1
|
Angelidi AM, Stefanakis K, Chou SH, Valenzuela-Vallejo L, Dipla K, Boutari C, Ntoskas K, Tokmakidis P, Kokkinos A, Goulis DG, Papadaki HA, Mantzoros CS. Relative Energy Deficiency in Sport (REDs): Endocrine Manifestations, Pathophysiology and Treatments. Endocr Rev 2024; 45:676-708. [PMID: 38488566 DOI: 10.1210/endrev/bnae011] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Indexed: 09/18/2024]
Abstract
Research on lean, energy-deficient athletic and military cohorts has broadened the concept of the Female Athlete Triad into the Relative Energy Deficiency in Sport (REDs) syndrome. REDs represents a spectrum of abnormalities induced by low energy availability (LEA), which serves as the underlying cause of all symptoms described within the REDs concept, affecting exercising populations of either biological sex. Both short- and long-term LEA, in conjunction with other moderating factors, may produce a multitude of maladaptive changes that impair various physiological systems and adversely affect health, well-being, and sport performance. Consequently, the comprehensive definition of REDs encompasses a broad spectrum of physiological sequelae and adverse clinical outcomes related to LEA, such as neuroendocrine, bone, immune, and hematological effects, ultimately resulting in compromised health and performance. In this review, we discuss the pathophysiology of REDs and associated disorders. We briefly examine current treatment recommendations for REDs, primarily focusing on nonpharmacological, behavioral, and lifestyle modifications that target its underlying cause-energy deficit. We also discuss treatment approaches aimed at managing symptoms, such as menstrual dysfunction and bone stress injuries, and explore potential novel treatments that target the underlying physiology, emphasizing the roles of leptin and the activin-follistatin-inhibin axis, the roles of which remain to be fully elucidated, in the pathophysiology and management of REDs. In the near future, novel therapies leveraging our emerging understanding of molecules and physiological axes underlying energy availability or lack thereof may restore LEA-related abnormalities, thus preventing and/or treating REDs-related health complications, such as stress fractures, and improving performance.
Collapse
Affiliation(s)
- Angeliki M Angelidi
- Department of Medicine, Boston VA Healthcare System, Boston, MA 02115, USA
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Konstantinos Stefanakis
- Department of Medicine, Boston VA Healthcare System, Boston, MA 02115, USA
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- First Propaedeutic Department of Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
- Department of Internal Medicine, 251 Air Force General Hospital, Athens 11525, Greece
| | - Sharon H Chou
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital (BWH), Harvard Medical School, Boston, MA 02115, USA
| | - Laura Valenzuela-Vallejo
- Department of Medicine, Boston VA Healthcare System, Boston, MA 02115, USA
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Konstantina Dipla
- Exercise Physiology and Biochemistry Laboratory, Department of Sports Science at Serres, Aristotle University of Thessaloniki, Serres 62100, Greece
| | - Chrysoula Boutari
- Second Propaedeutic Department of Internal Medicine, Hippokration Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki 54642, Greece
| | - Konstantinos Ntoskas
- Department of Internal Medicine, 251 Air Force General Hospital, Athens 11525, Greece
| | - Panagiotis Tokmakidis
- First Propaedeutic Department of Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
- Department of Internal Medicine, 251 Air Force General Hospital, Athens 11525, Greece
| | - Alexander Kokkinos
- First Propaedeutic Department of Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Dimitrios G Goulis
- Unit of Reproductive Endocrinology, First Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Helen A Papadaki
- Department of Hematology, University Hospital of Heraklion, School of Medicine, University of Crete, Heraklion 71500, Greece
| | - Christos S Mantzoros
- Department of Medicine, Boston VA Healthcare System, Boston, MA 02115, USA
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital (BWH), Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
2
|
Umur E, Bulut SB, Yiğit P, Bayrak E, Arkan Y, Arslan F, Baysoy E, Kaleli-Can G, Ayan B. Exploring the Role of Hormones and Cytokines in Osteoporosis Development. Biomedicines 2024; 12:1830. [PMID: 39200293 PMCID: PMC11351445 DOI: 10.3390/biomedicines12081830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
The disease of osteoporosis is characterized by impaired bone structure and an increased risk of fractures. There is a significant impact of cytokines and hormones on bone homeostasis and the diagnosis of osteoporosis. As defined by the World Health Organization (WHO), osteoporosis is defined as having a bone mineral density (BMD) that is 2.5 standard deviations (SD) or more below the average for young and healthy women (T score < -2.5 SD). Cytokines and hormones, particularly in the remodeling of bone between osteoclasts and osteoblasts, control the differentiation and activation of bone cells through cytokine networks and signaling pathways like the nuclear factor kappa-B ligand (RANKL)/the receptor of RANKL (RANK)/osteoprotegerin (OPG) axis, while estrogen, parathyroid hormones, testosterone, and calcitonin influence bone density and play significant roles in the treatment of osteoporosis. This review aims to examine the roles of cytokines and hormones in the pathophysiology of osteoporosis, evaluating current diagnostic methods, and highlighting new technologies that could help for early detection and treatment of osteoporosis.
Collapse
Affiliation(s)
- Egemen Umur
- Department of Biomedical Engineering, İzmir Democracy University, İzmir 35140, Türkiye
| | - Safiye Betül Bulut
- Department of Biomedical Engineering, İzmir Democracy University, İzmir 35140, Türkiye
| | - Pelin Yiğit
- Department of Biomedical Engineering, İzmir Democracy University, İzmir 35140, Türkiye
| | - Emirhan Bayrak
- Department of Biomedical Engineering, İzmir Democracy University, İzmir 35140, Türkiye
| | - Yaren Arkan
- Department of Biomedical Engineering, İzmir Democracy University, İzmir 35140, Türkiye
| | - Fahriye Arslan
- Department of Biomedical Engineering, İzmir Democracy University, İzmir 35140, Türkiye
| | - Engin Baysoy
- Department of Biomedical Engineering, Bahçeşehir University, İstanbul 34353, Türkiye
| | - Gizem Kaleli-Can
- Department of Biomedical Engineering, İzmir Democracy University, İzmir 35140, Türkiye
| | - Bugra Ayan
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
3
|
Tenkumo T, Koide R, Ogawa T, Yamaguchi H, Suzuki S, Miyashita M, Nakamura K, Wang H, Yoda N, Sasaki K. A triple growth factor strategy for optimizing bone augmentation in mice. J Biomed Mater Res B Appl Biomater 2024; 112:e35447. [PMID: 38997799 DOI: 10.1002/jbm.b.35447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/07/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024]
Abstract
With dental implant treatment becoming the gold standard, the need for effective bone augmentation prior to implantation has grown. This study aims to evaluate a bone augmentation strategy integrating three key growth factors: bone morphogenetic protein-2 (BMP-2), insulin-like growth factor 1 (IGF-1), and vascular endothelial growth factor (VEGF). Collagen scaffolds incorporating BMP-2, IGF-1, or VEGF were fabricated and categorized into five groups based on their content: scaffold alone; BMP-2 alone (BMP-2); BMP-2 and IGF-1 (BI); BMP-2, IGF-1, and VEGF (BIV); and BMP-2 and IGF-1 with an earlier release of VEGF (BI + V). The prepared scaffolds were surgically implanted into the calvarias of C57BL/6JJcl mice, and hard tissue formation was assessed after 10 and 28 days through histological, tomographic, and biochemical analyses. The combination of BMP-2 and IGF-1 induced a greater volume of hard tissue augmentation compared with that of BMP-2 alone, regardless of VEGF supplementation, and these groups had increased levels of cartilage compared with others. The volume of hard tissue formation was greatest in the BIV group. In contrast, the BI + V group exhibited a hard tissue volume similar to that of the BI group. While VEGF and CD31 levels were highest in the BIV group at 10 days, there was no correlation at the same time point between hard tissue formation and the quantity of M2 macrophages. In conclusion, the simultaneous release of BMP-2, IGF-1, and VEGF proved to be effective in promoting bone augmentation.
Collapse
Affiliation(s)
- Taichi Tenkumo
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate school of Dentistry, Sendai, Japan
| | - Rie Koide
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate school of Dentistry, Sendai, Japan
| | - Toru Ogawa
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate school of Dentistry, Sendai, Japan
| | - Hirofumi Yamaguchi
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate school of Dentistry, Sendai, Japan
| | - Shigeki Suzuki
- Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Makiko Miyashita
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate school of Dentistry, Sendai, Japan
| | - Keisuke Nakamura
- Department of Advanced Free Radical Science, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Han Wang
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate school of Dentistry, Sendai, Japan
| | - Nobuhiro Yoda
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate school of Dentistry, Sendai, Japan
| | - Keiichi Sasaki
- Tohoku University Graduate School of Dentistry, Sendai, Japan
| |
Collapse
|
4
|
Shao M, Wang Q, Lv Q, Zhang Y, Gao G, Lu S. Advances in the research on myokine-driven regulation of bone metabolism. Heliyon 2024; 10:e22547. [PMID: 38226270 PMCID: PMC10788812 DOI: 10.1016/j.heliyon.2023.e22547] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 01/17/2024] Open
Abstract
The traditional view posits that bones and muscles interact primarily through mechanical coupling. However, recent studies have revealed that myokines, proteins secreted by skeletal muscle cells, play a crucial role in the regulation of bone metabolism. Myokines are widely involved in bone metabolism, influencing bone resorption and formation by interacting with factors related to bone cell secretion or influencing bone metabolic pathways. Here, we review the research progress on the myokine regulation of bone metabolism, discuss the mechanism of myokine regulation of bone metabolism, explore the pathophysiological relationship between sarcopenia and osteoporosis, and provide future perspectives on myokine research, with the aim of identify potential specific diagnostic markers and therapeutic entry points.
Collapse
Affiliation(s)
- MingHong Shao
- Department of Orthopedic Surgery, the Key Laboratory of Digital Orthopaedics of Yunnan Provincial, the First People's Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - QiYang Wang
- Department of Orthopedic Surgery, the Key Laboratory of Digital Orthopaedics of Yunnan Provincial, the First People's Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - QiuNan Lv
- Department of Orthopedic Surgery, the Key Laboratory of Digital Orthopaedics of Yunnan Provincial, the First People's Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - YuQiong Zhang
- Department of Orthopedic Surgery, the Key Laboratory of Digital Orthopaedics of Yunnan Provincial, the First People's Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - GuoXi Gao
- Department of Orthopedic Surgery, the Key Laboratory of Digital Orthopaedics of Yunnan Provincial, the First People's Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Sheng Lu
- Department of Orthopedic Surgery, the Key Laboratory of Digital Orthopaedics of Yunnan Provincial, the First People's Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
5
|
Chen ZL, Guo C, Zou YY, Feng C, Yang DX, Sun CC, Wen W, Jian ZJ, Zhao Z, Xiao Q, Zheng L, Peng XY, Zhou ZQ, Tang CF. Aerobic exercise enhances mitochondrial homeostasis to counteract D-galactose-induced sarcopenia in zebrafish. Exp Gerontol 2023; 180:112265. [PMID: 37482108 DOI: 10.1016/j.exger.2023.112265] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/25/2023]
Abstract
Sarcopenia is a common skeletal muscle degenerative disease characterized by decreased skeletal muscle mass and mitochondrial dysfunction that involves microRNAs (miR) as regulatory factors in various pathways. Exercise reduces age-related oxidative damage and chronic inflammation and increases autophagy, among others. Moreover, whether aerobic exercise can regulate mitochondrial homeostasis by modulating the miR-128/insulin-like growth factor-1 (IGF-1) signaling pathway and can improve sarcopenia requires further investigation. Interestingly, zebrafish have been used as a model for aging research for over a decade due to their many outstanding advantages. Therefore, we established a model of zebrafish sarcopenia using d-galactose immersion and observed substantial changes, including reduced skeletal muscle cross-sectional area, increased tissue fibrosis, decreased motility, increased skeletal muscle reactive oxygen species, and notable alterations in mitochondrial morphology and function. We found that miR-128 expression was considerably upregulated, where as Igf1 and peroxisome proliferator-activated receptor gamma coactivator 1-alpha were significantly downregulated; moreover, mitochondrial homeostasis was reduced. Four weeks of aerobic exercise delayed sarcopenia progression and prevented the disruption of mitochondrial function and homeostasis. The genes related to atrophy and miR-128 were downregulated, Igf1 expression was considerably upregulated, and the phosphorylation levels of Pi3k, Akt, and Foxo3a were upregulated. Furthermore, mitochondrial respiration and homeostasis were enhanced. In conclusion, aerobic exercise improved skeletal muscle quality and function via the miR-128/IGF-1 signaling pathway, consequently ameliorating mitochondrial homeostasis in aging skeletal muscle.
