1
|
Yang J, Lu X, Hu S, Yang X, Cao X. microRNA858 represses the transcription factor gene SbMYB47 and regulates flavonoid biosynthesis in Scutellaria baicalensis. PLANT PHYSIOLOGY 2024; 197:kiae607. [PMID: 39520698 DOI: 10.1093/plphys/kiae607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
MicroRNAs (miRNAs) are noncoding endogenous single-stranded RNAs that regulate target gene expression by reducing their transcription and translation. Several miRNAs in plants function in secondary metabolism. The dried root of Scutellaria baicalensis Georgi is a traditional Chinese medicine that contains flavonoids (baicalin, wogonoside, and baicalein) as its main active ingredients. Although the S. baicalensis genome sequence has been published, information regarding its miRNAs is lacking. In this study, 12 small RNA libraries of different S. baicalensis tissues were compiled, including roots, stems, leaves, and flowers. A total of 129 miRNAs were identified, including 99 miRNAs from 27 miRNA families and 30 predicted miRNAs. Furthermore, 46 reliable target genes of 15 miRNA families were revealed using psRNATarget and confirmed by degradome sequencing. It was speculated that the microRNA858 (miR858)-SbMYB47 module might be involved in flavonoid biosynthesis. Transient assays in Nicotiana benthamiana leaves indicated that miR858 targets SbMYB47 and suppresses its expression. Artificial miRNA-mediated knockdown of miR858 and overexpression of SbMYB47 significantly increased the flavonoid content in S. baicalensis hairy roots, while SbMYB47 knockdown inhibited flavonoid accumulation. Yeast one-hybrid and dual-luciferase assays indicated that SbMYB47 directly binds to and activates the S. baicalensis phenylalanine ammonia-lyase 3 (SbPAL-3) and flavone synthase II (SbFNSⅡ-2) promoters. Our findings reveal the link between the miR858-SbMYB47 module and flavonoid biosynthesis, providing a potential strategy for the production of flavonoids with important pharmacological activities through metabolic engineering.
Collapse
Affiliation(s)
- Jiaxin Yang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi'an 710119, China
- Department of Pharmacy, Medicine School, Xi'an International University, Xi'an 710077, China
| | - Xiayang Lu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi'an 710119, China
| | - Suying Hu
- Shaanxi Institute of Microbiology, Xi'an 710043, China
| | - Xiaozeng Yang
- Institute of Botany, Chinese of Academy Sciences, Beijing 100093, China
| | - Xiaoyan Cao
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
2
|
Tabatabaeipour SN, Shiran B, Ravash R, Niazi A, Ebrahimie E. Comprehensive transcriptomic meta-analysis unveils new responsive genes to methyl jasmonate and ethylene in Catharanthusroseus. Heliyon 2024; 10:e27132. [PMID: 38449649 PMCID: PMC10915408 DOI: 10.1016/j.heliyon.2024.e27132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 02/23/2024] [Indexed: 03/08/2024] Open
Abstract
In Catharanthus roseus, vital plant hormones, namely methyl jasmonate (MeJA) and ethylene, serve as abiotic triggers, playing a crucial role in stimulating the production of specific secondary compounds with anticancer properties. Understanding how plants react to various stresses, stimuli, and the pathways involved in biosynthesis holds significant promise. The application of stressors like ethylene and MeJA induces the plant's defense mechanisms, leading to increased secondary metabolite production. To delve into the essential transcriptomic processes linked to hormonal responses, this study employed an integrated approach combining RNA-Seq data meta-analysis and system biology methodologies. Furthermore, the validity of the meta-analysis findings was confirmed using RT-qPCR. Within the meta-analysis, 903 genes exhibited differential expression (DEGs) when comparing normal conditions to those of the treatment. Subsequent analysis, encompassing gene ontology, KEGG, TF, and motifs, revealed that these DEGs were actively engaged in multiple biological processes, particularly in responding to various stresses and stimuli. Additionally, these genes were notably enriched in diverse biosynthetic pathways, including those related to TIAs, housing valuable medicinal compounds found in this plant. Furthermore, by conducting co-expression network analysis, we identified hub genes within modules associated with stress response and the production of TIAs. Most genes linked to the biosynthesis pathway of TIAs clustered within three specific modules. Noteworthy hub genes, including Helicase ATP-binding domain, hbdA, and ALP1 genes within the blue, turquoise, and green module networks, are presumed to play a role in the TIAs pathway. These identified candidate genes hold potential for forthcoming genetic and metabolic engineering initiatives aimed at augmenting the production of secondary metabolites and medicinal compounds within C. roseus.
