling, ferroptosis, and the glutathione-dependent antioxidant and redox signaling mechanism, and how NAC could inhibit oxidation of the fluorescent probes through multiple mechanisms.
Collapse
Affiliation(s)
- Balaraman Kalyanaraman
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, USA.
| |
Collapse
|
41
|
Chen C, Tan Y, Xu T, Sun Y, Zhao S, Ouyang Y, Chen Y, He L, Liu X, Liu H. Sorafenib-Loaded Copper Peroxide Nanoparticles with Redox Balance Disrupting Capacity for Enhanced Chemodynamic Therapy against Tumor Cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:12307-12315. [PMID: 36154182 DOI: 10.1021/acs.langmuir.2c01938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Chemodynamic therapy (CDT) is a promising hydroxyl radical (•OH)-mediated tumor therapeutic method with desirable tumor specificity and minimal side effects. However, the efficiency of CDT is restricted by the pH condition, insufficient H2O2 level, and overexpressed reductive glutathione (GSH), making it challenging to solve these problems simultaneously to improve the efficacy of CDT. Herein, a kind of polyvinylpyrrolidone-stabilized, sorafenib-loaded copper peroxide (CuO2-PVP-SRF) nanoparticle (NPs) was designed and developed for enhanced CDT against tumor cells through the synergetic pH-independent Fenton-like, H2O2 self-supplying, and GSH depletion strategy. The prepared CuO2-PVP-SRF NPs can be uptaken by 4T1 cells to specifically release Cu2+, H2O2, and SRF under acidic conditions. The intracellular GSH can be depleted by SRF-induced system xc- dysfunction and Cu2+-participated redox reaction, causing the inactivation of GPX4 and generating Cu+. A great amount of •OH was produced in this reducing capacity-disrupted condition by the Cu+-mediated Fenton-like reaction, causing cell apoptosis and lipid hydroperoxide accumulation-induced ferroptosis. They display an excellent 4T1 cell killing outcome through the improved •OH production capacity. The CuO2-PVP-SRF NPs display elevated therapeutic efficiency of CDT and show good promise in further tumor treatment applications.
Collapse
Affiliation(s)
- Chunmei Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Yixin Tan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Ting Xu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Yihao Sun
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Sheng Zhao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Yi Ouyang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Yan Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Liang He
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Xiaohong Liu
- National University of Singapore (Chongqing) Research Institute, Chongqing 401123, China
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Hui Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| |
Collapse
|
42
|
C3d(g), iron nanoparticles, hemin and cytochrome c may induce oxidative cytotoxicity in tumors and reduce tumor-associated myeloid cells-mediated immunosuppression. Med Hypotheses 2022. [DOI: 10.1016/j.mehy.2022.110944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
43
|
Lalonde ME, Sasseville M, Gélinas AM, Milanese JS, Béland K, Drouin S, Haddad E, Marcotte R. Genome-wide CRISPR screens identify ferroptosis as a novel therapeutic vulnerability in acute lymphoblastic leukemia. Haematologica 2022; 108:382-393. [PMID: 36134452 PMCID: PMC9890019 DOI: 10.3324/haematol.2022.280786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Indexed: 02/03/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most frequent cancer diagnosed in children. Despite the great progress achieved over the last 40 years, with cure rates now exceeding 85%, refractory or relapsed ALL still exhibit a dismal prognosis. This poor outcome reflects the lack of treatment options specifically targeting relapsed or refractory ALL. In order to address this gap, we performed whole-genome CRISPR/Cas drop-out screens on a panel of seven B-ALL cell lines. Our results demonstrate that while there was a significant overlap in gene essentiality between ALL cell lines and other cancer types survival of ALL cell lines was dependent on several unique metabolic pathways, including an exquisite sensitivity to GPX4 depletion and ferroptosis induction. Detailed molecular analysis of B-ALL cells suggest that they are primed to undergo ferroptosis as they exhibit high steady-state oxidative stress potential, a low buffering capacity, and a disabled GPX4-independent secondary lipid peroxidation detoxification pathway. Finally, we validated the sensitivity of BALL to ferroptosis induction using patient-derived B-ALL samples.
