1
|
Bomble P, Nath BB. Impact of singular versus combinatorial environmental stress on RONS generation in Drosophila melanogaster larvae. Front Physiol 2024; 15:1426169. [PMID: 39318365 PMCID: PMC11420561 DOI: 10.3389/fphys.2024.1426169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/02/2024] [Indexed: 09/26/2024] Open
Abstract
We investigated environmentally correlated abiotic stressor desiccation (D), heat (H), and starvation (S) in the generation of reactive oxygen and nitrogen species (RONS) using Drosophila melanogaster larvae as an experimental model, subjected to either individual stressors or exposed to a combinatorial form of stressors (D + H, H + S, and D + S). The study was also extended to find synergistic endpoints where the impacts of all three stressors (D + H + S) were exerted simultaneously. We estimated the lethal time (LT20) at specific doses using regression and probit analyses based on the larval survival. LT20 values were used as the base-level parameter for further oxidative stress experimental analysis work. First, all stressors led to the activation of a typical common oxidative stress-mediated response irrespective of the mode of exposure. As envisaged, D. melanogaster larvae exhibited a homeostatic stress tolerance mechanism, triggering an antioxidant defense mechanism, indicated by an elevated level of total antioxidant capacity and enhanced activities of superoxide dismutase, catalase, glutathione reductase, and glutathione peroxidase. In all types of stress-exposed regimes, we found a negative impact of stressors on the activity of mitochondrial enzyme aconitase. Elevated levels of other oxidative stress markers, viz., lipid peroxidation, protein carbonyl content, and advanced oxidative protein products, were obvious although the increment was treatment-specific. Desiccation stress proved to be the most dominant stressor compared to heat and starvation. Among the combination of stressors, rather than a single stressor, D + H impacted more than other binary stress exposures. Focusing on the impact of singular versus combinatorial stress exposure on RONS generation, we observed an increase in the RONS level in both singular and combinatorial forms of stress exposure although the magnitude of the increment varied with the nature of stressors and their combinations. The present study indicated an "additive" effect when all three stressors (D + H + S) operate simultaneously, rather than a "synergistic" effect.
Collapse
Affiliation(s)
- Pratibha Bomble
- Stress Biology Research Laboratory, Department of Zoology, Savitribai Phule Pune University, Pune, India
- Department of Zoology, Indira College of Arts Commerce and Science, Pune, India
| | - Bimalendu B. Nath
- Stress Biology Research Laboratory, Department of Zoology, Savitribai Phule Pune University, Pune, India
- MIE-SPPU Institute of Higher Education, Doha, Qatar
| |
Collapse
|
2
|
Perween N, Pekhale K, Haval G, Sirkar G, Bose GS, Mittal SPK, Ghaskadbi S, Ghaskadbi SS. Identification and characterization of multidomain monothiol glutaredoxin 3 from diploblastic Hydra. Comp Biochem Physiol B Biochem Mol Biol 2024; 273:110986. [PMID: 38703881 DOI: 10.1016/j.cbpb.2024.110986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Intracellular antioxidant glutaredoxin controls cell proliferation and survival. Based on the active site, structure, and conserved domain motifs, it is classified into two classes. Class I contains dithiol Grxs with two cysteines in the consensus active site sequence CXXC, while class II has monothiol Grxs with one cysteine residue in the active site. Monothiol Grxs can also have an additional N-terminal thioredoxin (Trx)-like domain. Previously, we reported the characterization of Grx1 from Hydra vulgaris (HvGrx1), which is a dithiol isoform. Here, we report the molecular cloning, expression, analysis, and characterization of another isoform of Grx, which is the multidomain monothiol glutaredoxin-3 from Hydra vulgaris (HvGrx3). It encodes a protein with 303 amino acids and is significantly larger and more divergent than HvGrx1. In-silico analysis revealed that Grx1 and Grx3 have 22.5% and 9.9% identical nucleotide and amino acid sequences, respectively. HvGrx3 has two glutaredoxin domains and a thioredoxin-like domain at its amino terminus, unlike HvGrx1, which has a single glutaredoxin domain. Like other monothiol glutaredoxins, HvGrx3 failed to reduce glutathione-hydroxyethyl disulfide. In the whole Hydra, HvGrx3 was found to be expressed all over the body column, and treatment with H2O2 led to a significant upregulation of HvGrx3. When transfected in HCT116 (human colon cancer cells) cells, HvGrx3 enhanced cell proliferation and migration, indicating that this isoform could be involved in these cellular functions. These transfected cells also tolerate oxidative stress better.
Collapse
Affiliation(s)
- Nusrat Perween
- Department of Zoology, Savitribai Phule Pune University, Pune 411007, India; Department of Zoology, M.C.E. Society's Abeda Inamdar Senior College, Pune 411001, India. https://twitter.com/nusratperween13
| | - Komal Pekhale
- Department of Zoology, Savitribai Phule Pune University, Pune 411007, India
| | - Gauri Haval
- Department of Zoology, Savitribai Phule Pune University, Pune 411007, India; Department of Zoology, Abasaheb Garware College, Pune 411004, India
| | - Gargi Sirkar
- Department of Zoology, Savitribai Phule Pune University, Pune 411007, India
| | - Ganesh S Bose
- Department of Biotechnology, Savitribai Phule Pune University, Pune 411007, India
| | - Smriti P K Mittal
- Department of Biotechnology, Savitribai Phule Pune University, Pune 411007, India
| | - Surendra Ghaskadbi
- Developmental Biology Group, MACS-Agharkar Research Institute, Pune 411004, India
| | - Saroj S Ghaskadbi
- Department of Zoology, Savitribai Phule Pune University, Pune 411007, India.
| |
Collapse
|
3
|
Huynh NV, Rehage C, Hyndman KA. Mild dehydration effects on the murine kidney single-nucleus transcriptome and chromatin accessibility. Am J Physiol Renal Physiol 2023; 325:F717-F732. [PMID: 37767569 PMCID: PMC11550884 DOI: 10.1152/ajprenal.00161.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/12/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Daily, we may experience mild dehydration with a rise in plasma osmolality that triggers the release of vasopressin. Although the effect of dehydration is well characterized in collecting duct principal cells (CDPCs), we hypothesized that mild dehydration (<12 h) results in many kidney cell-specific changes in transcriptomes and chromatin accessibility. Single-nucleus (sn) multiome (RNA-assay for transposase-accessible chromatin) sequencing and bulk RNA sequencing of kidneys from male and female mice that were mildly water deprived or not were compared. Water-deprived mice had a significant increase in plasma osmolality. sn-multiome-seq resulted in 19,837 nuclei that were annotated into 33 clusters. In CDPCs, aquaporin 2 (Aqp2) and aquaporin 3 (Apq3) were greater in dehydrated mice, but there were novel genes like gremlin 2 (Grem2; a cytokine) that were increased compared with ad libitum mice. The transcription factor cAMP-responsive element modulator (Crem) was greater in CDPCs of dehydrated mice, and the Crem DNA motif was more accessible. There were hundreds of sex- and dehydration-specific differentially expressed genes (DEGs) throughout the kidney, especially in the proximal tubules and thin limbs. In male mice, DEGs were enriched in pathways related to lipid metabolism, whereas female DEGs were enriched in organic acid metabolism. Many highly expressed genes had a positive correlation with increased chromatin accessibility, and mild dehydration exerted many transcriptional changes that we detected at the chromatin level. Even with a rise in plasma osmolality, male and female kidneys have distinct transcriptomes suggesting that there may be diverse mechanisms used to remain in fluid balance.NEW & NOTEWORTHY The kidney consists of >30 cell types that work collectively to maintain fluid-electrolyte balance. Kidney single-nucleus transcriptomes and chromatin accessibility profiles from male and female control (ad libitum water and food) or mildly dehydrated mice (ad libitum food, water deprivation) were determined. Mild dehydration caused hundreds of cell- and sex-specific transcriptomic changes, even though the kidney function to conserve water was the same.
Collapse
Affiliation(s)
- Nha Van Huynh
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Cassidy Rehage
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Kelly A Hyndman
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
4
|
Malik AI, Storey JM, Storey KB. Regulation of the unfolded protein response during dehydration stress in African clawed frogs, Xenopus laevis. Cell Stress Chaperones 2023; 28:529-540. [PMID: 35484355 PMCID: PMC10468459 DOI: 10.1007/s12192-022-01275-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 11/28/2022] Open
Abstract
The unfolded protein response (UPR) is a wide-ranging cellular response to accumulation of malfolded proteins in the endoplasmic reticulum (ER) and acts as a quality control mechanism to halt protein processing and repair/destroy malfolded proteins under stress conditions of many kinds. Among vertebrate species, amphibians experience the greatest challenges in maintaining water and osmotic balance, the high permeability of their skin making them very susceptible to dehydration and challenging their ability to maintain cellular homeostasis. The present study evaluates the involvement of the UPR in dealing with dehydration-mediated disruption of protein processing in the tissues of African clawed frogs, Xenopus laevis. This primarily aquatic frog must deal with seasonal drought conditions in its native southern Africa environment. Key markers of cellular stress that impact protein processing were identified in six tissues of frogs that had lost 28% of total body water, as compared with fully hydrated controls. This included upregulation of glucose-regulated proteins (GRPs) that are resident chaperones in the ER, particularly 2-ninefold increases in GRP58, GRP75, and/or GRP94 in the lung and skin. Activating transcription factors (ATF3, ATF4, ATF6) that mediate UPR responses also responded to dehydration stress, particularly in skeletal muscle where both ATF3 and ATF4 rose strongly in the nucleus. Other protein markers of the UPR including GADD34, GADD153, EDEM, and XBP-1 also showed selective upregulation in frog tissues in response to dehydration and nuclear levels of the transcription factors XBP-1 and P-CREB rose indicating up-regulation of genes under their control.
