1
|
Ilyin NP, Nabiullin AD, Kozlova AD, Kupriyanova OV, Shevyrin VA, Gloriozova T, Filimonov D, Lagunin A, Galstyan DS, Kolesnikova TO, Mor MS, Efimova EV, Poroikov V, Yenkoyan KB, de Abreu MS, Demin KA, Kalueff AV. Chronic Behavioral and Neurochemical Effects of Four Novel N-Benzyl-2-phenylethylamine Derivatives Recently Identified as "Psychoactive" in Adult Zebrafish Screens. ACS Chem Neurosci 2024; 15:2006-2017. [PMID: 38683969 DOI: 10.1021/acschemneuro.4c00017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Abstract
Potently affecting human and animal brain and behavior, hallucinogenic drugs have recently emerged as potentially promising agents in psychopharmacotherapy. Complementing laboratory rodents, the zebrafish (Danio rerio) is a powerful model organism for screening neuroactive drugs, including hallucinogens. Here, we tested four novel N-benzyl-2-phenylethylamine (NBPEA) derivatives with 2,4- and 3,4-dimethoxy substitutions in the phenethylamine moiety and the -F, -Cl, and -OCF3 substitutions in the ortho position of the phenyl ring of the N-benzyl moiety (34H-NBF, 34H-NBCl, 24H-NBOMe(F), and 34H-NBOMe(F)), assessing their behavioral and neurochemical effects following chronic 14 day treatment in adult zebrafish. While the novel tank test behavioral data indicate anxiolytic-like effects of 24H-NBOMe(F) and 34H-NBOMe(F), neurochemical analyses reveal reduced brain norepinephrine by all four drugs, and (except 34H-NBCl) - reduced dopamine and serotonin levels. We also found reduced turnover rates for all three brain monoamines but unaltered levels of their respective metabolites. Collectively, these findings further our understanding of complex central behavioral and neurochemical effects of chronically administered novel NBPEAs and highlight the potential of zebrafish as a model for preclinical screening of small psychoactive molecules.
Collapse
Affiliation(s)
- Nikita P Ilyin
- Almazov National Medical Research Centre, St. Petersburg 197341, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Arslan D Nabiullin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Anna D Kozlova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Olga V Kupriyanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
- Kazan State Medical University, Kazan 420012, Russia
| | - Vadim A Shevyrin
- Institute of Chemical Engineering, Ural Federal University, 19 Mira Str. ,Ekaterinburg 620002, Russia
| | - Tatyana Gloriozova
- Institute of Biomedical Chemistry, Pogodinskaya str., 10, bldg. 8 ,Moscow 119121, Russia
| | - Dmitry Filimonov
- Institute of Biomedical Chemistry, Pogodinskaya str., 10, bldg. 8 ,Moscow 119121, Russia
| | - Alexey Lagunin
- Institute of Biomedical Chemistry, Pogodinskaya str., 10, bldg. 8 ,Moscow 119121, Russia
| | - David S Galstyan
- Almazov National Medical Research Centre, St. Petersburg 197341, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Tatiana O Kolesnikova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
- Neuroscience Laboratory, Cobrain Center, Yerevan State Medical University after Mkhitar Heratsi, Yerevan 0025, Armenia
| | - Mikael S Mor
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Evgeniya V Efimova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Vladimir Poroikov
- Institute of Biomedical Chemistry, Pogodinskaya str., 10, bldg. 8 ,Moscow 119121, Russia
| | - Konstantin B Yenkoyan
- Neuroscience Laboratory, Cobrain Center, Yerevan State Medical University after Mkhitar Heratsi, Yerevan 0025, Armenia
- Biochemistry Department, Yerevan State Medical University after Mkhitar Heratsi, Yerevan 0025, Armenia
| | - Murilo S de Abreu
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre 900050, Brazil
| | - Konstantin A Demin
- Almazov National Medical Research Centre, St. Petersburg 197341, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Allan V Kalueff
- Almazov National Medical Research Centre, St. Petersburg 197341, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
- Neurobiology Program, Sirius University of Science and Technology, Sochi 354340, Russia
- Suzhou Key Laboratory of Neurobiology and Cell Signalling, Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| |
Collapse
|
2
|
Braun D, Rosenberg AM, Rabaniam E, Haruvi R, Malamud D, Barbara R, Aiznkot T, Levavi-Sivan B, Kawashima T. High-resolution tracking of unconfined zebrafish behavior reveals stimulatory and anxiolytic effects of psilocybin. Mol Psychiatry 2024; 29:1046-1062. [PMID: 38233467 PMCID: PMC11176078 DOI: 10.1038/s41380-023-02391-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 01/19/2024]
Abstract
Serotonergic psychedelics are emerging therapeutics for psychiatric disorders, yet their underlying mechanisms of action in the brain remain largely elusive. Here, we developed a wide-field behavioral tracking system for larval zebrafish and investigated the effects of psilocybin, a psychedelic serotonin receptor agonist. Machine learning analyses of precise body kinematics identified latent behavioral states reflecting spontaneous exploration, visually-driven rapid swimming, and irregular swim patterns following stress exposure. Using this method, we found that acute psilocybin treatment has two behavioral effects: [i] facilitation of spontaneous exploration ("stimulatory") and [ii] prevention of irregular swim patterns following stress exposure ("anxiolytic"). These effects differed from the effect of acute SSRI treatment and were rather similar to the effect of ketamine treatment. Neural activity imaging in the dorsal raphe nucleus suggested that psilocybin inhibits serotonergic neurons by activating local GABAergic neurons, consistent with psychedelic-induced suppression of serotonergic neurons in mammals. These findings pave the way for using larval zebrafish to elucidate neural mechanisms underlying the behavioral effects of serotonergic psychedelics.
Collapse
Affiliation(s)
- Dotan Braun
- Department of Brain Sciences, Weizmann Institute of Science, 234 Herzl Street, Rehovot, Israel
- The Jerusalem Mental Health Center, Jerusalem, Israel
| | - Ayelet M Rosenberg
- Department of Brain Sciences, Weizmann Institute of Science, 234 Herzl Street, Rehovot, Israel
| | - Elad Rabaniam
- Department of Brain Sciences, Weizmann Institute of Science, 234 Herzl Street, Rehovot, Israel
| | - Ravid Haruvi
- Department of Brain Sciences, Weizmann Institute of Science, 234 Herzl Street, Rehovot, Israel
| | - Dorel Malamud
- Department of Brain Sciences, Weizmann Institute of Science, 234 Herzl Street, Rehovot, Israel
| | - Rani Barbara
- Department of Brain Sciences, Weizmann Institute of Science, 234 Herzl Street, Rehovot, Israel
| | - Tomer Aiznkot
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, 229 Herzl Street, Rehovot, Israel
| | - Berta Levavi-Sivan
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, 229 Herzl Street, Rehovot, Israel
| | - Takashi Kawashima
- Department of Brain Sciences, Weizmann Institute of Science, 234 Herzl Street, Rehovot, Israel.
