1
|
Ostermann PN, Evering TH. The impact of aging on HIV-1-related neurocognitive impairment. Ageing Res Rev 2024; 102:102513. [PMID: 39307316 DOI: 10.1016/j.arr.2024.102513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/25/2024]
Abstract
Depending on the population studied, HIV-1-related neurocognitive impairment is estimated to impact up to half the population of people living with HIV (PLWH) despite the availability of combination antiretroviral therapy (cART). Various factors contribute to this neurocognitive impairment, which complicates our understanding of the molecular mechanisms involved. Biological aging has been implicated as one factor possibly impacting the development and progression of HIV-1-related neurocognitive impairment. This is increasingly important as the life expectancy of PLWH with virologic suppression on cART is currently projected to be similar to that of individuals not living with HIV. Based on our increasing understanding of the biological aging process on a cellular level, we aim to dissect possible interactions of aging- and HIV-1 infection-induced effects and their role in neurocognitive decline. Thus, we begin by providing a brief overview of the clinical aspects of HIV-1-related neurocognitive impairment and review the accumulating evidence implicating aging in its development (Part I). We then discuss potential interactions between aging-associated pathways and HIV-1-induced effects at the molecular level (Part II).
Collapse
Affiliation(s)
- Philipp Niklas Ostermann
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Teresa Hope Evering
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
2
|
Woo YH, Martinez LR. Cryptococcus neoformans-astrocyte interactions: effect on fungal blood brain barrier disruption, brain invasion, and meningitis progression. Crit Rev Microbiol 2021; 47:206-223. [PMID: 33476528 DOI: 10.1080/1040841x.2020.1869178] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cryptococcus neoformans is an opportunistic, neurotropic, and encapsulated fungus that causes life-threatening cryptococcal meningitis (CM), especially in regions of the world where AIDS is endemic. The polysaccharide capsule of C. neoformans is the fungus major virulent factor, being copiously released during infection and causing immunosuppressive defects in the host. Although the capsular material is commonly associated with reactive astrocytes in fatal CM, little is known about the molecular and cellular interactions among astroglia and C. neoformans. As astrocytes also make up the neurovascular unit at the blood-brain barrier (BBB), which C. neoformans must transverse to colonize the central nervous system and cause CM; these cells may play a significant regulatory role in the prevention and progression of infection. For example, astrocytes are implicated in neurological disease including the regulation of cerebral intracranial pressure, immune function, and water homeostasis. Hence, in this review, we provide a general overview of astroglia biology and discuss the current knowledge on C. neoformans-astrocyte interactions including their involvement in the development of CM. This "gliocentric view" of cerebral cryptococcosis suggests that therapeutic interventions particularly targeting at preserving the neuroprotective function of astrocytes may be used in preventing and managing C. neoformans BBB transmigration, brain invasion, colonization, and meningitis.
Collapse
Affiliation(s)
- Yeon Hwa Woo
- Department of Metallurgical, Materials and Biomedical Engineering, College of Engineering, The University of Texas at El Paso, El Paso, TX, USA
| | - Luis R Martinez
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| |
Collapse
|
3
|
Li GH, Maric D, Major EO, Nath A. Productive HIV infection in astrocytes can be established via a nonclassical mechanism. AIDS 2020; 34:963-978. [PMID: 32379159 PMCID: PMC7429268 DOI: 10.1097/qad.0000000000002512] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Astrocytes are proposed to be a critical reservoir of HIV in the brain. However, HIV infection of astrocytes is inefficient in vitro except for cell-to-cell transmission from HIV-infected cells. Here, we explore mechanisms by which cell-free HIV bypasses entry and postentry barriers leading to a productive infection. METHODS HIV infection of astrocytes was investigated by a variety of techniques including transfection of CD4-expressing plasmid, treatment with lysosomotropic agents or using a transwell culture system loaded with HIV-infected lymphocytes. Infection was monitored by HIV-1 p24 in culture supernatants and integrated proviral DNA was quantified by Alu-PCR. RESULTS Persistent HIV infection could be established in astrocytes by transfection of proviral DNA, transduction with VSV-G-pseudotyped viruses, transient expression of CD4 followed by HIV infection, or simultaneous treatment with lysosomotropic chloroquine or Tat-HA2 peptide with HIV infection. In absence of these treatments, HIV entered via endocytosis as seen by electronmicroscopy and underwent lysosomal degradation without proviral integration, indicating endocytosis is a dead end for HIV in astrocytes. Nevertheless, productive infection was observed when astrocytes were in close proximity but physically separated from HIV-infected lymphocytes in the transwell cultures. This occurred with X4 or dual tropic R5X4 viruses and was blocked by an antibody or antagonist to CXCR4. CONCLUSION A CD4-independent, CXCR4-dependent mechanism of viral entry is proposed, by which immature HIV particles from infected lymphocytes might directly bind to CXCR4 on astrocytes and trigger virus--cell fusion during or after the process of viral maturation. This mechanism may contribute to the formation of brain HIV reservoirs.
