1
|
Kück U, Pöggeler S. STRIPAK, a fundamental signaling hub of eukaryotic development. Microbiol Mol Biol Rev 2024; 88:e0020523. [PMID: 39526753 DOI: 10.1128/mmbr.00205-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
SUMMARYThe striatin-interacting phosphatase and kinase (STRIPAK) complex is involved in the regulation of many developmental processes in eukaryotic microorganisms and all animals, including humans. STRIPAK is a component of protein phosphatase 2A (PP2A), a highly conserved serine-threonine phosphatase composed of catalytic subunits (PP2Ac), a scaffolding subunit (PP2AA) and various substrate-directing B regulatory subunits. In particular, the B''' regulatory subunit called striatin has evoked major interest over the last 20 years. Studies in fungal systems have contributed substantially to our current knowledge about STRIPAK composition, assembly, and cellular localization, as well as its regulatory role in autophagy and the morphology of fungal development. STRIPAK represents a signaling hub with many kinases and thus integrates upstream and downstream information from many conserved eukaryotic signaling pathways. A profound understanding of STRIPAK's regulatory role in fungi opens the gateway to understanding the multifarious functions carried out by STRIPAK in higher eukaryotes, including its contribution to malignant cell growth.
Collapse
Affiliation(s)
- Ulrich Kück
- Allgemeine & Molekulare Botanik, Ruhr-University, Bochum, Germany
| | - Stefanie Pöggeler
- Department of Genetics of Eukaryotic Microorganisms, Institute of Microbiology and Genetics, Georg-August-University, Göttingen, Germany
- Göttingen Center for Molecular Biosciences (GZMB), Georg-August-University, Göttingen, Germany
| |
Collapse
|
2
|
Joglekar A, Hu W, Zhang B, Narykov O, Diekhans M, Marrocco J, Balacco J, Ndhlovu LC, Milner TA, Fedrigo O, Jarvis ED, Sheynkman G, Korkin D, Ross ME, Tilgner HU. Single-cell long-read sequencing-based mapping reveals specialized splicing patterns in developing and adult mouse and human brain. Nat Neurosci 2024; 27:1051-1063. [PMID: 38594596 PMCID: PMC11156538 DOI: 10.1038/s41593-024-01616-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 03/07/2024] [Indexed: 04/11/2024]
Abstract
RNA isoforms influence cell identity and function. However, a comprehensive brain isoform map was lacking. We analyze single-cell RNA isoforms across brain regions, cell subtypes, developmental time points and species. For 72% of genes, full-length isoform expression varies along one or more axes. Splicing, transcription start and polyadenylation sites vary strongly between cell types, influence protein architecture and associate with disease-linked variation. Additionally, neurotransmitter transport and synapse turnover genes harbor cell-type variability across anatomical regions. Regulation of cell-type-specific splicing is pronounced in the postnatal day 21-to-postnatal day 28 adolescent transition. Developmental isoform regulation is stronger than regional regulation for the same cell type. Cell-type-specific isoform regulation in mice is mostly maintained in the human hippocampus, allowing extrapolation to the human brain. Conversely, the human brain harbors additional cell-type specificity, suggesting gain-of-function isoforms. Together, this detailed single-cell atlas of full-length isoform regulation across development, anatomical regions and species reveals an unappreciated degree of isoform variability across multiple axes.
Collapse
Affiliation(s)
- Anoushka Joglekar
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Center for Neurogenetics, Weill Cornell Medicine, New York, NY, USA
- New York Genome Center, New York, NY, USA
| | - Wen Hu
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Center for Neurogenetics, Weill Cornell Medicine, New York, NY, USA
| | - Bei Zhang
- Spatial Genomics, Inc., Pasadena, CA, USA
| | - Oleksandr Narykov
- Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA, USA
- Computer Science Department, Worcester Polytechnic Institute, Worcester, MA, USA
- Data Science Program, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Mark Diekhans
- UC Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Jordan Marrocco
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Department of Biology, Touro University, New York, NY, USA
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, USA
| | - Jennifer Balacco
- Vertebrate Genome Lab, The Rockefeller University, New York, NY, USA
| | - Lishomwa C Ndhlovu
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, USA
| | - Teresa A Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Olivier Fedrigo
- Vertebrate Genome Lab, The Rockefeller University, New York, NY, USA
| | - Erich D Jarvis
- Vertebrate Genome Lab, The Rockefeller University, New York, NY, USA
- Laboratory of Neurogenetics of Language, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Gloria Sheynkman
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
- UVA Comprehensive Cancer Center, University of Virginia, Charlottesville, VA, USA
| | - Dmitry Korkin
- Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA, USA
- Computer Science Department, Worcester Polytechnic Institute, Worcester, MA, USA
- Data Science Program, Worcester Polytechnic Institute, Worcester, MA, USA
| | - M Elizabeth Ross
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Center for Neurogenetics, Weill Cornell Medicine, New York, NY, USA
| | - Hagen U Tilgner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
- Center for Neurogenetics, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
3
|
Cull J, Cooper S, Alharbi H, Chothani S, Rackham O, Meijles D, Dash P, Kerkelä R, Ruparelia N, Sugden P, Clerk A. Striatin plays a major role in angiotensin II-induced cardiomyocyte and cardiac hypertrophy in mice in vivo. Clin Sci (Lond) 2024; 138:573-597. [PMID: 38718356 PMCID: PMC11130554 DOI: 10.1042/cs20240496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/23/2024]
Abstract
The three striatins (STRN, STRN3, STRN4) form the core of STRiatin-Interacting Phosphatase and Kinase (STRIPAK) complexes. These place protein phosphatase 2A (PP2A) in proximity to protein kinases thereby restraining kinase activity and regulating key cellular processes. Our aim was to establish if striatins play a significant role in cardiac remodelling associated with cardiac hypertrophy and heart failure. All striatins were expressed in control human hearts, with up-regulation of STRN and STRN3 in failing hearts. We used mice with global heterozygote gene deletion to assess the roles of STRN and STRN3 in cardiac remodelling induced by angiotensin II (AngII; 7 days). Using echocardiography, we detected no differences in baseline cardiac function or dimensions in STRN+/- or STRN3+/- male mice (8 weeks) compared with wild-type littermates. Heterozygous gene deletion did not affect cardiac function in mice treated with AngII, but the increase in left ventricle mass induced by AngII was inhibited in STRN+/- (but not STRN3+/-) mice. Histological staining indicated that cardiomyocyte hypertrophy was inhibited. To assess the role of STRN in cardiomyocytes, we converted the STRN knockout line for inducible cardiomyocyte-specific gene deletion. There was no effect of cardiomyocyte STRN knockout on cardiac function or dimensions, but the increase in left ventricle mass induced by AngII was inhibited. This resulted from inhibition of cardiomyocyte hypertrophy and cardiac fibrosis. The data indicate that cardiomyocyte striatin is required for early remodelling of the heart by AngII and identify the striatin-based STRIPAK system as a signalling paradigm in the development of pathological cardiac hypertrophy.