Collapse
Affiliation(s)
- Seyede Nasim Tabatabaeipour
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
| | - Behrouz Shiran
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
- Institute of Biotechnology, Shahrekord University, P.O. Box 115, Shahrekord, Iran
| | - Rudabeh Ravash
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
| | - Ali Niazi
- Department of Biotechnology, Faculty of Agriculture, Shiraz University, Shiraz, Iran
| | - Esmaeil Ebrahimie
- Department of Biotechnology, Faculty of Agriculture, Shiraz University, Shiraz, Iran
- School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, SA 5371, Australia
| |
Collapse
|
3
|
Lian C, Zhang F, Yang H, Zhang X, Lan J, Zhang B, Liu X, Yang J, Chen S. Multi-omics analysis of small RNA, transcriptome, and degradome to identify putative miRNAs linked to MeJA regulated and oridonin biosynthesis in Isodon rubescens. Int J Biol Macromol 2024; 258:129123. [PMID: 38163496 DOI: 10.1016/j.ijbiomac.2023.129123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/13/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
Isodon rubescens has garnered much attention due to its anti-tumor or anti-cancer properties. However, little is known about the molecular mechanism of oridonin biosynthesis leveraging the regulatory network between small RNAs and mRNAs. In this study, the regulatory networks of miRNAs and targets were examined by combining mRNA, miRNA, and degradome. A total of 348 miRNAs, including 287 known miRNAs and 61 novel miRNAs, were identified. Among them, 51 miRNAs were significantly expressed, and 36 miRNAs responded to MeJA. A total of 3066 target genes were associated with 228 miRNAs via degradome sequencing. Multi-omics analysis demonstrated that 27 miRNA-mRNA pairs were speculated to be involved in MeJA regulation, and 36 miRNA-mRNA pairs were hypothesized to be involved in the genotype-dependence of I. rubescens. Furthermore, 151 and 7 miRNA-mRNA modules were likely engaged in oridonin biosynthesis as identified by psRNATarget and degradome sequencing, respectively. Some miRNA-mRNA modules were confirmed via RT-qPCR. Moreover, miRNAs targeting plant hormone signal transduction pathway genes were identified, such as miR156, miR167, miR393, and PC-3p-19822_242. Collectively, our results demonstrate for the first time that miRNAs are identified in I. rubescens, and laid a solid foundation for further research on the molecular mechanism of oridonin biosynthesis mediated by miRNA.
Collapse
Affiliation(s)
- Conglong Lian
- School of Pharmacy, Henan University of Chinese Medicine, 156 Esat Jin-shui Rd, Zhengzhou 450046, PR China; Henan Key Laboratory of Chinese Medicine Resources and Chemistry, 156 Esat Jin-shui Rd, Zhengzhou 450046, PR China
| | - Fei Zhang
- School of Pharmacy, Henan University of Chinese Medicine, 156 Esat Jin-shui Rd, Zhengzhou 450046, PR China; Henan Key Laboratory of Chinese Medicine Resources and Chemistry, 156 Esat Jin-shui Rd, Zhengzhou 450046, PR China
| | - Hao Yang
- School of Pharmacy, Henan University of Chinese Medicine, 156 Esat Jin-shui Rd, Zhengzhou 450046, PR China; Henan Key Laboratory of Chinese Medicine Resources and Chemistry, 156 Esat Jin-shui Rd, Zhengzhou 450046, PR China
| | - Xueyu Zhang
- School of Pharmacy, Henan University of Chinese Medicine, 156 Esat Jin-shui Rd, Zhengzhou 450046, PR China; Henan Key Laboratory of Chinese Medicine Resources and Chemistry, 156 Esat Jin-shui Rd, Zhengzhou 450046, PR China
| | - Jinxu Lan
- School of Pharmacy, Henan University of Chinese Medicine, 156 Esat Jin-shui Rd, Zhengzhou 450046, PR China; Henan Key Laboratory of Chinese Medicine Resources and Chemistry, 156 Esat Jin-shui Rd, Zhengzhou 450046, PR China
| | - Bao Zhang
- School of Pharmacy, Henan University of Chinese Medicine, 156 Esat Jin-shui Rd, Zhengzhou 450046, PR China; Henan Key Laboratory of Chinese Medicine Resources and Chemistry, 156 Esat Jin-shui Rd, Zhengzhou 450046, PR China
| | - Xiuyu Liu
- School of Pharmacy, Henan University of Chinese Medicine, 156 Esat Jin-shui Rd, Zhengzhou 450046, PR China; Henan Key Laboratory of Chinese Medicine Resources and Chemistry, 156 Esat Jin-shui Rd, Zhengzhou 450046, PR China
| | - Jingfan Yang
- School of Pharmacy, Henan University of Chinese Medicine, 156 Esat Jin-shui Rd, Zhengzhou 450046, PR China; Henan Key Laboratory of Chinese Medicine Resources and Chemistry, 156 Esat Jin-shui Rd, Zhengzhou 450046, PR China
| | - Suiqing Chen
- School of Pharmacy, Henan University of Chinese Medicine, 156 Esat Jin-shui Rd, Zhengzhou 450046, PR China; Henan Key Laboratory of Chinese Medicine Resources and Chemistry, 156 Esat Jin-shui Rd, Zhengzhou 450046, PR China.