Collapse
Affiliation(s)
- Guan-Han Li
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Dragan Maric
- Flow and Imaging Cytometry Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Eugene O. Major
- Laboratory of Molecular Medicine and Neuroscience, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Avindra Nath
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| |
Collapse
|
4
|
Furler RL, Ali A, Yang OO, Nixon DF. Nef-induced differential gene expression in primary CD4+ T cells following infection with HIV-1 isolates. Virus Genes 2019; 55:541-544. [PMID: 31093843 DOI: 10.1007/s11262-019-01670-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 05/07/2019] [Indexed: 11/29/2022]
Abstract
Almost 80% of viral transcripts during early HIV-1 infection encode the Nef protein, which has been implicated in altering expression of a number of genes. In this study, we infected primary human CD4+ T cells with pseudotyped Nef-containing or Nef-deleted (Δ-nef) NL4-3 virus and used RNA-Sequencing (RNA-Seq) for transcriptomic analysis. Our results showed that the interferon response, IL-15 and JAK/STAT signaling, as well as genes involved in metabolism, apoptosis, cell cycle regulation, and ribosome biogenesis were all altered in the presence of Nef. These early Nef-mediated transcriptional alterations may play a role in priming the host cell for cellular activation and viral replication.
Collapse
Affiliation(s)
- Robert L Furler
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, 413 E 69th St., Belfer Research Building, New York, NY, 10021, USA.
| | - Ayub Ali
- Departments of Microbiology, Immunology and Molecular Genetics, Medicine, and the UCLA AIDS Institute, University of California, 615 Charles E. Young Drive South, BSRB2, Los Angeles, CA, 90095, USA.,AIDS Healthcare Foundation, Los Angeles, CA, 90028, USA
| | - Otto O Yang
- Departments of Microbiology, Immunology and Molecular Genetics, Medicine, and the UCLA AIDS Institute, University of California, 615 Charles E. Young Drive South, BSRB2, Los Angeles, CA, 90095, USA
| | - Douglas F Nixon
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, 413 E 69th St., Belfer Research Building, New York, NY, 10021, USA
| |
Collapse
|
5
|
Shrivastava S, Trivedi J, Mitra D. Gene expression profiling reveals Nef induced deregulation of lipid metabolism in HIV-1 infected T cells. Biochem Biophys Res Commun 2016; 472:169-74. [PMID: 26915805 DOI: 10.1016/j.bbrc.2016.02.089] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 02/22/2016] [Indexed: 01/11/2023]
Abstract
Human Immunodeficiency Virus-1 (HIV-1) encodes a 27 kDa Negative Factor or Nef protein, which is increasingly proving to be a misnomer. Nef seems to be crucial for AIDS progression as individuals infected with nef-deleted strain of HIV were reported to become Long Term Non Progressors (LTNP). These findings necessitate tracing of Nef's footprint on landscape of cellular transcriptome favoring HIV-1 pathogenesis. We have tried to explore effect of Nef on cellular gene expression profile in conjunction with rest of HIV-1 proteins. Our results show that 237 genes are differentially regulated due to the presence of Nef during infection, which belong to several broad categories like "signaling", "apoptosis", "transcription" and "lipid metabolism" in gene ontology analysis. Furthermore, our results show that Nef causes disruption of lipid content in HIV-1 infected T cells. Molecular inhibitors of lipid metabolism like Atorvastatin and Ranolazine were found to have profound effect on wild type virus as compared to nef-deleted HIV-1. Thus our results suggest that interference in lipid metabolism is a potential mechanism through which Nef contributes in enhancing HIV-1 pathogenesis.