Collapse
Affiliation(s)
- Joshua J. Cull
- School of Biological Sciences, University of Reading, Reading, U.K
| | - Susanna T.E. Cooper
- Molecular and Clinical Sciences Institute, St. George’s University of London, London, U.K
| | - Hajed O. Alharbi
- School of Biological Sciences, University of Reading, Reading, U.K
| | - Sonia P. Chothani
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Medical School, Singapore
| | - Owen J.L. Rackham
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Medical School, Singapore
- School of Biological Sciences, University of Southampton, Southampton, U.K
| | - Daniel N. Meijles
- Molecular and Clinical Sciences Institute, St. George’s University of London, London, U.K
| | - Philip R. Dash
- School of Biological Sciences, University of Reading, Reading, U.K
| | - Risto Kerkelä
- Research Unit of Biomedicine and Internal Medicine, Medical Research Centre Oulu (Oulu University Hospital) and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Neil Ruparelia
- School of Biological Sciences, University of Reading, Reading, U.K
- Department of Cardiology, Royal Berkshire Hospital, Reading, U.K
| | - Peter H. Sugden
- School of Biological Sciences, University of Reading, Reading, U.K
| | - Angela Clerk
- School of Biological Sciences, University of Reading, Reading, U.K
| |
Collapse
|
4
|
Li AX, Martin TA, Lane J, Jiang WG. Cellular Impacts of Striatins and the STRIPAK Complex and Their Roles in the Development and Metastasis in Clinical Cancers (Review). Cancers (Basel) 2023; 16:76. [PMID: 38201504 PMCID: PMC10777921 DOI: 10.3390/cancers16010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Striatins (STRNs) are generally considered to be cytoplasmic proteins, with lower expression observed in the nucleus and at cell-cell contact regions. Together with protein phosphatase 2A (PP2A), STRNs form the core region of striatin-interacting phosphatase and kinase (STRIPAK) complexes through the coiled-coil region of STRN proteins, which is crucial for substrate recruitment. Over the past two decades, there has been an increasing amount of research into the biological and cellular functions of STRIPAK members. STRNs and the constituent members of the STRIPAK complex have been found to regulate several cellular functions, such as cell cycle control, cell growth, and motility. Dysregulation of these cellular events is associated with cancer development. Importantly, their roles in cancer cells and clinical cancers are becoming recognised, with several STRIPAK components found to have elevated expression in cancerous tissues compared to healthy tissues. These molecules exhibit significant diagnostic and prognostic value across different cancer types and in metastatic progression. The present review comprehensively summarises and discusses the current knowledge of STRNs and core STRIPAK members, in cancer malignancy, from both cellular and clinical perspectives.
Collapse
Affiliation(s)
| | - Tracey A. Martin
- Cardiff China Medical Research Collaborative, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK; (A.X.L.); (J.L.); (W.G.J.)
| | | | | |
Collapse
|
5
|
Bisoyi P, Ratna D, Kumar G, Mallick BN, Goswami SK. In the Rat Midbrain, SG2NA and DJ-1 have Common Interactome, Including Mitochondrial Electron Transporters that are Comodulated Under Oxidative Stress. Cell Mol Neurobiol 2023; 43:3061-3080. [PMID: 37165139 PMCID: PMC11410017 DOI: 10.1007/s10571-023-01356-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 04/26/2023] [Indexed: 05/12/2023]
Abstract
Scaffold proteins Striatin and SG2NA assemble kinases and phosphatases into the signalling complexes called STRIPAK. Dysfunctional STRIPAKs cause cancer, cerebral cavernous malformations, etc. DJ-1, a sensor for oxidative stress, has long been associated with the Parkinson's disease, cancer, and immune disorders. SG2NA interacts with DJ-1 and Akt providing neuroprotection under oxidative stress. To dissect the role of SG2NA and DJ-1 in neuronal pathobiology, rat midbrain extracts were immunoprecipitated with SG2NA and sixty-three interacting proteins were identified. BN-PAGE followed by the LC-MS/MS showed 1030 comigrating proteins as the potential constituents of the multimeric complexes formed by SG2NA. Forty-three proteins were common between those identified by co-immunoprecipitation and the BN-PAGE. Co-immunoprecipitation with DJ-1 identified 179 interacting partners, of which forty-one also interact with SG2NA. Among those forty-one proteins immunoprecipitated with both SG2NA and DJ-1, thirty-nine comigrated with SG2NA in the BN-PAGE, and thus are bonafide constituents of the supramolecular assemblies comprising both DJ-1 and SG2NA. Among those thirty-nine proteins, seven are involved in mitochondrial oxidative phosphorylation. In rotenone-treated rats having Parkinson's like symptoms, the levels of both SG2NA and DJ-1 increased in the mitochondria; and the association of SG2NA with the electron transport complexes enhanced. In the hemi-Parkinson's model, where the rats were injected with 6-OHDA into the midbrain, the occupancy of SG2NA and DJ-1 in the mitochondrial complexes also increased. Our study thus reveals a new family of potential STRIPAK assemblies involving both SG2NA and DJ-1, with key roles in protecting midbrain from the oxidative stress.
Collapse
Affiliation(s)
- Padmini Bisoyi
- School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India
| | - Deshdeepak Ratna
- School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India
| | - Gaurav Kumar
- Department of Life Sciences and Biotechnology, CSJM University, Kanpur, Uttar Pradesh, 208024, India
| | - Birendra Nath Mallick
- School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India
- Amity Institute of Neuropsychology & Neurosciences, Amity University, Noida, 201313, India
| | - Shyamal K Goswami
- School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India.