Collapse
Affiliation(s)
- Zhang-Lin Chen
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, 410012 Changsha, China
| | - Cheng Guo
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, 410012 Changsha, China
| | - Yun-Yi Zou
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, 410012 Changsha, China
| | - Chen Feng
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, 410012 Changsha, China
| | - Di-Xuan Yang
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, 410012 Changsha, China
| | - Chen-Chen Sun
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, 410012 Changsha, China
| | - Wei Wen
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, 410012 Changsha, China
| | - Zhen-Jie Jian
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, 410012 Changsha, China
| | - Zhe Zhao
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, 410012 Changsha, China
| | - Qin Xiao
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, 410012 Changsha, China
| | - Lan Zheng
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, 410012 Changsha, China
| | - Xi-Yang Peng
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, 410012 Changsha, China.
| | - Zuo-Qiong Zhou
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, 410012 Changsha, China.
| | - Chang-Fa Tang
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, 410012 Changsha, China.
| |
Collapse
|
6
|
Quexada D, Ramtani S, Trabelsi O, Marquez K, Marie-Christine, Linero Segrera DL, Duque-Daza C, Garzón Alvarado DA. A unified framework of cell population dynamics and mechanical stimulus using a discrete approach in bone remodelling. Comput Methods Biomech Biomed Engin 2023; 26:399-411. [PMID: 35587027 DOI: 10.1080/10255842.2022.2065201] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Multiphysics models have become a key tool in understanding the way different phenomenon are related in bone remodeling and various approaches have been proposed, yet, to the best of the author's knowledge there is no model able to link a cell population model with a mechanical stimulus model using a discrete approach, which allows for an easy implementation. This article couples two classical models, the cell population model from Komarova and the Nackenhorst model in a 2D domain, where correlations between the mechanical loading and the cell population dynamics can be established, furthermore the effect of different paracrine and autocrine regulators is seen on the overall density of a portion of trabecular bone. A discretization is performed using frame 1D finite elements, representing the trabecular structure. The Nackenhorst model is implemented by using the finite element method to calculate the strain energy as the main mechanical stimulus that determines the bone mass density evolution in time. This density is normalized to be added to the bone mass percentage proposed by the Komarova model, where coupling terms have been added as well that guarantee a stable response. In the simulations, the equations were solved employing the finite element method with a user subroutine implemented in ABAQUS (2017) and by applying a direct formulation. The methodology presented can model the cell dynamics occurring in bone remodelling in accordance with the asynchronous nature of this process, yet allowing to differentiate zones with higher density, the main trabecular groups are obtained for the proximal femur. Finally, the model is tested in pathological cases, such as osteoporosis and osteopetrosis, yielding results similar to the pathology behavior. Furthermore, the discrete modelling technique is shown to be of use in this particular application.
Collapse
Affiliation(s)
- Diego Quexada
- Université de technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu, CS 60 319 - 60 203 Compiègne Cedex, France.,Numerical Methods and Modeling Research Group (GNUM), Universidad Nacional de Colombia
| | - Salah Ramtani
- Université Sorbonne Paris Nord, Laboratoire CSPBAT, équipe LBPS, CNRS (UMR 7244), Institut Galilée, F93430, Villetaneuse, France
| | - Olfa Trabelsi
- Université de technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu, CS 60 319 - 60 203 Compiègne Cedex, France
| | | | - Marie-Christine
- Université de technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu, CS 60 319 - 60 203 Compiègne Cedex, France
| | | | - Carlos Duque-Daza
- Numerical Methods and Modeling Research Group (GNUM), Universidad Nacional de Colombia
| | | |
Collapse
|
7
|
Chiloiro S, Giampietro A, Gagliardi I, Bondanelli M, Veleno M, Ambrosio MR, Zatelli MC, Pontecorvi A, Giustina A, De Marinis L, Bianchi A. Impact of the diagnostic delay of acromegaly on bone health: data from a real life and long term follow-up experience. Pituitary 2022; 25:831-841. [PMID: 35922724 PMCID: PMC9362053 DOI: 10.1007/s11102-022-01266-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/21/2022] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Acromegaly is a chronic disease with systemic complications. Disease onset is insidious and consequently typically burdened by diagnostic delay. A longer diagnostic delay induces more frequently cardiovascular, respiratory, metabolic, neuropsychiatric and musculoskeletal comorbidities. No data are available on the effect of diagnostic delay on skeletal fragility. We aimed to evaluate the effect of diagnostic delay on the frequency of incident and prevalent of vertebral fractures (i-VFs and p-VFs) in a large cohort of acromegaly patients. PATIENTS AND METHODS A longitudinal, retrospective and multicenter study was conducted on 172 acromegaly patients. RESULTS Median diagnostic delay and duration of follow-up were respectively 10 years (IQR: 6) and 10 years (IQR: 8). P-VFs were observed in 18.6% and i-VFs occurred in 34.3% of patients. The median estimated diagnostic delay was longer in patients with i-VFs (median: 11 years, IQR: 3), in comparison to those without i-VFs (median: 8 years, IQR: 7; p = 0.02). Age at acromegaly diagnosis and at last follow-up were higher in patients with i-VFs, with respect to those without i-VFs. The age at acromegaly diagnosis was positively associated with the diagnostic delay (p < 0.001, r = 0.216). A longer history of active acromegaly was associated with a high frequency of i-VFs (p = 0.03). The logistic regression confirmed that patients with a diagnostic delay > 10 years had 1.5-folds increased risk of developing i-VFs (OR: 1.5; 95%CI: 1.1-2; p = 0.017). CONCLUSION Our data showed that the diagnostic delay in acromegaly has a significant impact on VF risk, further supporting the clinical relevance of an early acromegaly diagnosis.
Collapse
Affiliation(s)
- Sabrina Chiloiro
- Endocrinology and Diabetology Department, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Antonella Giampietro
- Endocrinology and Diabetology Department, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy.
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy.
| | - Irene Gagliardi
- Section of Endocrinology, Geriatrics & Internal Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Marta Bondanelli
- Section of Endocrinology, Geriatrics & Internal Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Miriam Veleno
- Endocrinology and Diabetology Department, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Maria Rosaria Ambrosio
- Section of Endocrinology, Geriatrics & Internal Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Maria Chiara Zatelli
- Section of Endocrinology, Geriatrics & Internal Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Alfredo Pontecorvi
- Endocrinology and Diabetology Department, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Andrea Giustina
- Institute of Endocrine and Metabolic Sciences, San Raffaele, Vita-Salute University and IRCCS Hospital, Milan, Italy
| | - Laura De Marinis
- Endocrinology and Diabetology Department, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Antonio Bianchi
- Endocrinology and Diabetology Department, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
8
|
Hou YC, Zheng CM, Chiu HW, Liu WC, Lu KC, Lu CL. Role of Calcimimetics in Treating Bone and Mineral Disorders Related to Chronic Kidney Disease. Pharmaceuticals (Basel) 2022; 15:952. [PMID: 36015101 PMCID: PMC9415417 DOI: 10.3390/ph15080952] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 12/17/2022] Open
Abstract
Renal osteodystrophy is common in patients with chronic kidney disease and end-stage renal disease and leads to the risks of fracture and extraosseous vascular calcification. Secondary hyperparathyroidism (SHPT) is characterized by a compensatory increase in parathyroid hormone (PTH) secretion in response to decreased renal phosphate excretion, resulting in potentiating bone resorption and decreased bone quantity and quality. Calcium-sensing receptors (CaSRs) are group C G-proteins and negatively regulate the parathyroid glands through (1) increasing CaSR insertion within the plasma membrane, (2) increasing 1,25-dihydroxy vitamin D3 within the kidney and parathyroid glands, (3) inhibiting fibroblast growth factor 23 (FGF23) in osteocytes, and (4) attenuating intestinal calcium absorption through Transient Receptor Potential Vanilloid subfamily member 6 (TRPV6). Calcimimetics (CaMs) decrease PTH concentrations without elevating the serum calcium levels or extraosseous calcification through direct interaction with cell membrane CaSRs. CaMs reduce osteoclast activity by reducing stress-induced oxidative autophagy and improving Wnt-10b release, which promotes the growth of osteoblasts and subsequent mineralization. CaMs also directly promote osteoblast proliferation and survival. Consequently, bone quality may improve due to decreased bone resorption and improved bone formation. CaMs modulate cardiovascular fibrosis, calcification, and renal fibrosis through different mechanisms. Therefore, CaMs assist in treating SHPT. This narrative review focuses on the role of CaMs in renal osteodystrophy, including their mechanisms and clinical efficacy.
Collapse
Affiliation(s)
- Yi-Chou Hou
- Division of Nephrology, Department of Medicine, Cardinal-Tien Hospital, School of Medicine, Fu-Jen Catholic University, New Taipei City 24205, Taiwan;
| | - Cai-Mei Zheng
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, School of Medicine, College of Medicine, Taipei Medical University, New Taipei City 11031, Taiwan;
- TMU Research Centre of Urology and Kidney, Taipei Medical University, New Taipei City 11031, Taiwan;
| | - Hui-Wen Chiu
- TMU Research Centre of Urology and Kidney, Taipei Medical University, New Taipei City 11031, Taiwan;
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, New Taipei City 11031, Taiwan
- Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City 11031, Taiwan
| | - Wen-Chih Liu
- Department of Biology and Anatomy, National Defense Medical Center, Taipei 11490, Taiwan;
- Section of Nephrology, Department of Medicine, Antai Medical Care Corporation, Anti Tian-Sheng Memorial Hospital, Pingtung 92842, Taiwan
| | - Kuo-Cheng Lu
- Division of Nephrology, Department of Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, School of Medicine, Buddhist Tzu Chi University, Hualien 97004, Taiwan
- Division of Nephrology, Department of Medicine, Fu-Jen Catholic University Hospital, School of Medicine, Fu-Jen Catholic University, New Taipei City 24205, Taiwan;
| | - Chien-Lin Lu
- Division of Nephrology, Department of Medicine, Fu-Jen Catholic University Hospital, School of Medicine, Fu-Jen Catholic University, New Taipei City 24205, Taiwan;
| |
Collapse
|
9
|
Vitamin D, Bone Mineral Density and Serum IGF-1 Level in Non-ambulatory Children With Cerebral Palsy. Indian Pediatr 2021. [DOI: 10.1007/s13312-021-2303-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Iordachescu A, Hughes EAB, Joseph S, Hill EJ, Grover LM, Metcalfe AD. Trabecular bone organoids: a micron-scale 'humanised' prototype designed to study the effects of microgravity and degeneration. NPJ Microgravity 2021; 7:17. [PMID: 34021163 PMCID: PMC8140135 DOI: 10.1038/s41526-021-00146-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/25/2021] [Indexed: 11/20/2022] Open
Abstract
Bone is a highly responsive organ, which continuously adapts to the environment it is subjected to in order to withstand metabolic demands. These events are difficult to study in this particular tissue in vivo, due to its rigid, mineralised structure and inaccessibility of the cellular component located within. This manuscript presents the development of a micron-scale bone organoid prototype, a concept that can allow the study of bone processes at the cell-tissue interface. The model is constructed with a combination of primary female osteoblastic and osteoclastic cells, seeded onto femoral head micro-trabeculae, where they recapitulate relevant phenotypes and functions. Subsequently, constructs are inserted into a simulated microgravity bioreactor (NASA-Synthecon) to model a pathological state of reduced mechanical stimulation. In these constructs, we detected osteoclastic bone resorption sites, which were different in morphology in the simulated microgravity group compared to static controls. Once encapsulated in human fibrin and exposed to analogue microgravity for 5 days, masses of bone can be observed being lost from the initial structure, allowing to simulate the bone loss process further. Constructs can function as multicellular, organotypic units. Large osteocytic projections and tubular structures develop from the initial construct into the matrix at the millimetre scale. Micron-level fragments from the initial bone structure are detected travelling along these tubules and carried to sites distant from the native structure, where new matrix formation is initiated. We believe this model allows the study of fine-level physiological processes, which can shed light into pathological bone loss and imbalances in bone remodelling.
Collapse
Affiliation(s)
- Alexandra Iordachescu
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, UK.
- Healthcare Technologies Institute, University of Birmingham, Edgbaston, Birmingham, UK.
| | - Erik A B Hughes
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, UK
- Healthcare Technologies Institute, University of Birmingham, Edgbaston, Birmingham, UK
| | - Stephan Joseph
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, UK
- The Binding Site, Edgbaston, Birmingham, UK
| | - Eric J Hill
- School of Biosciences, College of Health and Life Sciences, Aston University, Birmingham, UK
| | - Liam M Grover
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, UK
- Healthcare Technologies Institute, University of Birmingham, Edgbaston, Birmingham, UK
| | - Anthony D Metcalfe
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, UK
- Healthcare Technologies Institute, University of Birmingham, Edgbaston, Birmingham, UK
| |
Collapse
|
11
|
Hioki T, Kawabata T, Sakai G, Fujita K, Kuroyanagi G, Matsushima-Nishiwaki R, Kim W, Otsuka T, Iida H, Tokuda H, Kozawa O. Resveratrol suppresses insulin-like growth factor I-induced osteoblast migration: attenuation of the p44/p42 MAP kinase pathway. Biosci Biotechnol Biochem 2020; 84:2428-2439. [PMID: 32862787 DOI: 10.1080/09168451.2020.1809987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Resveratrol is a natural polyphenol with beneficial antioxidant properties. It suppresses the migration of osteoblast-like MC3T3-E1 cells induced by epidermal growth factor, via SIRT1-mediated inhibition of SAPK/JNK and Akt. Moreover, insulin-like growth factor-I (IGF-I) stimulates the migration involving the pathways of p44/p42 mitogen-activated protein (MAP) kinase and Akt. Therefore, we investigated the effects of resveratrol on IGF-I-induced cell migration. Resveratrol and SRT1720, an activator of SIRT1, suppressed IGF-I-induced migration. Inauhzin, a SIRT1 inhibitor, significantly rescued the inhibition of IGF-I-induced cell migration by resveratrol. Resveratrol inhibited IGF-I-induced phosphorylation of p44/p42 MAP kinase but not Akt. SRT1720 inhibited IGF-I-induced phosphorylation of p44/p42 MAP kinase. Furthermore, PD98059, p44/p42 MAP kinase inhibitor, alone suppressed IGF-I-induced osteoblast migration, but did not affect the suppressive effect of resveratrol when administered concomitantly. These findings strongly suggest that resveratrol suppresses IGF-I-induced osteoblast migration via SIRT1 activation at least partially by attenuating the p44/p42 MAP kinase pathway.