Collapse
Affiliation(s)
| | - Jay Trivedi
- National Centre for Cell Science, Pune, 411007, India
| | | |
Collapse
|
6
|
Basmaciogullari S, Pizzato M. The activity of Nef on HIV-1 infectivity. Front Microbiol 2014; 5:232. [PMID: 24904546 PMCID: PMC4033043 DOI: 10.3389/fmicb.2014.00232] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 04/30/2014] [Indexed: 12/29/2022] Open
Abstract
The replication and pathogenicity of lentiviruses is crucially modulated by “auxiliary proteins” which are expressed in addition to the canonical retroviral ORFs gag, pol, and env. Strategies to inhibit the activity of such proteins are often sought and proposed as possible additions to increase efficacy of the traditional antiretroviral therapy. This requires the acquisition of an in-depth knowledge of the molecular mechanisms underlying their function. The Nef auxiliary protein is expressed uniquely by primate lentiviruses and plays an important role in virus replication in vivo and in the onset of AIDS. Among its several activities Nef enhances the intrinsic infectivity of progeny virions through a mechanism which remains today enigmatic. Here we review the current knowledge surrounding such activity and we discuss its possible role in HIV biology.
Collapse
Affiliation(s)
- Stéphane Basmaciogullari
- Hôpital Necker-Enfants Malades, Sorbonne Paris Cité, Université Paris Descartes Paris, France ; INSERM U845 Paris, France
| | - Massimo Pizzato
- Centre for Integrative Biology, University of Trento Trento, Italy
| |
Collapse
|
7
|
Hauser KF, Knapp PE. Interactions of HIV and drugs of abuse: the importance of glia, neural progenitors, and host genetic factors. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2014; 118:231-313. [PMID: 25175867 PMCID: PMC4304845 DOI: 10.1016/b978-0-12-801284-0.00009-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Considerable insight has been gained into the comorbid, interactive effects of HIV and drug abuse in the brain using experimental models. This review, which considers opiates, methamphetamine, and cocaine, emphasizes the importance of host genetics and glial plasticity in driving the pathogenic neuron remodeling underlying neuro-acquired immunodeficiency syndrome and drug abuse comorbidity. Clinical findings are less concordant than experimental work, and the response of individuals to HIV and to drug abuse can vary tremendously. Host-genetic variability is important in determining viral tropism, neuropathogenesis, drug responses, and addictive behavior. However, genetic differences alone cannot account for individual variability in the brain "connectome." Environment and experience are critical determinants in the evolution of synaptic circuitry throughout life. Neurons and glia both exercise control over determinants of synaptic plasticity that are disrupted by HIV and drug abuse. Perivascular macrophages, microglia, and to a lesser extent astroglia can harbor the infection. Uninfected bystanders, especially astroglia, propagate and amplify inflammatory signals. Drug abuse by itself derails neuronal and glial function, and the outcome of chronic exposure is maladaptive plasticity. The negative consequences of coexposure to HIV and drug abuse are determined by numerous factors including genetics, sex, age, and multidrug exposure. Glia and some neurons are generated throughout life, and their progenitors appear to be targets of HIV and opiates/psychostimulants. The chronic nature of HIV and drug abuse appears to result in sustained alterations in the maturation and fate of neural progenitors, which may affect the balance of glial populations within multiple brain regions.