| |
Collapse
|
6
|
Joglekar A, Hu W, Zhang B, Narykov O, Diekhans M, Balacco J, Ndhlovu LC, Milner TA, Fedrigo O, Jarvis ED, Sheynkman G, Korkin D, Ross ME, Tilgner HU. Single-cell long-read mRNA isoform regulation is pervasive across mammalian brain regions, cell types, and development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.02.535281. [PMID: 37066387 PMCID: PMC10103983 DOI: 10.1101/2023.04.02.535281] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
RNA isoforms influence cell identity and function. Until recently, technological limitations prevented a genome-wide appraisal of isoform influence on cell identity in various parts of the brain. Using enhanced long-read single-cell isoform sequencing, we comprehensively analyze RNA isoforms in multiple mouse brain regions, cell subtypes, and developmental timepoints from postnatal day 14 (P14) to adult (P56). For 75% of genes, full-length isoform expression varies along one or more axes of phenotypic origin, underscoring the pervasiveness of isoform regulation across multiple scales. As expected, splicing varies strongly between cell types. However, certain gene classes including neurotransmitter release and reuptake as well as synapse turnover, harbor significant variability in the same cell type across anatomical regions, suggesting differences in network activity may influence cell-type identity. Glial brain-region specificity in isoform expression includes strong poly(A)-site regulation, whereas neurons have stronger TSS regulation. Furthermore, developmental patterns of cell-type specific splicing are especially pronounced in the murine adolescent transition from P21 to P28. The same cell type traced across development shows more isoform variability than across adult anatomical regions, indicating a coordinated modulation of functional programs dictating neural development. As most cell-type specific exons in P56 mouse hippocampus behave similarly in newly generated data from human hippocampi, these principles may be extrapolated to human brain. However, human brains have evolved additional cell-type specificity in splicing, suggesting gain-of-function isoforms. Taken together, we present a detailed single-cell atlas of full-length brain isoform regulation across development and anatomical regions, providing a previously unappreciated degree of isoform variability across multiple scales of the brain.
Collapse
Affiliation(s)
- Anoushka Joglekar
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Center for Neurogenetics, Weill Cornell Medicine, New York, NY, USA
| | - Wen Hu
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Center for Neurogenetics, Weill Cornell Medicine, New York, NY, USA
| | | | - Oleksandr Narykov
- Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA, USA
- Computer Science Department, Worcester Polytechnic Institute, Worcester, MA, USA
- Data Science Program, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Mark Diekhans
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | | | - Lishomwa C Ndhlovu
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, USA
| | - Teresa A Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Olivier Fedrigo
- Vertebrate Genome Lab, the Rockefeller University, New York, NY
| | - Erich D Jarvis
- Vertebrate Genome Lab, the Rockefeller University, New York, NY
- Laboratory of Neurogenetics of Language, the Rockefeller University, New York, NY
- Howard Hughes Medical Institute, Chevy Chase, MD
| | - Gloria Sheynkman
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
- UVA Comprehensive Cancer Center, University of Virginia, Charlottesville, Virginia, USA
| | - Dmitry Korkin
- Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA, USA
- Computer Science Department, Worcester Polytechnic Institute, Worcester, MA, USA
- Data Science Program, Worcester Polytechnic Institute, Worcester, MA, USA
| | - M Elizabeth Ross
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Center for Neurogenetics, Weill Cornell Medicine, New York, NY, USA
| | - Hagen U Tilgner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Center for Neurogenetics, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
7
|
Tanti GK, Pandey P, Shreya S, Jain BP. Striatin family proteins: The neglected scaffolds. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119430. [PMID: 36638846 DOI: 10.1016/j.bbamcr.2023.119430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/19/2022] [Accepted: 12/31/2022] [Indexed: 01/12/2023]
Abstract
The Striatin family of proteins constitutes Striatin, SG2NA, and Zinedin. Members of this family of proteins act as a signaling scaffold due to the presence of multiple protein-protein interaction domains. At least two members of this family, namely Zinedin and SG2NA, have a proven role in cancer cell proliferation. SG2NA, the second member of this family, undergoes alternative splicing and gives rise to several isoforms which are differentially regulated in a tissue-dependent manner. SG2NA evolved earlier than the other two members of the family, and SG2NA undergoes not only alternative splicing but also other posttranscriptional gene regulation. Striatin also undergoes alternative splicing, and as a result, it gives rise to multiple isoforms. It has been shown that this family of proteins plays a significant role in estrogen signaling, neuroprotection, cancer as well as in cell cycle regulation. Members of the striatin family form a complex network of signaling hubs with different kinases and phosphatases, and other signaling proteins named STRIPAK. Here, in the present manuscript, we thoroughly reviewed the findings on striatin family members to elaborate on the overall structural and functional idea of this family of proteins. We also commented on the involvement of these proteins in STRIPAK complexes and their functional relevance.
Collapse
Affiliation(s)
- Goutam Kumar Tanti
- Department of Neurology, School of Medicine, Technical University of Munich, Germany.
| | - Prachi Pandey
- National Institute of Plant Genome Research, New Delhi, India
| | - Smriti Shreya
- Department of Zoology, Mahatma Gandhi Central University, Motihari, Bihar, India
| | - Buddhi Prakash Jain
- Department of Zoology, Mahatma Gandhi Central University, Motihari, Bihar, India.
| |
Collapse
|
8
|
Bisoyi P, Devi P, Besra K, Prasad A, Jain BP, Goswami SK. The profile of expression of the scaffold protein SG2NA(s) differs between cancer types and its interactome in normal vis-a-vis breast tumor tissues suggests its wide roles in regulating multiple cellular pathways. Mol Cell Biochem 2022; 477:1653-1668. [PMID: 35230605 DOI: 10.1007/s11010-022-04401-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/18/2022] [Indexed: 10/19/2022]
Abstract
Striatin and SG2NA are scaffold proteins that form signaling complexes called STRIPAK. It has been associated with developmental abnormalities, cancer, and several other diseases. Our earlier studies have shown that SG2NA forms a complex with the cancer-associated protein DJ-1 and the signaling kinase Akt, promoting cancer cell survival. In the present study, we used bioinformatics analyses to confirm the existence of two isoforms of human SG2NA, i.e., 78 and 87 kDas. In addition, several smaller isoforms like 35 kDa were also seen in western blot analyses of human cell lysates. The expression of these isoforms varies between different cancer cell lines of human origin. Also, the protein levels do not corroborate with its transcript levels, suggesting a complex regulation of its expression. In breast tumor tissues, the expression of the 35 and 78 kDa isoforms was higher as compared to the adjacent normal tissues, while the 87 kDa isoform was found in the breast tumor tissues only. With the progression of stages of breast cancer, while the expression of 78 kDa isoform decreased, 87 kDa became undetectable. In co-immunoprecipitation assays, the profile of the SG2NA interactome in breast tumors vis-à-vis adjacent normal breast tissues showed hundreds of common proteins. Also, some proteins were interacted with SG2NA in breast tumor tissues only. We conclude that SG2NA is involved in diverse cellular pathways and has roles in cellular reprogramming during tumorigenesis of the breast.