Collapse
Affiliation(s)
- Amal Idris Malik
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Janet M Storey
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Kenneth B Storey
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada.
| |
Collapse
|
5
|
Torson AS, Bowman S, Doucet D, Roe AD, Sinclair BJ. Molecular signatures of diapause in the Asian longhorned beetle: Gene expression. CURRENT RESEARCH IN INSECT SCIENCE 2023; 3:100054. [PMID: 37033896 PMCID: PMC10074507 DOI: 10.1016/j.cris.2023.100054] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 05/30/2023]
Abstract
Most previous studies on gene expression during insect diapause do not address among-tissue variation in physiological processes. We measured transcriptomic changes during larval diapause in the Asian longhorned beetle, Anoplophora glabripennis (Coleoptera: Cerambycidae). We conducted RNA-seq on fat body, the supraesophageal ganglion, midgut, hindgut, and Malpighian tubules during pre-diapause, diapause maintenance, post-diapause quiescence, and post-diapause development. We observed a small, but consistent, proportion of genes within each gene expression profile that were shared among tissues, lending support for a core set of diapause-associated genes whose expression is tissue-independent. We evaluated the overarching hypotheses that diapause would be associated with cell cycle arrest, developmental arrest, and increased stress tolerance and found evidence of repressed TOR and insulin signaling, reduced cell cycle activity and increased capacity of stress response via heat shock protein expression and remodeling of the cytoskeleton. However, these processes varied among tissues, with the brain and fat body appearing to maintain higher levels of cellular activity during diapause than the midgut or Malpighian tubules. We also observed temperature-dependent changes in gene expression during diapause maintenance, particularly in genes related to the heat shock response and MAPK, insulin, and TOR signaling pathways. Additionally, we provide evidence for epigenetic reorganization during the diapause/post-diapause quiescence transition and expression of genes involved in post-translational modification, highlighting the need for investigations of the protein activity of these candidate genes and processes. We conclude that diapause development is coordinated via diverse tissue-specific gene expression profiles and that canonical diapause phenotypes vary among tissues.
Collapse
Affiliation(s)
- Alex S. Torson
- Department of Biology, The University of Western Ontario, London ON N6A 5B7, Canada
- Biosciences Research Laboratory, USDA-ARS Edward T. Schafer Agricultural Research Center, Fargo, ND 58102, United States
| | - Susan Bowman
- Great Lakes Forestry Centre, Natural Resources Canada, Canadian Forest Service, Sault Ste. Marie, Ontario P6A 2E5, Canada
| | - Daniel Doucet
- Great Lakes Forestry Centre, Natural Resources Canada, Canadian Forest Service, Sault Ste. Marie, Ontario P6A 2E5, Canada
| | - Amanda D. Roe
- Great Lakes Forestry Centre, Natural Resources Canada, Canadian Forest Service, Sault Ste. Marie, Ontario P6A 2E5, Canada
| | - Brent J. Sinclair
- Department of Biology, The University of Western Ontario, London ON N6A 5B7, Canada
| |
Collapse
|
6
|
Erman A, Hawkins LJ, Storey KB. MicroRNA, mRNA and protein responses to dehydration in skeletal muscle of the African-clawed frog, Xenopus laevis. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Gao L, Yuan Z, Li Y, Ma Z. Genome-wide comparative analysis of DNAJ genes and their co-expression patterns with HSP70s in aestivation of the sea cucumber Apostichopus japonicus. Funct Integr Genomics 2022; 22:317-330. [PMID: 35195842 DOI: 10.1007/s10142-022-00830-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 12/20/2021] [Accepted: 02/14/2022] [Indexed: 11/29/2022]
Abstract
DNAJ proteins function as co-chaperones of HSP70 and play key roles in cell physiology to promote protein folding and degradation, especially under environmental stress. Based on our previous study on HSP70, a systematic study of DNAJ was performed in sea cucumber Apostichopus japonicus using the transcriptomic and genomic data, identifying 43 AjDNAJ genes, including six AjDNAJA genes, eight AjDNAJB genes, and 29 AjDNAJC genes. Slight expansion and conserved genomic structure were observed using the phylogenetic and syntenic analysis. Differential period-specific and tissue-specific expression patterns of AjDNAJs were observed between adult and juvenile individuals during aestivation. Strong tissue-specific expression correlations between AjDNAJ and AjHSP70 genes were found, indicating that the involvements of AjHSP70IVAs in the aestivation of sea cucumbers were regulated by AjDNAJs. Several key genes with significant expression correlations, such as AjDNAJB4L and AjHSP70IVAs, were suggested to function together under heat stress. Together, these findings provide early insight into the involvement of AjDNAJs in the aestivation and their roles as co-chaperones of AjHSP70s.
Collapse
Affiliation(s)
- Lei Gao
- Dalian Ocean University, Dalian, 116023, Liaoning, China. .,Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, Liaoning, China.
| | - Zihao Yuan
- The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.,The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Yunfeng Li
- Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, Liaoning, China
| | - Zhen Ma
- Dalian Ocean University, Dalian, 116023, Liaoning, China.
| |
Collapse
|
8
|
Giraud-Billoud M, Campoy-Diaz AD, Dellagnola FA, Rodriguez C, Vega IA. Antioxidant Responses Induced by Short-Term Activity–Estivation–Arousal Cycle in Pomacea canaliculata. Front Physiol 2022; 13:805168. [PMID: 35185614 PMCID: PMC8847974 DOI: 10.3389/fphys.2022.805168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/05/2022] [Indexed: 11/29/2022] Open
Abstract
Long-term estivation (45 days) in the apple snail Pomacea canaliculata induces an increase of non-enzymatic antioxidants, such as uric acid and reduced glutathione (GSH), which constitutes an alternative to the adaptive physiological strategy of preparation for oxidative stress (POS). Here, we studied markers of oxidative stress damage, uric acid levels, and non-enzymatic antioxidant capacity, enzymatic antioxidant defenses, such as superoxide dismutase (SOD), catalase (CAT), and glutathione S-transferase (GST), and transcription factors expression [forkhead box protein O (FOXO), hypoxia-inducible factor-1 alpha (HIF1α), and nuclear factor erythroid 2-related factor 2 (Nrf2)] in control active animals, 7-day estivating and aroused snails, in digestive gland, gill, and lung tissue samples. In the digestive gland, SOD and CAT activities significantly increased after estivation and decreased during arousal. Meanwhile, GST activity decreased significantly during the activity–estivation–arousal cycle. Gill CAT activity increased significantly at 7 days of estivation, and it decreased during arousal. In the lung, the CAT activity level increased significantly during the cycle. FOXO upregulation was observed in the studied tissues, decreasing its expression only in the gill of aroused animals during the cycle. HIF1α and Nrf2 transcription factors decreased their expression during estivation in the gill, while in the lung and the digestive gland, both transcription factors did not show significant changes. Our results showed that the short-term estivation induced oxidative stress in different tissues of P. canaliculata thereby increasing overall antioxidant enzymes activity and highlighting the role of FOXO regulation as a possible underlying mechanism of the POS strategy.
Collapse
Affiliation(s)
- Maximiliano Giraud-Billoud
- IHEM, CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
- Facultad de Ciencias Médicas, Instituto de Fisiología, Universidad Nacional de Cuyo, Mendoza, Argentina
- Departamento de Ciencias Básicas, Escuela de Ciencias de la Salud-Medicina, Universidad Nacional de Villa Mercedes, San Luis, Argentina
- *Correspondence: Maximiliano Giraud-Billoud,
| | - Alejandra D. Campoy-Diaz
- IHEM, CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
- Facultad de Ciencias Médicas, Instituto de Fisiología, Universidad Nacional de Cuyo, Mendoza, Argentina
- Departamento de Ciencias Básicas, Escuela de Ciencias de la Salud-Medicina, Universidad Nacional de Villa Mercedes, San Luis, Argentina
| | - Federico A. Dellagnola
- IHEM, CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
- Facultad de Ciencias Médicas, Instituto de Fisiología, Universidad Nacional de Cuyo, Mendoza, Argentina
- Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Cristian Rodriguez
- IHEM, CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
- Facultad de Ciencias Médicas, Instituto de Fisiología, Universidad Nacional de Cuyo, Mendoza, Argentina
- Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Israel A. Vega
- IHEM, CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
- Facultad de Ciencias Médicas, Instituto de Fisiología, Universidad Nacional de Cuyo, Mendoza, Argentina
- Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
9
|
Zhang S, Wang Y, Yu M, Shang Y, Chang Y, Zhao H, Kang Y, Zhao L, Xu L, Zhao X, Difrancesco D, Baruscotti M, Wang Y. Discovery of Herbacetin as a Novel SGK1 Inhibitor to Alleviate Myocardial Hypertrophy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2101485. [PMID: 34761560 PMCID: PMC8805583 DOI: 10.1002/advs.202101485] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 10/17/2021] [Indexed: 05/05/2023]
Abstract
Cardiac hypertrophy is a pivotal pathophysiological step of various cardiovascular diseases, which eventually leads to heart failure and death. Extracts of Rhodiola species (Ext.R), a class of commonly used medicinal herbs in Europe and East Asia, can attenuate cardiac hypertrophy both in vitro and in vivo. Serum/glucocorticoid regulated kinase 1 (SGK1) is identified as a potential target of Ext. R. By mass spectrometry-based kinase inhibitory assay, herbacetin (HBT) from Ext.R is identified as a novel SGK1 inhibitor with IC50 of 752 nmol. Thermal shift assay, KINOMEscan in vitro assay combined with molecular docking proves a direct binding between HBT and SGK1. Site-specific mutation of Asp177 in SGK1 completely ablates the inhibitory activity of HBT. The presence of OH groups at the C-3, C-8, C-4' positions of flavonoids is suggested to be favorable for the inhibition of SGK1 activity. Finally, HBT significantly suppresses cardiomyocyte hypertrophy in vitro and in vivo, reduces reactive oxygen species (ROS) synthesis and calcium accumulation. HBT decreases phosphorylation of SGK1 and regulates its downstream forkhead box protein O1 (FoxO1) signaling pathway. Taken together, the findings suggest that a panel of flavonoids structurally related to HBT may be novel leads for developing new therapeutics against cardiac hypertrophy.
Collapse
Affiliation(s)
- Shujing Zhang
- College of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| | - Yingchao Wang
- College of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| | - Min Yu
- College of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| | - Ye Shang
- State Key Laboratory of Component‐Based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjin301617China
| | - Yanxu Chang
- State Key Laboratory of Component‐Based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjin301617China
| | - Hong Zhao
- College of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| | - Yu Kang
- College of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| | - Lu Zhao
- College of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| | - Lei Xu
- Institute of Bioinformatics and Medical EngineeringSchool of Electrical and Information EngineeringJiangsu University of TechnologyChangzhouJiangsu213001China
| | - Xiaoping Zhao
- School of Basic Medical SciencesZhejiang Chinese Medical UniversityHangzhou310053China
| | | | | | - Yi Wang
- College of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
- State Key Laboratory of Component‐Based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjin301617China
| |
Collapse
|
10
|
Hypoxia Tolerant Species: The Wisdom of Nature Translated into Targets for Stroke Therapy. Int J Mol Sci 2021; 22:ijms222011131. [PMID: 34681788 PMCID: PMC8537001 DOI: 10.3390/ijms222011131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/05/2021] [Accepted: 10/12/2021] [Indexed: 12/13/2022] Open
Abstract
Human neurons rapidly die after ischemia and current therapies for stroke management are limited to restoration of blood flow to prevent further brain damage. Thrombolytics and mechanical thrombectomy are the available reperfusion treatments, but most of the patients remain untreated. Neuroprotective therapies focused on treating the pathogenic cascade of the disease have widely failed. However, many animal species demonstrate that neurons can survive the lack of oxygen for extended periods of time. Here, we reviewed the physiological and molecular pathways inherent to tolerant species that have been described to contribute to hypoxia tolerance. Among them, Foxo3 and Eif5A were reported to mediate anoxic survival in Drosophila and Caenorhabditis elegans, respectively, and those results were confirmed in experimental models of stroke. In humans however, the multiple mechanisms involved in brain cell death after a stroke causes translation difficulties to arise making necessary a timely and coordinated control of the pathological changes. We propose here that, if we were able to plagiarize such natural hypoxia tolerance through drugs combined in a pharmacological cocktail it would open new therapeutic opportunities for stroke and likely, for other hypoxic conditions.