Collapse
Affiliation(s)
- Tomoyuki Hioki
- Department of Pharmacology, Gifu University Graduate School of Medicine , Gifu, Japan.,Department of Dermatology, Kizawa Memorial Hospital , Minokamo, Japan
| | - Tetsu Kawabata
- Department of Pharmacology, Gifu University Graduate School of Medicine , Gifu, Japan.,Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences , Nagoya, Japan
| | - Go Sakai
- Department of Pharmacology, Gifu University Graduate School of Medicine , Gifu, Japan.,Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences , Nagoya, Japan
| | - Kazuhiko Fujita
- Department of Pharmacology, Gifu University Graduate School of Medicine , Gifu, Japan.,Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences , Nagoya, Japan
| | - Gen Kuroyanagi
- Department of Pharmacology, Gifu University Graduate School of Medicine , Gifu, Japan.,Department of Rehabilitation Medicine, Nagoya City University Graduate School of Medical Sciences , Nagoya, Japan
| | | | - Woo Kim
- Department of Pharmacology, Gifu University Graduate School of Medicine , Gifu, Japan.,Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine , Gifu, Japan
| | - Takanobu Otsuka
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences , Nagoya, Japan
| | - Hiroki Iida
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine , Gifu, Japan
| | - Haruhiko Tokuda
- Department of Pharmacology, Gifu University Graduate School of Medicine , Gifu, Japan.,Department of Clinical Laboratory/Biobank of Medical Genome Center, National Center for Geriatrics and Gerontology , Obu, Japan
| | - Osamu Kozawa
- Department of Pharmacology, Gifu University Graduate School of Medicine , Gifu, Japan
| |
Collapse
|
12
|
Poudel SB, Dixit M, Neginskaya M, Nagaraj K, Pavlov E, Werner H, Yakar S. Effects of GH/IGF on the Aging Mitochondria. Cells 2020; 9:cells9061384. [PMID: 32498386 PMCID: PMC7349719 DOI: 10.3390/cells9061384] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 12/11/2022] Open
Abstract
The mitochondria are key organelles regulating vital processes in the eukaryote cell. A decline in mitochondrial function is one of the hallmarks of aging. Growth hormone (GH) and the insulin-like growth factor-1 (IGF-1) are somatotropic hormones that regulate cellular homeostasis and play significant roles in cell differentiation, function, and survival. In mammals, these hormones peak during puberty and decline gradually during adulthood and aging. Here, we review the evidence that GH and IGF-1 regulate mitochondrial mass and function and contribute to specific processes of cellular aging. Specifically, we discuss the contribution of GH and IGF-1 to mitochondrial biogenesis, respiration and ATP production, oxidative stress, senescence, and apoptosis. Particular emphasis was placed on how these pathways intersect during aging.
Collapse
Affiliation(s)
- Sher Bahadur Poudel
- David B. Kriser Dental Center, Department of Molecular Pathobiology, New York University College of Dentistry New York, NY 10010–4086, USA; (S.B.P.); (M.D.); (M.N.); (E.P.)
| | - Manisha Dixit
- David B. Kriser Dental Center, Department of Molecular Pathobiology, New York University College of Dentistry New York, NY 10010–4086, USA; (S.B.P.); (M.D.); (M.N.); (E.P.)
| | - Maria Neginskaya
- David B. Kriser Dental Center, Department of Molecular Pathobiology, New York University College of Dentistry New York, NY 10010–4086, USA; (S.B.P.); (M.D.); (M.N.); (E.P.)
| | - Karthik Nagaraj
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; (K.N.); (H.W.)
| | - Evgeny Pavlov
- David B. Kriser Dental Center, Department of Molecular Pathobiology, New York University College of Dentistry New York, NY 10010–4086, USA; (S.B.P.); (M.D.); (M.N.); (E.P.)
| | - Haim Werner
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; (K.N.); (H.W.)
| | - Shoshana Yakar
- David B. Kriser Dental Center, Department of Molecular Pathobiology, New York University College of Dentistry New York, NY 10010–4086, USA; (S.B.P.); (M.D.); (M.N.); (E.P.)
- Correspondence: ; Tel.: +212-998-9721
| |
Collapse
|
13
|
Wei W, Liu S, Song J, Feng T, Yang R, Cheng Y, Li H, Hao L. MGF-19E peptide promoted proliferation, differentiation and mineralization of MC3T3-E1 cell and promoted bone defect healing. Gene 2020; 749:144703. [PMID: 32339623 DOI: 10.1016/j.gene.2020.144703] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 03/10/2020] [Accepted: 04/20/2020] [Indexed: 12/15/2022]
Abstract
The repair of segmental bone defects and bone fractures is a clinical challenge involving high risk and postsurgical morbidity. Bone injury and partial bone tumor resection via traditional bone grafting result in high complications. Growth factors have been proposed as alternatives to promote bone repair and formation and circumvent these limitations. In this study, we classified different lengths of mechano growth factor (MGF) E peptides in different species and analyzed their effects on MC3T3-E1 cell proliferation, cell cycle, alkaline phosphatase (ALP) activity, differentiation-related factor expression, and cell mineralization. A rabbit bone injury model was constructed, and the repair function of MGF E peptide was verified by injecting the candidate MGF E peptide. We analyzed 52 different MGF-E peptides and classified them into the following four categories: T-MGF-25E, M-MGF-25E, T-MGF-19E, and M-MGF-19E. These peptides were synthesized for further study. T-MGF-19E peptide obviously promoted cell proliferation by regulating cell cycle after MGF E peptide treatment at 72 h. T-MGF-25E and T-MGF-19E peptide significantly promoted the differentiation of osteoblasts on day 14, and M-MGF-25E peptide promoted cell differentiation on day 7. T-MGF-19E, T-MGF-25E, and M-MGF-19E significantly promoted osteoblast mineralization, with T-MGF19E showing the most significant effect. These results implied that T-MGF19E peptide could remarkably promote MC3T3-E1 cell proliferation, differentiation, and mineralization. The rabbit bone defect model showed that the low-dose T-MGF-19E peptide significantly promoted bone injury healing, suggesting its promoting effect on the healing of bone injury.
Collapse
Affiliation(s)
- Wenzhen Wei
- College of Animal Science, Jilin University, No. 5333, Xi'an Road, Lvyuan District, Changchun, Jilin 130062, China; Changchun Qijian Biological Products Co., Ltd., No.1, Torch Road, High Tech Development Zone, Changchun, Jilin Province 130012, China
| | - Songcai Liu
- College of Animal Science, Jilin University, No. 5333, Xi'an Road, Lvyuan District, Changchun, Jilin 130062, China
| | - Jie Song
- College of Animal Science, Jilin University, No. 5333, Xi'an Road, Lvyuan District, Changchun, Jilin 130062, China
| | - Tianqi Feng
- College of Animal Science, Jilin University, No. 5333, Xi'an Road, Lvyuan District, Changchun, Jilin 130062, China
| | - Rui Yang
- College of Animal Science, Jilin University, No. 5333, Xi'an Road, Lvyuan District, Changchun, Jilin 130062, China
| | - Yunyun Cheng
- College of Animal Science, Jilin University, No. 5333, Xi'an Road, Lvyuan District, Changchun, Jilin 130062, China; College of Animal Science, South China Agricultural University, No.483, Wushan, Tianhe Distrct, Guangzhou, Guangdong 510642, China
| | - Haoyang Li
- College of Animal Science, Jilin University, No. 5333, Xi'an Road, Lvyuan District, Changchun, Jilin 130062, China
| | - Linlin Hao
- College of Animal Science, Jilin University, No. 5333, Xi'an Road, Lvyuan District, Changchun, Jilin 130062, China.
| |
Collapse
|
14
|
Wójcik D, Beń-Skowronek I. Craniofacial Morphology in Children with Growth Hormone Deficiency and Turner Syndrome. Diagnostics (Basel) 2020; 10:E88. [PMID: 32046211 PMCID: PMC7168196 DOI: 10.3390/diagnostics10020088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 01/27/2020] [Accepted: 02/04/2020] [Indexed: 12/31/2022] Open
Abstract
The review aims to collect and demonstrate recent knowledge about craniofacial morphology in growth hormone (GH)-deficient children and children with Turner syndrome. The review describes also the effects of growth hormone treatment on craniofacial morphology of children with growth hormone deficiency and Turner syndrome. Regardless of the disorder it accompanies, short stature is associated with similar craniofacial features characteristic of all short-statured children. Characteristic craniofacial features involve lesser dimensions of the cranial base and mandibular length, proportionately smaller posterior than anterior facial height, retrognathic face, and posterior rotation of the mandible. We also analyze orthodontic treatment in children affected by disorders associated with GH deficiency or provided with growth hormone treatment in the aspect of craniofacial growth. Recent publications show also the connection between growth hormone receptor polymorphism and craniofacial growth. Specialists and orthodontists treating short-statured children must be aware of the results of studies on craniofacial morphology and educate themselves on the topic of craniofacial growth in children with short stature. Moreover, knowledge of the influence of GH therapy on growth of craniofacial structures is necessary to decide the proper timing and planning of orthodontic treatment.
Collapse
Affiliation(s)
- Dorota Wójcik
- Department of Dental Prosthetics, Medical University of Lublin, 20-081 Lublin, Poland
| | - Iwona Beń-Skowronek
- Department of Paediatric Endocrinology and Diabetology with Endocrine—Metabolic Laboratory, Medical University of Lublin, 20-093 Lublin, Poland;
| |
Collapse
|
15
|
Erythropoulou-Kaltsidou A, Polychronopoulos G, Tziomalos K. Sodium-Glucose Co-Transporter 2 Inhibitors and Fracture Risk. Diabetes Ther 2020; 11:7-14. [PMID: 31734830 PMCID: PMC6965547 DOI: 10.1007/s13300-019-00724-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Indexed: 02/06/2023] Open
Abstract
Patients with type 2 diabetes mellitus (T2DM) appear to have increased risk for fractures. In this context, the finding that canagliflozin, a sodium-glucose co-transporter-2 (SGLT) inhibitor, increased the risk for fracture compared with placebo in the Canagliflozin Cardiovascular Assessment Study (CANVAS), a large randomized controlled trial (RCT) in patients with established cardiovascular disease or multiple cardiovascular risk factors, created concern. In the present review, we summarize the data regarding the association between SGLT2 inhibitors and fracture risk in patients with T2DM. In contrast to the findings reported in CANVAS, canagliflozin did not affect the risk of fracture in a more recent, large RCT in patients with diabetic nephropathy. In addition, empagliflozin and dapagliflozin, other members of this class, also do not appear to affect the incidence of fracture. Moreover, there is no clear pathogenetic mechanism through which SGLT2 inhibitors increase the risk for fractures. Therefore, available data are inconclusive to attribute to these drugs a direct responsibility for bone fractures.
Collapse
Affiliation(s)
- Anastasia Erythropoulou-Kaltsidou
- First Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA Hospital, Thessaloniki, Greece
| | - Georgios Polychronopoulos
- First Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA Hospital, Thessaloniki, Greece
| | - Konstantinos Tziomalos
- First Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA Hospital, Thessaloniki, Greece.
| |
Collapse
|
16
|
Abstract
Bone and skeletal muscle are integrated organs and their coupling has been considered mainly a mechanical one in which bone serves as attachment site to muscle while muscle applies load to bone and regulates bone metabolism. However, skeletal muscle can affect bone homeostasis also in a non-mechanical fashion, i.e., through its endocrine activity. Being recognized as an endocrine organ itself, skeletal muscle secretes a panel of cytokines and proteins named myokines, synthesized and secreted by myocytes in response to muscle contraction. Myokines exert an autocrine function in regulating muscle metabolism as well as a paracrine/endocrine regulatory function on distant organs and tissues, such as bone, adipose tissue, brain and liver. Physical activity is the primary physiological stimulus for bone anabolism (and/or catabolism) through the production and secretion of myokines, such as IL-6, irisin, IGF-1, FGF2, beside the direct effect of loading. Importantly, exercise-induced myokine can exert an anti-inflammatory action that is able to counteract not only acute inflammation due to an infection, but also a condition of chronic low-grade inflammation raised as consequence of physical inactivity, aging or metabolic disorders (i.e., obesity, type 2 diabetes mellitus). In this review article, we will discuss the effects that some of the most studied exercise-induced myokines exert on bone formation and bone resorption, as well as a brief overview of the anti-inflammatory effects of myokines during the onset pathological conditions characterized by the development a systemic low-grade inflammation, such as sarcopenia, obesity and aging.
Collapse
Affiliation(s)
- Marta Gomarasca
- IRCCS Istituto Ortopedico Galeazzi, Laboratory of Experimental Biochemistry & Molecular Biology, Milan, Italy
| | - Giuseppe Banfi
- IRCCS Istituto Ortopedico Galeazzi, Laboratory of Experimental Biochemistry & Molecular Biology, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Giovanni Lombardi
- IRCCS Istituto Ortopedico Galeazzi, Laboratory of Experimental Biochemistry & Molecular Biology, Milan, Italy; Gdańsk University of Physical Education & Sport, Gdańsk, Pomorskie, Poland.
| |
Collapse
|
17
|
Kuroda Y, Kawai T, Goto K, Matsuda S. Clinical application of injectable growth factor for bone regeneration: a systematic review. Inflamm Regen 2019; 39:20. [PMID: 31660090 PMCID: PMC6805537 DOI: 10.1186/s41232-019-0109-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 09/25/2019] [Indexed: 12/04/2022] Open
Abstract
Bone regeneration has been the ultimate goal in the field of bone and joint medicine and has been evaluated through various basic research studies to date. Translational research of regenerative medicine has focused on three primary approaches, which are expected to increase in popularity: cell therapy, proteins, and artificial materials. Among these, the local injection of a gelatin hydrogel impregnated with the protein fibroblast growth factor (FGF)-2 is a biomaterial technique that has been developed in Japan. We have previously reported the efficacy of gelatin hydrogel containing injectable FGF-2 for the regenerative treatment of osteonecrosis of the femoral head. Injectable growth factors will probably be developed in the future and gain popularity as a medical approach in various fields as well as orthopedics. Several clinical trials have already been conducted and have focused on this technique, reporting its efficacy and safety. To date, reports of the clinical application of FGF-2 in revascularization for critical limb ischemia, treatment of periodontal disease, early bone union for lower limb fracture and knee osteotomy, and bone regeneration for osteonecrosis of the femoral head have been based on basic research conducted in Japan. In the present report, we present an extensive review of clinical applications using injectable growth factors and discuss the associated efficacy and safety of their administration.