Collapse
Affiliation(s)
- Padmini Bisoyi
- School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India
| | - Padmalaya Devi
- Department of Surgical Oncology, Acharya Harihar Regional Cancer Centre, Cuttack, Odisha, 753007, India
| | - Kusumbati Besra
- Department of Pathology, Acharya Harihar Regional Cancer Center, Cuttack, Odisha, 753007, India
| | - Anamika Prasad
- School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India
| | - Buddhi Prakash Jain
- Department of Zoology, School of Life Sciences, Mahatma Gandhi Central University, Motihari, Bihar, 845401, India.
| | - Shyamal K Goswami
- School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India.
| |
Collapse
|
9
|
Gupta R, Kumar G, Jain BP, Chandra S, Goswami SK. Ectopic expression of 35 kDa and knocking down of 78 kDa SG2NAs induce cytoskeletal reorganization, alter membrane sialylation, and modulate the markers of EMT. Mol Cell Biochem 2020; 476:633-648. [PMID: 33083950 DOI: 10.1007/s11010-020-03932-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/07/2020] [Indexed: 12/01/2022]
Abstract
SG2NA is a protein of the striatin family that organizes STRIPAK complexes. It has splice variants expressing differentially in tissues. Its 78 kDa isoform regulates cell cycle, maintains homeostasis in the endoplasmic reticulum, and prevents oxidative injuries. The 35 kDa variant is devoid of the signature WD-40 repeats in the carboxy terminal, and its function is unknown. We expressed it in NIH 3T3 cells that otherwise express 78 kDa variant only. These cells (35 EE) have altered morphology, faster rate of migration, and enhanced growth as measured by the MTT assay. Similar phenotypes were also seen in cells where the endogenous 78 kDa isoform was downregulated by siRNA (78 KD). Proteomic analyses showed that several cancer-associated proteins are modulated in both 35 EE and 78 KD cells. The 35 EE cells have diffused actin fibers, distinctive ultrastructure, reduced sialylation, and increased expression of MMP2 & 9. The 78 KD cells also had diffused actin fibers and an upregulated expression of MMP2. In both cells, markers epithelial to mesenchymal transition (EMT) viz, E- & N-cadherins, β-catenin, slug, vimentin, and ZO-1 were modulated partially in tune with the EMT process. Since NIH 3T3 cells are mesenchymal, we also expressed 35 kDa SG2NA in MCF-7 cells of epithelial origin. In these cells (MCF-7-35), the actin fibers were also diffused and the modulation of the markers was more in tune with the EMT process. However, unlike in 35 EE cells, in MCF-7-35 cells, membrane sialylation rather increased. We infer that ectopic expression of 35 kDa and downregulation of 78 kDa SG2NAs partially induce transformed phenotypes.
Collapse
Affiliation(s)
- Richa Gupta
- School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India
| | - Gaurav Kumar
- Peptide and Proteomics Division, Defense Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi, 110054, India
| | - Buddhi Prakash Jain
- Department of Zoology, School of Life Sciences, Mahatma Gandhi Central University, Motihari, 845401, Bihar, India
| | - Sunandini Chandra
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
| | - Shyamal K Goswami
- School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India.
| |
Collapse
|
10
|
Chauhan P, Gupta R, Jain BP, Pandey S, Goswami SK. Subcellular dynamics of variants of SG2NA in NIH3T3 fibroblasts. Cell Biol Int 2019; 44:637-650. [PMID: 31773824 DOI: 10.1002/cbin.11264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 11/14/2019] [Indexed: 12/12/2022]
Abstract
SG2NA, a WD40 repeat protein of the Striatin subfamily, has four splicing and one messenger RNA edit variants. It is fast emerging as a scaffold for multimeric signaling complexes with roles in tissue development and disease. The green fluorescent protein (GFP)-tagged variants of SG2NA were ectopically expressed in NIH3T3 cells and their modulation by serum and GSK3β-ERK signaling were monitored. The 87, 78, and 35 kDa variants showed a biphasic modulation by serum till 24 h but the 52 kDa variant remained largely unresponsive. Inhibition of phosphatases by okadaic acid increased the levels of the endogenous 78 kDa and the ectopically expressed GFP-tagged 87 and 78 kDa SG2NAs. Contrastingly, okadaic acid treatment reduced the level of GFP-tagged 35 kDa SG2NA, suggesting differential modes of their stability through phosphorylation-dephosphorylation. The inhibition of GSK3β by LiCl showed a gradual decrease in the levels of 78 kDa. In the case of the other variants viz, GFP-tagged 35, 52, and 87 kDa, inhibition of GSK3β caused an initial increase followed by a decrease with a subtle difference in kinetics and intensities. Similar results were also seen upon inhibition of GSK3β by small interfering RNA. All the variants showed an increase followed by a decrease upon inhibition of extracellular-signal-regulated-kinase (ERK). These variants are localized in the plasma membrane, endoplasmic reticulum, mitochondria, and the nucleus with different propensities and no discernable subcellular distribution was seen upon stimulation by serum and the inhibition of phosphatases, GSK3β, and ERK. Taken together, the variants of SG2NA are modulated by the kinase-phosphatase network in a similar but characteristic manner.
Collapse
Affiliation(s)
- Pooja Chauhan
- School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India.,Department of Microbiology and Molecular Genetics, Hadassah Medical School, Institute of Medical Research Israel-Canada, The Hebrew University of Jerusalem, POB 12272, Jerusalem, 91120, Israel
| | - Richa Gupta
- School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India
| | - Buddhi P Jain
- School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India.,Department of Zoology, School of Life Sciences, Mahatma Gandhi Central University Bihar, Motihari, 845401, India
| | - Shweta Pandey
- School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India.,APSGMNS Govt PG College, Kawardha, Chhatishgarh
| | - Shyamal K Goswami
- School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India
| |
Collapse
|
11
|
Soni S, Jain BP, Gupta R, Dharavath S, Kar K, Komath SS, Goswami SK. Biophysical Characterization of SG2NA Variants and their Interaction with DJ-1 and Calmodulin in vitro. Cell Biochem Biophys 2018; 76:451-461. [PMID: 30132185 DOI: 10.1007/s12013-018-0854-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 08/13/2018] [Indexed: 01/11/2023]
Abstract
SG2NA was first discovered as nuclear autoantigen in lung and bladder cancer patient. It was named SG2NA as its expression increases during S to G2 phase of cell cycle. SG2NA/Striatin3 was classified as a member of Striatin family along with Straitin and Zinedin due to its structural and functional relatedness. At the molecular level, SG2NA is characterized by the presence of multiple protein-protein interaction domains viz., a caveolin binding motif, a coiled coil structure, Ca2+-calmodulin binding domain and a large WD-40 repeat domain in the same order from amino to the carboxyl termini. Analysis of secondary structures of 87 and 78 kDa SG2NA isoforms showed characteristic combinations of α-helix, β-structure, β-turns and random coil; suggesting of effective refolding after denaturation. This study for the first time establishes the structural differences between the two prevalent isoforms of SG2NA. Recently we observed that DJ-1 interacts with variants of SG2NA both in vitro and in vivo. The SG2NA isoforms purified from inclusion bodies showed the different secondary structure conformations, stability and interaction pattern for their interacting partners (DJ-1 and calmodulin) which imparts functional diversity of SG2NA. The SG2NA isoforms showed significant differential binding affinity to DJ-1 and Calmodulin.