Collapse
|
11
|
The effect of long-term cold acclimation on redox state and antioxidant defense in the high-altitude frog, Nanorana pleskei. J Therm Biol 2021; 99:103008. [PMID: 34420638 DOI: 10.1016/j.jtherbio.2021.103008] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 01/27/2023]
Abstract
Cold hardiness is a key determinant of the distribution and abundance of ectothermic animals, and thermal acclimation can strongly influence stress tolerance phenotypes. However, the effect of cold acclimation on oxidative stress and antioxidant defenses is still not well understood. Here, we investigated the effects of long-term cold exposure (30 days at 4 °C in darkness versus 30 days at 20 °C in natural light) on the redox state and antioxidant defenses of the high-altitude frog, Nanorana pleskei, indigenous to the Tibetan plateau. We found that cold acclimation, under conditions mimicking winter, led to a significant increase in the ratio of oxidized glutathione (GSSG) to its reduced form (GSH) in liver and skeletal muscle tissues, suggesting that cold exposure induced oxidative stress in this species. Furthermore, malondialdehyde (MDA) contents were significantly augmented in heart, liver and muscle, indicating cold-related oxidative damage in these tissues. In the brain, GST activity, total antioxidant capacity (T-AOC), and vitamin C content showed a significant reduction after cold acclimation. In liver, an apparent decrease was also observed in the activities of SOD and GST, as well as T-AOC, whereas CAT and GPX activities showed a prominent increase in cold-acclimated groups. In kidney, there was a significant decrease in most antioxidant enzyme activities except for SOD and GST activity. In skeletal muscle, the activity of SOD, CAT, GR as well as T-AOC significantly decreased but GPX activity showed a significant increase in cold-acclimated frogs. These findings indicate that, in general, cold acclimation induces a suppression of the antioxidant defense system. Overall, our present study systematically describes the responses of antioxidant defenses to long-term cold acclimation and these findings contribute to extending the current understanding of the mechanisms of cold tolerance in high-altitude frogs.
Collapse
|
12
|
Insights from a vertebrate model organism on the molecular mechanisms of whole-body dehydration tolerance. Mol Cell Biochem 2021; 476:2381-2392. [PMID: 33595794 DOI: 10.1007/s11010-021-04072-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 01/16/2021] [Indexed: 10/25/2022]
Abstract
Studies on the molecular mechanisms of dehydration tolerance have been largely limited to plants and invertebrates. Currently, research in whole body dehydration of complex animals is limited to cognitive and behavioral effects in humans, leaving the molecular mechanisms of vertebrate dehydration relatively unexplored. The present review summarizes studies to date on the African clawed frog (Xenopus laevis) and examines whole-body dehydration on physiological, cellular and molecular levels. This aquatic frog is exposed to seasonal droughts in its native habitat and can endure a loss of over 30% of its total body water. When coping with dehydration, osmoregulatory processes prioritize water retention in skeletal tissues and vital organs over plasma volume. Although systemic blood circulation is maintained in the vital organs and even elevated in the brain during dehydration, it is done so at the expense of reduced circulation to the skeletal muscles. Increased hemoglobin affinity for oxygen helps to counteract impaired blood circulation and metabolic enzymes show altered kinetic and regulatory parameters that support the use of anaerobic glycolysis. Recent studies with X. laevis also show that pro-survival pathways such as antioxidant defenses and heat shock proteins are activated in an organ-specific manner during dehydration. These pathways are tightly coordinated at the post-transcriptional level by non-coding RNAs, and at the post-translational level by reversible protein phosphorylation. Paired with ongoing research on the X. laevis genome, the African clawed frog is poised to be an ideal animal model with which to investigate the molecular adaptations for dehydration tolerance much more deeply.
Collapse
|
13
|
Lee S, Jung MH, Song K, Jin JX, Taweechaipaisankul A, Kim GA, Oh HJ, Koo OJ, Park SC, Lee BC. Failure to maintain full-term pregnancies in pig carrying klotho monoallelic knockout fetuses. BMC Biotechnol 2021; 21:1. [PMID: 33413301 PMCID: PMC7791653 DOI: 10.1186/s12896-020-00660-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 12/04/2020] [Indexed: 12/30/2022] Open
Abstract
Background Small animals that show a deficiency in klotho exhibit extremely shortened life span with multiple aging-like phenotypes. However, limited information is available on the function of klotho in large animals such as pigs. Results In an attempt to produce klotho knockout pigs, an sgRNA specific for klotho (targeting exon 3) was designed and Cas9-sgRNA ribonucleoproteins were transfected into porcine fibroblasts. Transfected fibroblasts were cultured for one to 2 days and then directly used for nuclear transfer without selection. The cloned embryos were cultured in vitro for 7 days and analyzed to detect modifications of the klotho gene by both T7E1 and deep sequencing analysis. Modification succeeded in 13 of 20 blastocysts (65%), 8 of which (40.0%) were monoallelic modifications and 5 (25.0%) were biallelic modifications. Based on high mutation rates in blastocysts, we transferred the cloned embryos to 5 recipient pigs; 1 recipient was pregnant and 16 fetuses were recovered at Day 28 post transfer. Of the 16 fetuses, 9 were resorbing and 7 were viable. Four of 9 (44.4%) resorbing fetuses and 3 of the 7 (42.9%) viable fetuses had monoallelic modifications. Thus, 3 klotho monoallelic knockout cell lines were established by primary culture. A total of 2088 cloned embryos reconstructed with 2 frame-shifted cell lines were transferred to 11 synchronized recipients. Of the recipients, 7 of 11 eleven (63.6%) became pregnant. However, none of the pregnancies was maintained to term. To discover why klotho monoallelic knockout fetuses were aborted, expression of aging- and apoptosis-related genes and klotho protein in placentas from klotho monoallelic knockout and wild-type fetuses was investigated. Placentas from klotho monoallelic knockout fetuses showed negatively changed expression of aging- and apoptosis-related genes with lower relative expression of klotho protein. These results indicated that the reason why klotho monoallelic knockout fetuses were not maintained to term was possibly due to decreased klotho expression in placentas, negatively affecting aging- and apoptosis-related genes. Conclusions Klotho monoallelic knockout porcine fetal fibroblasts were successfully established. However, pigs carrying klotho monoallelic knockout fetuses failed to maintain full-term pregnancy and a decrease in klotho expression in placenta likely leads to pregnancy loss. Supplementary Information The online version contains supplementary material available at 10.1186/s12896-020-00660-9.
Collapse
Affiliation(s)
- Sanghoon Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.,Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | | | - Kilyoung Song
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Jun-Xue Jin
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.,Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Anukul Taweechaipaisankul
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Geon A Kim
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.,Department of Biomedical Laboratory Science, School of Medicine, Eulji University, Daejeon, Republic of Korea
| | - Hyun Ju Oh
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | | | - Se Chang Park
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Byeong Chun Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
14
|
Nazarinia D, Sharifi M, Dolatshahi M, Nasseri Maleki S, Madani Neishaboori A, Aboutaleb N. FoxO1 and Wnt/β-catenin signaling pathway: Molecular targets of human amniotic mesenchymal stem cells-derived conditioned medium (hAMSC-CM) in protection against cerebral ischemia/reperfusion injury. J Chem Neuroanat 2021; 112:101918. [PMID: 33421540 DOI: 10.1016/j.jchemneu.2021.101918] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/31/2020] [Accepted: 01/01/2021] [Indexed: 01/03/2023]
Abstract
Ischemia-reperfusion (I/R) injury has weakened the effects of available treatment options for ischemic stroke. Although conditioned medium obtained from human amniotic mesenchymal stem cells (hAMSC-CM) has been reported to exert protective effect against stroke, detailed knowledge about its possible molecular mechanisms is not still completely available. The present study was designed to investigate whether hAMSC-CM can modulate FoxO1 and Wnt/β-catenin signaling pathway after ischemic stroke to create neuroprotective effects. Middle cerebral artery occlusion (MCAO) model with male Wistar rats was used to evaluate the effects of hAMSC-CM on activities of FoxO1, Wnt/β-catenin signaling pathway, and endogenous antioxidant system and apoptotic cell death. The results demonstrated that induction of MCAO significantly reduced activities of FoxO1, Wnt/β-catenin signaling pathway, and endogenous antioxidant system and enhanced apoptotic cell death (P < 0.05). In addition, treatment by hAMSC-CM immediately after cerebral reperfusion resulted in significantly reduced infarct size and increased activities of FoxO1, Wnt/β-catenin signaling pathway, and restoring endogenous antioxidant system and suppressing apoptotic cell death (P < 0.05). Likewise, increased activity of Wnt/β-catenin signaling pathway resulted in suppressing the neuroinflammation by inhibiting the expression of TNF-α and increasing the expression of IL-10. These findings demonstrate that hAMSC-CM can be considered as an excellent candidate in the treatment of acute ischemic stroke in clinical routine.