| |
Collapse
|
3
|
Staubli V, Bshary R, Triki Z. The serotonin blocker Ketanserin reduces coral reef fish Ctenochaetus striatus aggressive behaviour during between-species social interactions. PeerJ 2024; 12:e16858. [PMID: 38313029 PMCID: PMC10838075 DOI: 10.7717/peerj.16858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/09/2024] [Indexed: 02/06/2024] Open
Abstract
A multitude of species engages in social interactions not only with their conspecifics but also with other species. Such interspecific interactions can be either positive, like helping, or negative, like aggressive behaviour. However, the physiological mechanisms of these behaviours remain unclear. Here, we manipulated the serotonin system, a well-known neurohormone for regulating intraspecific aggressive behaviour, to investigate its role in interspecific aggression. We tested whether serotonin blockade affects the aggressive behaviour of a coral reef fish species (Ctenochaetus striatus) that engages in mutualistic interactions with another species, the cleaner fish (Labroides dimidiatus). Although this mutualistic cleaning relationship may appear positive, cleaner fish do not always cooperate and remove ectoparasites from the other coral reef fish ("clients") but tend to cheat and bite the client's protective layer of mucus. Client fish thus often apply control mechanisms, like chasing, to deter their cleaner fish partners from cheating. Our findings show that blocking serotonin receptors 5-HT2A and 5-HT2C with ketanserin reduced the client fish's aggressive behaviour towards cleaner fish, but in the context where the latter did not cheat. These results are evidence of the involvement of serotonin in regulating aggressive behaviour at the between-species social interactions level. Yet, the direction of effect we found here is the opposite of previous findings using a similar experimental set-up and ecological context but with a different client fish species (Scolopsis bilineatus). Together, it suggests that serotonin's role in aggressive behaviour is complex, and at least in this mutualistic ecological context, its function is species-dependent. This warrants, to some extent, careful interpretations from single-species studies looking into the physiological mechanisms of social behaviour.
Collapse
Affiliation(s)
- Virginie Staubli
- Faculty of Science, University of Neuchatel, Neuchatel, Switzerland
| | - Redouan Bshary
- Faculty of Science, University of Neuchatel, Neuchatel, Switzerland
| | - Zegni Triki
- Faculty of Science, University of Neuchatel, Neuchatel, Switzerland
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| |
Collapse
|
4
|
Takeda A, Fujita M, Funakoshi K. Distribution of 5HT receptors during the regeneration process after spinal cord transection in goldfish. J Chem Neuroanat 2023; 131:102281. [PMID: 37119932 DOI: 10.1016/j.jchemneu.2023.102281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/15/2023] [Accepted: 04/26/2023] [Indexed: 05/01/2023]
Abstract
Spinal cord injury in teleosts leads to a fibrous scar, but axons sometimes spontaneously regenerate beyond the scar. In goldfish, regenerating axons enter the scar through tubular structures and enlargement of the tubular diameter is proportional to the increase in the number of regenerating axons. During the regeneration process, mast cells containing 5-hydroxytryptamine (5HT) are recruited to the injury site, and 5HT neurons are newly generated. Here, we investigated the distribution of 5HT receptors during this process to determine their role in remodeling the fibrous scar and tubular structures. At 2 weeks after spinal cord transection (SCT) in goldfish, expression of the 5HT2A and 5HT2C receptor subtypes was observed in the ependymo-radial glial cells lining the central canal of the spinal cord. 5HT2A was expressed at the luminal surface, suggesting that it is receptive to 5HT in the cerebrospinal fluid. 5HT2C, on the other hand, was expressed around the nuclei and in the radial processes protruding from the basal surface, suggesting that it is receptive to 5HT released from nearby nerve endings. 5HT2C was also expressed in the fibrous scar where mast cells containing 5HT were abundant. 5HT1B expression was coincident with the basement membrane bordering the fibrous scar and the surrounding nervous tissue, and with the basement membrane of the tubular structure through which axons pass during regeneration. Our findings suggest that multiple 5HT receptors are involved in remodeling the injured site during the regenerative process following SCT. Ependymo-radial glial cells expressing 5HT2A and 5HT2C are involved in neurogenesis and gliogenesis, which might contribute to remodeling the fibrous scar in coordination with 5HT-containing mast cells. Coincident expression of 5HT1B with the basement membrane might be involved in remodeling the tubular structures, thereby promoting axonal regeneration.
Collapse
Affiliation(s)
- Akihito Takeda
- Department of Neuroanatomy, Yokohama City University School of Medicine, Kanazawa-ku, Yokohama, Japan
| | - Mao Fujita
- Department of Neuroanatomy, Yokohama City University School of Medicine, Kanazawa-ku, Yokohama, Japan
| | - Kengo Funakoshi
- Department of Neuroanatomy, Yokohama City University School of Medicine, Kanazawa-ku, Yokohama, Japan.
| |
Collapse
|
5
|
Chivite M, Ceinos RM, Cerdá-Reverter JM, Soengas JL, Aldegunde M, López-Patiño MA, Míguez JM. Unraveling the periprandial changes in brain serotonergic activity and its correlation with food intake-related neuropeptides in rainbow trout Oncorhynchus mykiss. Front Endocrinol (Lausanne) 2023; 14:1241019. [PMID: 37693350 PMCID: PMC10491422 DOI: 10.3389/fendo.2023.1241019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/08/2023] [Indexed: 09/12/2023] Open
Abstract
This study explored changes in brain serotonin content and activity together with hypothalamic neuropeptide mRNA abundance around feeding time in rainbow trout, as well as the effect of one-day fasting. Groups of trout fed at two (ZT2) and six (ZT6) hours after lights on were sampled from 90 minutes before to 240 minutes after feeding, while additional groups of non-fed trout were also included in the study. Changes in brain amine and metabolite contents were measured in hindbrain, diencephalon and telencephalon, while in the diencephalon the mRNA abundance of tryptophan hydroxylase (tph1, tph2), serotonin receptors (5htr1a, 5htr1b and 5htr2c) and several neuropeptides (npy, agrp1, cartpt, pomca1, crfb) involved in the control of food intake were also assessed. The results showed changes in the hypothalamic neuropeptides that were consistent with the expected role for each in the regulation of food intake in rainbow trout. Serotonergic activity increased rapidly at the time of food intake in the diencephalon and hindbrain and remained high for much of the postprandial period. This increase in serotonin abundance was concomitant with elevated levels of pomca1 mRNA in the diencephalon, suggesting that serotonin might act on brain neuropeptides to promote a satiety profile. Furthermore, serotonin synthesis and neuronal activity appear to increase already before the time of feeding, suggesting additional functions for this amine before and during food intake. Exploration of serotonin receptors in the diencephalon revealed only small changes for gene expression of 5htr1b and 5htr2c receptors during the postprandial phase. Therefore, the results suggest that serotonin may play a relevant role in the regulation of feeding behavior in rainbow trout during periprandial time, but a better understanding of its interaction with brain centers involved in receiving and processing food-related signals is still needed.