Collapse
Affiliation(s)
- Sangeeta Soni
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.,Department of Genetics, Barkatullah University, Bhopal, 462022, India
| | - Buddhi Prakash Jain
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.,Department of Zoology, School of Life Sciences, Mahatma Gandhi Central University Bihar, Motihari, 845401, India
| | - Richa Gupta
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sudhaker Dharavath
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Karunakar Kar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sneha Sudha Komath
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Shyamal K Goswami
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
12
|
Jain BP, Pandey S, Saleem N, Tanti GK, Mishra S, Goswami SK. SG2NA is a regulator of endoplasmic reticulum (ER) homeostasis as its depletion leads to ER stress. Cell Stress Chaperones 2017; 22:853-866. [PMID: 28634818 PMCID: PMC5655373 DOI: 10.1007/s12192-017-0816-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 05/19/2017] [Accepted: 05/26/2017] [Indexed: 01/24/2023] Open
Abstract
SG2NA belongs to a three-member striatin subfamily of WD40 repeat superfamily of proteins. It has multiple protein-protein interaction domains involved in assembling supramolecular signaling complexes. Earlier, we had demonstrated that there are at least five variants of SG2NA generated by alternative splicing, intron retention, and RNA editing. Such versatile and dynamic mode of regulation implicates it in tissue development. In order to shed light on its role in cell physiology, total proteome analysis was performed in NIH3T3 cells depleted of 78 kDa SG2NA, the only isoform expressing therein. A number of ER stress markers were among those modulated after knockdown of SG2NA. In cells treated with the ER stressors thapsigargin and tunicamycin, expression of SG2NA was increased at both mRNA and protein levels. The increased level of SG2NA was primarily in the mitochondria and the microsomes. A mouse injected with thapsigargin also had an increase in SG2NA in the liver but not in the brain. Cell cycle analysis suggested that while loss of SG2NA reduces the level of cyclin D1 and retains a population of cells in the G1 phase, concurrent ER stress facilitates their exit from G1 and traverse through subsequent phases with concomitant cell death. Thus, SG2NA is a component of intrinsic regulatory pathways that maintains ER homeostasis.
Collapse
Affiliation(s)
- Buddhi Prakash Jain
- School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India
- Department of Zoology, School of Life Sciences, Mahatma Gandhi Central University Bihar, Motihari, 845401, India
| | - Shweta Pandey
- School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India
| | - Nikhat Saleem
- School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India
| | - Goutam K Tanti
- School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India
- Neuro-Kopf-Zentrum, Department of Neurology, Klinikumrechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str.22, 81675, Muenchen, Germany
| | - Shalini Mishra
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, New Delhi, -110054, India
| | - Shyamal K Goswami
- School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India.
| |
Collapse
|
13
|
Pandey S, Talukdar I, Jain BP, Tanti GK, Goswami SK. GSK3β and ERK regulate the expression of 78 kDa SG2NA and ectopic modulation of its level affects phases of cell cycle. Sci Rep 2017; 7:7555. [PMID: 28790387 PMCID: PMC5548716 DOI: 10.1038/s41598-017-08085-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 07/06/2017] [Indexed: 12/13/2022] Open
Abstract
Striatin and SG2NA are essential constituents of the multi-protein STRIPAK assembly harbouring protein phosphatase PP2A and several kinases. SG2NA has several isoforms generated by mRNA splicing and editing. While the expression of striatin is largely restricted to the striatum in brain, that of SG2NAs is ubiquitous. In NIH3T3 cells, only the 78 kDa isoform is expressed. When cells enter into the S phase, the level of SG2NA increases; reaches maximum at the G2/M phase and declines thereafter. Downregulation of SG2NA extends G1 phase and its overexpression extends G2. Ectopic expression of the 35 kDa has no effects on the cell cycle. Relative abundance of phospho-SG2NA is high in the microsome and cytosol and the nucleus but low in the mitochondria. Okadoic acid, an inhibitor of PP2A, increases the level of SG2NA which is further enhanced upon inhibition of proteasomal activity. Phospho-SG2NA is thus more stable than the dephosphorylated form. Inhibition of GSK3β by LiCl reduces its level, but the inhibition of ERK by PD98059 increases it. Thus, ERK decreases the level of phospho-SG2NA by inhibiting GSK3β. In cells depleted from SG2NA by shRNA, the levels of pGSK3β and pERK are reduced, suggesting that these kinases and SG2NA regulate each other's expression.
Collapse
Affiliation(s)
- Shweta Pandey
- School of Life Sciences, Jawaharlal Nehru University, 110067, New Delhi, India
| | - Indrani Talukdar
- School of Life Sciences, Jawaharlal Nehru University, 110067, New Delhi, India
| | - Buddhi P Jain
- School of Life Sciences, Jawaharlal Nehru University, 110067, New Delhi, India.,Department of Zoology, School of Life Sciences, Mahatma Gandhi Central University, Motihari, 845401, Bihar, India
| | - Goutam K Tanti
- School of Life Sciences, Jawaharlal Nehru University, 110067, New Delhi, India.,Department of Neurology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Shyamal K Goswami
- School of Life Sciences, Jawaharlal Nehru University, 110067, New Delhi, India.