Collapse
Affiliation(s)
- Marie-Eve Lalonde
- Human Health Therapeutics Research Center, National Research Council Canada
| | - Marc Sasseville
- Human Health Therapeutics Research Center, National Research Council Canada
| | - Anne-Marie Gélinas
- Human Health Therapeutics Research Center, National Research Council Canada
| | | | - Kathie Béland
- Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal, Montréal, Quebec, Canada
| | - Simon Drouin
- Human Health Therapeutics Research Center, National Research Council Canada
| | - Elie Haddad
- Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal, Montréal, Quebec, Canada
| | - Richard Marcotte
- Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, QC, H4P 2R2.
| |
Collapse
|
44
|
Balachander K, Paramasivam A. Ferroptosis: An emerging therapeutic target for oral cancer. Oral Oncol 2022; 131:105970. [PMID: 35717722 DOI: 10.1016/j.oraloncology.2022.105970] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Kannan Balachander
- Centre for Cellular and Molecular Research, Saveetha Dental College & Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - Arumugam Paramasivam
- Centre for Cellular and Molecular Research, Saveetha Dental College & Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India.
| |
Collapse
|
45
|
Zhao X, Cui L, Zhang Y, Guo C, Deng L, Wen Z, Lu Z, Shi X, Xing H, Liu Y, Zhang Y. Screening for Potential Therapeutic Agents for Non-Small Cell Lung Cancer by Targeting Ferroptosis. Front Mol Biosci 2022; 9:917602. [PMID: 36203872 PMCID: PMC9532010 DOI: 10.3389/fmolb.2022.917602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
Ferroptosis is a form of non-apoptotic and iron-dependent cell death originally identified in cancer cells. Recently, emerging evidence showed that ferroptosis-targeting therapy could be a novel promising anti-tumour treatment. However, systematic analyses of ferroptosis-related genes for the prognosis of non-small cell lung cancer (NSCLC) and the development of antitumor drugs exploiting the ferroptosis process remain rare. This study aimed to identify genes related to ferroptosis and NSCLC and to initially screen lead compounds that induce ferroptosis in tumor cells. We downloaded mRNA expression profiles and NSCLC clinical data from The Cancer Genome Atlas database to explore the prognostic role of ferroptosis-related genes. Four prognosis-associated ferroptosis-related genes were screened using univariate Cox regression analysis and the lasso Cox regression analysis, which could divide patients with NSCLC into high- and low-risk groups. Then, based on differentially expressed risk- and ferroptosis-related genes, the negatively correlated lead compound flufenamic acid (FFA) was screened through the Connective Map database. This project confirmed that FFA induced ferroptosis in A549 cells and inhibited growth and migration in a dose-dependent manner through CCK-8, scratch, and immunofluorescence assays. In conclusion, targeting ferroptosis might be a therapeutic alternative for NSCLC.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Lijuan Cui
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Yushan Zhang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Chao Guo
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Lijiao Deng
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Zhitong Wen
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Zhihong Lu
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
- Department of Endocrinology, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, China
| | - Xiaoyuan Shi
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Haojie Xing
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Yunfeng Liu
- Department of Endocrinology, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, China
- *Correspondence: Yunfeng Liu, ; Yi Zhang, , orcid.org/0000-0003-0305-3127
| | - Yi Zhang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
- *Correspondence: Yunfeng Liu, ; Yi Zhang, , orcid.org/0000-0003-0305-3127
| |
Collapse
|
46
|
Battaglia AM, Sacco A, Perrotta ID, Faniello MC, Scalise M, Torella D, Levi S, Costanzo F, Biamonte F. Iron Administration Overcomes Resistance to Erastin-Mediated Ferroptosis in Ovarian Cancer Cells. Front Oncol 2022; 12:868351. [PMID: 35433479 PMCID: PMC9008715 DOI: 10.3389/fonc.2022.868351] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/01/2022] [Indexed: 02/06/2023] Open
Abstract