| |
Collapse
|
4
|
Contaldo N, Zambon Y, Galbacs ZN, Miloro F, Havelda Z, Bertaccini A, Varallyay E. Small RNA Profiling of Aster Yellows Phytoplasma-Infected Catharanthus roseus Plants Showing Different Symptoms. Genes (Basel) 2023; 14:genes14051114. [PMID: 37239473 DOI: 10.3390/genes14051114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Micropropagated Catharantus roseus plants infected with 'Candidatus Phytoplasma asteris' showed virescence symptoms, witches' broom symptoms, or became asymptomatic after their planting in pots. Nine plants were grouped into three categories according to these symptoms, which were then employed for investigation. The phytoplasma concentration, as determined by qPCR, correlated well with the severity of symptoms. To reveal the changes in the small RNA profiles in these plants, small RNA high-throughput sequencing (HTS) was carried out. The bioinformatics comparison of the micro (mi) RNA and small interfering (si) RNA profiles of the symptomatic and asymptomatic plants showed changes, which could be correlated to some of the observed symptoms. These results complement previous studies on phytoplasmas and serve as a starting point for small RNA-omic studies in phytoplasma research.
Collapse
Affiliation(s)
- Nicoletta Contaldo
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
- Institute for Sustainable Plant Protection (IPSP), National Research Council of Italy (CNR), 70126 Bari, Italy
| | - Yuri Zambon
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
| | - Zsuszanna Nagyne Galbacs
- Genomics Research Group, Department of Plant Pathology, Institute of Plant Protection, Hungarian University of Agriculture and Life Sciences, Szent-Gyorgyi Albert Street 4, 2100 Godollo, Hungary
| | - Fabio Miloro
- Plant Developmental Biology Group, Department of Plant Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Szent-Gyorgyi Albert Street 4, 2100 Godollo, Hungary
| | - Zoltan Havelda
- Plant Developmental Biology Group, Department of Plant Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Szent-Gyorgyi Albert Street 4, 2100 Godollo, Hungary
| | - Assunta Bertaccini
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
| | - Eva Varallyay
- Genomics Research Group, Department of Plant Pathology, Institute of Plant Protection, Hungarian University of Agriculture and Life Sciences, Szent-Gyorgyi Albert Street 4, 2100 Godollo, Hungary
| |
Collapse
|
5
|
MicroRNAs in Medicinal Plants. Int J Mol Sci 2022; 23:ijms231810477. [PMID: 36142389 PMCID: PMC9500639 DOI: 10.3390/ijms231810477] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Medicinal plant microRNAs (miRNAs) are an endogenous class of small RNA central to the posttranscriptional regulation of gene expression. Biosynthetic research has shown that the mature miRNAs in medicinal plants can be produced from either the standard messenger RNA splicing mechanism or the pre-ribosomal RNA splicing process. The medicinal plant miRNA function is separated into two levels: (1) the cross-kingdom level, which is the regulation of disease-related genes in animal cells by oral intake, and (2) the intra-kingdom level, which is the participation of metabolism, development, and stress adaptation in homologous or heterologous plants. Increasing research continues to enrich the biosynthesis and function of medicinal plant miRNAs. In this review, peer-reviewed papers on medicinal plant miRNAs published on the Web of Science were discussed, covering a total of 78 species. The feasibility of the emerging role of medicinal plant miRNAs in regulating animal gene function was critically evaluated. Staged progress in intra-kingdom miRNA research has only been found in a few medicinal plants, which may be mainly inhibited by their long growth cycle, high demand for growth environment, immature genetic transformation, and difficult RNA extraction. The present review clarifies the research significance, opportunities, and challenges of medicinal plant miRNAs in drug development and agricultural production. The discussion of the latest results furthers the understanding of medicinal plant miRNAs and helps the rational design of the corresponding miRNA/target genes functional modules.
Collapse
|
6
|
Jeena GS, Singh N, Shukla RK. An insight into microRNA biogenesis and its regulatory role in plant secondary metabolism. PLANT CELL REPORTS 2022; 41:1651-1671. [PMID: 35579713 DOI: 10.1007/s00299-022-02877-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
The present review highlights the regulatory roles of microRNAs in plant secondary metabolism and focuses on different bioengineering strategies to modulate secondary metabolite content in plants. MicroRNAs (miRNAs) are the class of small endogenous, essential, non-coding RNAs that riboregulate the gene expression involved in various biological processes in most eukaryotes. MiRNAs has emerged as important regulators in plants that function by silencing target genes through cleavage or translational inhibition. These miRNAs plays an important role in a wide range of plant biological and metabolic processes, including plant development and various environmental response controls. Several important plant secondary metabolites like alkaloids, terpenoids, and phenolics are well studied for their function in plant defense against different types of pests and herbivores. Due to the presence of a wide range of biological and pharmaceutical properties of plant secondary metabolites, it is important to study the regulation of their biosynthetic pathways. The contribution of miRNAs in regulating plant secondary metabolism is not well explored. Recent advancements in molecular techniques have improved our knowledge in understanding the molecular function of genes, proteins, enzymes, and small RNAs involved in different steps of secondary metabolic pathways. In the present review, we have discussed the recent progress made on miRNA biogenesis, its regulation, and highlighted the current research developed in the field of identification, analysis, and characterizations of various miRNAs that regulate plant secondary metabolism. We have also discussed how different bioengineering strategies such as artificial miRNA (amiRNA), endogenous target mimicry, and CRISPR/Cas9 could be utilized to enhance the secondary metabolite production in plants.