| |
Collapse
|
14
|
Juraszek B, Nałęcz KA. Protein phosphatase PP2A - a novel interacting partner of carnitine transporter OCTN2 (SLC22A5) in rat astrocytes. J Neurochem 2016; 139:537-551. [DOI: 10.1111/jnc.13777] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 07/15/2016] [Accepted: 08/08/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Barbara Juraszek
- Laboratory of Transport through Biomembranes; Department of Molecular and Cellular Neurobiology; Nencki Institute of Experimental Biology of Polish Academy of Sciences; Warsaw Poland
| | - Katarzyna A. Nałęcz
- Laboratory of Transport through Biomembranes; Department of Molecular and Cellular Neurobiology; Nencki Institute of Experimental Biology of Polish Academy of Sciences; Warsaw Poland
| |
Collapse
|
15
|
Tanti GK, Pandey S, Goswami SK. SG2NA enhances cancer cell survival by stabilizing DJ-1 and thus activating Akt. Biochem Biophys Res Commun 2015; 463:524-31. [DOI: 10.1016/j.bbrc.2015.05.069] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 05/18/2015] [Indexed: 01/20/2023]
|
16
|
Jain BP, Chauhan P, Tanti GK, Singarapu N, Ghaskadbi S, Goswami SK. Tissue specific expression of SG2NA is regulated by differential splicing, RNA editing and differential polyadenylation. Gene 2015; 556:119-126. [PMID: 25459749 DOI: 10.1016/j.gene.2014.11.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/05/2014] [Accepted: 11/20/2014] [Indexed: 11/21/2022]
Abstract
SG2NA belongs to a three member Striatin subfamily of WD-40 repeat superfamily. It has multiple protein-protein interaction domains that are involved in the assembly of supra-molecular signaling complexes. Earlier we had demonstrated that there are at least five variants of SG2NA, generated by alternative splicing. We now demonstrate that a 52kDa novel variant is generated by the editing of the transcript for the 82kDa isoform. The 52kDa protein is abundant in mouse tissues but it is barely present in immortalized cells, suggesting its role in cell differentiation. Besides splicing and editing, expression of SG2NAs in tissues is also regulated by differential polyadenylation and mRNA/protein stability. Further, the longer UTR is seen only in the brain mRNA from 1month old mouse and 8-10day old chick embryo. Like alternative splicing, differential polyadenylation of Sg2na transcripts is also conserved in evolution. Taken together, these results suggest a highly versatile and dynamic mode of regulation of SG2NA with potential implications in tissue development.
Collapse
Affiliation(s)
- Buddhi Prakash Jain
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Pooja Chauhan
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Goutam K Tanti
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Nandini Singarapu
- The University of Texas M.D. Anderson Cancer Center, Science Park, Department of Molecular Carcinogenesis, P.O. Box 389, Smithville, TX 78957, United States
| | | | - Shyamal K Goswami
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
17
|
Tanti GK, Goswami SK. SG2NA recruits DJ-1 and Akt into the mitochondria and membrane to protect cells from oxidative damage. Free Radic Biol Med 2014; 75:1-13. [PMID: 25035075 DOI: 10.1016/j.freeradbiomed.2014.07.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 06/24/2014] [Accepted: 07/07/2014] [Indexed: 12/31/2022]
Abstract
SG2NA is a WD-40 repeat protein with multiple protein-protein interaction domains of unknown functions. We demonstrate that it associates with the antioxidant protein DJ-1 and the survival kinase Akt. The C-terminal WD-40 repeat domain of SG2NA is required for its interaction with Akt, while DJ-1 binds it further upstream. No interaction between DJ-1 and Akt occurs in the absence of SG2NA. SG2NA, DJ-1, and Akt colocalize in mitochondria and plasma membrane. Their association is enhanced by increasing levels of reactive oxygen species up to a threshold level but falters thereafter with further increase in oxidants. Mutants of DJ-1 found in patients with familial parkinsonism are not recruited by SG2NA, suggesting its role in neuroprotection. Cells depleted of SG2NA are susceptible, while those overexpressing it are resistant to apoptosis induced by oxidative stress. Our study thus unravels a novel pathway of recruitment of Akt and DJ-1 that provides protection against oxidative stress, especially in neurons.
Collapse
Affiliation(s)
- Goutam Kumar Tanti
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Shyamal K Goswami
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
18
|
Soni S, Tyagi C, Grover A, Goswami SK. Molecular modeling and molecular dynamics simulations based structural analysis of the SG2NA protein variants. BMC Res Notes 2014; 7:446. [PMID: 25015106 PMCID: PMC4105797 DOI: 10.1186/1756-0500-7-446] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 07/01/2014] [Indexed: 11/30/2022] Open
Abstract
Background SG2NA is a member of the striatin sub-family of WD-40 repeat proteins. Striatin family members have been associated with diverse physiological functions. SG2NA has also been shown to have roles in cell cycle progression, signal transduction etc. They have been known to interact with a number of proteins including Caveolin and Calmodulin and also propagate the formation of a multimeric protein unit called striatin-interacting phosphatase and kinase. As a pre-requisite for such interaction ability, these proteins are known to be unstable and primarily disordered in their arrangement. Earlier we had identified that it has multiple isoforms (namely 35, 78, 87 kDa based on its molecular weight) which are generated by alternative splicing. However, detailed structural information of SG2NA is still eluding the researchers. Results This study was aimed towards three-dimensional molecular modeling and characterization of SG2NA protein and its isoforms. One structure out of five was selected for each variant having the least value for C score. Out of these, m35 kDa with a C score value of −3.21was the most poorly determined structure in comparison to m78 kDa and m87 kDa variants with C scores of −1.16 and −1.97 respectively. Further evaluation resulted in about 61.6% residues of m35 kDa, 76.6% residues of m78 kDa and 72.1% residues of m87 kDa falling in the favorable regions of Ramchandran Plot. Molecular dynamics simulations were also carried out to obtain biologically relevant structural models and compared with previous atomic coordinates. N-terminal region of all variants was found to be highly disordered. Conclusion This study provides first-hand detailed information to understand the structural conformation of SG2NA protein variants (m35 kDa, m78 kDa and m87 kDa). The WD-40 repeat domain was found to constitute antiparallel strands of β-sheets arranged circularly. This study elucidates the crucial structural features of SG2NA proteins which are involved in various protein-protein interactions and also reveals the extent of disorder present in the SG2NA structure crucial for excessive interaction and multimeric protein complexes. The study also potentiates the role of computational approaches for preliminary examination of unknown proteins in the absence of experimental information.