Collapse
Affiliation(s)
- Mauro Chivite
- Centro de Investigación Mariña, Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Vigo, Spain
| | - Rosa M. Ceinos
- Centro de Investigación Mariña, Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Vigo, Spain
| | - José M. Cerdá-Reverter
- Departamento de Fisiología de Peces y Biotecnología, Instituto de Acuicultura Torre de la Sal, Instituto de Acuicultura Torre de la Sal - Consejo Superior de Investigaciones Científicas (IATS-CSIC), Castellón, Spain
| | - Jose L. Soengas
- Centro de Investigación Mariña, Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Vigo, Spain
| | - Manuel Aldegunde
- Departamento de Fisiología, Facultad de Biología, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - Marcos A. López-Patiño
- Centro de Investigación Mariña, Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Vigo, Spain
| | - Jesús M. Míguez
- Centro de Investigación Mariña, Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Vigo, Spain
| |
Collapse
|
6
|
Peng Z, Man Q, Meng L, Wang S, Cai H, Zhang C, Li X, Wang H, Zhu G. A PITX2-HTR1B pathway regulates the asymmetric development of female gonads in chickens. PNAS NEXUS 2023; 2:pgad202. [PMID: 37388922 PMCID: PMC10304771 DOI: 10.1093/pnasnexus/pgad202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/07/2023] [Accepted: 06/08/2023] [Indexed: 07/01/2023]
Abstract
All female vertebrates develop a pair of ovaries except for birds, in which only the left gonad develops into an ovary, whereas the right gonad regresses. Previous studies found that the transcription factor Paired-Like Homeodomain 2 (PITX2), a key mediator for left/right morphogenesis in vertebrates, was also implicated in asymmetric gonadal development in chickens. In this study, we systematically screened and validated the signaling pathways that could be targeted by Pitx2 to control unilateral gonad development. Integrated chromatin immunoprecipitation sequencing (ChIP-seq) and RNA sequencing (RNA-seq) analyses indicated that Pitx2 directly binds to the promoters of genes encoding neurotransmitter receptors and leads to left-biased expression of both serotonin and dopamine receptors. Forcibly activating serotonin receptor 5-Hydroxytryptamine Receptor 1B (HTR1B) signaling could induce ovarian gene expression and cell proliferation to partially rescue the degeneration of the right gonad. In contrast, inhibiting serotonin signaling could block the development of the left gonad. These findings reveal a PITX2-HTR1B genetic pathway that guides the left-specific ovarian growth in chickens. We also provided new evidence showing neurotransmitters stimulate the growth of nonneuronal cells during the early development of reproductive organs well before innervation.
Collapse
Affiliation(s)
| | | | | | - Sheng Wang
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian 271018, China
| | - Hao Cai
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian 271018, China
| | - Chuansheng Zhang
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066600, China
| | - Xianyao Li
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian 271018, China
| | - Heng Wang
- To whom correspondence should be addressed: (G.Z.); (H.W.)
| | - Guiyu Zhu
- To whom correspondence should be addressed: (G.Z.); (H.W.)
| |
Collapse
|
7
|
Zebrafish, a biological model for pharmaceutical research for the management of anxiety. Mol Biol Rep 2023; 50:3863-3872. [PMID: 36757551 DOI: 10.1007/s11033-023-08263-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/10/2023] [Indexed: 02/10/2023]
Abstract
The zebrafish (Danio rerio) is a valuable animal model rapidly becoming more commonly used in pharmaceutical studies. Due to its low-cost maintenance and high breeding potential, the zebrafish is a suitable substitute for most adult rodents (mice and rats) in neuroscience research. It is widely used in various anxiety models. This species has been used to develop a conceptual framework for anxiety behavior studies with broad applications in the laboratory, including the study of herbal and chemical drugs. This review discusses the latest studies of anxiety-related behavior in the zebrafish model.
Collapse
|
8
|
Alesci A, Pergolizzi S, Savoca S, Fumia A, Mangano A, Albano M, Messina E, Aragona M, Lo Cascio P, Capillo G, Lauriano ER. Detecting Intestinal Goblet Cells of the Broadgilled Hagfish Eptatretus cirrhatus (Forster, 1801): A Confocal Microscopy Evaluation. BIOLOGY 2022; 11:biology11091366. [PMID: 36138844 PMCID: PMC9496011 DOI: 10.3390/biology11091366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 12/25/2022]
Abstract
Simple Summary The intestinal epithelium of fish, similar to mammals, consists mainly of enterocytes and goblet cells. Goblet cells play a key role in the secretion of mucus, which, in addition to promoting the digestion of nutrients, is the first protective barrier against bacteria, viruses, and pathogens. Our study aims to evaluate the presence, localization, and co-localization of 5-HT, TLR2, iNOS, and Piscidin1 in goblet cells of the intestine of Eptatretus cirrhatus. The results obtained by confocal microscopy show, for the first time, the positivity of goblet cells to the antibodies tested, suggesting the involvement of these cells in the intestinal immunity of broadgilled hagfish. Abstract The fish intestine operates as a complicated interface between the organism and the environment, providing biological and mechanical protections as a result of a viscous layer of mucus released by goblet cells, which serves as a barrier against bacteria, viruses, and other pathogens, and contributes to the functions of the immune system. Therefore, goblet cells have a role in preserving the health of the body by secreting mucus and acting as sentinels. The ancient jawless fish broadgilled hagfish (Eptatretus cirrhatus, Forster, 1801) has a very basic digestive system because it lacks a stomach. By examining the presence, localization, and co-localization of 5-HT, TLR2, iNOS, and Piscidin1, this study intends to provide insight into the potential immune system contributions arranged by the gut goblet cells of broadgilled hagfish. Our results characterize intestinal goblet cells of broadgilled hagfish, for the first time, with the former antibodies, suggesting the hypothesis of conservation of the roles played by these cells also in primitive vertebrates. Moreover, this study deepens the knowledge about the still little-known immune system of hagfish.
Collapse
Affiliation(s)
- Alessio Alesci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
- Correspondence: (A.A.); (S.P.)
| | - Simona Pergolizzi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
- Correspondence: (A.A.); (S.P.)
| | - Serena Savoca
- Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, 98125 Messina, Italy
- Institute of Marine Biological Resources and Biotechnology, National Research Council (IRBIM, CNR), 98164 Messina, Italy
| | - Angelo Fumia
- Department of Clinical and Experimental Medicine, University of Messina, Padiglione C, A. O. U. Policlinico “G. Martino”, 98124 Messina, Italy
| | - Angelica Mangano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Marco Albano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Emmanuele Messina
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Marialuisa Aragona
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Patrizia Lo Cascio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Gioele Capillo
- Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, 98125 Messina, Italy
- Institute of Marine Biological Resources and Biotechnology, National Research Council (IRBIM, CNR), 98164 Messina, Italy
| | - Eugenia Rita Lauriano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| |
Collapse
|
9
|
Alesci A, Pergolizzi S, Fumia A, Calabrò C, Lo Cascio P, Lauriano ER. Mast cells in goldfish (
Carassius auratus
) gut: Immunohistochemical characterization. ACTA ZOOL-STOCKHOLM 2022. [DOI: 10.1111/azo.12417] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Alessio Alesci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences University of Messina Messina Italy
| | - Simona Pergolizzi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences University of Messina Messina Italy
| | - Angelo Fumia
- Department of Clinical and Experimental Medicine University of Messina Messina Italy
| | - Concetta Calabrò
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences University of Messina Messina Italy
| | - Patrizia Lo Cascio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences University of Messina Messina Italy
| | - Eugenia Rita Lauriano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences University of Messina Messina Italy
| |
Collapse
|
10
|
Gould SL, Winter MJ, Norton WHJ, Tyler CR. The potential for adverse effects in fish exposed to antidepressants in the aquatic environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:16299-16312. [PMID: 34856105 DOI: 10.1021/acs.est.1c04724] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Antidepressants are one of the most commonly prescribed pharmaceutical classes for the treatment of psychiatric conditions. They act via modulation of brain monoaminergic signaling systems (predominantly serotonergic, adrenergic, dopaminergic) that show a high degree of structural conservation across diverse animal phyla. A reasonable assumption, therefore, is that exposed fish and other aquatic wildlife may be affected by antidepressants released into the natural environment. Indeed, there are substantial data reported for exposure effects in fish, albeit most are reported for exposure concentrations exceeding those occurring in natural environments. From a critical analysis of the available evidence for effects in fish, risk quotients (RQs) were derived from laboratory-based studies for a selection of antidepressants most commonly detected in the aquatic environment. We conclude that the likelihood for effects in fish on standard measured end points used in risk assessment (i.e., excluding effects on behavior) is low for levels of exposure occurring in the natural environment. Nevertheless, some effects on behavior have been reported for environmentally relevant exposures, and antidepressants can bioaccumulate in fish tissues. Limitations in the datasets used to calculate RQs revealed important gaps in which future research should be directed to more accurately assess the risks posed by antidepressants to fish. Developing greater certainty surrounding risk of antidepressants to fish requires more attention directed toward effects on behaviors relating to individual fitness, the employment of environmentally realistic exposure levels, on chronic exposure scenarios, and on mixtures analyses, especially given the wide range of similarly acting compounds released into the environment.