Objectives Developing novel therapeutic approaches to defeat chemoresistance is the major goal of ovarian cancer research. Induction of ferroptosis has shown promising antitumor effects in ovarian cancer cells, but the existence of still undefined genetic and metabolic determinants of susceptibility has so far limited the application of ferroptosis inducers in vivo. Methods Erastin and/or the iron compound ferlixit were used to trigger ferroptosis in HEY, COV318, PEO4, and A2780CP ovarian cancer cell lines. Cell viability and cell death were measured by MTT and PI flow cytometry assay, respectively. The “ballooning” phenotype was tested as ferroptosis specific morphological feature. Mitochondrial dysfunction was evaluated based on ultrastructural changes, mitochondrial ROS, and mitochondrial membrane polarization. Lipid peroxidation was tested through both C11-BODIPY and malondialdehyde assays. VDAC2 and GPX4 protein levels were quantified as additional putative indicators of mitochondrial dysfunction or lipid peroxidation, respectively. The effect of erastin/ferlixit treatments on iron metabolism was analyzed by measuring intracellular labile iron pool and ROS. FtH and NCOA4 were measured as biomarkers of ferritinophagy. Results Here, we provide evidence that erastin is unable to induce ferroptosis in a series of ovarian cancer cell lines. In HEY cells, provided with a high intracellular labile iron pool, erastin treatment is accompanied by NCOA4-mediated ferritinophagy and mitochondrial dysfunction, thus triggering ferroptosis. In agreement, iron chelation counteracts erastin-induced ferroptosis in these cells. COV318 cells, with low baseline intracellular labile iron pool, appear resistant to erastin treatment. Notably, the use of ferlixit sensitizes COV318 cells to erastin through a NCOA4-independent intracellular iron accumulation and mitochondrial dysfunction. Ferlixit alone mimics erastin effects and promotes ferroptosis in HEY cells. Conclusion This study proposes both the baseline and the induced intracellular free iron level as a significant determinant of ferroptosis sensitivity and discusses the potential use of ferlixit in combination with erastin to overcome ferroptosis chemoresistance in ovarian cancer.
Collapse
Affiliation(s)
- Anna Martina Battaglia
- Laboratory of Biochemistry and Cellular Biology, “Magna Graecia” University of Catanzaro, Department of Experimental and Clinical Medicine, Catanzaro, Italy
| | - Alessandro Sacco
- Laboratory of Biochemistry and Cellular Biology, “Magna Graecia” University of Catanzaro, Department of Experimental and Clinical Medicine, Catanzaro, Italy
| | - Ida Daniela Perrotta
- Laboratory of Transmission Electron Microscopy, University of Calabria, Department of Biology, Ecology and Earth Sciences, Centre for Microscopy and Microanalysis, Cosenza, Italy
| | - Maria Concetta Faniello
- Laboratory of Biochemistry and Cellular Biology, “Magna Graecia” University of Catanzaro, Department of Experimental and Clinical Medicine, Catanzaro, Italy
| | - Mariangela Scalise
- Laboratory of Molecular and Cellular Cardiology, “Magna Graecia” University of Catanzaro, Department of Experimental and Clinical Medicine, Catanzaro, Italy
| | - Daniele Torella
- Laboratory of Molecular and Cellular Cardiology, “Magna Graecia” University of Catanzaro, Department of Experimental and Clinical Medicine, Catanzaro, Italy
| | - Sonia Levi
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Division of Neuroscience, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Costanzo
- Laboratory of Biochemistry and Cellular Biology, “Magna Graecia” University of Catanzaro, Department of Experimental and Clinical Medicine, Catanzaro, Italy
- Magna Graecia University of Catanzaro, Interdepartmental Centre of Services, Catanzaro, Italy
| | - Flavia Biamonte
- Laboratory of Biochemistry and Cellular Biology, “Magna Graecia” University of Catanzaro, Department of Experimental and Clinical Medicine, Catanzaro, Italy
- Magna Graecia University of Catanzaro, Interdepartmental Centre of Services, Catanzaro, Italy
- *Correspondence: Flavia Biamonte,
| |
Collapse
|
47
|
Abstract
Ferroptosis is a recently recognized iron-dependent form of non-apoptotic regulated cell death (RCD) characterized by lipid peroxide accumulation to lethal levels. Cancer cells, which show an increased iron dependency to enable rapid growth, seem vulnerable to ferroptosis. There is also increasing evidence that ferroptosis might be immunogenic and therefore could synergize with immunotherapies. Hepatocellular carcinoma (HCC) is the most common primary liver tumor with a low survival rate due to frequent recurrence and limited efficacy of conventional chemotherapies, illustrating the urgent need for novel drug approaches or combinatorial strategies. Immunotherapy is a new treatment approach for advanced HCC patients. In this setting, ferroptosis inducers may have substantial clinical potential. However, there are still many questions to answer before the mystery of ferroptosis is fully unveiled. This review discusses the existing studies and our current understanding regarding the molecular mechanisms of ferroptosis with the goal of enhancing response to immunotherapy of liver cancer. In addition, challenges and opportunities in clinical applications of potential candidates for ferroptosis-driven therapeutic strategies will be summarized. Unraveling the role of ferroptosis in the immune response could benefit the development of promising anti-cancer therapies that overcome drug resistance and prevent tumor metastasis.