Collapse
Affiliation(s)
- Kurt F Hauser
- Department of Pharmacology & Toxicology, Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, Virginia, USA.
| | - Pamela E Knapp
- Department of Pharmacology & Toxicology, Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, Virginia, USA; Department of Anatomy & Neurobiology, Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
8
|
Abstract
Human immunodeficiency virus type 1 is associated with the development of neurocognitive disorders in many infected individuals, including a broad spectrum of motor impairments and cognitive deficits. Despite extensive research, the pathogenesis of HIV-associated neurocognitive disorders (HAND) is still not clear. This review provides a comprehensive view of HAND, including HIV neuroinvasion, HAND diagnosis and different level of disturbances, influence of highly-active antiretroviral therapy to HIV-associated dementia (HAD), possible pathogenesis of HAD, etc. Together, this review will give a thorough and clear understanding of HAND, especially HAD, which will be vital for future research, diagnosis and treatment.
Collapse
Affiliation(s)
- Li Zhou
- Retroviral Genetics Division, Center for Virus Research, Westmead Millennium Institute, Westmead Hospital, The University of Sydney , Australia
| | - Nitin K Saksena
- Retroviral Genetics Division, Center for Virus Research, Westmead Millennium Institute, Westmead Hospital, The University of Sydney , Australia
| |
Collapse
|
9
|
Tiede LM, Cook EA, Morsey B, Fox HS. Oxygen matters: tissue culture oxygen levels affect mitochondrial function and structure as well as responses to HIV viroproteins. Cell Death Dis 2011; 2:e246. [PMID: 22190005 PMCID: PMC3253381 DOI: 10.1038/cddis.2011.128] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mitochondrial dysfunction is implicated in a majority of neurodegenerative disorders and much study of neurodegenerative disease is done on cultured neurons. In traditional tissue culture, the oxygen level that cells experience is dramatically higher (21%) than in vivo conditions (1-11%). These differences can alter experimental results, especially, pertaining to mitochondria and oxidative metabolism. Our results show that primary neurons cultured at physiological oxygen levels found in the brain showed higher polarization, lower rates of ROS production, larger mitochondrial networks, greater cytoplasmic fractions of mitochondria and larger mitochondrial perimeters than those cultured at higher oxygen levels. Although neurons cultured in either physiological oxygen or atmospheric oxygen exhibit significant increases in mitochondrial reactive oxygen species (ROS) production when treated with the human immunodeficiency virus (HIV) virotoxin trans-activator of transcription, mitochondria of neurons cultured at physiological oxygen underwent depolarization with dramatically increased cell death, whereas those cultured at atmospheric oxygen became hyperpolarized with no increase in cell death. Studies with a second HIV virotoxin, negative regulation factor (Nef), revealed that Nef treatment also increased mitochondrial ROS production for both the oxygen conditions, but resulted in mitochondrial depolarization and increased death only in neurons cultured in physiological oxygen. These results indicate a role for oxidative metabolism in a mechanism of neurotoxicity during HIV infection and demonstrate the importance of choosing the correct, physiological, culture oxygen in mitochondrial studies performed in neurons.
Collapse
Affiliation(s)
- L M Tiede
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | | | | | | |
Collapse
|
10
|
Lamers SL, Poon AFY, McGrath MS. HIV-1 nef protein structures associated with brain infection and dementia pathogenesis. PLoS One 2011; 6:e16659. [PMID: 21347424 PMCID: PMC3036659 DOI: 10.1371/journal.pone.0016659] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2010] [Accepted: 01/10/2011] [Indexed: 12/16/2022] Open
Abstract
The difference between regional rates of HIV-associated dementia (HAD) in patients infected with different subtypes of HIV suggests that genetic determinants exist within HIV that influence the ability of the virus to replicate in the central nervous system (in Uganda, Africa, subtype D HAD rate is 89%, while subtype A HAD rate is 24%). HIV-1 nef is a multifunctional protein with known toxic effects in the brain compartment. The goal of the current study was to identify if specific three-dimensional nef structures may be linked to patients who developed HAD. HIV-1 nef structures were computationally derived for consensus brain and non-brain sequences from a panel of patients infected with subtype B who died due to varied disease pathologies and consensus subtype A and subtype D sequences from Uganda. Site directed mutation analysis identified signatures in brain structures that appear to change binding potentials and could affect folding conformations of brain-associated structures. Despite the large sequence variation between HIV subtypes, structural alignments confirmed that viral structures derived from patients with HAD were more similar to subtype D structures than to structures derived from patient sequences without HAD. Furthermore, structures derived from brain sequences of patients with HAD were more similar to subtype D structures than they were to their own non-brain structures. The potential finding of a brain-specific nef structure indicates that HAD may result from genetic alterations that alter the folding or binding potential of the protein.