Collapse
Affiliation(s)
- Yutaka Kuroda
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Shogoin, Kawahara-cho 54, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Toshiyuki Kawai
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Shogoin, Kawahara-cho 54, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Koji Goto
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Shogoin, Kawahara-cho 54, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Shuichi Matsuda
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Shogoin, Kawahara-cho 54, Sakyo-ku, Kyoto, 606-8507 Japan
| |
Collapse
|
18
|
Guľašová Z, Guerreiro SG, Link R, Soares R, Tomečková V. Tackling endothelium remodeling in cardiovascular disease. J Cell Biochem 2019; 121:938-945. [DOI: 10.1002/jcb.29379] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 03/15/2019] [Indexed: 01/19/2023]
Affiliation(s)
- Zuzana Guľašová
- Department of Experimental Medicine, Faculty of Medicine University of Pavol Jozef Šafárik in Košice Košice Slovakia
| | - Susana G. Guerreiro
- Departamento de Biomedicina, Unidade de Bioquímica, Faculty of Medicine University of Porto Porto Portugal
- I3S, Instituto de Investigação e Inovação em Saúde University of Porto Porto Portugal
- Faculdade de Ciências da Nutrição e Alimentação University of Porto Porto Portugal
| | - Rene Link
- Department of Experimental Medicine, Faculty of Medicine University of Pavol Jozef Šafárik in Košice Košice Slovakia
| | - Raquel Soares
- Departamento de Biomedicina, Unidade de Bioquímica, Faculty of Medicine University of Porto Porto Portugal
- I3S, Instituto de Investigação e Inovação em Saúde University of Porto Porto Portugal
| | - Vladimíra Tomečková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine University of Pavol Jozef Šafárik in Košice Košice Slovakia
| |
Collapse
|
19
|
Rehmannia glutinosa Libosch Extracts Prevent Bone Loss and Architectural Deterioration and Enhance Osteoblastic Bone Formation by Regulating the IGF-1/PI3K/mTOR Pathway in Streptozotocin-Induced Diabetic Rats. Int J Mol Sci 2019; 20:ijms20163964. [PMID: 31443143 PMCID: PMC6720794 DOI: 10.3390/ijms20163964] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/10/2019] [Accepted: 08/13/2019] [Indexed: 12/16/2022] Open
Abstract
Rehmanniae Radix Praeparata (RR, named as Shudihuang in traditional Chinese medicine), the steamed roots of Rehmannia glutinosa Libosch (Scrophulariaceae), has been demonstrated to have anti-diabetic and anti-osteoporotic activities. This study aimed to explore the protective effect and underlying mechanism of RR on diabetes-induced bone loss. It was found that RR regulated the alkaline phosphatase activity and osteocalcin level, enhanced bone mineral density, and improved the bone microarchitecture in diabetic rats. The catalpol (CAT), acteoside (ACT), and echinacoside (ECH) from RR increased the proliferation and differentiation of osteoblastic MC3T3-E1 cells injured by high glucose and promoted the production of IGF-1 and expression of related proteins in BMP and IGF-1/PI3K/mammalian target of rapamycin complex 1 (mTOR) signaling pathways. The verifying tests of inhibitors of BMP pathway (noggin) and IGF-1/PI3K/mTOR pathway (picropodophyllin) and molecular docking of IGF-1R further indicated that CAT, ACT, and ECH extracted from RR enhanced bone formation by regulating IGF-1/PI3K/mTOR signaling pathways. These findings suggest that RR may prove to be a promising candidate drug for the prevention and treatment of diabetes-induced osteoporosis.
Collapse
|
20
|
Wang JF, Lee M, Tsai T, Leiferman EM, Trask DJ, Squire MW, Li W. Bone Morphogenetic Protein-6 Attenuates Type 1 Diabetes Mellitus-Associated Bone Loss. Stem Cells Transl Med 2019; 8:522-534. [PMID: 30784225 PMCID: PMC6525561 DOI: 10.1002/sctm.18-0150] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 01/21/2019] [Indexed: 01/03/2023] Open
Abstract
Patients with type 1 diabetes mellitus (T1DM) often suffer from osteopenia or osteoporosis. Although most agree that T1DM-induced hyperglycemia is a risk factor for progressive bone loss, the mechanisms for the link between T1DM and bone loss still remain elusive. In this study, we found that bone marrow-derived mesenchymal stem cells (BMSCs) isolated from T1DM donors were less inducible for osteogenesis than those from non-T1DM donors and further identified a mechanism involving bone morphogenetic protein-6 (BMP6) that was produced significantly less in BMSCs derived from T1DM donors than that in control cells. With addition of exogenous BMP6 in culture, osteogenesis of BMSCs from T1DM donors was restored whereas the treatment of BMP6 seemed not to affect non-T1DM control cells. We also demonstrated that bone mineral density (BMD) was reduced in streptozotocin-induced diabetic mice compared with that in control animals, and intraperitoneal injection of BMP6 mitigated bone loss and increased BMD in diabetic mice. Our results suggest that bone formation in T1DM patients is impaired by reduction of endogenous BMP6, and supplementation of BMP6 enhances osteogenesis of BMSCs to restore BMD in a mouse model of T1DM, which provides insight into the development of clinical treatments for T1DM-assocaited bone loss. Stem Cells Translational Medicine 2019;8:522-534.
Collapse
Affiliation(s)
- Jesse F. Wang
- Department of Orthopedics and RehabilitationUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Department of Biomedical EngineeringUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Ming‐Song Lee
- Department of Orthopedics and RehabilitationUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Department of Biomedical EngineeringUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Tsung‐Lin Tsai
- Department of Orthopedics and RehabilitationUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Department of Biomedical EngineeringUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Ellen M. Leiferman
- Department of Orthopedics and RehabilitationUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Darrin J. Trask
- Department of Orthopedics and RehabilitationUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Matthew W. Squire
- Department of Orthopedics and RehabilitationUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Wan‐Ju Li
- Department of Orthopedics and RehabilitationUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Department of Biomedical EngineeringUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| |
Collapse
|
21
|
Effect of diabetes on BMD and TBS values as determinants of bone health in the elderly: Bushehr Elderly Health program. J Diabetes Metab Disord 2019; 18:99-106. [PMID: 31275880 DOI: 10.1007/s40200-019-00395-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 02/28/2019] [Indexed: 12/17/2022]
Abstract
Background Considering the aging population associated with higher osteoporotic fracture risk, high prevalence of diabetes and its effect on bone health along with lack of information on bone quality using common methods (BMD) the aim of present study was to determine the association between trabecular bone score (TBS) and diabetes in an elderly population participating in Bushehr Elderly Health (BEH) program. Materials and methods This cross-sectional study was performed on data collected during the BEH Program, stage II. Anthropometric indices were measured based on NHANES III protocol. Diabetes and pre-diabetes were defined according to ADA Guideline 2018. Bone density was measured using DXA method (DXA, Discovery WI, Hologic Inc., USA). A software installed on the same device (TBS iNsight® software) was applied to assess TBS values. Variables related to bone health were compared based on their glycemic status (participants with diabetes, participants with prediabetes, and normoglycemic) using analysis of variance. Univariate and multivariate linear and logistic regression models were used to determine the association between TBS values and bone density in different glycemic states. Results The data of 2263 participant aged 60 years and over were analyzed. Mean TBS values were significantly different between participants with diabetes, participants with prediabetes, and normoglycemic groups (P = 0.004;, however, P trend was not significant (0.400)). Mean BMD values at femoral neck and lumbar spine were significantly higher in diabetics compared with those diagnosed with pre-diabetes; the latter also had higher bone density compared with normoglycemic individuals (both P ANOVA test and P trends for means were < 0.01]. In univariate linear regression model, TBS values were negatively associated with pre-diabetes (β = -0.070; P < 0.001) but not with diabetes (β = -0.002, P = 0.915). This significant relationship disappeared when the results were adjusted for BMI. In fully adjusted multivariate logistic regression models, odds ratio linking pre-diabetes and diabetes with spinal osteoporosis was 0.861 (CI 95% 0.670-1.105) and 0.525 (CI 95% 0.392-0.701), respectively. As for femoral osteoporosis, odds ratio was 0.615 (CI 95% 0.407-0.928) and 0.968 (CI 95% 0.629-1.489), correspondingly. Moreover, for cumulative osteoporosis, the odds were 0.843 (CI 95% 0.676-1.106) and 0.551 (CI 95% 0.415-0.732), respectively. Conclusion Our findings suggest that subjects with pre-diabetes and diabetes have higher bone mineral density than normoglycemic subjects; the quality of bone, however, was not different between them. The discordance between BMD and TBS values in participants with diabetes suggest that although these patients have higher BMD values, their quality of bone microarchitecture may not be better than normoglycemic subjects.
Collapse
|
22
|
Weaver AA, Houston DK, Shapses SA, Lyles MF, Henderson RM, Beavers DP, Baker AC, Beavers KM. Effect of a hypocaloric, nutritionally complete, higher-protein meal plan on bone density and quality in older adults with obesity: a randomized trial. Am J Clin Nutr 2019; 109:478-486. [PMID: 30624598 PMCID: PMC6367970 DOI: 10.1093/ajcn/nqy237] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 08/14/2018] [Indexed: 01/08/2023] Open
Abstract
Background Dietary protein and micronutrients are important to the maintenance of bone health and may be an effective countermeasure to weight-loss-associated bone loss. Objectives We aimed to determine the effect of a 6-mo hypocaloric, nutritionally complete, higher-protein meal plan on change in bone density and quality as compared with weight stability in older adults using a randomized post-test design. We hypothesized that participants randomly assigned to this meal plan would maintain similar bone density and quality to weight-stable controls, despite significant reductions in body mass. Methods Ninety-six older adults (aged 70.3 ± 3.7 y, 74% women, 27% African American) with obesity [body mass index (kg/m2): 35.4 ± 3.3] were randomly assigned to a 6-mo hypocaloric, nutritionally complete, higher-protein meal plan targeting ≥1.0 g protein · kg body weight-1 · d-1 [weight-loss (WL) group; n = 47] or to a weight-stability (WS) group targeting 0.8 g protein · kg body weight-1 · d-1, the current Recommended Dietary Allowance (n = 49). The primary outcome was total hip bone mineral density (BMD), with femoral neck BMD, lumbar spine BMD, and lumbar spine trabecular bone score (TBS) as secondary outcomes, all assessed at baseline and 3 and 6 mo with dual-energy X-ray absorptiometry. Results Baseline total hip, femoral neck, and lumbar spine BMDs were 1.016 ± 0.160, 0.941 ± 0.142, and 1.287 ± 0.246 g/cm2, respectively; lumbar TBS was 1.398 ± 0.109. Despite significant weight loss achieved in the WL group (6.6 ± 0.4 kg; 8.6% ± 0.4% of baseline weight), 6-mo regional BMD estimates were similar to those in the WS group (all P > 0.05). Lumbar spine TBS significantly increased at 6 mo in the WL group (mean: 1.421; 95% CI: 1.401, 1.441) compared with the WS group (1.390: 95% CI: 1.370, 1.409; P = 0.02). Conclusions Older adults following a hypocaloric, nutritionally complete, higher-protein meal plan maintained similar bone density and quality to weight-stable controls. Our data suggest that adherence to this diet does not produce loss of hip and spine bone density in older adults and may improve bone quality. This trial was registered at clinicaltrials.gov as NCT02730988.
Collapse
Affiliation(s)
- Ashley A Weaver
- Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, NC,Address correspondence to AAW (e-mail: )
| | - Denise K Houston
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine
| | | | - Mary F Lyles
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine
| | - Rebecca M Henderson
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine
| | - Daniel P Beavers
- Department of Biostatistical Sciences, Rutgers University, New Brunswick, NJ
| | - Arlynn C Baker
- Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, NC
| | - Kristen M Beavers
- Department of Health and Exercise Science, Wake Forest University, Winston-Salem, NC
| |
Collapse
|
23
|
Kawabata T, Tokuda H, Sakai G, Fujita K, Matsushima-Nishiwaki R, Kuroyanagi G, Otsuka T, Kozawa O. HSP70 Inhibitor Suppresses IGF-I-Stimulated Migration of Osteoblasts through p44/p42 MAP Kinase. Biomedicines 2018; 6:E109. [PMID: 30469446 PMCID: PMC6316248 DOI: 10.3390/biomedicines6040109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/14/2018] [Accepted: 11/15/2018] [Indexed: 11/16/2022] Open
Abstract
Heat shock protein 70 (HSP70) is a ubiquitously expressed molecular chaperone in a variety of cells including osteoblasts. We previously showed that insulin-like growth factor-I (IGF-I) elicits migration of osteoblast-like MC3T3-E1 cells through the activation of phosphatidylinositol 3-kinase/Akt and p44/p42 mitogen-activated protein (MAP) kinase. In the present study, we investigated the effects of HSP70 inhibitors on the IGF-I-elicited migration of these cells and the mechanism involved. The IGF-I-stimulated osteoblast migration evaluated by a wound-healing assay and by a transwell cell migration was significantly reduced by VER-155008 and YM-08, which are both HSP70 inhibitors. VER-155008 markedly suppressed the IGF-I-induced phosphorylation of p44/p42 MAP kinase without affecting that of Akt. In conclusion, our results strongly suggest that the HSP70 inhibitor reduces the IGF-I-elicited migration of osteoblasts via the p44/p42 MAP kinase.