Collapse
Affiliation(s)
- Gajendra Singh Jeena
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Near Kukrail Picnic Spot, Lucknow, 226015, India
| | - Neeti Singh
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Near Kukrail Picnic Spot, Lucknow, 226015, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Rakesh Kumar Shukla
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Near Kukrail Picnic Spot, Lucknow, 226015, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.
| |
Collapse
|
7
|
Das M, Hasan M, Akter S, Roy S, Sharma B, Chowdhury MSR, Ahsan MI, Akhand RN, Uddin MB, Ahmed SSU. In Silico Investigation of Conserved miRNAs and Their Targets From the Expressed Sequence Tags in Neospora Caninum Genome. Bioinform Biol Insights 2021; 15:11779322211046729. [PMID: 34898982 PMCID: PMC8655437 DOI: 10.1177/11779322211046729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 08/20/2021] [Indexed: 12/02/2022] Open
Abstract
Neospora caninum is a protozoan parasite, the etiologic agent of Neosporosis—a common cause of abortion in cattle worldwide. Herd level prevalence of Neosporosis could be as high as 90%. However, there is no approved treatment and vaccines available for Neosporosis. MicroRNA (miRNA) based prophylaxis and therapeutics could be options for Neosporosis in cattle and other animals. The current study aimed to investigate the genome of Neospora caninum to identify and characterize the conserved miRNAs through Expressed Sequence Tags (ESTs) dependent homology search. A total of 1,041 mature miRNAs of reference organisms were employed against 336 non-redundant ESTs available in the genome of Neospora caninum. The study predicted one putative miRNA “nca-miR-9388-5p” of 19 nucleotides with MFEI value -1.51 kcal/mol and (A + U) content% 72.94% corresponding with its pre-miRNA. A comprehensive search for specific gene targets was performed and discovered 16 potential genes associated with different protozoal physiological functions. Significantly, the gene “Protein phosphatase” was found responsible for the virulence of Neospora caninum. The other genes were accounted for gene expression, vesicular transport, cell signaling, cell proliferation, DNA repair mechanism, and different developmental stages of the protozoon. Therefore, this study finding will provide pivotal information to future aspirants upon Bovine Neosporosis. It will also serve as the baseline information for further studies of the bioinformatics approach to identify other protozoal miRNAs.
Collapse
Affiliation(s)
- Moumita Das
- Department of Epidemiology and Public Health, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Mahmudul Hasan
- Department of Pharmaceuticals and Industrial Biotechnology, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Sharmin Akter
- Department of Epidemiology and Public Health, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Sawrab Roy
- Department of Microbiology and Immunology, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Binayok Sharma
- Department of Medicine, Sylhet Agricultural University, Sylhet, Bangladesh
| | | | - Md Irtija Ahsan
- Department of Epidemiology and Public Health, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Rubaiat Nazneen Akhand
- Department of Biochemistry and Chemistry, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Md Bashir Uddin
- Department of Medicine, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Syed Sayeem Uddin Ahmed
- Department of Epidemiology and Public Health, Sylhet Agricultural University, Sylhet, Bangladesh
| |
Collapse
|
8
|
Jeena GS, Joshi A, Shukla RK. Bm-miR172c-5p Regulates Lignin Biosynthesis and Secondary Xylem Thickness by Altering the Ferulate 5 Hydroxylase Gene in Bacopa monnieri. PLANT & CELL PHYSIOLOGY 2021; 62:894-912. [PMID: 34009389 DOI: 10.1093/pcp/pcab054] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding, endogenous RNAs containing 20-24 nucleotides that regulate the expression of target genes involved in various plant processes. A total of 1,429 conserved miRNAs belonging to 95 conserved miRNA families and 12 novel miRNAs were identified from Bacopa monnieri using small RNA sequencing. The Bm-miRNA target transcripts related to the secondary metabolism were further selected for validation. The Bm-miRNA expression in shoot and root tissues was negatively correlated with their target transcripts. The Bm-miRNA cleavage sites were mapped within the coding or untranslated region as depicted by the modified RLM-RACE. In the present study, we validate three miRNA targets, including asparagine synthetase, cycloartenol synthase and ferulate 5 hydroxylase (F5H) and elucidate the regulatory role of Bm-miR172c-5p, which cleaves the F5H gene involved in the lignin biosynthesis. Overexpression (OE) of Bm-miR172c-5p precursor in B. monnieri suppresses F5H gene, leading to reduced lignification and secondary xylem thickness under control and drought stress. By contrast, OE of endogenous target mimics (eTMs) showed enhanced lignification and secondary xylem thickness leading to better physiological response under drought stress. Taken together, we suggest that Bm-miRNA172c-5p might be a key player in maintaining the native phenotype of B. monnieri under control and different environmental conditions.