Collapse
Affiliation(s)
- Sophie L Gould
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, Devon EX4 4QD, U.K
| | - Matthew J Winter
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, Devon EX4 4QD, U.K
| | - William H J Norton
- Department of Genetics and Genome Biology, College of Life Sciences, University of Leicester, University Rd, Leicester, LE1 7RH, U.K
| | - Charles R Tyler
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, Devon EX4 4QD, U.K
| |
Collapse
|
11
|
Reddy GS, Kamaraj R, Hossain KA, Kumar JS, Thirupataiah B, Medishetti R, Sushma Sri N, Misra P, Pal M. Amberlyst-15 catalysed synthesis of novel indole derivatives under ultrasound irradiation: Their evaluation as serotonin 5-HT 2C receptor agonists. Bioorg Chem 2021; 116:105380. [PMID: 34670330 DOI: 10.1016/j.bioorg.2021.105380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/07/2021] [Accepted: 09/19/2021] [Indexed: 11/30/2022]
Abstract
A series of indole based novel Schiff bases was designed as potential agonists of 5-HT2C receptor that was supported by docking studies in silico. These compounds were synthesized via Amberlyst-15 catalysed condensation of an appropriate pyrazole based primary amine with the corresponding indole-3-aldehyde under ultrasound irradiation at ambient temperature. A number of target Schiff bases were obtained in good yields (77-87%) under mild conditions within 1 h. Notably, the methodology afforded the corresponding pyrazolo[4,3-d]pyrimidin-7(4H)-one derivatives when the primary amine was replaced by a secondary amine. Several Schiff bases showed agonist activity when tested against human 5-HT2C using luciferase assay in HEK293T cells in vitro. The SAR (Structure-Activity-Relationship) studies suggested that the imine moiety was more favorable over its cyclic form i.e. the corresponding pyrazolopyrimidinone ring. The Schiff bases 3b (EC50 1.8 nM) and 3i (EC50 5.7 nM) were identified as the most active compounds and were comparable with Lorcaserin (EC50 8.5 nM). Also like Lorcaserin, none of these compounds were found to be PAM of 5-HT2C. With ∼24 and ∼150 fold selectivity towards 5-HT2C over 5-HT2A and 5-HT2B respectively the compound 3i that reduced locomotor activity in zebrafish (Danio rerio) larvae model emerged as a promising hit molecule for further study.
Collapse
Affiliation(s)
- Gangireddy Sujeevan Reddy
- Dr Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500 046, India; Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Madhav Nagar, Manipal 576 104, Karnataka, India
| | - Rajamanikkam Kamaraj
- Dr Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500 046, India
| | - Kazi Amirul Hossain
- Department of Physical Chemistry, Gdansk University of Technology, ul. Narutowicza 11/12, 80-233 Gdansk, Poland
| | - Jetta Sandeep Kumar
- Dr Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500 046, India; Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Madhav Nagar, Manipal 576 104, Karnataka, India
| | - B Thirupataiah
- Dr Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500 046, India; Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Madhav Nagar, Manipal 576 104, Karnataka, India
| | - Raghavender Medishetti
- Dr Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500 046, India; Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Madhav Nagar, Manipal 576 104, Karnataka, India
| | - N Sushma Sri
- Dr Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500 046, India
| | - Parimal Misra
- Dr Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500 046, India
| | - Manojit Pal
- Dr Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500 046, India.
| |
Collapse
|
12
|
do Carmo Silva RX, do Nascimento BG, Gomes GCV, da Silva NAH, Pinheiro JS, da Silva Chaves SN, Pimentel AFN, Costa BPD, Herculano AM, Lima-Maximino M, Maximino C. 5-HT2C agonists and antagonists block different components of behavioral responses to potential, distal, and proximal threat in zebrafish. Pharmacol Biochem Behav 2021; 210:173276. [PMID: 34555392 DOI: 10.1016/j.pbb.2021.173276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 10/20/2022]
Abstract
Serotonin (5-HT) receptors have been implicated in responses to aversive stimuli in mammals and fish, but its precise role is still unknown. Moreover, since at least seven families of 5-HT receptors exist in vertebrates, the role of specific receptors is still debated. Aversive stimuli can be classified as indicators of proximal, distal, or potential threat, initiating responses that are appropriate for each of these threat levels. Responses to potential threat usually involve cautious exploration and increased alertness, while responses to distal and proximal threat involve a fight-flight-freeze reaction. We exposed adult zebrafish to a conspecific alarm substance (CAS) and observed behavior during (distal threat) and after (potential threat) exposure, and treated with the 5-HT2C receptor agonists MK-212 or WAY-161503 or with the antagonist RS-102221. The agonists blocked CAS-elicited defensive behavior (distal threat), but not post-exposure increases in defensive behavior (potential threat), suggesting inhibition of responses to distal threat. MK-212 blocked changes in freezing elicited by acute restraint stress, a model of proximal threat, while RS-102221 blocked changes in geotaxis elicited this stressor. We also found that RS-102221, a 5-HT2C receptor antagonist, produced small effect on behavior during and after exposure to CAS. Preprint: https://www.biorxiv.org/content/10.1101/2020.10.04.324202; Data and scripts: https://github.com/lanec-unifesspa/5-HT-CAS/tree/master/data/5HT2C.