Collapse
Affiliation(s)
- Donya Nazarinia
- Department of Physiology, School of Paramedical Sciences, Dezful University of Medical Sciences, Dezful, Iran.
| | - Masoomeh Sharifi
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Mojtaba Dolatshahi
- Department of Physiology, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran.
| | - Solmaz Nasseri Maleki
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Arian Madani Neishaboori
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Nahid Aboutaleb
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Jacobs PJ, Oosthuizen MK, Mitchell C, Blount JD, Bennett NC. Heat and dehydration induced oxidative damage and antioxidant defenses following incubator heat stress and a simulated heat wave in wild caught four-striped field mice Rhabdomys dilectus. PLoS One 2020; 15:e0242279. [PMID: 33186409 PMCID: PMC7665817 DOI: 10.1371/journal.pone.0242279] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/29/2020] [Indexed: 01/22/2023] Open
Abstract
Heat waves are known for their disastrous mass die-off effects due to dehydration and cell damage, but little is known about the non-lethal consequences of surviving severe heat exposure. Severe heat exposure can cause oxidative stress which can have negative consequences on animal cognition, reproduction and life expectancy. We investigated the current oxidative stress experienced by a mesic mouse species, the four striped field mouse, Rhabdomys dilectus through a heat wave simulation with ad lib water and a more severe temperature exposure with minimal water. Wild four striped field mice were caught between 2017 and 2019. We predicted that wild four striped field mice in the heat wave simulation would show less susceptibility to oxidative stress as compared to a more severe heat stress which is likely to occur in the future. Oxidative stress was determined in the liver, kidney and brain using malondialdehyde (MDA) and protein carbonyl (PC) as markers for oxidative damage, and superoxide dismutase (SOD) and total antioxidant capacity (TAC) as markers of antioxidant defense. Incubator heat stress was brought about by increasing the body temperatures of animals to 39-40.8°C for 6 hours. A heat wave (one hot day, followed by a 3-day heatwave) was simulated by using temperature cycle that wild four striped field mice would experience in their local habitat (determined through weather station data using temperature and humidity), with maximal ambient temperature of 39°C. The liver and kidney demonstrated no changes in the simulated heat wave, but the liver had significantly higher SOD activity and the kidney had significantly higher lipid peroxidation in the incubator experiment. Dehydration significantly contributed to the increase of these markers, as is evident from the decrease in body mass after the experiment. The brain only showed significantly higher lipid peroxidation following the simulated heat wave with no significant changes following the incubator experiment. The significant increase in lipid peroxidation was not correlated to body mass after the experiment. The magnitude and duration of heat stress, in conjunction with dehydration, played a critical role in the oxidative stress experienced by each tissue, with the results demonstrating the importance of measuring multiple tissues to determine the physiological state of an animal. Current heat waves in this species have the potential of causing oxidative stress in the brain with future heat waves to possibly stress the kidney and liver depending on the hydration state of animals.
Collapse
Affiliation(s)
- Paul J. Jacobs
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Pretoria, South Africa
| | - M. K. Oosthuizen
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Pretoria, South Africa
| | - C. Mitchell
- Centre for Ecology and Conservation, College of Life & Environmental Sciences, University of Exeter, Penryn, Cornwall, United Kingdom
| | - Jonathan D. Blount
- Centre for Ecology and Conservation, College of Life & Environmental Sciences, University of Exeter, Penryn, Cornwall, United Kingdom
| | - Nigel C. Bennett
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
16
|
The Function of LmPrx6 in Diapause Regulation in Locusta migratoria Through the Insulin Signaling Pathway. INSECTS 2020; 11:insects11110763. [PMID: 33167530 PMCID: PMC7694527 DOI: 10.3390/insects11110763] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 11/16/2022]
Abstract
Simple Summary LmPrx6 of the insulin signaling pathway is significantly associated with diapause induction in Locusta migratoria L. as per our pervious transcriptome data. In the current study, we first cloned and sequenced the gene and demonstrated its similarity to other Prxs using phylogenetic analyses. Later on, we knocked down Prx6 using RNAi and showed that phosphorylation of proteins associated with the insulin signaling pathway and responses to oxidative stress were altered. Knockdown of Prx6 also resulted in a reduced ability to enter diapause, and hence, we are of the opinion that this gene could serve as an effective target for RNAi-based control of L. migratoria L. The study has provided some helpful insights into the diversified roles of Prx6 in locusts and will be of interest to other insect pests for examining the relatively unexplored group of proteins as well. Abstract Peroxiredoxins (Prxs), which scavenge reactive oxygen species (ROS), are cysteine-dependent peroxide reductases that group into six structurally discernable classes: AhpC-Prx1, BCP-PrxQ, Prx5, Prx6, Tpx, and AhpE. A previous study showed that forkhead box protein O (FOXO) in the insulin signaling pathway (ISP) plays a vital role in regulating locust diapause by phosphorylation, which can be promoted by the high level of ROS. Furthermore, the analysis of transcriptome between diapause and non-diapause phenotypes showed that one of the Prxs, LmPrx6, which belongs to the Prx6 class, was involved. We presumed that LmPrx6 might play a critical role in diapause induction of Locusta migratoria and LmPrx6 may therefore provide a useful target of control methods based on RNA interference (RNAi). To verify our hypothesis, LmPrx6 was initially cloned from L. migratoria to make dsLmPrx6 and four important targets were tested, including protein-tyrosine phosphorylase 1B (LmPTP1B), insulin receptor (LmIR), RAC serine/threonine-protein kinase (LmAKT), and LmFOXO in ISP. When LmPrx6 was knocked down, the diapause rate was significantly reduced. The phosphorylation level of LmPTP1B significantly decreased while the phosphorylation levels of LmIR, LmAKT, and LmFOXO were significantly increased. Moreover, we identified the effect on two categories of genes downstream of LmFOXO, including stress tolerance and storage of energy reserves. Results showed that the mRNA levels of catalase and Mn superoxide dismutase (Mn-SOD), which enhanced stress tolerance, were significantly downregulated after silencing of LmPrx6. The mRNA levels of glycogen synthase and phosphoenolpyruvate carboxy kinase (PEPCK) that influence energy storage were also downregulated after knocking down of LmPrx6. The silencing of LmPrx6 indicates that this regulatory protein may probably be an ideal target for RNAi-based diapause control of L. migratoria.
Collapse
|
17
|
Luu BE, Zhang Y, Storey KB. The regulation of Akt and FoxO transcription factors during dehydration in the African clawed frog (Xenopus laevis). Cell Stress Chaperones 2020; 25:887-897. [PMID: 32451989 PMCID: PMC7591653 DOI: 10.1007/s12192-020-01123-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/12/2020] [Accepted: 05/15/2020] [Indexed: 12/11/2022] Open
Abstract
The African clawed frog (Xenopus laevis) naturally tolerates severe dehydration using biochemical adaptation, one of which is the elevation of antioxidant defenses during whole-body dehydration. The present study investigated the role and regulation of a pathway known to regulate oxidative stress response, the Akt-FoxO signaling pathway, in clawed frog skeletal muscle, responding to medium (15%) and high (30%) dehydration. Protein levels of total and phosphorylated Akt, FoxO1, and FoxO3 were assessed via immunoblotting, in addition to the levels of the E3 ubiquitin ligase known to be associated with muscle atrophy, MAFbx. Akt activity/phosphorylation in addition to its total protein levels were decreased in the skeletal muscle during dehydration, and this corresponded with decreases in the relative phosphorylation of FoxO1 and FoxO3 as well on several residues. Akt is an inhibitor of FoxO1 and FoxO3 activity via phosphorylation, suggesting that FoxO activities were increased during dehydration stress. Furthermore, MAFbx showed decreased protein expression during high dehydration as well, suggesting that the clawed frog may exhibit some natural resistance to skeletal muscle atrophy during severe dehydration conditions. In addition to identifying that the suppression of Akt could lead to an activation of FoxO transcription factors in X. laevis during dehydration, these investigations suggest that X. laevis dehydration may implicate FoxO1 and FoxO3 in controlling skeletal muscle atrophy in X. laevis exposed to dehydration. This study implicates the Akt signaling pathway, its regulation of FoxO transcription factors, and FoxO-controlled targets, in stress adaptation against dehydration.
Collapse
Affiliation(s)
- Bryan E Luu
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
- Faculty of Medicine, McGill University, Montréal, Québec, Canada
| | - Yichi Zhang
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Kenneth B Storey
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada.
| |
Collapse
|
18
|
Reiterer M, Milton SL. Induction of foxo3a protects turtle neurons against oxidative stress. Comp Biochem Physiol A Mol Integr Physiol 2020; 243:110671. [DOI: 10.1016/j.cbpa.2020.110671] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 01/30/2020] [Accepted: 02/02/2020] [Indexed: 12/17/2022]
|
19
|
Leikauf GD, Kim SH, Jang AS. Mechanisms of ultrafine particle-induced respiratory health effects. Exp Mol Med 2020; 52:329-337. [PMID: 32203100 PMCID: PMC7156674 DOI: 10.1038/s12276-020-0394-0] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 12/20/2019] [Accepted: 12/27/2019] [Indexed: 01/04/2023] Open
Abstract
Particulate matter (PM) is the principal component of air pollution. PM includes a range of particle sizes, such as coarse, fine, and ultrafine particles. Particles that are <100 nm in diameter are defined as ultrafine particles (UFPs). UFPs are found to a large extent in urban air as both singlet and aggregated particles. UFPs are classified into two major categories based on their source. Typically, UFPs are incidentally generated in the environment, often as byproducts of fossil fuel combustion, condensation of semivolatile substances or industrial emissions, whereas nanoparticles are manufactured through controlled engineering processes. The primary exposure mechanism of PM is inhalation. Inhalation of PM exacerbates respiratory symptoms in patients with chronic airway diseases, but the mechanisms underlying this response remain unclear. This review offers insights into the mechanisms by which particles, including UFPs, influence airway inflammation and discusses several mechanisms that may explain the relationship between particulate air pollutants and human health, particularly respiratory health. Understanding the mechanisms of PM-mediated lung injury will enhance efforts to protect at-risk individuals from the harmful health effects of air pollutants.