Collapse
Affiliation(s)
- Gajendra Singh Jeena
- Biotechnology Division, Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Near Kukrail Picnic Spot, Lucknow 226015, India
| | - Ashutosh Joshi
- Biotechnology Division, Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Near Kukrail Picnic Spot, Lucknow 226015, India
| | - Rakesh Kumar Shukla
- Biotechnology Division, Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Near Kukrail Picnic Spot, Lucknow 226015, India
| |
Collapse
|
9
|
Ahsan MI, Chowdhury MSR, Das M, Akter S, Roy S, Sharma B, Akhand RN, Hasan M, Uddin MB, Ahmed SSU. In Silico Identification and Functional Characterization of Conserved miRNAs in the Genome of Cryptosporidium parvum. Bioinform Biol Insights 2021; 15:11779322211027665. [PMID: 34262265 PMCID: PMC8243136 DOI: 10.1177/11779322211027665] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 06/04/2021] [Indexed: 12/27/2022] Open
Abstract
Cryptosporidium parvum, a predominant causal agent of a fatal zoonotic protozoan diarrhoeal disease called cryptosporidiosis, bears a worldwide public health concern for childhood mortality and poses a key threat to the dairy and water industries. MicroRNAs (miRNAs), small but powerful posttranscriptional gene silencing RNA molecules, regulate a variety of molecular, biological, and cellular processes in animals and plants. As to the present date, there is a paucity of information regarding miRNAs of C. parvum; hence, this study was used to identify miRNAs in the organism using a comprehensible expressed sequence tag-based homology search approach consisting of a series of computational screening process from the identification of putative miRNA candidates to the functional annotation of the important gene targets in C. parvum. The results revealed a conserved miRNA that targeted 487 genes in the model organism (Drosophila melanogaster) and 85 genes in C. parvum, of which 11 genes had direct involvements in several crucial virulence factors such as environmental oocyst protection, excystation, locomotion, adhesion, invasion, stress protection, intracellular growth, and survival. Besides, 20 genes showed their association with various major pathways dedicated for the ribosomal biosynthesis, DNA repair, transportation, protein production, gene expression, cell cycle, cell proliferation, development, immune response, differentiation, and nutrient metabolism of the organism in the host. Thus, this study provides a strong evidence of great impact of identified miRNA on the biology, virulence, and pathogenesis of C. parvum. Furthermore, the study suggests that the detected miRNA could be a potential epigenomic tool for controlling the protozoon through silencing those virulent and pathway-related target genes.
Collapse
Affiliation(s)
- Md. Irtija Ahsan
- Department of Epidemiology and Public
Health, Sylhet Agricultural University, Sylhet, Bangladesh
| | | | - Moumita Das
- Department of Epidemiology and Public
Health, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Sharmin Akter
- Department of Epidemiology and Public
Health, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Sawrab Roy
- Department of Microbiology and
Immunology, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Binayok Sharma
- Department of Medicine, Sylhet
Agricultural University, Sylhet, Bangladesh
| | - Rubaiat Nazneen Akhand
- Department of Biochemistry and
Chemistry, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Mahmudul Hasan
- Department of Pharmaceuticals and
Industrial Biotechnology, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Md Bashir Uddin
- Department of Medicine, Sylhet
Agricultural University, Sylhet, Bangladesh
| | - Syed Sayeem Uddin Ahmed
- Department of Epidemiology and Public
Health, Sylhet Agricultural University, Sylhet, Bangladesh
| |
Collapse
|
10
|
Li C, Wang M, Qiu X, Zhou H, Lu S. Noncoding RNAs in Medicinal Plants and their Regulatory Roles in Bioactive Compound Production. Curr Pharm Biotechnol 2021; 22:341-359. [PMID: 32469697 DOI: 10.2174/1389201021666200529101942] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/14/2020] [Accepted: 03/30/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Noncoding RNAs (ncRNAs), such as microRNAs (miRNAs), small interfering RNAs (siRNAs) and long noncoding RNAs (lncRNAs), play significant regulatory roles in plant development and secondary metabolism and are involved in plant response to biotic and abiotic stresses. They have been intensively studied in model systems and crops for approximately two decades and massive amount of information have been obtained. However, for medicinal plants, ncRNAs, particularly their regulatory roles in bioactive compound biosynthesis, are just emerging as a hot research field. OBJECTIVE This review aims to summarize current knowledge on herbal ncRNAs and their regulatory roles in bioactive compound production. RESULTS So far, scientists have identified thousands of miRNA candidates from over 50 medicinal plant species and 11794 lncRNAs from Salvia miltiorrhiza, Panax ginseng, and Digitalis purpurea. Among them, more than 30 miRNAs and five lncRNAs have been predicted to regulate bioactive compound production. CONCLUSION The regulation may achieve through various regulatory modules and pathways, such as the miR397-LAC module, the miR12112-PPO module, the miR156-SPL module, the miR828-MYB module, the miR858-MYB module, and other siRNA and lncRNA regulatory pathways. Further functional analysis of herbal ncRNAs will provide useful information for quality and quantity improvement of medicinal plants.