Collapse
Affiliation(s)
- Rhayra Xavier do Carmo Silva
- Laboratório de Neurofarmacologia Experimental - LNE, Universidade Federal do Pará, Belém/PA, Brazil; Laboratório de Neurociências e Comportamento "Frederico Guilherme Graeff" - LaNeC, Universidade Federal do Sul e Sudeste do Pará, Marabá/PA, Brazil
| | - Bianca Gomes do Nascimento
- Laboratório de Neurociências e Comportamento "Frederico Guilherme Graeff" - LaNeC, Universidade Federal do Sul e Sudeste do Pará, Marabá/PA, Brazil
| | - Gabriela Cristini Vidal Gomes
- Laboratório de Neurociências e Comportamento "Frederico Guilherme Graeff" - LaNeC, Universidade Federal do Sul e Sudeste do Pará, Marabá/PA, Brazil
| | | | - Jéssica Souza Pinheiro
- Laboratório de Neurofarmacologia Experimental - LNE, Universidade Federal do Pará, Belém/PA, Brazil
| | - Suianny Nayara da Silva Chaves
- Laboratório de Neurociências e Comportamento "Frederico Guilherme Graeff" - LaNeC, Universidade Federal do Sul e Sudeste do Pará, Marabá/PA, Brazil
| | - Ana Flávia Nogueira Pimentel
- Laboratório de Neurociências e Comportamento "Frederico Guilherme Graeff" - LaNeC, Universidade Federal do Sul e Sudeste do Pará, Marabá/PA, Brazil
| | - Bruna Patrícia Dutra Costa
- Laboratório de Neurociências e Comportamento "Frederico Guilherme Graeff" - LaNeC, Universidade Federal do Sul e Sudeste do Pará, Marabá/PA, Brazil
| | | | - Monica Lima-Maximino
- Laboratório de Neurofarmacologia e Biofísica - LaNeF, Universidade do Estado do Pará, Marabá/PA, Brazil
| | - Caio Maximino
- Laboratório de Neurociências e Comportamento "Frederico Guilherme Graeff" - LaNeC, Universidade Federal do Sul e Sudeste do Pará, Marabá/PA, Brazil.
| |
Collapse
|
13
|
Müller TE, Fontana BD, Bertoncello KT, Franscescon F, Mezzomo NJ, Canzian J, Stefanello FV, Parker MO, Gerlai R, Rosemberg DB. Understanding the neurobiological effects of drug abuse: Lessons from zebrafish models. Prog Neuropsychopharmacol Biol Psychiatry 2020; 100:109873. [PMID: 31981718 DOI: 10.1016/j.pnpbp.2020.109873] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 01/01/2023]
Abstract
Drug abuse and brain disorders related to drug comsumption are public health problems with harmful individual and social consequences. The identification of therapeutic targets and precise pharmacological treatments to these neuropsychiatric conditions associated with drug abuse are urgently needed. Understanding the link between neurobiological mechanisms and behavior is a key aspect of elucidating drug abuse-related targets. Due to various molecular, biochemical, pharmacological, and physiological features, the zebrafish (Danio rerio) has been considered a suitable vertebrate for modeling complex processes involved in drug abuse responses. In this review, we discuss how the zebrafish has been successfully used for modeling neurobehavioral phenotypes related to drug abuse and review the effects of opioids, cannabinoids, alcohol, nicotine, and psychedelic drugs on the central nervous system (CNS). Moreover, we summarize recent advances in zebrafish-based studies and outline potential advantages and limitations of the existing zebrafish models to explore the neurochemical bases of drug abuse and addiction. Finally, we discuss how the use of zebrafish models may present fruitful approaches to provide valuable clinically translatable data.
Collapse
Affiliation(s)
- Talise E Müller
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil.
| | - Barbara D Fontana
- Brain and Behaviour Laboratory, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Old St Michael's Building, Portsmouth PO1 2DT, UK
| | - Kanandra T Bertoncello
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Francini Franscescon
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Nathana J Mezzomo
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Pharmacology, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Julia Canzian
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Flavia V Stefanello
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Matthew O Parker
- Brain and Behaviour Laboratory, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Old St Michael's Building, Portsmouth PO1 2DT, UK
| | - Robert Gerlai
- Department of Psychology, University of Toronto, Mississauga, Canada; Department of Cell and Systems Biology, University of Toronto, Canada
| | - Denis B Rosemberg
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; The International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA.
| |
Collapse
|
14
|
Cartolano MC, Chng Y, McDonald MD. Do reproductive hormones control Gulf toadfish pulsatile urea excretion? Comp Biochem Physiol A Mol Integr Physiol 2019; 238:110561. [PMID: 31499168 DOI: 10.1016/j.cbpa.2019.110561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 08/14/2019] [Accepted: 08/30/2019] [Indexed: 01/04/2023]
Abstract
Gulf toadfish (Opsanus beta) can excrete the majority of their nitrogenous waste as urea in distinct pulses across their gill. Urea pulses are controlled by cortisol and serotonin (5-HT) and are believed to contain chemical signals that may communicate reproductive and/or social status. The objectives of this study were to determine if reproductive hormones are involved in controlling pulsatile urea excretion, and if toadfish respond to prostaglandins as a chemical signal. Specifically, 11-ketotestosterone (11-KT), estradiol (E2), and the teleost pheromone prostaglandin E2 (PGE2) were investigated. Castration during breeding season did not affect pulsatile urea excretion but serial injections of 11-KT outside of breeding season did result in a 48% reduction in urea pulse size in fish of both sexes. Injections of E2 and PGE2, on the other hand, did not alter urea excretion patterns. Toadfish also did not pulse urea in response to waterborne exposure of PGE2 suggesting that this compound does not serve as a toadfish pheromone alone. Toadfish have significantly higher plasma 5-HT during breeding season compared to the months following breeding season. Future research should focus on the composition of the chemical signal in toadfish and the potential importance of seasonal changes in plasma 5-HT in toadfish pulsatile urea excretion and teleost reproduction in general.
Collapse
Affiliation(s)
- Maria C Cartolano
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA.
| | - Yi Chng
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA
| | - M Danielle McDonald
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA
| |
Collapse
|
15
|
Antagonists for serotonin receptors ameliorate rhabdomyolysis induced by 25D-NBOMe, a psychoactive designer drug. Forensic Toxicol 2019. [DOI: 10.1007/s11419-019-00495-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
16
|
Amador MHB, McDonald MD. The serotonin transporter and nonselective transporters are involved in peripheral serotonin uptake in the Gulf toadfish, Opsanus beta. Am J Physiol Regul Integr Comp Physiol 2018; 315:R1154-R1166. [PMID: 30303705 DOI: 10.1152/ajpregu.00137.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In mammals, circulating serotonin [5-hydroxytryptamine (5-HT)] is sequestered by platelets via the 5-HT transporter (SERT) to prevent unintended signaling by this potent signaling molecule. Teleost fish appear to lack a similar circulating storage pool, although the diverse effects of 5-HT in teleosts likely necessitate an alternative method of tight regulation, such as uptake by peripheral tissues. Here, a 5-HT radiotracer was used to explore the 5-HT uptake capacity of peripheral tissues in the Gulf toadfish, Opsanus beta, and to elucidate the primary excretion routes of 5-HT and its metabolites. Pharmacological inhibition of SERT and other transporters enabled assessment of the SERT dependence of peripheral 5-HT uptake and excretion. The results indicated a rapid and substantial uptake of 5-HT by the heart atrium, heart ventricle, and gill that was at least partly SERT dependent. The results also supported the presence of a partial blood-brain barrier that prevented rapid changes in brain 5-HT content despite fluctuating plasma 5-HT concentrations. The renal pathway appeared to be the dominant excretory route for 5-HT and its metabolites over shorter time frames (up to ~30 min), but hepatic excretion was substantial over several hours. SERT inhibition ultimately reduced the excretion of 5-HT and its metabolites by urinary, biliary, and/or intestinal pathways. In addition, branchial excretion of 5-HT and its metabolites could not be ruled out. In summary, this study reveals that the toadfish heart and gill play active roles in regulating circulating 5-HT and yields important insights into the control of peripheral 5-HT in this teleost fish.