Collapse
Affiliation(s)
- Tetsu Kawabata
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan.
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan.
- Department of Orthopedic Surgery, Toyokawa City Hospital, Toyokawa 442-8561, Japan.
| | - Haruhiko Tokuda
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan.
- Department of Clinical Laboratory, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan.
| | - Go Sakai
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan.
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan.
| | - Kazuhiko Fujita
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan.
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan.
| | | | - Gen Kuroyanagi
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan.
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan.
- Department of Rehabilitation Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan.
| | - Takanobu Otsuka
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan.
| | - Osamu Kozawa
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan.
| |
Collapse
|
24
|
Insulin-like growth factor binding Protein-3 suppresses osteoblast differentiation via bone morphogenetic protein-2. Biochem Biophys Res Commun 2018; 507:465-470. [PMID: 30454898 DOI: 10.1016/j.bbrc.2018.11.065] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 11/12/2018] [Indexed: 10/27/2022]
Abstract
Bone augmentation therapy is used in dental implantation. While techniques to induce bone formation are generally successful, the maintenance of bone mass is more difficult. Therefore, it is important to understand the mechanisms that regulate this process. Insulin-like growth factor-1 (IGF-1) is one of the most abundant growth factors that regulate bone mass, promote osteoblast differentiation, and accelerate bone formation. The activity of IGF-1 is regulated by IGF-binding proteins (IGFBPs). IGFBP-3 forms a ternary complex with IGF-1, extending its half-life in the circulating system. Therefore, IGFBP-3 acts as a stabilizer and transporter of IGF-1. Recent studies reported new IGF-1-independent functions of IGFBP-3 related with bone metabolism. In this study, we investigated the function of IGFBP-3 in osteoblast differentiation. Our results showed that IGFBP-3 decreases the expression of osteoblast differentiation markers, whose expression is enhanced by bone morphogenetic protein-2 (BMP-2). IGFBP-3 also reduced BMP-2 effect on ALP activity and mineral nodule formation. In addition, IGFBP-3 suppresses the activity of the Smad Binding Element (SBE) reporter, induced by BMP-2 signaling. These results suggest that IGFBP-3 inhibits osteoblast differentiation through the BMP-2 signal pathway, and that IGFBP-3 might play a role in bone mass maintenance in an IGF-1-dependent and -independent manner.
Collapse
|
25
|
Kawabata T, Tokuda H, Sakai G, Fujita K, Matsushima-Nishiwaki R, Otsuka T, Kozawa O. Repression of IGF-I-induced osteoblast migration by (-)-epigallocatechin gallate through p44/p42 MAP kinase signaling. Biomed Rep 2018; 9:318-326. [PMID: 30233784 DOI: 10.3892/br.2018.1140] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/07/2018] [Indexed: 12/18/2022] Open
Abstract
Polyphenolic compounds in beverages may have benefits in the prevention of osteoporosis. It has been demonstrated previously that insulin-like growth factor-I (IGF-I) could stimulate the migration of osteoblasts. In the present study, it was investigated whether chlorogenic acid, a major polyphenol in coffee, and (-)-epigallocatechin gallate (EGCG), a major polyphenol in green tea, could affect this IGF-I-stimulated migration of osteoblast-like MC3T3-E1 cells. The IGF-I-stimulated osteoblast migration, evaluated by Transwell cell migration and wound-healing assays, was inhibited by EGCG but not chlorogenic acid. IGF-I induced the phosphorylation of p44/p42 mitogen-activated protein (MAP) kinase, p70 S6 kinase and Akt. The IGF-I-induced migration was suppressed by PD98059, a MAP kinase kinase 1/2 inhibitor, and deguelin, an Akt inhibitor, but not rapamycin, an inhibitor of the upstream kinase of p70 S6 kinase (mammalian target of rapamycin). EGCG attenuated the IGF-I-induced phosphorylation of p44/p42 MAP kinase but not Akt. Taken together, the present results suggest that EGCG inhibits IGF-I-induced osteoblast migration via p44/p42 MAP kinase.
Collapse
Affiliation(s)
- Tetsu Kawabata
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan.,Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan.,Department of Orthopedic Surgery, Toyokawa City Hospital, Toyokawa, Aichi 442-8561, Japan
| | - Haruhiko Tokuda
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan.,Department of Clinical Laboratory, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan
| | - Go Sakai
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan.,Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Kazuhiko Fujita
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan.,Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | | | - Takanobu Otsuka
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Osamu Kozawa
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| |
Collapse
|
26
|
Böker J, Völzke H, Nauck M, Hannemann A, Friedrich N. Associations of insulin-like growth factor-I and insulin-like growth factor binding protein-3 with bone quality in the general adult population. Clin Endocrinol (Oxf) 2018; 88:830-837. [PMID: 29498081 DOI: 10.1111/cen.13588] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/30/2018] [Accepted: 02/22/2018] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Growth hormone (GH) and its main mediator, insulin-like growth factor-I (IGF-I), play a significant role in bone metabolism. The relations between IGF-I and bone mineral density (BMD) or osteoporosis have been assessed in previous studies but whether the associations are sex-specific remains uncertain. Moreover, only a few studies examined bone quality assessed by quantitative ultrasound (QUS). We aimed to investigate these associations in the general population of north-east Germany. DESIGN AND MEASUREMENTS Data from 1759 men and 1784 women who participated in the baseline examination of the Study of Health in Pomerania (SHIP)-Trend were used. IGF-I and IGF-binding protein-3 (IGFBP-3) concentrations were measured on the IDS-iSYS multidiscipline automated analyser (Immunodiagnostic Systems Limited). QUS measurements were performed at the heel (Achilles InSight, GE Healthcare). Sex-specific linear and multinomial logistic regression models adjusted for potential confounders were calculated. RESULTS Linear regression analyses revealed significant positive associations between IGF-I and IGF-I/IGFBP-3 ratio, a marker for free IGF-I, with all QUS parameters in men. Among women, we found an inverse association between IGF-I and the QUS-based fracture risk but no association with any other QUS parameter. There was no association between IGFBP-3 and the QUS-based fracture risk. CONCLUSIONS Our data suggest an important role of IGF-I on bone quality in men. The observed association of IGF-I with the QUS-based stiffness index and QUS-based fracture risk in this study might animate clinicians to refer patients with low IGF-I levels, particularly men, to a further evaluation of risk factors for osteoporosis and a detailed examination of the skeletal system.
Collapse
Affiliation(s)
- J Böker
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - H Völzke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, University Medicine, Greifswald, Germany
| | - M Nauck
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, University Medicine, Greifswald, Germany
| | - A Hannemann
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - N Friedrich
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
27
|
Wnt Signaling-Related Osteokines and Transforming Growth Factors Before and After a Single Bout of Plyometric Exercise in Child and Adolescent Females. Pediatr Exerc Sci 2017; 29:504-512. [PMID: 28530511 DOI: 10.1123/pes.2017-0042] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This study examined resting levels of catabolic and anabolic osteokines related to Wnt signaling and their responses to a single bout of plyometric exercise in child and adolescent females. Fourteen premenarcheal girls [10.5 (1.8) y old] and 12 postmenarcheal adolescent girls [15.0 (1.0) y old] performed a plyometric exercise trial. One resting and 3 postexercise blood samples (5 min, 1 h, and 24 h postexercise) were analyzed for sclerostin, dickkopf-1 (DKK-1), osteoprotegerin (OPG), receptor activator of nuclear factor kappa-β ligand (RANKL), and transforming growth factors (TGF-β1, TGF-β2, and TGF-β3). Premenarcheal girls had significantly higher resting sclerostin, TGF-β1, TGF-β2, and TGF-β3 than the postmenarcheal girls, with no significant time effect or group-by-time interaction. DKK-1 was higher in premenarcheal compared with postmenarcheal girls. There was an overall significant DKK-1 decrease from baseline to 1 h postexercise, which remained lower than baseline 24 h postexercise in both groups. There was neither a significant group effect nor group-by-time interaction in OPG, RANKL, and their ratio. RANKL decreased 5 min postexercise compared with baseline and remained significantly lower from baseline 24 h following the exercise. No changes were observed in OPG. OPG/RANKL ratio was significantly elevated compared with resting values 1 h postexercise. In young females, high-impact exercise induces an overall osteogenic effect through a transitory suppression of catabolic osteokines up to 24 h following exercise.
Collapse
|
28
|
Regulation of Osteogenic Differentiation of Placental-Derived Mesenchymal Stem Cells by Insulin-Like Growth Factors and Low Oxygen Tension. Stem Cells Int 2017; 2017:4576327. [PMID: 29138637 PMCID: PMC5613461 DOI: 10.1155/2017/4576327] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 07/20/2017] [Indexed: 01/20/2023] Open
Abstract
Placental mesenchymal stem cells (PMSCs) are multipotent cells that can differentiate in vitro to multiple lineages, including bone. Insulin-like growth factors (IGFs, IGF-1 and IGF-2) participate in maintaining growth, survival, and differentiation of many stem cells, including osteoprogenitors. Low oxygen tension (PO2) can maintain stem cell multipotency and impede osteogenic differentiation. In this study, we investigated whether PMSC osteogenic differentiation is influenced by low PO2 and by IGFs. Our results indicated that low PO2 decreased osteogenic markers RUNX2 and OPN; however, re-exposure to higher oxygen tension (room air) restored differentiation. IGFs, especially IGF-1, triggered an earlier expression of RUNX2 and enhanced OPN and mineralization. RUNX2 was phosphorylated in room air and augmented by IGFs. IGF-1 receptor (IGF-1R) was increased in low PO2 and reduced by IGFs, while insulin receptor (IR) was increased in differentiating PMSCs and enhanced by IGF-1. Low PO2 and IGFs maintained higher IR-A which was switched to IR-B in room air. PI3K/AKT was required for osteogenic differentiation, while MEK/ERK was required to repress an RUNX2 and OPN increase in low PO2. Therefore, IGFs, specifically IGF-1, trigger the earlier onset of osteogenic differentiation in room air, whereas, reversibly, low PO2 impedes complete differentiation by maintaining higher multipotency and lower differentiation markers.
Collapse
|
29
|
The Roles of Insulin-Like Growth Factors in Mesenchymal Stem Cell Niche. Stem Cells Int 2017; 2017:9453108. [PMID: 28298931 PMCID: PMC5337393 DOI: 10.1155/2017/9453108] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 12/22/2016] [Accepted: 01/18/2017] [Indexed: 12/12/2022] Open
Abstract
Many tissues contain adult mesenchymal stem cells (MSCs), which may be used in tissue regeneration therapies. However, the MSC availability in most tissues is limited which demands expansion in vitro following isolation. Like many developing cells, the state of MSCs is affected by the surrounding microenvironment, and mimicking this natural microenvironment that supports multipotent or differentiated state in vivo is essential to understand for the successful use of MSC in regenerative therapies. Many researchers are, therefore, optimizing cell culture conditions in vitro by altering growth factors, extracellular matrices, chemicals, oxygen tension, and surrounding pH to enhance stem cells self-renewal or differentiation. Insulin-like growth factors (IGFs) system has been demonstrated to play an important role in stem cell biology to either promote proliferation and self-renewal or enhance differentiation onset and outcome, depending on the cell culture conditions. In this review, we will describe the importance of IGFs, IGF-1 and IGF-2, in development and in the MSC niche and how they affect the pluripotency or differentiation towards multiple lineages of the three germ layers.
Collapse
|
30
|
Abstract
Growth hormone (GH) exerts several effects on the skeleton, mediated either directly or indirectly, leading to increased bone formation and resorption rates. Patients with growth hormone deficiency (GHD) of adult onset have decreased bone mineral density (BMD) and increased fracture risk. Some, but not all, studies have found that adults with childhood onset GHD also have lower BMD than healthy controls. Adults with GHD of childhood onset have smaller bone dimensions, leading to possible underestimation of areal BMD (measured by dual energy X-ray absorptiometry), thus potentially confounding the interpretation of densitometric data. Available data suggest that patients with childhood onset GHD are at increased fracture risk. Prospective studies and some clinical trials found that GH replacement for at least 18-24 months leads to increased BMD. Retrospective and prospective data suggest that GH replacement is associated with decreased fracture risk in adults. However, data from randomized clinical trials are lacking.
Collapse
Affiliation(s)
- Nicholas A Tritos
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
31
|
ONO-OHMACHI A, ISHIDA Y, MORITA Y, KATO K, Y. NARA T. Milk Basic Protein Facilitates Increased Bone Mass in Growing Mice. J Nutr Sci Vitaminol (Tokyo) 2017; 63:315-322. [DOI: 10.3177/jnsv.63.315] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Aiko ONO-OHMACHI
- Milk Science Research Institute, Megmilk Snow Brand Co., Ltd
- Department of Production and Quality Assurance, Bean Stalk Snow Co., Ltd
| | - Yuko ISHIDA
- Milk Science Research Institute, Megmilk Snow Brand Co., Ltd
| | | | - Ken KATO
- Milk Science Research Institute, Megmilk Snow Brand Co., Ltd
| | | |
Collapse
|
32
|
Sanches CP, Vianna AGD, Barreto FDC. The impact of type 2 diabetes on bone metabolism. Diabetol Metab Syndr 2017; 9:85. [PMID: 29075333 PMCID: PMC5649056 DOI: 10.1186/s13098-017-0278-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 10/03/2017] [Indexed: 02/07/2023] Open
Abstract
Diabetes complications and osteoporotic fractures are two of the most important causes of morbidity and mortality in older patients and share many features including genetic susceptibility, molecular mechanisms, and environmental factors. Type 2 diabetes mellitus (T2DM) compromises bone microarchitecture by inducing abnormal bone cell function and matrix structure, with increased osteoblast apoptosis, diminished osteoblast differentiation, and enhanced osteoclast-mediated bone resorption. The linkage between these two chronic diseases creates a possibility that certain antidiabetic therapies may affect bone quality. Both glycemic and bone homeostasis are under control of common regulatory factors. These factors include insulin, accumulation of advanced glycation end products, peroxisome proliferator-activated receptor gamma, gastrointestinal hormones (such as the glucose-dependent insulinotropic peptide and the glucagon-like peptides 1 and 2), and bone-derived hormone osteocalcin. This background allows individual pharmacological targets for antidiabetic therapies to affect the bone quality due to their indirect effects on bone cell differentiation and bone remodeling process. Moreover, it's important to consider the fragility fractures as another diabetes complication and discuss more deeply about the requirement for adequate screening and preventive measures. This review aims to briefly explore the impact of T2DM on bone metabolic and mechanical proprieties and fracture risk.