Collapse
Affiliation(s)
- Susanna L. Lamers
- Polytechnic Institute of New York University, New York, New York, United States of America
- BioInfoExperts, Thibodaux, Louisiana, United States of America
| | - Art F. Y. Poon
- British Columbia Centre for HIV/AIDs Excellence, British Columbia, Canada
| | - Michael S. McGrath
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, United States of America
- The AIDS and Cancer Specimen Resource (West Coast ACSR), San Francisco, California, United States of America
| |
Collapse
|
11
|
Masanetz S, Lehmann MH. HIV-1 Nef increases astrocyte sensitivity towards exogenous hydrogen peroxide. Virol J 2011; 8:35. [PMID: 21255447 PMCID: PMC3038946 DOI: 10.1186/1743-422x-8-35] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Accepted: 01/22/2011] [Indexed: 01/20/2023] Open
Abstract
Background HIV-1 infected individuals are under chronic exposure to reactive oxygen species (ROS) considered to be instrumental in the progression of AIDS and the development of HIV-1 associated dementia (HAD). Astrocytes support neuronal function and protect them against cytotoxic substances including ROS. The protein HIV-1 Nef, a progression factor in AIDS pathology is abundantly expressed in astrocytes in patients with HAD, and thus may influence its functions. Results Endogenous expressed HIV-1 Nef leads to increased sensitivity of human astrocytes towards exogenous hydrogen peroxide but not towards TNF-alpha. Cell death of nef-expressing astrocytes exposed to 10 μM hydrogen peroxide for 30 min occurred within 4 h. Conclusion HIV-1 Nef may contribute to neuronal dysfunction and the development of HAD by causing death of astrocytes through decreasing their tolerance for hydrogen peroxide.
Collapse
Affiliation(s)
- Sabine Masanetz
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, 81675 Munich, Germany
| | | |
Collapse
|
12
|
Bergonzini V, Calistri A, Salata C, Del Vecchio C, Sartori E, Parolin C, Palù G. Nef and cell signaling transduction: a possible involvement in the pathogenesis of human immunodeficiency virus-associated dementia. J Neurovirol 2010; 15:238-48. [PMID: 19455469 DOI: 10.1080/13550280902939748] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Although the introduction of highly active antiretroviral therapy (HAART) has resulted in a significant decrease of acquired immunodeficiency syndrome (AIDS) morbidity and mortality, the prevalence of human immunodeficiency virus (HIV)-associated dementia (HAD) has actually risen, due to the increasing life expectancy of the infected subjects. To date, several aspects of the HAD pathogenesis remain to be dissected. In particular, the viral-cellular protein interplay is still under investigation. Given their specific features, two viral proteins, Tat and Nef, have been mainly hypothesized to play a role in HIV neuropathology. Here we show that HIV-1 Nef has an effect on the transcriptional levels of a cellular protein, anaplastic lymphoma kinase (ALK), that is preferentially expressed in the central and peripheral nervous system at late embryonic stages. By its overexpression along with Nef, the authors demonstrate ALK ability to influence, at least in the U87MG astrocytic glioma cells, the mytogen-activated protein kinase (MAP-K)-dependent pathway. Moreover, although in the absence of a physical direct interaction, Nef and ALK activate matrix metalloproteinases (MMPs), which are likely to contribute to blood-brain barrier (BBB) damage in HAD. Finally, in the in vitro model of glioblastoma cells adopted, Nef and ALK show similar effects by increasing different cytochines/chemokines that may be relevant for HAD pathogenesis. If confirmed in vivo, these data may indicate that, thanks to its ability to interfere with specific cellular pathways involved in BBB damage and in central nervous system (CNS) integrity, Nef, along with specific cellular counterparts, could be one of the viral players implicated in HAD development.