Collapse
Affiliation(s)
- Molly H B Amador
- Rosenstiel School of Marine and Atmospheric Science, University of Miami , Miami, Florida
| | - M Danielle McDonald
- Rosenstiel School of Marine and Atmospheric Science, University of Miami , Miami, Florida
| |
Collapse
|
17
|
Barreto RE. Mianserin affects alarm reaction to conspecific chemical alarm cues in Nile tilapia. FISH PHYSIOLOGY AND BIOCHEMISTRY 2017; 43:193-201. [PMID: 27554252 DOI: 10.1007/s10695-016-0279-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 08/17/2016] [Indexed: 06/06/2023]
Abstract
In this study, I show that mianserin, a chemical with serotonin and adrenoceptor antagonist activities, increases fish vulnerability to a potential predator threat, when prey fish must deal with this threat based on conspecific chemical alarm cues. For that, I evaluated whether mianserin, diluted in the water, influences the behavioral responses of Nile tilapia (Oreochromis niloticus) to conspecific skin extract (chemical alarm cues). I found that, while mianserin did not abolished antipredator responses, this drug mitigates some components of this defensive reaction. Thus, a potential decrease in serotonin and adrenergic activities reduces the ability of dealing with predators when perceiving conspecific chemical alarm cues.
Collapse
Affiliation(s)
- Rodrigo Egydio Barreto
- Department of Physiology, CAUNESP, Institute of Biosciences of Botucatu, UNESP, Rubião Jr s/n, São Paulo, 18618-970, Brazil.
| |
Collapse
|
18
|
Ritanserin-sensitive receptors modulate the prosocial and the anxiolytic effect of MDMA derivatives, DOB and PMA, in zebrafish. Behav Brain Res 2016; 314:181-9. [DOI: 10.1016/j.bbr.2016.08.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 07/30/2016] [Accepted: 08/04/2016] [Indexed: 12/19/2022]
|
19
|
Ponzoni L, Braida D, Sala M. Abuse potential of methylenedioxymethamphetamine (MDMA) and its derivatives in zebrafish: role of serotonin 5HT2-type receptors. Psychopharmacology (Berl) 2016; 233:3031-9. [PMID: 27318987 DOI: 10.1007/s00213-016-4352-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 05/31/2016] [Indexed: 12/18/2022]
Abstract
RATIONALE The synthetic phenethylamines are recreational drugs known to produce psychostimulant effects. However, their abuse potential has not been widely studied. OBJECTIVES Here, we investigated the rewarding and the hallucinatory effects of 2,5-dimetoxy-4-bromo-amphetamine hydrobromide (DOB) and para-methoxyamphetamine (PMA) in comparison with the classical 3,4-methylenedioxymethamphetamine (MDMA). In addition, the role of serotonin 5-HT2-like receptor on the abovementioned effects was evaluated. METHODS Zebrafish were intramuscularly (i.m.) treated with a wide range of doses of DOB (0.1-20 mg/kg), PMA (0.0005-2 mg/kg), or MDMA (0.5-160 mg/kg). Animals were submitted to a conditioned place preference (CPP) task, to investigation of the rewarding properties, and to the evaluation of hallucinatory behavior in terms of appearance of a trance-like behavior. The serotonin 5-HT2 subtype receptor antagonist ritanserin (0.025-2.5 mg/kg) in association with the maximal effective dose of MDMA, DOB, and PMA was given i.m., and the effect on CPP or hallucinatory behavior was evaluated. RESULTS MDMA and its derivatives exhibited CPP in a biphasic fashion, being PMA the most potent. This effect was accompanied, for DOB (2 mg/kg) and PMA (0.1 mg/kg), by a trance-like hallucinatory behavior. MDMA at a high dose as 160 mg/kg did not induce any hallucinatory behavior. Ritanserin significantly blocked the rewarding and hallucinatory effects suggesting the involvement of serotonin 5HT2 subtype receptor. CONCLUSION Collectively, these findings demonstrate for the first time that the rewarding properties of DOB and PMA are accompanied by hallucinatory behavior through a serotonergic system and reinforce zebrafish as an emerging experimental model for screening new hallucinogens.
Collapse
Affiliation(s)
- Luisa Ponzoni
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, Milan, Italy
| | - Daniela Braida
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, Milan, Italy
| | - Mariaelvina Sala
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, Milan, Italy.
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche (CNR), Milan, Italy.
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche, and Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, Via Vanvitelli 32, 20129, Milan, Italy.
| |
Collapse
|
20
|
Kwan W, Cortes M, Frost I, Esain V, Theodore LN, Liu SY, Budrow N, Goessling W, North TE. The Central Nervous System Regulates Embryonic HSPC Production via Stress-Responsive Glucocorticoid Receptor Signaling. Cell Stem Cell 2016; 19:370-82. [PMID: 27424782 DOI: 10.1016/j.stem.2016.06.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 05/04/2016] [Accepted: 06/10/2016] [Indexed: 01/08/2023]
Abstract
Hematopoietic stem and progenitor cell (HSPC) specification is regulated by numerous defined factors acting locally within the hemogenic niche; however, it is unclear whether production can adapt to fluctuating systemic needs. Here we show that the CNS controls embryonic HSPC numbers via the hypothalamic-pituitary-adrenal/interrenal (HPA/I) stress response axis. Exposure to serotonin or the reuptake inhibitor fluoxetine increased runx1 expression and Flk1(+)/cMyb(+) HSPCs independent of peripheral innervation. Inhibition of neuronal, but not peripheral, tryptophan hydroxlyase (Tph) persistently reduced HSPC number. Consistent with central HPA/I axis induction and glucocorticoid receptor (GR) activation, GR agonists enhanced, whereas GR loss diminished, HSPC formation. Significantly, developmental hypoxia, as indicated by Hif1α function, induced the HPA/I axis and cortisol production. Furthermore, Hif1α-stimulated HSPC enhancement was attenuated by neuronal tph or GR loss. Our data establish that embryonic HSC production responds to physiologic stress via CNS-derived serotonin synthesis and central feedback regulation to control HSC numbers.