Collapse
Affiliation(s)
| | | | - Abhinav Grover
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | | |
Collapse
|
19
|
Hwang J, Pallas DC. STRIPAK complexes: structure, biological function, and involvement in human diseases. Int J Biochem Cell Biol 2014; 47:118-48. [PMID: 24333164 PMCID: PMC3927685 DOI: 10.1016/j.biocel.2013.11.021] [Citation(s) in RCA: 170] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Revised: 11/18/2013] [Accepted: 11/28/2013] [Indexed: 12/31/2022]
Abstract
The mammalian striatin family consists of three proteins, striatin, S/G2 nuclear autoantigen, and zinedin. Striatin family members have no intrinsic catalytic activity, but rather function as scaffolding proteins. Remarkably, they organize multiple diverse, large signaling complexes that participate in a variety of cellular processes. Moreover, they appear to be regulatory/targeting subunits for the major eukaryotic serine/threonine protein phosphatase 2A. In addition, striatin family members associate with germinal center kinase III kinases as well as other novel components, earning these assemblies the name striatin-interacting phosphatase and kinase (STRIPAK) complexes. Recently, there has been a great increase in functional and mechanistic studies aimed at identifying and understanding the roles of STRIPAK and STRIPAK-like complexes in cellular processes of multiple organisms. These studies have identified novel STRIPAK and STRIPAK-like complexes and have explored their roles in specific signaling pathways. Together, the results of these studies have sparked increased interest in striatin family complexes because they have revealed roles in signaling, cell cycle control, apoptosis, vesicular trafficking, Golgi assembly, cell polarity, cell migration, neural and vascular development, and cardiac function. Moreover, STRIPAK complexes have been connected to clinical conditions, including cardiac disease, diabetes, autism, and cerebral cavernous malformation. In this review, we discuss the expression, localization, and protein domain structure of striatin family members. Then we consider the diverse complexes these proteins and their homologs form in various organisms, emphasizing what is known regarding function and regulation. Finally, we explore possible roles of striatin family complexes in disease, especially cerebral cavernous malformation.
Collapse
Affiliation(s)
- Juyeon Hwang
- Department of Biochemistry and Winship Cancer Institute, and Biochemistry, Cell, Developmental Biology Graduate Program, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA.
| | - David C Pallas
- Department of Biochemistry and Winship Cancer Institute, and Biochemistry, Cell, Developmental Biology Graduate Program, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA.
| |
Collapse
|
20
|
Oxford EM, Danko CG, Fox PR, Kornreich BG, Moïse NS. Change in β-catenin localization suggests involvement of the canonical Wnt pathway in Boxer dogs with arrhythmogenic right ventricular cardiomyopathy. J Vet Intern Med 2013; 28:92-101. [PMID: 24428316 PMCID: PMC4895526 DOI: 10.1111/jvim.12238] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 07/12/2013] [Accepted: 09/24/2013] [Indexed: 12/20/2022] Open
Abstract
Background Arrhythmogenic right ventricular cardiomyopathy (ARVC) is an inherited myocardial disease with high prevalence in the Boxer dog population. It is characterized by replacement of the myocardium with fatty or fibro‐fatty tissue. Several mechanisms for the development of ARVC have been suggested, including dysfunction of the canonical Wnt pathway, which is linked to many cellular functions, including growth and differentiation of adipocytes. Hypothesis Wnt pathway dysfunction is involved in the development of ARVC in the Boxer as evidenced by mislocalization of β‐catenin, an integral Wnt pathway modulator, and striatin, a known Wnt pathway component. Animals Five dogs without ARVC and 15 Boxers with ARVC were identified by 24‐hour Holter monitoring and histopathologic examination of the heart. Methods Right ventricular samples were collected and examined using confocal microscopy, Western blots, and quantitative (q) PCR. Results Confocal microscopy indicated that β‐catenin localized at sites of cell‐to‐cell apposition, and striatin localized in a diffuse intracellular pattern in hearts without ARVC. In hearts affected with ARVC, both β‐catenin and striatin were colocalized with the endoplasmic reticulum (ER) marker calreticulin. Western blots indentified a 50% increase in the amount of β‐catenin in ARVC samples. No change in β catenin mRNA was detected using qPCR. Conclusions Our data suggest that trafficking of Wnt pathway proteins from the ER to their proper location within the cell is inhibited in Boxers with ARVC. These results suggest that disturbances in the Wnt pathway may play a role in the development of ARVC in the Boxer.
Collapse
Affiliation(s)
- E M Oxford
- Section of Cardiology, Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY
| | | | | | | | | |
Collapse
|
21
|
Carnosic acid protects against ROS/RNS-induced protein damage and upregulates HO-1 expression in RAW264.7 macrophages. J Funct Foods 2013. [DOI: 10.1016/j.jff.2012.11.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
22
|
Dutta P, Tanti GK, Sharma S, Goswami SK, Komath SS, Mayo MW, Hockensmith JW, Muthuswami R. Global epigenetic changes induced by SWI2/SNF2 inhibitors characterize neomycin-resistant mammalian cells. PLoS One 2012; 7:e49822. [PMID: 23209606 PMCID: PMC3509132 DOI: 10.1371/journal.pone.0049822] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 10/17/2012] [Indexed: 11/24/2022] Open
Abstract
Background Previously, we showed that aminoglycoside phosphotransferases catalyze the formation of a specific inhibitor of the SWI2/SNF2 proteins. Aminoglycoside phosphotransferases, for example neomycin-resistant genes, are used extensively as selection markers in mammalian transfections as well as in transgenic studies. However, introduction of the neomycin-resistant gene is fraught with variability in gene expression. We hypothesized that the introduction of neomycin-resistant genes into mammalian cells results in inactivation of SWI2/SNF2 proteins thereby leading to global epigenetic changes. Methodology Using fluorescence spectroscopy we have shown that the inhibitor, known as Active DNA-dependent ATPase ADomain inhibitor (ADAADi), binds to the SWI2/SNF2 proteins in the absence as well as presence of ATP and DNA. This binding occurs via a specific region known as Motif Ia leading to a conformational change in the SWI2/SNF2 proteins that precludes ATP hydrolysis. ADAADi is produced from a plethora of aminoglycosides including G418 and Streptomycin, two commonly used antibiotics in mammalian cell cultures. Mammalian cells are sensitive to ADAADi; however, cells stably transfected with neomycin-resistant genes are refractory to ADAADi. In resistant cells, endogenous SWI2/SNF2 proteins are inactivated which results in altered histone modifications. Microarray data shows that the changes in the epigenome are reflected in altered gene expression. The microarray data was validated using real-time PCR. Finally, we show that the epigenetic changes are quantized. Significance The use of neomycin-resistant genes revolutionized mammalian transfections even though questions linger about efficacy. In this study, we have demonstrated that selection of neomycin-resistant cells results in survival of only those cells that have undergone epigenetic changes, and therefore, data obtained using these resistant genes as selection markers need to be cautiously evaluated.