Collapse
Affiliation(s)
- Caili Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, China
| | - Meizhen Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, China
| | - Xiaoxiao Qiu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, China
| | - Hong Zhou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, China
| | - Shanfa Lu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, China
| |
Collapse
|
11
|
Azadirachta indica MicroRNAs: Genome-Wide Identification, Target Transcript Prediction, and Expression Analyses. Appl Biochem Biotechnol 2021; 193:1924-1944. [PMID: 33523368 DOI: 10.1007/s12010-021-03500-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 01/07/2021] [Indexed: 10/22/2022]
Abstract
MicroRNAs are short, endogenous, non-coding RNAs, liable for essential regulatory function. Numerous miRNAs have been identified and studied in plants with known genomic or small RNA resources. Despite the availability of genomic and transcriptomic resources, the miRNAs have not been reported in the medicinal tree Azadirachta indica (Neem) till date. Here for the first time, we report extensive identification of miRNAs and their possible targets in A. indica which might help to unravel their therapeutic potential. A comprehensive search of miRNAs in the A. indica genome by C-mii tool was performed. Overall, 123 miRNAs classified into 63 families and their stem-loop hairpin structures were predicted. The size of the A. indica (ain)-miRNAs ranged between 19 and 23 nt in length, and their corresponding ain-miRNA precursor sequence MFEI value averaged as -1.147 kcal/mol. The targets of ain-miRNAs were predicted in A. indica as well as Arabidopsis thaliana plant. The gene ontology (GO) annotation revealed the involvement of ain-miRNA targets in developmental processes, transport, stress, and metabolic processes including secondary metabolism. Stem-loop qRT-PCR was carried out for 25 randomly selected ain-miRNAs and differential expression patterns were observed in different A. indica tissues. Expression of miRNAs and its targets shows negative correlation in a dependent manner.
Collapse
|
12
|
Verma P, Singh N, Khan SA, Mathur AK, Sharma A, Jamal F. TIAs pathway genes and associated miRNA identification in Vinca minor: supporting aspidosperma and eburnamine alkaloids linkage via transcriptomic analysis. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:1695-1711. [PMID: 32801497 PMCID: PMC7415056 DOI: 10.1007/s12298-020-00842-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/16/2020] [Accepted: 06/22/2020] [Indexed: 05/17/2023]
Abstract
V. minor contains monomeric eburnamine-type of indole alkaloids having utilization as a neuro-medicinal plant. The biosynthetic pathway studies using miRNAs has been the focal point for plant genomic research in recent years and this technique is utilized to get an insight into a possible pathway level study in V. minor as understanding of genes in this prized medicinal plant is meagrely understood. The de novo transcriptomic analysis using Illumina Next gen sequencing has been performed in glasshouse shifted plant and transformed roots to elucidate the possible non confirmed steps of terpenoid indole alkaloids (TIAs) pathway in V. minor. A putative TIA pathway is elucidated in the study including twelve possible TIAs biosynthetic genes. The specific miRNA associated with TIAs pathway were identified and their roles were discussed for the first time in V. minor. The comparative analysis of transcriptomic data of glasshouse shifted plant and transformed roots showed that the raw reads of transformed roots were higher (83,740,316) compared to glasshouse shifted plant (67,733,538). The EST-SSR prediction showed the maximum common repeats among glasshouse shifted plant and transformed roots, although small variation was found in trinucleotide repeats restricted to glasshouse shifted plant. The study reveals overall 37 miRNAs which were observed to be true and can have a role in pathway as they can regulate the growth and alkaloid production. The identification of putative pathway genes plays an important role in establishing linkage between Aspidosperma and Eburnamine alkaloids.