Collapse
Affiliation(s)
- Wanda Kwan
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Mauricio Cortes
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Isaura Frost
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Virginie Esain
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Lindsay N Theodore
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Sarah Y Liu
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Nadine Budrow
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Wolfram Goessling
- Brigham and Women's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Trista E North
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
21
|
Sourbron J, Schneider H, Kecskés A, Liu Y, Buening EM, Lagae L, Smolders I, de Witte P. Serotonergic Modulation as Effective Treatment for Dravet Syndrome in a Zebrafish Mutant Model. ACS Chem Neurosci 2016; 7:588-98. [PMID: 26822114 DOI: 10.1021/acschemneuro.5b00342] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Dravet syndrome (DS) is a severe epilepsy syndrome that starts within the first year of life. In a clinical study, add-on treatment with fenfluramine, a potent 5-hydroxytryptamine (5-HT) releaser activating multiple 5-HT receptor subtypes, made 70% of DS children seizure free. Others and we recently confirmed the efficacy of fenfluramine as an antiepileptiform compound in zebrafish models of DS. By using a large set of subtype selective agonists, in this study we examined which 5-HT receptor subtypes can be targeted to trigger antiseizure effects in homozygous scn1Lab(-/-) mutant zebrafish larvae that recapitulate DS well. We also provide evidence that zebrafish larvae express the orthologues of all human 5-HT receptor subtypes. Using an automated larval locomotor behavior assay, we were able to show that selective 5-HT1D-, 5-HT1E-, 5-HT2A-, 5-HT2C-, and 5-HT7-agonists significantly decreased epileptiform activity in the mutant zebrafish at 7 days post fertilization (dpf). By measuring local field potentials in the zebrafish larval forebrain, we confirmed the antiepileptiform activity of the 5-HT1D-, 5-HT2C-, and especially the 5-HT2A-agonist. Interestingly, we also found a significant decrease of serotonin in the heads of homozygous scn1Lab(-/-) mutants as compared to the wild type zebrafish, which suggest that neurochemical defects might play a crucial role in the pathophysiology of DS. Taken together, our results emphasize the high conservation of the serotonergic receptors in zebrafish larvae. Modulating certain serotonergic receptors was shown to effectively reduce seizures. Our findings therefore open new avenues for the development of future novel DS therapeutics.
Collapse
Affiliation(s)
- Jo Sourbron
- Laboratory
for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological
Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Henning Schneider
- Department
of Biology, DePauw University, 1 East Hanna St., Greencastle, Indiana 46135, United States
| | - Angéla Kecskés
- Laboratory
for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological
Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Yusu Liu
- Department
of Biology, DePauw University, 1 East Hanna St., Greencastle, Indiana 46135, United States
| | - Ellen M. Buening
- Department
of Biology, DePauw University, 1 East Hanna St., Greencastle, Indiana 46135, United States
| | - Lieven Lagae
- Department
of Development and Regeneration, Section Pediatric Neurology, University Hospital KU Leuven, 3000 Leuven, Belgium
| | - Ilse Smolders
- Center
for Neurosciences, C4N, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Peter de Witte
- Laboratory
for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological
Sciences, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
22
|
A Serotonin Circuit Acts as an Environmental Sensor to Mediate Midline Axon Crossing through EphrinB2. J Neurosci 2016; 35:14794-808. [PMID: 26538650 DOI: 10.1523/jneurosci.1295-15.2015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Modulation of connectivity formation in the developing brain in response to external stimuli is poorly understood. Here, we show that the raphe nucleus and its serotonergic projections regulate pathfinding of commissural axons in zebrafish. We found that the raphe neurons extend projections toward midline-crossing axons and that when serotonergic signaling is blocked by pharmacological inhibition or by raphe neuron ablation, commissural pathfinding is disrupted. We demonstrate that the serotonin receptor htr2a is expressed on these commissural axons and that genetic knock-down of htr2a disrupts crossing. We further show that knock-down of htr2a or ablation of the raphe neurons increases ephrinB2a protein levels in commissural axons. An ephrinB2a mutant can rescue midline crossing when serotonergic signaling is blocked. Furthermore, we found that regulation of serotonin expression in the raphe neurons is modulated in response to the developmental environment. Hypoxia causes the raphe to decrease serotonin levels, leading to a reduction in midline crossing. Increasing serotonin in the setting of hypoxia restored midline crossing. Our findings demonstrate an instructive role for serotonin in axon guidance acting through ephrinB2a and reveal a novel mechanism for developmental interpretation of the environmental milieu in the generation of mature neural circuitry. SIGNIFICANCE STATEMENT We show here that serotonin has a novel role in regulating connectivity in response to the developmental environment. We demonstrate that serotonergic projections from raphe neurons regulate pathfinding of crossing axons. The neurons modulate their serotonin levels, and thus alter crossing, in response to the developmental environment including hypoxia. The findings suggest that modification of the serotonergic system by early exposures may contribute to permanent CNS connectivity alterations. This has important ramifications because of the association between premature birth and accompanying hypoxia, and increased risk of autism and evidence associating in utero exposure to some antidepressants and neurodevelopmental disorders. Finally, this work demonstrates that the vertebrate CNS can modulate its connectivity in response to the external environment.
Collapse
|
23
|
Di Giovanni G, De Deurwaerdère P. New therapeutic opportunities for 5-HT2C receptor ligands in neuropsychiatric disorders. Pharmacol Ther 2015; 157:125-62. [PMID: 26617215 DOI: 10.1016/j.pharmthera.2015.11.009] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The 5-HT2C receptor (R) displays a widespread distribution in the CNS and is involved in the action of 5-HT in all brain areas. Knowledge of its functional role in the CNS pathophysiology has been impaired for many years due to the lack of drugs capable of discriminating among 5-HT2R subtypes, and to a lesser extent to the 5-HT1B, 5-HT5, 5-HT6 and 5-HT7Rs. The situation has changed since the mid-90s due to the increased availability of new and selective synthesized compounds, the creation of 5-HT2C knock out mice, and the progress made in molecular biology. Many pharmacological classes of drugs including antipsychotics, antidepressants and anxiolytics display affinities toward 5-HT2CRs and new 5-HT2C ligands have been developed for various neuropsychiatric disorders. The 5-HT2CR is presumed to mediate tonic/constitutive and phasic controls on the activity of different central neurobiological networks. Preclinical data illustrate this complexity to a point that pharmaceutical companies developed either agonists or antagonists for the same disease. In order to better comprehend this complexity, this review will briefly describe the molecular pharmacology of 5-HT2CRs, as well as their cellular impacts in general, before addressing its central distribution in the mammalian brain. Thereafter, we review the preclinical efficacy of 5-HT2C ligands in numerous behavioral tests modeling human diseases, highlighting the multiple and competing actions of the 5-HT2CRs in neurobiological networks and monoaminergic systems. Notably, we will focus this evidence in the context of the physiopathology of psychiatric and neurological disorders including Parkinson's disease, levodopa-induced dyskinesia, and epilepsy.
Collapse
Affiliation(s)
- Giuseppe Di Giovanni
- Department of Physiology & Biochemistry, Faculty of Medicine and Surgery, University of Malta; Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, UK.
| | - Philippe De Deurwaerdère
- Centre National de la Recherche Scientifique (Unité Mixte de Recherche 5293) 33076 Bordeaux Cedex, France.
| |
Collapse
|
24
|
Prasad P, Ogawa S, Parhar IS. Role of serotonin in fish reproduction. Front Neurosci 2015; 9:195. [PMID: 26097446 PMCID: PMC4456567 DOI: 10.3389/fnins.2015.00195] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 05/18/2015] [Indexed: 11/13/2022] Open
Abstract
The neuroendocrine mechanism regulates reproduction through the hypothalamo-pituitary-gonadal (HPG) axis which is evolutionarily conserved in vertebrates. The HPG axis is regulated by a variety of internal as well as external factors. Serotonin, a monoamine neurotransmitter, is involved in a wide range of reproductive functions. In mammals, serotonin regulates sexual behaviors, gonadotropin release and gonadotropin-release hormone (GnRH) secretion. However, the serotonin system in teleost may also play unique role in the control of reproduction as the mechanism of reproductive control in teleosts is not always the same as in the mammalian models. In fish, the serotonin system is also regulated by natural environmental factors as well as chemical substances. In particular, selective serotonin reuptake inhibitors (SSRIs) are commonly detected as pharmaceutical contaminants in the natural environment. Those factors may influence fish reproductive functions via the serotonin system. This review summarizes the functional significance of serotonin in the teleosts reproduction.