Collapse
|
48
|
Wang H, Ge G, Gao W, Luo J, Tang K. Selective C3–H nitration of 2-sulfanilamidopyridines with tert-butyl nitrite. Org Chem Front 2022. [DOI: 10.1039/d2qo00679k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A selective C3–H nitration of bioactive 2-sulfanilamidopyridine derivatives, including corticosteroid 11-β-dehydrogenase isozyme, secretory phospholipase A2 inhibitor and human neutrophil elastase inhibitor, has been reported.
Collapse
Affiliation(s)
- Huifang Wang
- Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Guoping Ge
- Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Wenqing Gao
- Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Junfei Luo
- Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Keqi Tang
- Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| |
Collapse
|
49
|
Xiong Y, Xiao C, Li Z, Yang X. Engineering nanomedicine for glutathione depletion-augmented cancer therapy. Chem Soc Rev 2021; 50:6013-6041. [PMID: 34027953 DOI: 10.1039/d0cs00718h] [Citation(s) in RCA: 335] [Impact Index Per Article: 83.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Glutathione (GSH), the main redox buffer, has long been recognized as a pivotal modulator of tumor initiation, progression and metastasis. It is also implicated in the resistance of platinum-based chemotherapy and radiation therapy. Therefore, depleting intracellular GSH was considered a potent solution to combating cancer. However, reducing GSH within cancer cells alone always failed to yield desirable therapeutic effects. In this regard, the convergence of GSH-scavenging agents with therapeutic drugs has thus been pursued in clinical practice. Unfortunately, the therapeutic outcomes are still unsatisfactory due to untargeted drug delivery. Advanced nanomedicine of synergistic GSH depletion and cancer treatment has attracted tremendous interest because they promise to deliver superior therapeutic benefits while alleviating life-threatening side effects. In the past five years, the authors and others have demonstrated that numerous nanomedicines, by simultaneously delivering GSH-depleting agents and therapeutic components, boost not only traditional chemotherapy and radiotherapy but also multifarious emerging treatment modalities, including photodynamic therapy, sonodynamic therapy, chemodynamic therapy, ferroptosis, and immunotherapy, to name a few, and achieved decent treatment outcomes in a large number of rodent tumor models. In this review, we summarize the most recent progress in engineering nanomedicine for GSH depletion-enhanced cancer therapies. Biosynthesis of GSH and various types of GSH-consuming strategies will be briefly introduced. The challenges and perspectives of leveraging nanomedicine for GSH consumption-augmented cancer therapies will be discussed at the end.
Collapse
Affiliation(s)
- Yuxuan Xiong
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
| | - Chen Xiao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
| | - Zifu Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China. and Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China and Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China and Wuhan Institute of Biotechnology, High Tech Road 666, East Lake high tech Zone, Wuhan, 430040, P. R. China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China. and Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China and Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China and GBA Research Innovation Institute for Nanotechnology, Guangdong, 510530, P. R. China
| |
Collapse
|