Collapse
Affiliation(s)
- Priyanka Verma
- Department of Plant Biotechnology, CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), PO-CIMAP, Lucknow, 226015 India
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory (NCL), Homi Bhabha Road, Pashan, Pune, 411008 India
| | - Noopur Singh
- Department of Plant Biotechnology, CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), PO-CIMAP, Lucknow, 226015 India
| | - Shamshad Ahmad Khan
- Department of Plant Biotechnology, CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), PO-CIMAP, Lucknow, 226015 India
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory (NCL), Homi Bhabha Road, Pashan, Pune, 411008 India
- Applied Biotechnology Department, Sur College of Applied Sciences, Ministry of Higher Education, Sur, 411 Oman
| | - Ajay Kumar Mathur
- Department of Plant Biotechnology, CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), PO-CIMAP, Lucknow, 226015 India
| | - Ashok Sharma
- Department of Plant Biotechnology, CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), PO-CIMAP, Lucknow, 226015 India
| | - Farrukh Jamal
- Biochemistry Division, Dr. R.M.L. Awadh University, Faizabad, 224001 India
| |
Collapse
|
13
|
Narnoliya LK, Kaushal G, Singh SP. Long noncoding RNAs and miRNAs regulating terpene and tartaric acid biosynthesis in rose-scented geranium. FEBS Lett 2019; 593:2235-2249. [PMID: 31210363 DOI: 10.1002/1873-3468.13493] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This study aimed to explore the noncoding RNAs, which have emerged as key regulatory molecules in biological processes, in rose-scented geranium. We analyzed RNA-seq data revealing 26 784 long noncoding RNAs (lncRNAs) and 871 miRNAs in rose-scented geranium. A total of 466 lncRNAs were annotated using different plant lncRNA public databases. Furthermore, 372 lncRNAs and 99 miRNAs were detected that target terpene and tartarate biosynthetic pathways. An interactome, comprising of lncRNAs, miRNAs, and mRNAs, was constructed that represents a noncoding RNA regulatory network of the target mRNAs. Real-time quantitative PCR expression validation was done for selected lncRNAs involved in the regulation of terpene and tartaric acid pathways. This study provides the first insights into the regulatory functioning of noncoding RNAs in rose-scented geranium.
Collapse
Affiliation(s)
| | - Girija Kaushal
- Center of Innovative and Applied Bioprocessing, S.A.S. Nagar, Mohali, India
| | - Sudhir P Singh
- Center of Innovative and Applied Bioprocessing, S.A.S. Nagar, Mohali, India
| |
Collapse
|
14
|
Jike W, Sablok G, Bertorelle G, Li M, Varotto C. In silico identification and characterization of a diverse subset of conserved microRNAs in bioenergy crop Arundo donax L. Sci Rep 2018; 8:16667. [PMID: 30420632 PMCID: PMC6232160 DOI: 10.1038/s41598-018-34982-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 10/15/2018] [Indexed: 01/08/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNA molecules involved in the post-transcriptional regulation of gene expression in plants. Arundo donax L. is a perennial C3 grass considered one of the most promising bioenergy crops. Despite its relevance, many fundamental aspects of its biology still remain to be elucidated. In the present study we carried out the first in silico mining and tissue-specific characterization of microRNAs and their putative targets in A. donax. We identified a total of 141 miRNAs belonging to 14 families along with the corresponding primary miRNAs, precursor miRNAs and a total of 462 high-confidence predicted targets and novel target sites were validated by 5′-race. Gene Ontology functional annotation showed that miRNA targets are constituted mainly by transcription factors, but three of the newly validated targets are enzymes involved in novel functions like RNA editing, acyl lipid metabolism and post-Golgi trafficking. Folding variability of pre-miRNA loops and phylogenetic analyses indicate variable selective pressure acting on the different miRNA families. The set of miRNAs identified in this study will pave the road to further miRNA research in Arundo donax and contribute towards a better understanding of miRNA-mediated gene regulatory processes in other bioenergy crops.
Collapse
Affiliation(s)
- Wuhe Jike
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Trento, Italy.,Università degli Studi di Ferrara, Dipartimento di Scienze della Vita e Biotecnologie, Ferrara, Italy
| | - Gaurav Sablok
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Trento, Italy.,Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Giorgio Bertorelle
- Università degli Studi di Ferrara, Dipartimento di Scienze della Vita e Biotecnologie, Ferrara, Italy
| | - Mingai Li
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Trento, Italy.
| | - Claudio Varotto
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Trento, Italy.
| |
Collapse
|
15
|
Cardoso TCDS, Alves TC, Caneschi CM, Santana DDRG, Fernandes-Brum CN, Reis GLD, Daude MM, Ribeiro THC, Gómez MMD, Lima AA, Gomes LAA, Gomes MDS, Gandolfi PE, Amaral LRD, Chalfun-Júnior A, Maluf WR, de Souza Gomes M. New insights into tomato microRNAs. Sci Rep 2018; 8:16069. [PMID: 30375421 PMCID: PMC6207730 DOI: 10.1038/s41598-018-34202-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/12/2018] [Indexed: 12/21/2022] Open
Abstract
Cultivated tomato, Solanum lycopersicum, is one of the most common fruits in the global food industry. Together with the wild tomato Solanum pennellii, it is widely used for developing better cultivars. MicroRNAs affect mRNA regulation, inhibiting its translation and/or promoting its degradation. Important proteins involved in these processes are ARGONAUTE and DICER. This study aimed to identify and characterize the genes involved in the miRNA processing pathway, miRNA molecules and target genes in both species. We validated the presence of pathway genes and miRNA in different NGS libraries and 6 miRNA families using quantitative RT-PCR. We identified 71 putative proteins in S. lycopersicum and 108 in S. pennellii likely involved in small RNAs processing. Of these, 29 and 32 participate in miRNA processing pathways, respectively. We identified 343 mature miRNAs, 226 pre-miRNAs in 87 families, including 192 miRNAs, which were not previously identified, belonging to 38 new families in S. lycopersicum. In S. pennellii, we found 388 mature miRNAs and 234 pre-miRNAs contained in 85 families. All miRNAs found in S. pennellii were unpublished, being identified for the first time in our study. Furthermore, we identified 2471 and 3462 different miRNA target in S. lycopersicum and S. pennellii, respectively.