Collapse
Affiliation(s)
- Parvathy Prasad
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia Selangor, Malaysia
| | - Satoshi Ogawa
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia Selangor, Malaysia
| | - Ishwar S Parhar
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia Selangor, Malaysia
| |
Collapse
|
25
|
Nathan FM, Ogawa S, Parhar IS. Kisspeptin1 modulates odorant-evoked fear response via two serotonin receptor subtypes (5-HT1A
and 5-HT2
) in zebrafish. J Neurochem 2015; 133:870-8. [DOI: 10.1111/jnc.13105] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 02/13/2015] [Accepted: 03/19/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Fatima M. Nathan
- Brain Research Institute; School of Medicine and Health Sciences; Monash University Malaysia; Bandar Sunway Selangor Malaysia
| | - Satoshi Ogawa
- Brain Research Institute; School of Medicine and Health Sciences; Monash University Malaysia; Bandar Sunway Selangor Malaysia
| | - Ishwar S. Parhar
- Brain Research Institute; School of Medicine and Health Sciences; Monash University Malaysia; Bandar Sunway Selangor Malaysia
| |
Collapse
|
26
|
Stewart AM, Ullmann JF, Norton WH, Brennan CH, Parker MO, Gerlai R, Kalueff AV. Molecular psychiatry of zebrafish. Mol Psychiatry 2015; 20:2-17. [PMID: 25349164 PMCID: PMC4318706 DOI: 10.1038/mp.2014.128] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Revised: 08/27/2014] [Accepted: 08/28/2014] [Indexed: 12/31/2022]
Abstract
Due to their well-characterized neural development and high genetic homology to mammals, zebrafish (Danio rerio) have emerged as a powerful model organism in the field of biological psychiatry. Here, we discuss the molecular psychiatry of zebrafish, and its implications for translational neuroscience research and modeling central nervous system (CNS) disorders. In particular, we outline recent genetic and technological developments allowing for in vivo examinations, high-throughput screening and whole-brain analyses in larval and adult zebrafish. We also summarize the application of these molecular techniques to the understanding of neuropsychiatric disease, outlining the potential of zebrafish for modeling complex brain disorders, including attention-deficit/hyperactivity disorder (ADHD), aggression, post-traumatic stress and substance abuse. Critically evaluating the advantages and limitations of larval and adult fish tests, we suggest that zebrafish models become a rapidly emerging new field in modern molecular psychiatry research.
Collapse
Affiliation(s)
- Adam Michael Stewart
- ZENEREI Institute, 309 Palmer Court, Slidell, LA 70458, USA
- International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA
| | - Jeremy F.P. Ullmann
- International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA
- Centre for Advanced Imaging, University of Queensland, Brisbane, Queensland 4072, Australia
| | - William H.J. Norton
- International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA
- Department of Biology, College of Medicine, Biological Sciences and Psychiatry, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Caroline H. Brennan
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1-4NS, UK
| | - Matthew O. Parker
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1-4NS, UK
| | - Robert Gerlai
- Department of Psychology, University of Toronto at Mississauga, 3359 Mississauga Rd N Mississauga, Ontario L5L1C6, Canada
| | - Allan V. Kalueff
- ZENEREI Institute, 309 Palmer Court, Slidell, LA 70458, USA
- International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA
- Research Institute for Marine Drugs and Nutrition, Guangdong Ocean University, Zhanjiang, Guangdong 524025, China
| |
Collapse
|
27
|
Herculano AM, Maximino C. Serotonergic modulation of zebrafish behavior: towards a paradox. Prog Neuropsychopharmacol Biol Psychiatry 2014; 55:50-66. [PMID: 24681196 DOI: 10.1016/j.pnpbp.2014.03.008] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 03/12/2014] [Accepted: 03/13/2014] [Indexed: 12/22/2022]
Abstract
Due to the fish-specific genome duplication event (~320-350 mya), some genes which code for serotonin proteins were duplicated in teleosts; this duplication event was preceded by a reorganization of the serotonergic system, with the appearance of the raphe nuclei (dependent on the isthmus organizer) and prosencephalic nuclei, including the paraventricular and pretectal complexes. With the appearance of amniotes, duplicated genes were lost, and the serotonergic system was reduced to a more complex raphe system. From a comparative point of view, then, the serotonergic system of zebrafish and that of mammals shows many important differences. However, many different behavioral functions of serotonin, as well as the effects of drugs which affect the serotonergic system, seem to be conserved among species. For example, in both zebrafish and rodents acute serotonin reuptake inhibitors (SSRIs) seem to increase anxiety-like behavior, while chronic SSRIs decrease it; drugs which act at the 5-HT1A receptor seem to decrease anxiety-like behavior in both zebrafish and rodents. In this article, we will expose this paradox, reviewing the chemical neuroanatomy of the zebrafish serotonergic system, followed by an analysis of the role of serotonin in zebrafish fear/anxiety, stress, aggression and the effects of psychedelic drugs.
Collapse
Affiliation(s)
- Anderson Manoel Herculano
- Neuroendocrinology Laboratory, Biological Sciences Institute, Federal University of Pará, Belém, PA, Brazil; "Frederico Graeff" Neurosciences and Behavior Laboratory, Department of Morphology and Physiological Sciences, Biological and Health Sciences Center, State University of Pará, Marabá, PA, Brazil
| | - Caio Maximino
- "Frederico Graeff" Neurosciences and Behavior Laboratory, Department of Morphology and Physiological Sciences, Biological and Health Sciences Center, State University of Pará, Marabá, PA, Brazil; International Zebrafish Neuroscience Research Consortium, United States.
| |
Collapse
|
28
|
Nowicki M, Tran S, Muraleetharan A, Markovic S, Gerlai R. Serotonin antagonists induce anxiolytic and anxiogenic-like behavior in zebrafish in a receptor-subtype dependent manner. Pharmacol Biochem Behav 2014; 126:170-80. [DOI: 10.1016/j.pbb.2014.09.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 07/24/2014] [Accepted: 09/27/2014] [Indexed: 12/13/2022]
|
29
|
Maximino C, Lima MG, Costa CC, Guedes IML, Herculano AM. Fluoxetine and WAY 100,635 dissociate increases in scototaxis and analgesia induced by conspecific alarm substance in zebrafish (Danio rerio Hamilton 1822). Pharmacol Biochem Behav 2014; 124:425-33. [DOI: 10.1016/j.pbb.2014.07.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 06/30/2014] [Accepted: 07/06/2014] [Indexed: 10/25/2022]
|
30
|
Stewart AM, Cachat J, Gaikwad S, Robinson KS, Gebhardt M, Kalueff AV. Perspectives on experimental models of serotonin syndrome in zebrafish. Neurochem Int 2013; 62:893-902. [DOI: 10.1016/j.neuint.2013.02.018] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Revised: 02/10/2013] [Accepted: 02/14/2013] [Indexed: 01/07/2023]
|
31
|
Jouandot DJ, Echevarria DJ, Lamb EA. The utility of the T-maze in assessing learning, memory, and models of neurological disorders in the zebrafish. BEHAVIOUR 2012. [DOI: 10.1163/1568539x-00003027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|