Collapse
Affiliation(s)
- Claudia Pinheiro Sanches
- Curitiba Diabetes Center, Division of Endocrinology, Hospital Nossa Senhora das Graças, Rua Alcides Munhoz, 433, 4° andar, Mercês, Curitiba, Paraná ZIP Code: 80810-040 Brazil
| | - Andre Gustavo Daher Vianna
- Curitiba Diabetes Center, Division of Endocrinology, Hospital Nossa Senhora das Graças, Rua Alcides Munhoz, 433, 4° andar, Mercês, Curitiba, Paraná ZIP Code: 80810-040 Brazil
- Pontifical Catholic University of Parana, Rua Imaculada Conceição, 1155 , Bloco Medicina, Prado Velho, Curitiba, Paraná ZIP Code: 80215-901 Brazil
| | - Fellype de Carvalho Barreto
- Division of Nephrology, Department of Internal Medicine, Federal University of Paraná, Rua General Carneiro 181, Alto da Gloria, Curitiba, Paraná ZIP Code: 80060-900 Brazil
| |
Collapse
|
33
|
Lombardi G, Sanchis-Gomar F, Perego S, Sansoni V, Banfi G. Implications of exercise-induced adipo-myokines in bone metabolism. Endocrine 2016; 54:284-305. [PMID: 26718191 DOI: 10.1007/s12020-015-0834-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 12/14/2015] [Indexed: 12/12/2022]
Abstract
Physical inactivity has been recognized, by the World Health Organization as the fourth cause of death (5.5 % worldwide). On the contrary, physical activity (PA) has been associated with improved quality of life and decreased risk of several diseases (i.e., stroke, hypertension, myocardial infarction, obesity, malignancies). Bone turnover is profoundly affected from PA both directly (load degree is the key determinant for BMD) and indirectly through the activation of several endocrine axes. Several molecules, secreted by muscle (myokines) and adipose tissues (adipokines) in response to exercise, are involved in the fine regulation of bone metabolism in response to the energy availability. Furthermore, bone regulates energy metabolism by communicating its energetic needs thanks to osteocalcin which acts on pancreatic β-cells and adipocytes. The beneficial effects of exercise on bone metabolism depends on the intermittent exposure to myokines (i.e., irisin, IL-6, LIF, IGF-I) which, instead, act as inflammatory/pro-resorptive mediators when chronically elevated; on the other hand, the reduction in the circulating levels of adipokines (i.e., leptin, visfatin, adiponectin, resistin) sustains these effects as well as improves the whole-body metabolic status. The aim of this review is to highlight the newest findings about the exercise-dependent regulation of these molecules and their role in the fine regulation of bone metabolism.
Collapse
Affiliation(s)
- Giovanni Lombardi
- Laboratory of Experimental Biochemistry & Molecular Biology, I.R.C.C.S. Istituto Ortopedico Galeazzi, Via Riccardo Galeazzi 4, 20161, Milan, Italy.
| | | | - Silvia Perego
- Laboratory of Experimental Biochemistry & Molecular Biology, I.R.C.C.S. Istituto Ortopedico Galeazzi, Via Riccardo Galeazzi 4, 20161, Milan, Italy
| | - Veronica Sansoni
- Laboratory of Experimental Biochemistry & Molecular Biology, I.R.C.C.S. Istituto Ortopedico Galeazzi, Via Riccardo Galeazzi 4, 20161, Milan, Italy
| | - Giuseppe Banfi
- Laboratory of Experimental Biochemistry & Molecular Biology, I.R.C.C.S. Istituto Ortopedico Galeazzi, Via Riccardo Galeazzi 4, 20161, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
34
|
Dobson PF, Rocha MC, Grady JP, Chrysostomou A, Hipps D, Watson S, Greaves LC, Deehan DJ, Turnbull DM. Unique quadruple immunofluorescence assay demonstrates mitochondrial respiratory chain dysfunction in osteoblasts of aged and PolgA(-/-) mice. Sci Rep 2016; 6:31907. [PMID: 27553587 PMCID: PMC4995399 DOI: 10.1038/srep31907] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 07/06/2016] [Indexed: 01/15/2023] Open
Abstract
Fragility fractures caused by osteoporosis affect millions of people worldwide every year with significant levels of associated morbidity, mortality and costs to the healthcare economy. The pathogenesis of declining bone mineral density is poorly understood but it is inherently related to increasing age. Growing evidence in recent years, especially that provided by mouse models, suggest that accumulating somatic mitochondrial DNA mutations may cause the phenotypic changes associated with the ageing process including osteoporosis. Methods to study mitochondrial abnormalities in individual osteoblasts, osteoclasts and osteocytes are limited and impair our ability to assess the changes seen with age and in animal models of ageing. To enable the assessment of mitochondrial protein levels, we have developed a quadruple immunofluorescence method to accurately quantify the presence of mitochondrial respiratory chain components within individual bone cells. We have applied this technique to a well-established mouse model of ageing and osteoporosis and show respiratory chain deficiency.
Collapse
Affiliation(s)
- Philip F Dobson
- Wellcome Trust Centre for Mitochondrial Research, Institute for Neuroscience, Medical School, Newcastle University, United Kingdom
| | - Mariana C Rocha
- Wellcome Trust Centre for Mitochondrial Research, Institute for Neuroscience, Medical School, Newcastle University, United Kingdom
| | - John P Grady
- Wellcome Trust Centre for Mitochondrial Research, Institute for Neuroscience, Medical School, Newcastle University, United Kingdom
| | - Alexia Chrysostomou
- Wellcome Trust Centre for Mitochondrial Research, Institute for Neuroscience, Medical School, Newcastle University, United Kingdom
| | - Daniel Hipps
- Wellcome Trust Centre for Mitochondrial Research, Institute for Neuroscience, Medical School, Newcastle University, United Kingdom
| | - Sharon Watson
- Musculoskeletal Research Group, Medical School, Newcastle University, United Kingdom
| | - Laura C Greaves
- Wellcome Trust Centre for Mitochondrial Research, Institute for Neuroscience, Medical School, Newcastle University, United Kingdom.,MRC/BBSRC Centre for Ageing and Vitality, Newcastle University, United Kingdom
| | - David J Deehan
- Institute of Cellular Medicine, Newcastle University, United Kingdom
| | - Doug M Turnbull
- Wellcome Trust Centre for Mitochondrial Research, Institute for Neuroscience, Medical School, Newcastle University, United Kingdom.,MRC/BBSRC Centre for Ageing and Vitality, Newcastle University, United Kingdom
| |
Collapse
|
35
|
Bima C, Chiloiro S, Mormando M, Piacentini S, Bracaccia E, Giampietro A, Tartaglione L, Bianchi A, De Marinis L. Understanding the effect of acromegaly on the human skeleton. Expert Rev Endocrinol Metab 2016; 11:263-270. [PMID: 30058934 DOI: 10.1080/17446651.2016.1179108] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Acromegaly, caused in most cases by Growth Hormone (GH)-secreting pituitary adenomas, is characterized by increased skeletal growth and enlargement of the soft tissue, because GH and its effector Insulin-like Growth factor-1 are important regulators of bone homeostasis and have a central role in the longitudinal bone growth and maintenance of bone mass. Areas covered: Despite the anabolic effect of these hormones is well known, as a result of the stimulation of bone turnover and especially of bone formation, many acromegalic patients are suffering from a form of secondary osteoporosis with increased risk of fractures. Expert commentary: In this review, we summarize the pathophysiology, diagnosis, clinical picture, disease course and management of skeletal complications of acromegaly, focusing in particular on secondary osteoporosis and fracture risk in acromegaly.
Collapse
Affiliation(s)
- C Bima
- a Pituitary Unit, Department of Endocrinology , Catholic University of "Sacred Heart", School of Medicine , Rome , Italy
| | - S Chiloiro
- a Pituitary Unit, Department of Endocrinology , Catholic University of "Sacred Heart", School of Medicine , Rome , Italy
| | - M Mormando
- a Pituitary Unit, Department of Endocrinology , Catholic University of "Sacred Heart", School of Medicine , Rome , Italy
| | - S Piacentini
- a Pituitary Unit, Department of Endocrinology , Catholic University of "Sacred Heart", School of Medicine , Rome , Italy
| | - E Bracaccia
- a Pituitary Unit, Department of Endocrinology , Catholic University of "Sacred Heart", School of Medicine , Rome , Italy
| | - A Giampietro
- a Pituitary Unit, Department of Endocrinology , Catholic University of "Sacred Heart", School of Medicine , Rome , Italy
| | - L Tartaglione
- a Pituitary Unit, Department of Endocrinology , Catholic University of "Sacred Heart", School of Medicine , Rome , Italy
| | - A Bianchi
- a Pituitary Unit, Department of Endocrinology , Catholic University of "Sacred Heart", School of Medicine , Rome , Italy
| | - L De Marinis
- a Pituitary Unit, Department of Endocrinology , Catholic University of "Sacred Heart", School of Medicine , Rome , Italy
| |
Collapse
|
36
|
Neumann T, Lodes S, Kästner B, Franke S, Kiehntopf M, Lehmann T, Müller UA, Wolf G, Sämann A. Osteocalcin, adipokines and their associations with glucose metabolism in type 1 diabetes. Bone 2016; 82:50-5. [PMID: 25888930 DOI: 10.1016/j.bone.2015.04.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 03/27/2015] [Accepted: 04/08/2015] [Indexed: 01/26/2023]
Abstract
To determine osteocalcin (OC) and adipokines in type 1 diabetes (T1D) and healthy controls, and to explore possible associations between glucose and bone metabolism, body composition and adipokines. Serum levels of total OC, undercarboxylated (UC-OC), leptin, adiponectin, and other parameters of glucose and bone metabolism were measured in 128 patients with T1D (mean duration 21.2years) and in 77 healthy controls, matched for gender, age, and body mass index (BMI). Partial correlations (adjusted for age and gender) with parameters of body composition (BMI, fat body mass [derived from bone mineral density scans]), glycaemic control (hemoglobin A1c (HbA1c), daily insulin dose in T1D), skeletal homeostasis (osteoprotegerin (OPG), receptor activator of NF-κB ligand (RANKL), all measured in serum), and serum insulin-like growth factor 1 (IGF-1) were also examined. Independent predictors of total and UC-OC were then explored. Total OC was lower in males with T1D (16.3±6.4 vs. 22.2±9.9ng/ml; p=0.001), whereas UC-OC did not show group differences. Adiponectin was higher in T1D patients, both for males and females (8.9±6.6 vs. 5.7±2.5μg/ml; p=0.004 and 13.8±6.4 vs. 8.8±4.0μg/ml; p<0.001). IGF-1 was lower only in females with T1D (146.6±68.8 vs. 203.0±74.4ng/ml; p<0.001). BMI and fat body mass were similar in T1D and controls. In T1D patients, total OC was inversely correlated with BMI and HbA1c, and UC-OC inversely correlated with HbA1c. In T1D patients, leptin positively correlated with BMI, fat body mass and daily insulin dose, while adiponectin inversely correlated with BMI and daily insulin dose. Multivariate regression modelling showed that determinants of higher total OC levels were male gender (p=0.04, ß-coefficient=2.865) and lower HbA1c (p=0.04, ß-coefficient=-0.117), whereas determinants of UC-OC levels were T1D (p=0.016, ß-coefficient=2.015), higher IGF-1 (p=0.004, ß-coefficient=0.011) and lower HbA1c (p=0.011, ß-coefficient=- 0.061). Total OC and UC-OC are associated with good glycaemic control in T1D, with gender-specific differences for total-OC. The association of leptin and adiponectin with glycaemic control, as observed in controls, does not seem to be a feature in T1D, although both adipokines appear to be related to the insulin demand. This article is part of a Special Issue entitled "Bone and diabetes".