Collapse
Affiliation(s)
- Valeria Bergonzini
- Department of Histology, Microbiology, and Medical Biotechnologies, Division of Microbiology and Virology, University of Padova, Padova, Italy
| | | | | | | | | | | | | |
Collapse
|
13
|
Hahn YK, Vo P, Fitting S, Block ML, Hauser KF, Knapp PE. beta-Chemokine production by neural and glial progenitor cells is enhanced by HIV-1 Tat: effects on microglial migration. J Neurochem 2010; 114:97-109. [PMID: 20403075 PMCID: PMC2992981 DOI: 10.1111/j.1471-4159.2010.06744.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Human immunodeficiency virus (HIV)-1 neuropathology results from collective effects of viral proteins and inflammatory mediators on several cell types. Significant damage is mediated indirectly through inflammatory conditions promulgated by glial cells, including microglia that are productively infected by HIV-1, and astroglia. Neural and glial progenitors exist in both developing and adult brains. To determine whether progenitors are targets of HIV-1, a multi-plex assay was performed to assess chemokine/cytokine expression after treatment with viral proteins transactivator of transcription (Tat) or glycoprotein 120 (gp120). In the initial screen, ten analytes were basally released by murine striatal progenitors. The beta-chemokines CCL5/regulated upon activation, normal T cell expressed and secreted, CCL3/macrophage inflammatory protein-1alpha, and CCL4/macrophage inflammatory protein-1beta were increased by 12-h exposure to HIV-1 Tat. Secreted factors from Tat-treated progenitors were chemoattractive towards microglia, an effect blocked by 2D7 anti-CCR5 antibody pre-treatment. Tat and opiates have interactive effects on astroglial chemokine secretion, but this interaction did not occur in progenitors. gp120 did not affect chemokine/cytokine release, although both CCR5 and CXCR4, which serve as gp120 co-receptors, were detected in progenitors. We postulate that chemokine production by progenitors may be a normal, adaptive process that encourages immune inspection of newly generated cells. Pathogens such as HIV might usurp this function to create a maladaptive state, especially during development or regeneration, when progenitors are numerous.
Collapse
Affiliation(s)
- Yun Kyung Hahn
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298 USA
| | - Phu Vo
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298 USA
| | - Sylvia Fitting
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298 USA
| | - Michelle L. Block
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298 USA
| | - Kurt F. Hauser
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298 USA
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA 23298 USA
| | - Pamela E. Knapp
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298 USA
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298 USA
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA 23298 USA
| |
Collapse
|
14
|
Borjabad A, Brooks AI, Volsky DJ. Gene expression profiles of HIV-1-infected glia and brain: toward better understanding of the role of astrocytes in HIV-1-associated neurocognitive disorders. J Neuroimmune Pharmacol 2010; 5:44-62. [PMID: 19697136 PMCID: PMC3107560 DOI: 10.1007/s11481-009-9167-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Accepted: 07/27/2009] [Indexed: 12/17/2022]
Abstract
Astrocytes are the major cellular component of the central nervous system (CNS), and they play multiple roles in brain development, normal brain function, and CNS responses to pathogens and injury. The functional versatility of astrocytes is linked to their ability to respond to a wide array of biological stimuli through finely orchestrated changes in cellular gene expression. Dysregulation of gene expression programs, generally by chronic exposure to pathogenic stimuli, may lead to dysfunction of astrocytes and contribute to neuropathogenesis. Here, we review studies that employ functional genomics to characterize the effects of HIV-1 and viral pathogenic proteins on cellular gene expression in astrocytes in vitro. We also present the first microarray analysis of primary mouse astrocytes exposed to HIV-1 in culture. In spite of different experimental conditions and microarray platforms used, comparison of the astrocyte array data sets reveals several common gene-regulatory changes that may underlie responses of these cells to HIV-1 and its proteins. We also compared the transcriptional profiles of astrocytes with those obtained in analyses of brain tissues of patients with HIV-1 dementia and macaques infected with simian immunodeficiency virus (SIV). Notably, many of the gene characteristics of responses to HIV-1 in cultured astrocytes were also altered in HIV-1 or SIV-infected brains. Functional genomics, in conjunction with other approaches, may help clarify the role of astrocytes in HIV-1 neuropathogenesis.