Collapse
Affiliation(s)
- George D Leikauf
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, USA
| | - Sang-Heon Kim
- Department of Internal Medicine, Hanyang University, Seoul, Republic of Korea
| | - An-Soo Jang
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Republic of Korea.
| |
Collapse
|
20
|
Giraud-Billoud M, Rivera-Ingraham GA, Moreira DC, Burmester T, Castro-Vazquez A, Carvajalino-Fernández JM, Dafre A, Niu C, Tremblay N, Paital B, Rosa R, Storey JM, Vega IA, Zhang W, Yepiz-Plascencia G, Zenteno-Savin T, Storey KB, Hermes-Lima M. Twenty years of the ‘Preparation for Oxidative Stress’ (POS) theory: Ecophysiological advantages and molecular strategies. Comp Biochem Physiol A Mol Integr Physiol 2019; 234:36-49. [DOI: 10.1016/j.cbpa.2019.04.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/28/2019] [Accepted: 04/01/2019] [Indexed: 12/22/2022]
|
21
|
Tanrıkulu-Küçük S, Başaran-Küçükgergin C, Seyithanoğlu M, Doğru-Abbasoğlu S, Koçak H, Beyhan-Özdaş Ş, Öner-İyidoğan Y. Effect of dietary curcumin and capsaicin on testicular and hepatic oxidant–antioxidant status in rats fed a high-fat diet. Appl Physiol Nutr Metab 2019; 44:774-782. [DOI: 10.1139/apnm-2018-0622] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This study investigated the effects of curcumin and capsaicin on testicular and hepatic oxidant–antioxidant status in rats fed a high-fat diet (HFD). Male Sprague–Dawley rats were divided into 5 groups (8 rats per group). The control group was fed a normal control diet (standard laboratory chow), the HFD group was fed HFD (60% of total calories from fat), the HFD+CUR group received HFD supplemented with curcumin (1.5 g curcumin/kg HFD), the HFD+CAP group was given HFD supplemented with capsaicin (0.15 g capsaicin/kg HFD), and the HFD+CUR+CAP group received HFD supplemented with curcumin and capsaicin for 16 weeks. Hepatic and testicular thiobarbituric acid reactive substances (TBARS), reactive oxygen species (ROS), glutathione (GSH) levels, glutathione transferase activity, and Cu-Zn superoxide dismutase, glutathione peroxidase, and catalase protein expression and enzyme activities were measured. Protein expression was determined by Western blotting. GSH levels and antioxidant enzyme activities were measured with colorimetric methods. HFD slightly increased hepatic and testicular oxidative stress parameters. GSH levels did not change between groups. TBARS and ROS levels were significantly reduced in the HFD+CUR+CAP group compared with the HFD group. Liver and testis antioxidant enzyme activities and expression increased significantly with combined capsaicin and curcumin treatment. Curcumin and capsaicin treatment attenuated testicular and hepatic oxidative stress and enhanced the antioxidant defense system. The combination of capsaicin and curcumin with HFD seems to have some remarkable and beneficial effects on testicular oxidative damage in the fatty liver rat model.
Collapse
Affiliation(s)
- Sevda Tanrıkulu-Küçük
- Department of Biochemistry, Faculty of Medicine, Istanbul Bilim University, Istanbul, Turkey
| | | | - Muhammed Seyithanoğlu
- Department of Biochemistry, Faculty of Medicine, Kahramanmaraş Sütçü Imam University, Kahramanmaraş, Turkey
| | - Semra Doğru-Abbasoğlu
- Department of Biochemistry, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Hikmet Koçak
- Department of Biochemistry, Faculty of Medicine, Istanbul Bilim University, Istanbul, Turkey
| | - Şule Beyhan-Özdaş
- Department of Medical Biology and Genetics, Faculty of Medicine, Istanbul Bilim University, Esentepe, Istanbul, Turkey
| | - Yıldız Öner-İyidoğan
- Department of Biochemistry, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
22
|
Hao K, Jarwar AR, Ullah H, Tu X, Nong X, Zhang Z. Transcriptome Sequencing Reveals Potential Mechanisms of the Maternal Effect on Egg Diapause Induction of Locusta migratoria. Int J Mol Sci 2019; 20:ijms20081974. [PMID: 31018489 PMCID: PMC6514766 DOI: 10.3390/ijms20081974] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/18/2019] [Accepted: 04/22/2019] [Indexed: 12/14/2022] Open
Abstract
Photoperiod is one of the most important maternal factors with an impact on the offspring diapause induction of Locusta migratoria. Previous studies have shown that forkhead box protein O (FOXO) plays an important role in regulating insect diapause, but how photoperiod stimulates maternal migratory locusts to regulate the next generation of egg diapause through the FOXO signaling pathway still needs to be addressed. In this study, the transcriptomes of ovaries and fat bodies of adult locusts under a long and short photoperiod were obtained. Among the total of 137 differentially expressed genes (DEGs) in both ovaries and fat bodies, 71 DEGs involved in FOXO signaling pathways might be closely related to diapause induction. 24 key DEGs were selected and their expression profiles were confirmed to be consistent with the transcriptome results using qRT-PCR. RNA interference was then performed to verify the function of retinoic acid induced protein gene (rai1) and foxo. Egg diapause rates were significantly increased by RNAi maternal locusts rai1 gene under short photoperiods. However, the egg diapause rates were significantly decreased by knock down of the foxo gene in the maternal locusts under a short photoperiod. In addition, reactive oxygen species (ROS) and superoxide dismutase (SOD) activities were promoted by RNAi rai1. We identified the candidate genes related to the FOXO pathway, and verified the diapause regulation function of rai1 and foxo under a short photoperiod only. In the future, the researchers can work in the area to explore other factors and genes that can promote diapause induction under a long photoperiod.
Collapse
Affiliation(s)
- Kun Hao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Aftab Raza Jarwar
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Hidayat Ullah
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Xiongbing Tu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Xiangqun Nong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Zehua Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
23
|
Javdan N, Ayatollahi SA, Choudhary MI, Al-Hasani S, Kobarfard F, Mokhtarian K, Khoshmirsafa M, Ata A. Tsc1/Tsc2 complex: A molecular target of capsaicin for protection against testicular torsion induced injury in rats. CHINESE HERBAL MEDICINES 2019. [DOI: 10.1016/j.chmed.2019.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
24
|
Hawkins LJ, Luu BE, Storey KB. Selection of reference genes for accurate RT-qPCR analysis of dehydration tolerance in Xenopus laevis. GENE REPORTS 2018. [DOI: 10.1016/j.genrep.2018.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
25
|
Gao L, Yuan Z, Yu S, Yang Y, Li Y, He C. Genome-wide identification of HSP70/110 genes in sea cucumber Apostichopus japonicus and comparative analysis of their involvement in aestivation. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2018; 28:162-171. [PMID: 30265919 DOI: 10.1016/j.cbd.2018.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/09/2018] [Accepted: 07/09/2018] [Indexed: 12/18/2022]
Abstract
HSP70/110s are a subgroup of heat shock proteins and play crucial roles in protein homeostasis. HSP70/110s can enhance cell survival in response to a multitude of stressful stimuli, of which the most studied one is heat stress. To perform a systematic study of HSP70/110s in sea cucumber Apostichopus japonicus, 15 HSP70/110 genes, including 13 HSP70s and two HSP110s, were identified and characterized from the transcriptome and genome of sea cucumber. Moderate expansion and conserved structure were found by the phylogenetic and syntenic analysis. Differential expression patterns of HSP70/110s were observed in adult individuals during aestivation, with the comparison of juvenile individuals without aestivation in chronic heat stress. Tissue-specific expression profiles were found both in adult and juvenile individuals, which might indicate that the functional tissues (intestine and respiratory tree) could be restored to normal physiological activity prior to protecting and sporting tissues (body wall and muscle). Differential expression profiles were also observed between the adult and juvenile individuals, which was mainly due to the hypometabolism in aestivation. Taken together, tissue-specific pattern and individual-specific pattern were observed in the HSP70/110 expression profiles in sea cucumber during aestivation. These findings could provide early insight into the involvement of HSP70/110s in the aestivation of marine invertebrate.
Collapse
Affiliation(s)
- Lei Gao
- Key Laboratory of Marine Fishery Molecular Biology of Liaoning Province, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, China.
| | - Zihao Yuan
- The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Simeng Yu
- Key Laboratory of Marine Fishery Molecular Biology of Liaoning Province, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, China
| | - Yujia Yang
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Yunfeng Li
- Key Laboratory of Marine Fishery Molecular Biology of Liaoning Province, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, China
| | - Chongbo He
- Key Laboratory of Marine Fishery Molecular Biology of Liaoning Province, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, China
| |
Collapse
|
26
|
Oliveira MF, Geihs MA, França TFA, Moreira DC, Hermes-Lima M. Is "Preparation for Oxidative Stress" a Case of Physiological Conditioning Hormesis? Front Physiol 2018; 9:945. [PMID: 30116197 PMCID: PMC6082956 DOI: 10.3389/fphys.2018.00945] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/28/2018] [Indexed: 01/01/2023] Open
Affiliation(s)
- Marcus F Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcio A Geihs
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, Brazil
| | - Thiago F A França
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, Brazil
| | - Daniel C Moreira
- Área de Morfologia, Faculdade de Medicina, Universidade de Brasília, Brasilia, Brazil.,Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasilia, Brazil
| | - Marcelo Hermes-Lima
- Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasilia, Brazil
| |
Collapse
|
27
|
Zhang Y, Luu BE, Storey KB. FoxO4 activity is regulated by phosphorylation and the cellular environment during dehydration in the African clawed frog, Xenopus laevis. Biochim Biophys Acta Gen Subj 2018; 1862:1721-1728. [DOI: 10.1016/j.bbagen.2018.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 04/07/2018] [Accepted: 05/04/2018] [Indexed: 01/10/2023]
|
28
|
Zhang Y, English SG, Storey KB. Regulation of nuclear factor of activated T cells (NFAT) and downstream myogenic proteins during dehydration in the African clawed frog. Mol Biol Rep 2018; 45:751-761. [PMID: 29923155 DOI: 10.1007/s11033-018-4214-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/14/2018] [Indexed: 10/28/2022]
Abstract
Xenopus laevis, otherwise known as the African clawed frog, undergoes natural dehydration of up to 30% of its total body water during the dry season in sub-Saharan Africa. To survive under these conditions, a variety of physiological and biochemical changes take place in X. laevis. We were interested in understanding the role that the calcineurin-NFAT pathway plays during dehydration stress response in the skeletal muscles of X. laevis. Immunoblotting was performed to characterize the protein levels of NFATc1-4, calcium signalling proteins, in addition to myogenic proteins (MyoD, MyoG, myomaker). In addition, DNA-protein interaction ELISAs were used to assess the binding of NFATs to their consensus binding sequence, and to identify the effect of urea on NFAT-binding. Our results showed that NFATc1 and c4 protein levels decreased during dehydration, and there were no changes in NFATc2, c3, and calcium signalling proteins. However, MyoG and myomaker both showed increases in protein levels during dehydration, thus indicating that the late myogenic program involving myoblast differentiation, but not satellite cell activation and myoblast proliferation, could be involved in preserving the skeletal muscle of X. laevis during dehydration. In addition, we observed that urea seems to reduce NFATc3-binding to DNA during control, but not during dehydration, possibly indicating that NFATc3 is protected from the denaturing effects of urea as it accumulates during dehydration. These findings expand upon our knowledge of adaptive responses to dehydration, and they identify specific protein targets that could be used to protect the skeletal muscle from damage during stress.