Collapse
Affiliation(s)
- T Neumann
- Department of Internal Medicine III, Jena University-Hospital, Jena, Germany.
| | - S Lodes
- Department of Internal Medicine III, Jena University-Hospital, Jena, Germany
| | - B Kästner
- Department of Internal Medicine III, Jena University-Hospital, Jena, Germany
| | - S Franke
- Department of Internal Medicine III, Jena University-Hospital, Jena, Germany
| | - M Kiehntopf
- Institute of Clinical Chemistry and Laboratory Diagnostics, Jena University-Hospital, Jena, Germany
| | - T Lehmann
- Institute of Medical Statistics, Computer Sciences and Documentation, Jena University-Hospital, Jena, Germany
| | - U A Müller
- Department of Internal Medicine III, Jena University-Hospital, Jena, Germany
| | - G Wolf
- Department of Internal Medicine III, Jena University-Hospital, Jena, Germany
| | - A Sämann
- Department of Internal Medicine III, Jena University-Hospital, Jena, Germany
| |
Collapse
|
37
|
Garfinkel BP, Arad S, Le PT, Bustin M, Rosen CJ, Gabet Y, Orly J. Proportionate Dwarfism in Mice Lacking Heterochromatin Protein 1 Binding Protein 3 (HP1BP3) Is Associated With Alterations in the Endocrine IGF-1 Pathway. Endocrinology 2015; 156:4558-70. [PMID: 26402843 PMCID: PMC5393342 DOI: 10.1210/en.2015-1668] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 09/18/2015] [Indexed: 01/08/2023]
Abstract
Heterochromatin protein 1 binding protein 3 (HP1BP3) is a recently described histone H1-related protein with roles in chromatin structure and transcriptional regulation. To explore the potential physiological role of HP1BP3, we have previously described an Hp1bp3(-/-) mouse model with reduced postnatal viability and growth. We now find that these mice are proportionate dwarfs, with reduction in body weight, body length, and organ weight. In addition to their small size, microcomputed tomography analysis showed that Hp1bp3(-/-) mice present a dramatic impairment of their bone development and structure. By 3 weeks of age, mice of both sexes have severely impaired cortical and trabecular bone, and these defects persist into adulthood and beyond. Primary cultures of both osteoblasts and osteoclasts from Hp1bp3(-/-) bone marrow and splenocytes, respectively, showed normal differentiation and function, strongly suggesting that the impaired bone accrual is due to noncell autonomous systemic cues in vivo. One major endocrine pathway regulating both body growth and bone acquisition is the IGF regulatory system, composed of IGF-1, the IGF receptors, and the IGF-binding proteins (IGFBPs). At 3 weeks of age, Hp1bp3(-/-) mice exhibited a 60% reduction in circulating IGF-1 and a 4-fold increase in the levels of IGFBP-1 and IGFBP-2. These alterations were reflected in similar changes in the hepatic transcripts of the Igf1, Igfbp1, and Igfbp2 genes. Collectively, these results suggest that HP1BP3 plays a key role in normal growth and bone development by regulating transcription of endocrine IGF-1 components.
Collapse
Affiliation(s)
- Benjamin P. Garfinkel
- Department of Biological Chemistry (B.P.G., S.A., J.O.), The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel; Center for Clinical and Translational Research (P.T.L., C.J.R.), Maine Medical Center Research Institute, Scarborough, Maine 04074; Protein Section (M.B.), Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892; and Department of Anatomy and Anthropology (Y.G.), Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 64239, Israel
| | - Shiri Arad
- Department of Biological Chemistry (B.P.G., S.A., J.O.), The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel; Center for Clinical and Translational Research (P.T.L., C.J.R.), Maine Medical Center Research Institute, Scarborough, Maine 04074; Protein Section (M.B.), Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892; and Department of Anatomy and Anthropology (Y.G.), Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 64239, Israel
| | - Phuong T. Le
- Department of Biological Chemistry (B.P.G., S.A., J.O.), The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel; Center for Clinical and Translational Research (P.T.L., C.J.R.), Maine Medical Center Research Institute, Scarborough, Maine 04074; Protein Section (M.B.), Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892; and Department of Anatomy and Anthropology (Y.G.), Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 64239, Israel
| | - Michael Bustin
- Department of Biological Chemistry (B.P.G., S.A., J.O.), The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel; Center for Clinical and Translational Research (P.T.L., C.J.R.), Maine Medical Center Research Institute, Scarborough, Maine 04074; Protein Section (M.B.), Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892; and Department of Anatomy and Anthropology (Y.G.), Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 64239, Israel
| | - Clifford J. Rosen
- Department of Biological Chemistry (B.P.G., S.A., J.O.), The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel; Center for Clinical and Translational Research (P.T.L., C.J.R.), Maine Medical Center Research Institute, Scarborough, Maine 04074; Protein Section (M.B.), Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892; and Department of Anatomy and Anthropology (Y.G.), Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 64239, Israel
| | | | | |
Collapse
|
38
|
Microencapsulation of mechano growth factor E peptide for sustained delivery and bioactivity maintenance. Int J Pharm 2014; 469:214-21. [DOI: 10.1016/j.ijpharm.2014.04.054] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 04/08/2014] [Accepted: 04/20/2014] [Indexed: 11/21/2022]
|
39
|
Dieudonne FX, Sévère N, Biosse-Duplan M, Weng JJ, Su Y, Marie PJ. Promotion of osteoblast differentiation in mesenchymal cells through Cbl-mediated control of STAT5 activity. Stem Cells 2014; 31:1340-9. [PMID: 23533197 DOI: 10.1002/stem.1380] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 02/28/2013] [Indexed: 02/02/2023]
Abstract
The identification of the molecular mechanisms controlling the degradation of regulatory proteins in mesenchymal stromal cells (MSC) may provide clues to promote MSC osteogenic differentiation and bone regeneration. Ubiquitin ligase-dependent degradation of proteins is an important process governing cell fate. In this study, we investigated the role of the E3 ubiquitin ligase c-Cbl in MSC osteoblast differentiation and identified the mechanisms involved in this effect. Using distinct shRNA targeting c-Cbl, we showed that c-Cbl silencing promotes osteoblast differentiation in murine and human MSC, as demonstrated by increased alkaline phosphatase activity, expression of phenotypic osteoblast marker genes (RUNX2, ALP, type 1 collagen), and matrix mineralization in vitro. Coimmunoprecipitation analyses showed that c-Cbl interacts with the transcription factor STAT5, and that STAT5 forms a complex with RUNX2, a master transcription factor controlling osteoblastogenesis. Silencing c-Cbl decreased c-Cbl-mediated STAT5 ubiquitination, increased STAT5 protein level and phosphorylation, and enhanced STAT5 and RUNX2 transcriptional activity. The expression of insulin like growth factor-1 (IGF-1), a target gene of STAT5, was increased by c-Cbl silencing in MSC and in bone marrow stromal cells isolated from c-Cbl deficient mice, suggesting that IGF-1 contributes to osteoblast differentiation induced by c-Cbl silencing in MSC. Consistent with these findings, pharmacological inhibition of STAT5 activity, or neutralization of IGF-1 activity, abrogated the positive effect of c-Cbl knockdown on MSC osteogenic differentiation. Taken together, the data provide a novel functional mechanism by which the ubiquitin ligase c-Cbl regulates the osteoblastic differentiation program in mesenchymal cells by controlling Cbl-mediated STAT5 degradation and activity.
Collapse
|
40
|
Chen M, Qiao H, Su Z, Li H, Ping Q, Zong L. Emerging therapeutic targets for osteoporosis treatment. Expert Opin Ther Targets 2014; 18:817-31. [PMID: 24766518 DOI: 10.1517/14728222.2014.912632] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION To date, osteoporosis still remains a major public health burden especially for the aging populations. Over the last few decades treatments for osteoporosis have largely focused on anti-resorptive agents represented by bisphosphonates and estrogen therapy that dominated the market. Unsatisfactory efficacy, non-specificity and long-term safety of current therapies necessitate the need for new targets effectively preventing and treating of osteoporosis. AREAS COVERED This review expatiates on the mechanism of osteoporosis occurrence and bone remodeling cycle in detail. New targets of antiresorptive and anabolic agents based on the functions of osteoblasts and osteoclasts as well as associated signaling pathways are outlined. EXPERT OPINION Advanced understanding in the fields of bone remodeling, functions of osteoblasts, osteoclasts and osteocytes associated with osteoporosis occurrence offers the emerging bone-resorptive or bone-formative targets. Currently, molecules involving RANK-RANKL-OPG system and Wnt/β-catenin signaling pathway act as the most promising targets.
Collapse
Affiliation(s)
- Minglei Chen
- China Pharmaceutical University, Key Lab of State Natural Medicine, Department of Pharmaceutics , Nanjing 210009 , PR China +86 25 83271092; +86 25 83271317 ; +86 25 83271092; +86 25 83271317 ; ;
| | | | | | | | | | | |
Collapse
|
41
|
Jones GN, Moschidou D, Abdulrazzak H, Kalirai BS, Vanleene M, Osatis S, Shefelbine SJ, Horwood NJ, Marenzana M, De Coppi P, Bassett JD, Williams GR, Fisk NM, Guillot PV. Potential of human fetal chorionic stem cells for the treatment of osteogenesis imperfecta. Stem Cells Dev 2014; 23:262-76. [PMID: 24028330 PMCID: PMC3904514 DOI: 10.1089/scd.2013.0132] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 09/12/2013] [Indexed: 12/13/2022] Open
Abstract
Osteogenesis imperfecta (OI) is a genetic bone pathology with prenatal onset, characterized by brittle bones in response to abnormal collagen composition. There is presently no cure for OI. We previously showed that human first trimester fetal blood mesenchymal stem cells (MSCs) transplanted into a murine OI model (oim mice) improved the phenotype. However, the clinical use of fetal MSC is constrained by their limited number and low availability. In contrast, human fetal early chorionic stem cells (e-CSC) can be used without ethical restrictions and isolated in high numbers from the placenta during ongoing pregnancy. Here, we show that intraperitoneal injection of e-CSC in oim neonates reduced fractures, increased bone ductility and bone volume (BV), increased the numbers of hypertrophic chondrocytes, and upregulated endogenous genes involved in endochondral and intramembranous ossification. Exogenous cells preferentially homed to long bone epiphyses, expressed osteoblast genes, and produced collagen COL1A2. Together, our data suggest that exogenous cells decrease bone brittleness and BV by directly differentiating to osteoblasts and indirectly stimulating host chondrogenesis and osteogenesis. In conclusion, the placenta is a practical source of stem cells for the treatment of OI.
Collapse
Affiliation(s)
- Gemma N. Jones
- Institute of Reproductive and Developmental Biology, Imperial College London, London, United Kingdom
| | - Dafni Moschidou
- Institute of Reproductive and Developmental Biology, Imperial College London, London, United Kingdom
| | - Hassan Abdulrazzak
- Institute of Reproductive and Developmental Biology, Imperial College London, London, United Kingdom
| | - Bhalraj Singh Kalirai
- Institute of Reproductive and Developmental Biology, Imperial College London, London, United Kingdom
| | - Maximilien Vanleene
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Suchaya Osatis
- Institute of Reproductive and Developmental Biology, Imperial College London, London, United Kingdom
| | | | - Nicole J. Horwood
- Kennedy Institute of Rheumatology, Imperial College London, London, United Kingdom
| | - Massimo Marenzana
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Paolo De Coppi
- Surgery Unit, UCL Institute of Child Health, London, United Kingdom
| | - J.H. Duncan Bassett
- Molecular Endocrinology Group, Department of Medicine, Imperial College London, London, United Kingdom
| | - Graham R. Williams
- Molecular Endocrinology Group, Department of Medicine, Imperial College London, London, United Kingdom
| | - Nicholas M. Fisk
- UQ Centre for Clinical Research, University of Queensland, Brisbane, Australia
| | - Pascale V. Guillot
- Institute of Reproductive and Developmental Biology, Imperial College London, London, United Kingdom
| |
Collapse
|
42
|
Hage MP, El-Hajj Fuleihan G. Bone and mineral metabolism in patients undergoing Roux-en-Y gastric bypass. Osteoporos Int 2014; 25:423-39. [PMID: 24008401 DOI: 10.1007/s00198-013-2480-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 07/29/2013] [Indexed: 01/06/2023]
Abstract
UNLABELLED Despite effective weight reduction, the impact of bariatric surgery on bone is a major concern. Mechanisms include decreased mechanical loading, calcium and vitamin D malabsorption, deficiency in other nutrients, and alterations in fat- and gut-derived hormones. The evidence to support clinical care pathways to prevent bone loss and fractures is at this point weak. INTRODUCTION There is a growing concern regarding the potential deleterious impact of bariatric surgery on bone metabolism. This comprehensive review addresses this controversial topic. METHODS We reviewed and analyzed articles evaluating bone metabolism and mechanisms for the ensuing putative bone loss in adult patients exclusively undergoing Roux-en-Y gastric bypass (RYGB) surgery, for the period spanning 1942 till September 2012. RESULTS Mechanisms identified to contribute to alterations in bone metabolism after bypass surgery include: decreased mechanical loading, calcium and vitamin D malabsorption with secondary hyperparathyroidism, deficiency in other nutrients, in addition to alterations in adipokines, gonadal steroids, and gut-derived hormones favoring bone loss, with the exception of serotonin and glucagon-like peptide-1. The relative contribution of each of these hormones to changes in bone homeostasis after bypass surgery remains undefined. Bone loss reflected by a decline in bone mineral density (BMD) and an increase in bone turnover markers have been reported in many studies, limited for the most part by the exclusive use of dual energy X-ray absorptiometry. Well-designed long-term prospective trials with fractures as an outcome, and studies investigating the magnitude, reversibility, and impact of the observed metabolic changes on fracture outcomes are lacking. CONCLUSION Robust conclusions regarding bone loss and fracture outcome after RYGB surgery cannot be drawn at this time. Although not evidence based, baseline evaluation and sequential monitoring with measurement of BMD and calciotropic hormones seem appropriate, with adequate calcium and vitamin D replacement. Beneficial interventions remain unclear.