Collapse
Affiliation(s)
- Alejandra Borjabad
- Molecular Virology Division, St. Luke's-Roosevelt Hospital Center, 432 West 58th Street, Antenucci Building, Room 709, New York, NY 10019, USA
| | | | | |
Collapse
|
15
|
Imbeault M, Ouellet M, Tremblay MJ. Microarray study reveals that HIV-1 induces rapid type-I interferon-dependent p53 mRNA up-regulation in human primary CD4+ T cells. Retrovirology 2009; 6:5. [PMID: 19146679 PMCID: PMC2637825 DOI: 10.1186/1742-4690-6-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Accepted: 01/15/2009] [Indexed: 11/10/2022] Open
Abstract
Background Infection with HIV-1 has been shown to alter expression of a large array of host cell genes. However, previous studies aimed at investigating the putative HIV-1-induced modulation of host gene expression have been mostly performed in established human cell lines. To better approximate natural conditions, we monitored gene expression changes in a cell population highly enriched in human primary CD4+ T lymphocytes exposed to HIV-1 using commercial oligonucleotide microarrays from Affymetrix. Results We report here that HIV-1 influences expression of genes related to many important biological processes such as DNA repair, cellular cycle, RNA metabolism and apoptosis. Notably, expression of the p53 tumor suppressor and genes involved in p53 homeostasis such as GADD34 were up-regulated by HIV-1 at the mRNA level. This observation is distinct from the previously reported p53 phosphorylation and stabilization at the protein level, which precedes HIV-1-induced apoptosis. We present evidence that the HIV-1-mediated increase in p53 gene expression is associated with virus-mediated induction of type-I interferon (i.e. IFN-α and IFN-β). Conclusion These observations have important implications for our understanding of HIV-1 pathogenesis, particularly in respect to the virus-induced depletion of CD4+ T cells.
Collapse
Affiliation(s)
- Michaël Imbeault
- Centre de Recherche en Infectiologie, Centre Hospitalier de l'Université Laval, and Faculté de Médecine, Université Laval, Québec, Canada.
| | | | | |
Collapse
|
16
|
Lehmann MH, Masanetz S, Kramer S, Erfle V. HIV-1 Nef upregulates CCL2/MCP-1 expression in astrocytes in a myristoylation- and calmodulin-dependent manner. J Cell Sci 2006; 119:4520-30. [PMID: 17046994 DOI: 10.1242/jcs.03231] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
HIV-associated dementia (HAD) correlates with infiltration of monocytes into the brain. The accessory HIV-1 negative factor (Nef) protein, which modulates several signaling pathways, is constitutively present in persistently infected astroctyes. We demonstrated that monocytes responded with chemotaxis when subjected to cell culture supernatants of nef-expressing astrocytic U251MG cells. Using a protein array, we identified CC chemokine ligand 2/monocyte chemotactic protein-1 (CCL2/MCP-1) as a potential chemotactic factor mediating this phenomenon. CCL2/MCP-1 upregulation by Nef was further confirmed by ribonuclease protection assay, RT-PCR and ELISA. By applying neutralizing antibodies against CCL2/MCP-1 and using CCR2-deficient monocytes, we confirmed CCL2/MCP-1 as the exclusive factor secreted by nef-expressing astrocytes capable of attracting monocytes. Additionally, we showed that Nef-induced CCL2/MCP-1 expression depends on the myristoylation moiety of Nef and requires functional calmodulin. In summary, we suggest that Nef-induced CCL2/MCP-1 expression in astrocytes contributes to infiltration of monocytes into the brain, and thereby to progression of HAD.