Collapse
Affiliation(s)
- Yichi Zhang
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada.,Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Simon G English
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Kenneth B Storey
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada.
| |
Collapse
|
29
|
Javdan N, Ayatollahi SA, Iqbal Choudhary M, Al-Hasani S, Pazoki-Toroudi H. FOXO1 targeting by capsaicin reduces tissue damage after testicular torsion. Andrologia 2018; 50:e12987. [PMID: 29411905 DOI: 10.1111/and.12987] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2018] [Indexed: 12/28/2022] Open
Abstract
Testicular torsion-related oxidative stress causes a sequential chain of DNA damage, lipid peroxidation and cell death that leads to the derangement in the sperm functions and infertility. Capsaicin that has been applied for pain relief and cancer prevention possesses antioxidant properties which can be exploited to confer cell survival under ischaemic testis damage. Wistar male rats weighing 150-200 g were randomly divided into four groups: (i) sham group (all procedures except torsion of testis), (ii) ischaemia group (TT group), (iii) three TT groups treated with different dose of capsaicin (TT + different doses of Cap) and (iv) three control groups treated with different doses of capsaicin (100, 500 and 1000 ug/ml). Capsaicin administration significantly decreased the expression of pro-apoptotic factors and increased the expression of anti-apoptotic factors. Likewise, the expression of FOXO1 is significantly increased by higher doses of the capsaicin. Histological assessment by H&E and TUNEL method also exhibited an improved testicular morphology and decreased apoptosis in testes. These results suggested clinical potential for capsaicin in treatment of testicular torsion by targeting FOXO1 and apoptotic pathways.
Collapse
Affiliation(s)
- N Javdan
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - S A Ayatollahi
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- School of Pharmacy, Department of Pharmacognosy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - M Iqbal Choudhary
- International Center for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi, Pakistan
| | - S Al-Hasani
- Reproductive Medicine Unit, University of Schleswig-Holstein, Luebeck, Germany
| | - H Pazoki-Toroudi
- Physiology Research Center and Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
30
|
Luu BE, Wijenayake S, Malik AI, Storey KB. The regulation of heat shock proteins in response to dehydration in Xenopus laevis. Cell Stress Chaperones 2018; 23:45-53. [PMID: 28676984 PMCID: PMC5741580 DOI: 10.1007/s12192-017-0822-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/12/2017] [Accepted: 06/14/2017] [Indexed: 12/15/2022] Open
Abstract
African clawed frogs (Xenopus laevis) endure bouts of severe drought in their natural habitats and survive the loss of approximately 30% of total body water due to dehydration. To investigate molecular mechanisms employed by X. laevis during periods of dehydration, the heat shock protein response, a vital component of the cytoprotective stress response, was characterized. Using western immunoblotting and multiplex technology, the protein levels of HSP27, HSP40, HSP60, HSP70, HSC70, and HSP90 were quantified in the liver, skeletal muscle, kidney, lung, and testes from control frogs and those that underwent medium or high dehydration (~16 or ~30% loss of total body water). Dehydration increased HSP27 (1.45-1.65-fold) in the kidneys and lungs, and HSP40 (1.39-2.50-fold) in the liver, testes, and skeletal muscle. HSP60 decreased in response to dehydration (0.43-0.64 of control) in the kidneys and lungs. HSP70 increased in the liver, lungs, and testes (1.39-1.70-fold) during dehydration, but had a dynamic response in the kidneys (levels increased 1.57-fold with medium dehydration, but decreased to 0.56 of control during high dehydration). HSC70 increased in the liver and kidneys (1.20-1.36-fold), but decreased in skeletal muscle (0.27-0.55 of control) during dehydration. Lastly, HSP90 was reduced in the kidney, lung, and skeletal muscle (0.39-0.69 of control) in response to dehydration, but rose in the testes (1.30-fold). Overall, the results suggest a dynamic tissue-specific heat shock protein response to whole body dehydration in X. laevis.
Collapse
Affiliation(s)
- Bryan E Luu
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Sanoji Wijenayake
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Amal I Malik
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Kenneth B Storey
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada.
| |
Collapse
|
31
|
Moreira DC, Oliveira MF, Liz-Guimarães L, Diniz-Rojas N, Campos ÉG, Hermes-Lima M. Current Trends and Research Challenges Regarding "Preparation for Oxidative Stress". Front Physiol 2017; 8:702. [PMID: 28993737 PMCID: PMC5622305 DOI: 10.3389/fphys.2017.00702] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/31/2017] [Indexed: 12/26/2022] Open
Abstract
Survival under stress, such as exposure to hypoxia, anoxia, freezing, dehydration, air exposure of water breathing organisms, and estivation, is commonly associated to enhanced endogenous antioxidants, a phenomenon coined "preparation for oxidative stress" (POS). The regulation of free radical metabolism seems to be crucial under these selective pressures, since this response is widespread among animals. A hypothesis of how POS works at the molecular level was recently proposed and relies on two main processes: increased reactive species production under hypoxia, and activation of redox-sensitive transcription factors and signaling pathways, increasing the expression of antioxidants. The present paper brings together the current knowledge on POS and considers its future directions. Data indicate the presence of POS in 83 animal species (71.6% among investigated species), distributed in eight animal phyla. Three main research challenges on POS are presented: (i) to identify the molecular mechanism(s) that mediate/induce POS, (ii) to identify the evolutionary origins of POS in animals, and (iii) to determine the presence of POS in natural environments. We firstly discuss the need of evidence for increased RS production in hypoxic conditions that underlie the POS response. Secondly, we discuss the phylogenetic origins of POS back 700 million years, by identifying POS-positive responses in cnidarians. Finally, we present the first reports of the POS adaptation strategy in the wild. The investigation of these research trends and challenges may prove useful to understand the evolution of animal redox adaptations and how they adapt to increasing stressful environments on Earth.
Collapse
Affiliation(s)
- Daniel C. Moreira
- Departamento de Biologia Celular, Universidade de BrasíliaBrasilia, Brazil
- Área de Morfologia, Faculdade de Medicina, Universidade de BrasíliaBrasilia, Brazil
| | - Marcus F. Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | - Lara Liz-Guimarães
- Departamento de Biologia Celular, Universidade de BrasíliaBrasilia, Brazil
| | - Nilda Diniz-Rojas
- Departamento de Genética e Morfologia, Universidade de BrasíliaBrasilia, Brazil
| | - Élida G. Campos
- Departamento de Biologia Celular, Universidade de BrasíliaBrasilia, Brazil
| | | |
Collapse
|
32
|
Lee S, Moon JH, Song K, Taweechaipaisankul A, Jo YK, Oh HJ, Park SC, Lee BC. Establishment of Transgenic Porcine Fibroblasts Expressing a Human klotho Gene and Its Effects on Gene Expression and Preimplantation Development of Cloned Embryos. DNA Cell Biol 2016; 36:42-49. [PMID: 28004977 DOI: 10.1089/dna.2016.3482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Even though the functions of the klotho gene in aging of small animals such as mice have been well investigated, studies using large animal models such as pigs, which have many similarities to humans, have been limited due to the absence of cell lines or animal models. Therefore, the objective of this study was to generate porcine cell lines overexpressing human klotho (hKlotho) and tetracycline (Tet)-inducible hKlotho and to produce cloned embryos from these cell lines. We designed vectors for hKlotho overexpression (CA-Klotho) under control of CMV enhancer/chicken β-actin (CAG) promoter and Tet-inducible hKlotho overexpression (Tet-Klotho, under control of doxycycline-dependent promoter). The vectors were transfected into porcine fibroblasts then CA-Klotho and Tet-Klotho cell lines were established. The Tet-Klotho (+) cell line was cultured in the presence of doxycycline (2 μg/mL), whereas the Tet-Klotho (-) cell line was cultured without doxycycline. In polymerase chain reaction (PCR) and reverse transcription-PCR (RT-PCR) assays, integration and expression of the hKlotho gene were confirmed in CA-Klotho, Tet-Klotho (+), and Tet-Klotho (-) cell lines. The CA-Klotho cell line was subjected to real-time PCR and showed positively changed expression of genes related to aging and cell survival. Somatic cell nuclear transfer was performed to generate hKlotho overexpression cloned embryos by using CA-Klotho and Tet-Klotho (+) cell lines; blastocyst formation frequency was significantly higher in cloned embryos from CA-Klotho and Tet-Klotho (+) (21.5% and 20.2%, respectively) compared with the control (8.4%). In conclusion, we established hKlotho overexpression and Tet-inducible hKlotho overexpression cell lines and porcine embryos cloned from these cell lines.
Collapse
Affiliation(s)
- Sanghoon Lee
- 1 Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University , Seoul, Republic of Korea
| | - Joon Ho Moon
- 1 Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University , Seoul, Republic of Korea
| | - Kilyoung Song
- 1 Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University , Seoul, Republic of Korea
| | - Anukul Taweechaipaisankul
- 1 Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University , Seoul, Republic of Korea
| | - Young Kwang Jo
- 1 Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University , Seoul, Republic of Korea
| | - Hyun Ju Oh
- 1 Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University , Seoul, Republic of Korea
| | - Se Chang Park
- 2 Laboratory of Aquatic Biomedicine, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University , Seoul, Republic of Korea
| | - Byeong Chun Lee
- 1 Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University , Seoul, Republic of Korea
| |
Collapse
|
33
|
How widespread is preparation for oxidative stress in the animal kingdom? Comp Biochem Physiol A Mol Integr Physiol 2016; 200:64-78. [DOI: 10.1016/j.cbpa.2016.01.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/26/2016] [Accepted: 01/29/2016] [Indexed: 11/19/2022]
|
34
|
Di Filippo C, Ferraro B, Maisto R, Trotta MC, Di Carluccio N, Sartini S, La Motta C, Ferraraccio F, Rossi F, D'Amico M. Effects of the New Aldose Reductase Inhibitor Benzofuroxane Derivative BF-5m on High Glucose Induced Prolongation of Cardiac QT Interval and Increase of Coronary Perfusion Pressure. J Diabetes Res 2016; 2016:5281267. [PMID: 26839893 PMCID: PMC4709668 DOI: 10.1155/2016/5281267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 09/30/2015] [Accepted: 10/25/2015] [Indexed: 01/13/2023] Open
Abstract
This study investigated the effects of the new aldose reductase inhibitor benzofuroxane derivative 5(6)-(benzo[d]thiazol-2-ylmethoxy)benzofuroxane (BF-5m) on the prolongation of cardiac QT interval and increase of coronary perfusion pressure (CPP) in isolated, high glucose (33.3 mM D-glucose) perfused rat hearts. BF-5m was dissolved in the Krebs solution at a final concentration of 0.01 μM, 0.05 μM, and 0.1 μM. 33.3 mM D-glucose caused a prolongation of the QT interval and increase of CPP up to values of 190 ± 12 ms and 110 ± 8 mmHg with respect to the values of hearts perfused with standard Krebs solution (11.1 mM D-glucose). The QT prolongation was reduced by 10%, 32%, and 41%, respectively, for the concentration of BF-5m 0.01 μM, 0.05 μM, and 0.1 μM. Similarly, the CPP was reduced by 20% for BF-5m 0.05 μM and by 32% for BF-5m 0.1 μM. BF-5m also increased the expression levels of sirtuin 1, MnSOD, eNOS, and FOXO-1, into the heart. The beneficial actions of BF-5m were partly abolished by the pretreatment of the rats with the inhibitor of the sirtuin 1 activity EX527 (10 mg/kg/day/7 days i.p.) prior to perfusion of the hearts with high glucose + BF-5m (0.1 μM). Therefore, BF-5m supplies cardioprotection from the high glucose induced QT prolongation and increase of CPP.