Collapse
Affiliation(s)
- M P Hage
- Department of Internal Medicine, Division of Endocrinology, Calcium Metabolism and Osteoporosis Program, WHO Collaborating Center for Metabolic Bone Disorders, American University of Beirut-Medical Center, PO BOX: 11-0236, Riad El Solh, 1107 2020, Beirut, Lebanon
| | | |
Collapse
|
43
|
Anwar GM, Kandeel WA, Mandour IA, Kamal AN. Study of primary IGF-1 deficiency in Egyptian children with idiopathic short stature. Horm Res Paediatr 2014; 79:277-82. [PMID: 23635650 DOI: 10.1159/000350824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 03/13/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Primary insulin-like growth factor-1 (IGF-1) deficiency (IGFD) is defined by low levels of IGF-1 without growth hormone (GH) deficiency and absence of secondary causes. The aim of this study was to evaluate IGF-1 in Egyptian children with idiopathic short stature (ISS) and describe patients with IGFD. METHODS This cross-sectional study included 50 children with ISS following up at the Diabetes Endocrine and Metabolism Pediatric Unit at Cairo University Pediatric Hospital. Children were included based on the following criteria: (1) short stature with current height standard deviation score (SDS) ≤-2.5; (2) age between 2 and 9 years in boys and 2 and 8 years in girls, and (3) prepubertal status. Exclusion criteria were: (1) identified cause of short stature and (2) pubertal children. IGF-1-deficient children were defined as children without GH deficiency and with IGF-1 levels below the 2.5th percentile. RESULTS Among 50 children with ISS, 14 (28%) patients had low IGF-1 levels, consistent with the diagnosis of primary IGFD. When compared with non-IGFD children, IGFD children had lower birth weight SDS (-1.8 vs. -0.7 SDS, p < 0.0001) and lower height SDS (-4.2 vs. -3.1 SDS, p < 0.05) and more delayed bone age (2.6 vs. 1.6 years, p = 0.001). CONCLUSION Primary IGF-1 deficiency is found in 28% of children with ISS.
Collapse
Affiliation(s)
- Ghada M Anwar
- Department of Pediatrics, Cairo University, Cairo, Egypt.
| | | | | | | |
Collapse
|
44
|
ITO R, MATSUMIYA T, KON T, NARITA N, KUBOTA K, SAKAKI H, OZAKI T, IMAIZUMI T, KOBAYASHI W, KIMURA H. Periosteum-derived cells respond to mechanical stretch and activate Wnt andBMP signaling pathways. Biomed Res 2014; 35:69-79. [DOI: 10.2220/biomedres.35.69] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
45
|
Locatelli V, Bianchi VE. Effect of GH/IGF-1 on Bone Metabolism and Osteoporsosis. Int J Endocrinol 2014; 2014:235060. [PMID: 25147565 PMCID: PMC4132406 DOI: 10.1155/2014/235060] [Citation(s) in RCA: 179] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 06/17/2014] [Accepted: 06/18/2014] [Indexed: 01/25/2023] Open
Abstract
Background. Growth hormone (GH) and insulin-like growth factor (IGF-1) are fundamental in skeletal growth during puberty and bone health throughout life. GH increases tissue formation by acting directly and indirectly on target cells; IGF-1 is a critical mediator of bone growth. Clinical studies reporting the use of GH and IGF-1 in osteoporosis and fracture healing are outlined. Methods. A Pubmed search revealed 39 clinical studies reporting the effects of GH and IGF-1 administration on bone metabolism in osteopenic and osteoporotic human subjects and on bone healing in operated patients with normal GH secretion. Eighteen clinical studies considered the effect with GH treatment, fourteen studies reported the clinical effects with IGF-1 administration, and seven related to the GH/IGF-1 effect on bone healing. Results. Both GH and IGF-1 administration significantly increased bone resorption and bone formation in the most studies. GH/IGF-1 administration in patients with hip or tibial fractures resulted in increased bone healing, rapid clinical improvements. Some conflicting results were evidenced. Conclusions. GH and IGF-1 therapy has a significant anabolic effect. GH administration for the treatment of osteoporosis and bone fractures may greatly improve clinical outcome. GH interacts with sex steroids in the anabolic process. GH resistance process is considered.
Collapse
Affiliation(s)
- Vittorio Locatelli
- Department of Health Sciences, School of Medicine, University of Milano Bicocca, Milan, Italy
| | - Vittorio E. Bianchi
- Endocrinology Department, Area Vasta N. 1, Cagli, Italy
- *Vittorio E. Bianchi:
| |
Collapse
|
46
|
Ardawi MSM, Akhbar DH, Alshaikh A, Ahmed MM, Qari MH, Rouzi AA, Ali AY, Abdulrafee AA, Saeda MY. Increased serum sclerostin and decreased serum IGF-1 are associated with vertebral fractures among postmenopausal women with type-2 diabetes. Bone 2013; 56:355-62. [PMID: 23845326 DOI: 10.1016/j.bone.2013.06.029] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Revised: 06/26/2013] [Accepted: 06/29/2013] [Indexed: 12/11/2022]
Abstract
Insulin-like growth factor 1 (IGF-1) is a determinant of bone mass and is inversely associated with vertebral fractures (VFs). Sclerostin regulates bone formation by inhibiting Wnt/β-catenin signaling. Currently, there is little information on circulating sclerostin levels among postmenopausal women with type-2 diabetes mellitus (T2DM) with VFs in relation to serum IGF-1 (s-IGF-1). We investigated the relationships between serum sclerostin, s-IGF-1, and VFs in postmenopausal women with T2DM. We assessed cross-sectionally 482 postmenopausal women with T2DM and 482 age-matched postmenopausal women without T2DM who were recruited at diabetic clinics and primary health care centers for inclusion in a bone health survey. The main outcome measures were serum sclerostin, s-IGF-1, bone mineral density (BMD), and bone turnover markers. Lateral X-rays of the thoracic and lumbar spine were taken to diagnose VFs. Serum sclerostin levels were increased, whereas s-IGF-1 levels were decreased when T2DM women were stratified by the number of VFs (P<0.0001). Multiple logistic regression analysis showed that serum sclerostin levels were positively associated with 1 VF (odds ratio [OR]=1.27, (95% CI:1.01-2.03), P=0.016), 2 VFs (OR=1.41, (95% CI:1.03-2.36), P=0.006), and ≥3 VFs (OR=1.54, (95% CI:1.12-2.44) P=0.005). s-IGF-1 levels were inversely associated with 1 VF (OR=0.58, (95% CI:0.39-0.88), P=0.041), 2 VFs (OR=0.42, (95% CI:0.21-0.90), P=0.012), and ≥3 VFs (OR=0.19, (95% CI: 0.14-0.27), P<0.001). Increased serum sclerostin and decreased s-IGF-1 were associated with VFs among postmenopausal women with T2DM, suggesting that sclerostin and/or IGF-1 may be involved in increased bone fragility in T2DM and could be potential markers of VF severity.
Collapse
Affiliation(s)
- Mohammed-Salleh M Ardawi
- Center of Excellence for Osteoporosis Research, Faculty of Medicine and King Abdulaziz University Hospital, King Abdulaziz University, Jeddah, Saudi Arabia.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Logan JG, Sophocleous A, Marino S, Muir M, Brunton VG, Idris AI. Selective tyrosine kinase inhibition of insulin-like growth factor-1 receptor inhibits human and mouse breast cancer-induced bone cell activity, bone remodeling, and osteolysis. J Bone Miner Res 2013; 28:1229-42. [PMID: 23239200 DOI: 10.1002/jbmr.1847] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 10/11/2012] [Accepted: 11/14/2012] [Indexed: 01/06/2023]
Abstract
Insulin-like growth factor 1 (IGF-1) plays an important role in both bone metabolism and breast cancer. In this study, we investigated the effects of the novel IGF-1 receptor tyrosine kinase inhibitor cis-3-[3-(4-methyl-piperazin-l-yl)-cyclobutyl]-1-(2-phenyl-quinolin-7-yl)-imidazo[1,5-a]pyrazin-8-ylamine (PQIP) on osteolytic bone disease associated with breast cancer. Human MDA-MB-231 and mouse 4T1 breast cancer cells enhanced osteoclast formation in receptor activator of NF-κB ligand (RANKL) and macrophage colony-stimulating factor (M-CSF) stimulated bone marrow cultures, and these effects were significantly inhibited by PQIP. Functional studies in osteoclasts showed that PQIP inhibited both IGF-1 and conditioned medium-induced osteoclast formation by preventing phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) activation without interfering with RANKL or M-CSF signaling. Treatment of osteoblasts with PQIP significantly inhibited the increase in RANKL/osteoprotegerin (OPG) ratio by IGF-1 and conditioned medium and totally prevented conditioned medium-induced osteoclast formation in osteoblast-bone marrow (BM) cell cocultures, thereby suggesting an inhibitory effect on osteoblast-osteoclast coupling. PQIP also inhibited IGF-1-induced osteoblast differentiation, spreading, migration, and bone nodule formation. Treatment with PQIP significantly reduced MDA-MB-231 conditioned medium-induced osteolytic bone loss in a mouse calvarial organ culture system ex vivo and in adult mice in vivo. Moreover, once daily oral administration of PQIP significantly decreased trabecular bone loss and reduced the size of osteolytic bone lesions following 4T1 intratibial injection in mice. Quantitative histomorphometry showed a significant reduction in bone resorption and formation indices, indicative of a reduced rate of cancer-associated bone turnover. We conclude that inhibition of IGF-1 receptor tyrosine kinase activity by PQIP suppresses breast cancer-induced bone turnover and osteolysis. Therefore, PQIP, and its novel derivatives that are currently in advanced clinical development for the treatment of a number of solid tumors, may be of value in the treatment of osteolytic bone disease associated with breast cancer.
Collapse
Affiliation(s)
- John G Logan
- Bone and Cancer Group, Edinburgh Cancer Research Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | | | | | | | | | | |
Collapse
|
48
|
Tenta R, Bourgiezi I, Aliferis E, Papadopoulou M, Gounaris A, Skouroliakou M. Bone metabolism compensates for the delayed growth in small for gestational age neonates. Organogenesis 2013; 9:55-9. [PMID: 23538775 DOI: 10.4161/org.24251] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The goal of the present study is to investigate the relationship between anthropometric and bone metabolism markers in a sample of neonates and their mothers. A sample of 20 SGA (small for the gestational age), AGA (appropriate for the gestational age) and LGA (large for the gestational age) term neonates and their 20 mothers was analyzed at birth and at exit. Elisa method was used to measure the OPG (Osteoprotegerin), RANK (Receptor activator of nuclear factor-kappaB), RANKL (Receptor activator of nuclear factor-kappaB Ligand), IGF-1 (Insulin-like growth factor 1), IGFBP3 (Insulin-like Growth Factor Binding Protein 3) and Leptin levels. Birth weight and length were positively correlated with RANKL, IGF-1 and IGFBP3 and negatively with the ratio OPG/RANKL. SGA neonates presented lower RANKL values and higher OPG/RANKL ratio while LGA neonates had higher RANK levels than AGA neonates. Positive association was shown between neonatal IGFBP3 and maternal IGF-1 values and between neonatal and maternal RANK values at birth and at exit. These results reveal a remarkable upregulation of OPG/RANKL ratio in SGA neonates, pointing out the role of bone turnover in compensating for the delayed neonatal growth.
Collapse
Affiliation(s)
- Roxane Tenta
- Department of Nutrition Science and Dietetics,Harokopio University, Athens, Greece.
| | | | | | | | | | | |
Collapse
|
49
|
Abstract
Excess body weight due to obesity has traditionally been considered to have a positive effect on bone; however, more recent findings suggest that bone quality is compromised. Both obesity and caloric restriction increase fracture risk and are regulated by endocrine factors and cytokines that have direct and indirect effects on bone and calcium absorption. Weight reduction will decrease bone mass and mineral density, but this varies by the individual's age, gender, and adiposity. Dietary modifications, exercise, and medications have been shown to attenuate the bone loss associated with weight reduction. Future obesity and weight loss trials would benefit from assessment of key hormones, adipokine and gut peptides that regulate calcium absorption, and bone mineral density and quality by using sensitive techniques in high-risk populations.
Collapse
Affiliation(s)
- Sue A Shapses
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey 08901, USA.
| | | |
Collapse
|
50
|
Dhaunsi GS, Uppal SS, Haider MZ. Insulin-like growth factor-1 gene polymorphism in rheumatoid arthritis patients. Scand J Rheumatol 2012; 41:421-5. [PMID: 22839688 DOI: 10.3109/03009742.2012.691177] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Insulin-like growth factor-1 (IGF-1) regulates several biological functions, and low plasma levels of IGF-1 are known to contribute towards the pathogenesis of rheumatoid arthritis (RA). In view of the biological significance of IGF-1, we investigated the association of RA with the polymorphism of a 192-bp allele which is cytosine-adenosine repeat located 1 kb upstream from the IGF-1 gene transcription site and is known to regulate serum IGF-1 levels. METHODS Blood samples were collected from 52 healthy controls (HC) and 68 RA patients to measure the levels of IGF-1 and to isolate genomic DNA. Polymorphism of the IGF-1 gene was examined using polymerase chain reaction (PCR). Disease severity, duration, and activity were recorded for all RA patients. RESULTS We observed that 97% of all the subjects who participated in this study showed the presence of a 192-bp allele of the IGF-1 gene. All healthy controls exhibited the presence of 192-bp wild-type allele. All non-carriers of the 192-bp allele were Arabs and had RA. Gender correlated significantly with allele frequencies as 14% of the male and only 2% of the female RA patients were non-carriers of 192-bp allele. Plasma IGF-1 levels were significantly lower (p < 0.01) in RA patients compared to HC, and all RA patients who were non-carriers of the 192-bp allele had a significantly high disease activity score. No correlation was found between the duration of RA and the presence or absence of this allele. CONCLUSIONS This study suggests a possible association of the IGF-1 gene polymorphism with developing RA, particularly in males as non-carriers of the 192-bp allele.
Collapse
Affiliation(s)
- G S Dhaunsi
- Departments of Paediatrics, Faculty of Medicine, Kuwait University, Safat, Kuwait.
| | | | | |
Collapse
|