Collapse
Affiliation(s)
- Michael H Lehmann
- Institute of Molecular Virology, GSF-National Research Center for Environment and Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany.
| | | | | | | |
Collapse
|
17
|
Giri MS, Nebozhyn M, Showe L, Montaner LJ. Microarray data on gene modulation by HIV-1 in immune cells: 2000-2006. J Leukoc Biol 2006; 80:1031-43. [PMID: 16940334 DOI: 10.1189/jlb.0306157] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Here, we review 34 HIV microarray studies in human immune cells over the period of 2000-March 2006 with emphasis on analytical approaches used and conceptual advances on HIV modulation of target cells (CD4 T cell, macrophage) and nontargets such as NK cell, B cell, and dendritic cell subsets. Results to date address advances on gene modulation associated with immune dysregulation, susceptibility to apoptosis, virus replication, and viral persistence following in vitro or in vivo infection/exposure to HIV-1 virus or HIV-1 accessory proteins. In addition to gene modulation associated with known functional correlates of HIV infection and replication (e.g., T cell apoptosis), microarray data have yielded novel, potential mechanisms of HIV-mediated pathogenesis such as modulation of cholesterol biosynthetic genes in CD4 T cells (relevant to virus replication and infectivity) and modulation of proteasomes and histone deacetylases in chronically infected cell lines (relevant to virus latency). Intrinsic challenges in summarizing gene modulation studies remain in development of sound approaches for comparing data obtained using different platforms and analytical tools, deriving unifying concepts to distil the large volumes of data collected, and the necessity to impose a focus for validation on a small fraction of genes. Notwithstanding these challenges, the field overall continues to demonstrate progress in expanding the pool of target genes validated to date in in vitro and in vivo datasets and understanding the functional correlates of gene modulation to HIV-1 pathogenesis in vivo.
Collapse
Affiliation(s)
- Malavika S Giri
- HIV Immunopathogenesis Laboratory, Wistar Institute, 3601 Spruce St., Room 480, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
18
|
Ndolo T, George M, Nguyen H, Dandekar S. Expression of simian immunodeficiency virus Nef protein in CD4+ T cells leads to a molecular profile of viral persistence and immune evasion. Virology 2006; 353:374-87. [PMID: 16857233 DOI: 10.1016/j.virol.2006.06.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2006] [Revised: 05/22/2006] [Accepted: 06/02/2006] [Indexed: 10/24/2022]
Abstract
The Nef protein of human immunodeficiency virus and simian immunodeficiency virus is expressed early in infection and plays an important role in disease progression in vivo. In addition, Nef has been shown to modulate cellular functions. To decipher Nef-mediated changes in gene expression, we utilized DNA microarray analysis to elucidate changes in gene expression in a Jurkat CD4+ T-cell line stably expressing SIV-Nef protein under the control of an inducible promoter. Our results showed that genes associated with antigen presentation including members of the T-cell receptor and major histocompatibility class 1 complex were consistently down-regulated at the transcript level in SIV-Nef-expressing cells. In addition, Nef induced a transcriptional profile of cell-cycle-related genes that support the survival of Nef-expressing cells. Furthermore, Nef enhanced the transcription of genes encoding enzymes and factors that catalyze the biosynthesis of membrane glycolipids and phospholipids. In conclusion, gene expression profiling showed that SIV-Nef induces a transcriptional profile in CD4+ T cells that promotes immune evasion and cell survival, thus facilitating viral persistence.
Collapse
Affiliation(s)
- Thomas Ndolo
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA 95616, USA
| | | | | | | |
Collapse
|