Collapse
Affiliation(s)
- C. Di Filippo
- Department of Experimental Medicine, Section of Pharmacology “L. Donatelli”, Second University of Naples, 80138 Naples, Italy
- *C. Di Filippo:
| | - B. Ferraro
- Department of Experimental Medicine, Section of Pharmacology “L. Donatelli”, Second University of Naples, 80138 Naples, Italy
| | - R. Maisto
- Department of Experimental Medicine, Section of Pharmacology “L. Donatelli”, Second University of Naples, 80138 Naples, Italy
| | - M. C. Trotta
- Department of Experimental Medicine, Section of Pharmacology “L. Donatelli”, Second University of Naples, 80138 Naples, Italy
| | - N. Di Carluccio
- Department of Experimental Medicine, Section of Pharmacology “L. Donatelli”, Second University of Naples, 80138 Naples, Italy
| | - S. Sartini
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | - C. La Motta
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | - F. Ferraraccio
- Department of Clinical, Public and Preventive Medicine, Second University of Naples, 80138 Naples, Italy
| | - F. Rossi
- Department of Experimental Medicine, Section of Pharmacology “L. Donatelli”, Second University of Naples, 80138 Naples, Italy
| | - M. D'Amico
- Department of Experimental Medicine, Section of Pharmacology “L. Donatelli”, Second University of Naples, 80138 Naples, Italy
| |
Collapse
|
35
|
Dawson NJ, Storey KB. A hydrogen peroxide safety valve: The reversible phosphorylation of catalase from the freeze-tolerant North American wood frog, Rana sylvatica. Biochim Biophys Acta Gen Subj 2015; 1860:476-85. [PMID: 26691137 DOI: 10.1016/j.bbagen.2015.12.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 11/26/2015] [Accepted: 12/11/2015] [Indexed: 01/14/2023]
Abstract
BACKGROUND The North American wood frog, Rana sylvatica, endures whole body freezing while wintering on land and has developed multiple biochemical adaptations to elude cell/tissue damage and optimize its freeze tolerance. Blood flow is halted in the frozen state, imparting both ischemic and oxidative stress on cells. A potential build-up of H2O2 may occur due to increased superoxide dismutase activity previously discovered. The effect of freezing on catalase (CAT), which catalyzes the breakdown of H2O2 into molecular oxygen and water, was investigated as a result. METHODS The present study investigated the purification and kinetic profile of CAT in relation to the phosphorylation state of CAT from the skeletal muscle of control and frozen R. sylvatica. RESULTS Catalase from skeletal muscle of frozen wood frogs showed a significantly higher Vmax (1.48 fold) and significantly lower Km for H2O2 (0.64 fold) in comparison to CAT from control frogs (5°C acclimated). CAT from frozen frogs also showed higher overall phosphorylation (1.73 fold) and significantly higher levels of phosphoserine (1.60 fold) and phosphotyrosine (1.27 fold) compared to control animals. Phosphorylation via protein kinase A or the AMP-activated protein kinase significantly decreased the Km for H2O2 of CAT, whereas protein phosphatase 2B or 2C action significantly increased the Km. CONCLUSION The physiological consequence of freeze-induced CAT phosphorylation appears to improve CAT function to alleviate H2O2 build-up in freezing frogs. GENERAL SIGNIFICANCE Augmented CAT activity via reversible phosphorylation may increase the ability of R. sylvatica to overcome oxidative stress associated with ischemia.
Collapse
Affiliation(s)
- Neal J Dawson
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| | - Kenneth B Storey
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, ON, Canada.
| |
Collapse
|
36
|
Hermes-Lima M, Moreira DC, Rivera-Ingraham GA, Giraud-Billoud M, Genaro-Mattos TC, Campos ÉG. Preparation for oxidative stress under hypoxia and metabolic depression: Revisiting the proposal two decades later. Free Radic Biol Med 2015; 89:1122-43. [PMID: 26408245 DOI: 10.1016/j.freeradbiomed.2015.07.156] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 07/11/2015] [Accepted: 07/25/2015] [Indexed: 12/22/2022]
Abstract
Organisms that tolerate wide variations in oxygen availability, especially to hypoxia, usually face harsh environmental conditions during their lives. Such conditions include, for example, lack of food and/or water, low or high temperatures, and reduced oxygen availability. In contrast to an expected strong suppression of protein synthesis, a great number of these animals present increased levels of antioxidant defenses during oxygen deprivation. These observations have puzzled researchers for more than 20 years. Initially, two predominant ideas seemed to be irreconcilable: on one hand, hypoxia would decrease reactive oxygen species (ROS) production, while on the other the induction of antioxidant enzymes would require the overproduction of ROS. This induction of antioxidant enzymes during hypoxia was viewed as a way to prepare animals for oxidative damage that may happen ultimately during reoxygenation. The term "preparation for oxidative stress" (POS) was coined in 1998 based on such premise. However, there are many cases of increased oxidative damage in several hypoxia-tolerant organisms under hypoxia. In addition, over the years, the idea of an assured decrease in ROS formation under hypoxia was challenged. Instead, several findings indicate that the production of ROS actually increases in response to hypoxia. Recently, it became possible to provide a comprehensive explanation for the induction of antioxidant enzymes under hypoxia. The supporting evidence and the limitations of the POS idea are extensively explored in this review as we discuss results from research on estivation and situations of low oxygen stress, such as hypoxia, freezing exposure, severe dehydration, and air exposure of water-breathing animals. We propose that, under some level of oxygen deprivation, ROS are overproduced and induce changes leading to hypoxic biochemical responses. These responses would occur mainly through the activation of specific transcription factors (FoxO, Nrf2, HIF-1, NF-κB, and p53) and post translational mechanisms, both mechanisms leading to enhanced antioxidant defenses. Moreover, reactive nitrogen species are candidate modulators of ROS generation in this scenario. We conclude by drawing out the future perspectives in this field of research, and how advances in the knowledge of the mechanisms involved in the POS strategy will offer new and innovative study scenarios of biological and physiological cellular responses to environmental stress.
Collapse
Affiliation(s)
- Marcelo Hermes-Lima
- Laboratório de Radicais Livres, Departamento de Biologia Celular, Universidade de Brasília, Brasí;lia, DF, 70910-900, Brazil.
| | - Daniel C Moreira
- Laboratório de Radicais Livres, Departamento de Biologia Celular, Universidade de Brasília, Brasí;lia, DF, 70910-900, Brazil
| | - Georgina A Rivera-Ingraham
- Groupe Fonctionnel AEO (Adaptation Ecophysiologique et Ontogenèse), UMR 9190 MARBEC, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France
| | - Maximiliano Giraud-Billoud
- Laboratorio de Fisiología (IHEM-CONICET), and Instituto de Fisiología (Facultad de Ciencias Médicas, Universidad Nacional de Cuyo), Casilla de Correo 33, 5500 Mendoza, Argentina
| | - Thiago C Genaro-Mattos
- Laboratório de Radicais Livres, Departamento de Biologia Celular, Universidade de Brasília, Brasí;lia, DF, 70910-900, Brazil; Laboratório de Espectrometria de Massa, Embrapa Recursos Genéticos e Biotecnologia, Brasí;lia, DF, Brazil
| | - Élida G Campos
- Laboratório de Radicais Livres, Departamento de Biologia Celular, Universidade de Brasília, Brasí;lia, DF, 70910-900, Brazil
| |
Collapse
|
37
|
Luu BE, Storey KB. Dehydration triggers differential microRNA expression in Xenopus laevis brain. Gene 2015; 573:64-9. [DOI: 10.1016/j.gene.2015.07.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/23/2015] [Accepted: 07/09/2015] [Indexed: 12/17/2022]
|
38
|
Huang SK, Zhang Q, Qiu Z, Chung KF. Mechanistic impact of outdoor air pollution on asthma and allergic diseases. J Thorac Dis 2015; 7:23-33. [PMID: 25694815 DOI: 10.3978/j.issn.2072-1439.2014.12.13] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 12/03/2014] [Indexed: 12/28/2022]
Abstract
Over the past decades, asthma and allergic diseases, such as allergic rhinitis and eczema, have become increasingly common, but the reason for this increased prevalence is still unclear. It has become apparent that genetic variation alone is not sufficient to account for the observed changes; rather, the changing environment, together with alterations in lifestyle and eating habits, are likely to have driven the increase in prevalence, and in some cases, severity of disease. This is particularly highlighted by recent awareness of, and concern about, the exposure to ubiquitous environmental pollutants, including chemicals with oxidant-generating capacities, and their impact on the human respiratory and immune systems. Indeed, several epidemiological studies have identified a variety of risk factors, including ambient pollutant gases and airborne particles, for the prevalence and the exacerbation of allergic diseases. However, the responsible pollutants remain unclear and the causal relationship has not been established. Recent studies of cellular and animal models have suggested several plausible mechanisms, with the most consistent observation being the direct effects of particle components on the generation of reactive oxygen species (ROS) and the resultant oxidative stress and inflammatory responses. This review attempts to highlight the experimental findings, with particular emphasis on several major mechanistic events initiated by exposure to particulate matters (PMs) in the exposure-disease relationship.