Collapse
Affiliation(s)
- Popy Dutta
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi, India
| | - Goutam Kumar Tanti
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi, India
| | - Soni Sharma
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi, India
| | - Shyamal K. Goswami
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi, India
| | - Sneha Sudha Komath
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi, India
| | - Marty W. Mayo
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, United States of America
| | - Joel W. Hockensmith
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail: (JWH); (RM)
| | - Rohini Muthuswami
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi, India
- * E-mail: (JWH); (RM)
| |
Collapse
|
23
|
Abstract
The canonical pathway of regulation of the GCK (germinal centre kinase) III subgroup member, MST3 (mammalian Sterile20-related kinase 3), involves a caspase-mediated cleavage between N-terminal catalytic and C-terminal regulatory domains with possible concurrent autophosphorylation of the activation loop MST3(Thr178), induction of serine/threonine protein kinase activity and nuclear localization. We identified an alternative ‘non-canonical’ pathway of MST3 activation (regulated primarily through dephosphorylation) which may also be applicable to other GCKIII (and GCKVI) subgroup members. In the basal state, inactive MST3 co-immunoprecipitated with the Golgi protein GOLGA2/gm130 (golgin A2/Golgi matrix protein 130). Activation of MST3 by calyculin A (a protein serine/threonine phosphatase 1/2A inhibitor) stimulated (auto)phosphorylation of MST3(Thr178) in the catalytic domain with essentially simultaneous cis-autophosphorylation of MST3(Thr328) in the regulatory domain, an event also requiring the MST3(341–376) sequence which acts as a putative docking domain. MST3(Thr178) phosphorylation increased MST3 kinase activity, but this activity was independent of MST3(Thr328) phosphorylation. Interestingly, MST3(Thr328) lies immediately C-terminal to a STRAD (Sterile20-related adaptor) pseudokinase-like site identified recently as being involved in binding of GCKIII/GCKVI members to MO25 scaffolding proteins. MST3(Thr178/Thr328) phosphorylation was concurrent with dissociation of MST3 from GOLGA2/gm130 and association of MST3 with MO25, and MST3(Thr328) phosphorylation was necessary for formation of the activated MST3–MO25 holocomplex.
Collapse
|
24
|
Dutertre M, Lacroix-Triki M, Driouch K, de la Grange P, Gratadou L, Beck S, Millevoi S, Tazi J, Lidereau R, Vagner S, Auboeuf D. Exon-based clustering of murine breast tumor transcriptomes reveals alternative exons whose expression is associated with metastasis. Cancer Res 2010; 70:896-905. [PMID: 20103641 DOI: 10.1158/0008-5472.can-09-2703] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the field of bioinformatics, exon profiling is a developing area of disease-associated transcriptome analysis. In this study, we performed a microarray-based transcriptome analysis at the single exon level in mouse 4T1 primary mammary tumors with different metastatic capabilities. A novel bioinformatics platform was developed that identified 679 genes with differentially expressed exons in 4T1 tumors, many of which were involved in cell morphology and movement. Of 152 alternative exons tested by reverse transcription-PCR, 97 were validated as differentially expressed in primary tumors with different metastatic capability. This analysis revealed candidate progression genes, hinting at variations in protein functions by alternate exon usage. In a parallel effort, we developed a novel exon-based clustering analysis and identified alternative exons in tumor transcriptomes that were associated with dissemination of primary tumor cells to sites of pulmonary metastasis. This analysis also revealed that the splicing events identified by comparing primary tumors were not aberrant events. Lastly, we found that a subset of differentially spliced variant transcripts identified in the murine model was associated with poor prognosis in a large clinical cohort of patients with breast cancer. Our findings illustrate the utility of exon profiling to define novel theranostic markers for study in cancer progression and metastasis.
Collapse
|
25
|
Ma HL, Peng YL, Gong L, Liu WB, Sun S, Liu J, Zheng CB, Fu H, Yuan D, Zhao J, Chen PC, Xie SS, Zeng XM, Xiao YM, Liu Y, Li DWC. The goldfish SG2NA gene encodes two alpha-type regulatory subunits for PP-2A and displays distinct developmental expression pattern. GENE REGULATION AND SYSTEMS BIOLOGY 2009; 3:115-29. [PMID: 19838339 PMCID: PMC2758282 DOI: 10.4137/grsb.s2764] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
SG2NA is a member of the striatin protein family. In human and mouse, the SG2NA gene encodes two major protein isoforms: SG2NA alpha and SG2NA beta. The functions of these proteins, except for acting as the regulatory subunits for PP-2A, remain largely unknown. To explore the possible functions of SG2NA in lower vertebrates, we have isolated two SG2NA cDNAs from goldfish, Carassius auratus. Our results reveal that the first cDNA contains an ORF of 2118 bp encoding a deduced protein with 705 amino acids, and the second one 2148 bp coding for a deduced protein of 715 amino acids. Comparative analysis reveals that both isoforms belong to the alpha-type, and are named SG2NA alpha and SG2NA alpha(+). RT-PCR and western blot analysis reveal that the SG2NA gene is differentially expressed in 9 tissues examined. During goldfish development, while the SG2NA mRNAs remain relatively constant in the first 3 stages and then become decreased and fluctuated from gastrula to larval hatching, the SG2NA proteins are fluctuated, displaying a peak every 3 to 4 stages. Each later peak is higher than the earlier one and the protein expression level becomes maximal at hatching stage. Together, our results reveal that SG2NA may play an important role during goldfish development and also in homeostasis of most adult tissues.
Collapse
Affiliation(s)
- Hai-Li Ma
- Key Laboratory of Protein Chemistry and Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Zhao J, Liu Y, Wei X, Yuan C, Yuan X, Xiao X. A novel WD-40 repeat protein WDR26 suppresses H2O2-induced cell death in neural cells. Neurosci Lett 2009; 460:66-71. [PMID: 19446606 DOI: 10.1016/j.neulet.2009.05.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 05/08/2009] [Accepted: 05/09/2009] [Indexed: 11/25/2022]
Abstract
WD-40 repeat proteins play important roles in a variety of cellular functions, such as cell growth, proliferation, apoptosis and intracellular signal transduction. We previously identified a novel member of this family, WDR26. To examine the biological function of WDR26, we used hWDR26 plasmids and antisense phosphorothioate oligodeoxynucleotides (asODNs) against WDR26 to examine its role in response to oxidative stress in human SH-SY5Y neuroblastoma cells. Our results showed that H2O2 at 0.5mM substantially induced cell death and significantly up-regulated the WDR26 expression, and WDR26 over-expression in turn strongly suppressed H2O2-induced cell death. Moreover, asODNs markedly inhibited the de novo biosynthesis of WDR26, which contributed to enhanced cell death induced by H2O2. Finally, we found that WDR26 over-expression also down-regulated the transcriptional activity of AP-1 during H2O2-induced SH-SY5Y cell death. Taken together, these results indicated that WDR26 was up-regulated by oxidative stress and played a key role in H2O2-induced SH-SY5Y cell death, which may be mediated by the down-regulation of AP-1 transcriptional activity.
Collapse
Affiliation(s)
- Jie Zhao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | | | | | | | | | | |
Collapse
|