Collapse
Affiliation(s)
- Shau-Ku Huang
- 1 Division of Environmental Health and Occupational Medicine, National Health Research Institutes, 115 Zhunan, Taiwan ; 2 Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA ; 3 State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou 510120, China ; 4 National Heart & Lung Institute, Imperial College London & Respiratory Biomedical Research Unit, Royal Brompton & Harefield NHS Trust, London, UK
| | - Qingling Zhang
- 1 Division of Environmental Health and Occupational Medicine, National Health Research Institutes, 115 Zhunan, Taiwan ; 2 Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA ; 3 State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou 510120, China ; 4 National Heart & Lung Institute, Imperial College London & Respiratory Biomedical Research Unit, Royal Brompton & Harefield NHS Trust, London, UK
| | - Zhiming Qiu
- 1 Division of Environmental Health and Occupational Medicine, National Health Research Institutes, 115 Zhunan, Taiwan ; 2 Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA ; 3 State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou 510120, China ; 4 National Heart & Lung Institute, Imperial College London & Respiratory Biomedical Research Unit, Royal Brompton & Harefield NHS Trust, London, UK
| | - Kian Fan Chung
- 1 Division of Environmental Health and Occupational Medicine, National Health Research Institutes, 115 Zhunan, Taiwan ; 2 Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA ; 3 State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou 510120, China ; 4 National Heart & Lung Institute, Imperial College London & Respiratory Biomedical Research Unit, Royal Brompton & Harefield NHS Trust, London, UK
| |
Collapse
|
39
|
Abstract
Oxidative stress is a common feature observed in a wide spectrum of chronic liver diseases including viral hepatitis, alcoholic, and nonalcoholic steatohepatitis. The nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOXs) are emerging as major sources of reactive oxygen species (ROS). Several major isoforms are expressed in the liver, including NOX1, NOX2, and NOX4. While the phagocytic NOX2 has been known to play an important role in Kupffer cell and neutrophil phagocytic activity and inflammation, the nonphagocytic NOX homologues are increasingly recognized as key enzymes in oxidative injury and wound healing. In this review, we will summarize the current advances in knowledge on the regulatory pathways of NOX activation, their cellular distribution, and their role in the modulation of redox signaling in liver diseases.
Collapse
|
40
|
Affiliation(s)
- An-Soo Jang
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Korea
| |
Collapse
|
41
|
Li WH, Shi YC, Chang CH, Huang CW, Hsiu-Chuan Liao V. Selenite protectsCaenorhabditis elegansfrom oxidative stress via DAF-16 and TRXR-1. Mol Nutr Food Res 2013; 58:863-74. [DOI: 10.1002/mnfr.201300404] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 08/20/2013] [Accepted: 09/05/2013] [Indexed: 12/21/2022]
Affiliation(s)
- Wen-Hsuan Li
- Department of Bioenvironmental Systems Engineering; National Taiwan University; Taipei Taiwan
| | - Yeu-Ching Shi
- Department of Bioenvironmental Systems Engineering; National Taiwan University; Taipei Taiwan
| | - Chun-Han Chang
- Department of Bioenvironmental Systems Engineering; National Taiwan University; Taipei Taiwan
| | - Chi-Wei Huang
- Department of Bioenvironmental Systems Engineering; National Taiwan University; Taipei Taiwan
| | - Vivian Hsiu-Chuan Liao
- Department of Bioenvironmental Systems Engineering; National Taiwan University; Taipei Taiwan
| |
Collapse
|
42
|
Tomobe K, Shinozuka T, Kawashima T, Kawashima-Ohya Y, Nomura Y. Age-related changes of forkhead transcription factor FOXO1 in the liver of senescence-accelerated mouse SAMP8. Arch Gerontol Geriatr 2013; 57:417-22. [DOI: 10.1016/j.archger.2013.06.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 05/24/2013] [Accepted: 06/01/2013] [Indexed: 01/25/2023]
|
43
|
Welker AF, Moreira DC, Campos ÉG, Hermes-Lima M. Role of redox metabolism for adaptation of aquatic animals to drastic changes in oxygen availability. Comp Biochem Physiol A Mol Integr Physiol 2013; 165:384-404. [PMID: 23587877 DOI: 10.1016/j.cbpa.2013.04.003] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 03/26/2013] [Accepted: 04/04/2013] [Indexed: 12/14/2022]
Abstract
Large changes in oxygen availability in aquatic environments, ranging from anoxia through to hyperoxia, can lead to corresponding wide variation in the production of reactive oxygen species (ROS) by animals with aquatic respiration. Therefore, animals living in marine, estuarine and freshwater environments have developed efficient antioxidant defenses to minimize oxidative stress and to regulate the cellular actions of ROS. Changes in oxygen levels may lead to bursts of ROS generation that can be particularly harmful. This situation is commonly experienced by aquatic animals during abrupt transitions from periods of hypoxia/anoxia back to oxygenated conditions (e.g. intertidal cycles). The strategies developed differ significantly among aquatic species and are (i) improvement of their endogenous antioxidant system under hyperoxia (that leads to increased ROS formation) or other similar ROS-related stresses, (ii) increase in antioxidant levels when displaying higher metabolic rates, (iii) presence of constitutively high levels of antioxidants, that attenuates oxidative stress derived from fluctuations in oxygen availability, or (iv) increase in the activity of antioxidant enzymes (and/or the levels of their mRNAs) during hypometabolic states associated with anoxia/hypoxia. This enhancement of the antioxidant system - coined over a decade ago as "preparation for oxidative stress" - controls the possible harmful effects of increased ROS formation during hypoxia/reoxygenation. The present article proposes a novel explanation for the biochemical and molecular mechanisms involved in this phenomenon that could be triggered by hypoxia-induced ROS formation. We also discuss the connections among oxygen sensing, oxidative damage and regulation of the endogenous antioxidant defense apparatus in animals adapted to many natural or man-made challenges of the aquatic environment.
Collapse
Affiliation(s)
- Alexis F Welker
- Laboratório de Radicais Livres, Departamento de Biologia Celular, Universidade de Brasília, Brasília, 70910-900 DF, Brazil
| | | | | | | |
Collapse
|
44
|
Mortuza R, Chen S, Feng B, Sen S, Chakrabarti S. High glucose induced alteration of SIRTs in endothelial cells causes rapid aging in a p300 and FOXO regulated pathway. PLoS One 2013; 8:e54514. [PMID: 23342163 PMCID: PMC3546959 DOI: 10.1371/journal.pone.0054514] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Accepted: 12/12/2012] [Indexed: 12/17/2022] Open
Abstract
In diabetes, some of the cellular changes are similar to aging. We hypothesized that hyperglycemia accelerates aging-like changes in the endothelial cells (ECs) and tissues leading to structural and functional damage. We investigated glucose-induced aging in 3 types of ECs using senescence associated β-gal (SA β-gal) staining and cell morphology. Alterations of sirtuins (SIRTs) and their downstream mediator FOXO and oxidative stress were investigated. Relationship of such alteration with histone acetylase (HAT) p300 was examined. Similar examinations were performed in tissues of diabetic animals. ECs in high glucose (HG) showed evidence of early senescence as demonstrated by increased SA β-gal positivity and reduced replicative capacities. These alterations were pronounced in microvascular ECs. They developed an irregular and hypertrophic phenotype. Such changes were associated with decreased SIRT (1–7) mRNA expressions. We also found that p300 and SIRT1 regulate each other in such process, as silencing one led to increase of the others’ expression. Furthermore, HG caused reduction in FOXO1’s DNA binding ability and antioxidant target gene expressions. Chemically induced increased SIRT1 activity and p300 knockdown corrected these abnormalities slowing aging-like changes. Diabetic animals showed increased cellular senescence in renal glomerulus and retinal blood vessels along with reduced SIRT1 mRNA expressions in these tissues. Data from this study demonstrated that hyperglycemia accelerates aging-like process in the vascular ECs and such process is mediated via downregulation of SIRT1, causing reduction of mitochondrial antioxidant enzyme in a p300 and FOXO1 mediated pathway.
Collapse
Affiliation(s)
- Rokhsana Mortuza
- Department of Pathology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Shali Chen
- Department of Pathology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Biao Feng
- Department of Pathology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Subhrojit Sen
- Department of Pathology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Subrata Chakrabarti
- Department of Pathology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
- * E-mail:
| |
Collapse
|
45
|
Abstract
Aestivation is a survival strategy used by many vertebrates and invertebrates to endure arid environmental conditions. Key features of aestivation include strong metabolic rate suppression, strategies to retain body water, conservation of energy and body fuel reserves, altered nitrogen metabolism, and mechanisms to preserve and stabilize organs, cells and macromolecules over many weeks or months of dormancy. Cell signaling is crucial to achieving both a hypometabolic state and reorganizing multiple metabolic pathways to optimize long-term viability during aestivation. This commentary examines the current knowledge about cell signaling pathways that participate in regulating aestivation, including signaling cascades mediated by the AMP-activated kinase, Akt, ERK, and FoxO1.
Collapse
Affiliation(s)
- Kenneth B Storey
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, Canada, K1S 5B6.
| | | |
Collapse
|
46
|
Shi YC, Liao VHC, Pan TM. Monascin from red mold dioscorea as a novel antidiabetic and antioxidative stress agent in rats and Caenorhabditis elegans. Free Radic Biol Med 2012; 52:109-17. [PMID: 22041455 DOI: 10.1016/j.freeradbiomed.2011.09.034] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 09/25/2011] [Accepted: 09/28/2011] [Indexed: 12/19/2022]
Abstract
Monascin is a major yellow compound from red mold dioscorea. We investigated monascin to test whether this compound acts as an antidiabetic and antioxidative stress agent in diabetic rats and Caenorhabditis elegans. The mechanisms by which monascin exerts its action in vivo were also examined. Streptozotocin (STZ)-induced diabetic rats were given monascin at 30 mg/kg/day and sacrificed after 8 weeks. Blood glucose and serum insulin, triglyceride, total cholesterol, and high-density lipoprotein and antioxidative enzymes in the pancreas of rats were measured. In addition, monascin was evaluated for stress resistance and potential associated mechanisms in C. elegans. Throughout the 8-week experimental period, significantly lowered blood glucose, serum triglyceride, and total cholesterol and higher high-density lipoprotein levels were observed in monascin-treated rats. Monascin-treated rats showed higher serum insulin level, lower reactive oxygen species production, and higher activities of glutathione peroxidase, superoxide dismutase, and catalase in the pancreas compared to diabetic control rats. In addition, monascin significantly induced the hepatic mRNA levels of FOXO3a, FOXO1, MnSOD, and catalase in STZ-induced diabetic rats. Monascin-treated C. elegans showed an increased survival rate during oxidative stress and heat stress treatments compared to untreated controls. Moreover, monascin extended the life span under high-glucose conditions and enhanced expression of small heat shock protein (sHSP-16.2), superoxide dismutase (SOD-3), and glutathione S-transferase (GST-4) in C. elegans. Finally, we showed that monascin affected the subcellular distribution of the FOXO transcription factor DAF-16, whereas it was unable to enhance oxidative stress resistance in the daf-16 deletion mutant in C. elegans. Mechanistic studies in rats and C. elegans suggest that the protective effects of monascin are mediated via regulation of the FOXO/DAF-16-dependent insulin signaling pathway by inducing the expression of stress response/antioxidant genes, thereby enhancing oxidative stress resistance.
Collapse
Affiliation(s)
- Yeu-Ching Shi
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan
| | | | | |
Collapse
|