Collapse
Affiliation(s)
- Thaís Cunha de Sousa Cardoso
- Laboratory of Bioinformatics and Molecular Analysis, Federal University of Uberlandia (UFU), Campus Patos de Minas, 38700-128, Patos de Minas, Brazil
| | - Tamires Caixeta Alves
- Laboratory of Bioinformatics and Molecular Analysis, Federal University of Uberlandia (UFU), Campus Patos de Minas, 38700-128, Patos de Minas, Brazil
| | - Carolina Milagres Caneschi
- Laboratory of Bioinformatics and Molecular Analysis, Federal University of Uberlandia (UFU), Campus Patos de Minas, 38700-128, Patos de Minas, Brazil
| | - Douglas Dos Reis Gomes Santana
- Laboratory of Bioinformatics and Molecular Analysis, Federal University of Uberlandia (UFU), Campus Patos de Minas, 38700-128, Patos de Minas, Brazil
| | | | - Gabriel Lasmar Dos Reis
- Department of Agriculture, Federal University of Lavras (UFLA), Lavras, 37 - 37200-000, Brazil
| | - Matheus Martins Daude
- Laboratory of Molecular Analysis, Federal University of Tocantins (UFT), Gurupi, 77402-970, Brazil
| | | | - Miguel Maurício Díaz Gómez
- Laboratory of Bioinformatics and Molecular Analysis, Federal University of Uberlandia (UFU), Campus Patos de Minas, 38700-128, Patos de Minas, Brazil
| | - André Almeida Lima
- Laboratory of Plant Molecular Physiology, Federal University of Lavras (UFLA), Lavras, 3037 - 37200-000, Brazil
| | | | - Marcos de Souza Gomes
- Laboratory of Bioinformatics and Molecular Analysis, Federal University of Uberlandia (UFU), Campus Patos de Minas, 38700-128, Patos de Minas, Brazil
| | - Peterson Elizandro Gandolfi
- Laboratory of Bioinformatics and Molecular Analysis, Federal University of Uberlandia (UFU), Campus Patos de Minas, 38700-128, Patos de Minas, Brazil
| | - Laurence Rodrigues do Amaral
- Laboratory of Bioinformatics and Molecular Analysis, Federal University of Uberlandia (UFU), Campus Patos de Minas, 38700-128, Patos de Minas, Brazil
| | - Antonio Chalfun-Júnior
- Laboratory of Plant Molecular Physiology, Federal University of Lavras (UFLA), Lavras, 3037 - 37200-000, Brazil
| | - Wilson Roberto Maluf
- Department of Agriculture, Federal University of Lavras (UFLA), Lavras, 37 - 37200-000, Brazil
| | - Matheus de Souza Gomes
- Laboratory of Bioinformatics and Molecular Analysis, Federal University of Uberlandia (UFU), Campus Patos de Minas, 38700-128, Patos de Minas, Brazil.
| |
Collapse
|
16
|
Davoodi Mastakani F, Pagheh G, Rashidi Monfared S, Shams-Bakhsh M. Identification and expression analysis of a microRNA cluster derived from pre-ribosomal RNA in Papaver somniferum L. and Papaver bracteatum L. PLoS One 2018; 13:e0199673. [PMID: 30067748 PMCID: PMC6070170 DOI: 10.1371/journal.pone.0199673] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 06/12/2018] [Indexed: 11/19/2022] Open
Abstract
Opium poppy (Papaver somniferum L.) is one of the ancient medical crops, which produces several important alkaloids such as morphine, noscapine, sanguinarine and codeine. MicroRNAs are endogenous non-coding RNAs that play important regulatory roles in plant diverse biological processes. Many plant miRNAs are encoded as single transcriptional units, in contrast to animal miRNAs, which are often clustered. Herein, using computational approaches, a total of 22 miRNA precursors were identified, which five of them were located as a clustered in pre-ribosomal RNA. Afterward, the transcript level of the precursor and the mature of clustered miRNAs in two species of the Papaveraceae family, i.e. P. somniferum L. and P. bracteatum L, were quantified by RT-PCR. With respect to obtained results, these clustered miRNAs were expressed differentially in different tissues of these species. Moreover, using target prediction and Gene Ontology (GO)-based on functional classification indicated that these miRNAs might play crucial roles in various biological processes as well as metabolic pathways. In this study, we discovered the clustered miRNA derived from pre-rRNA, which may shed some light on the importance of miRNAs in the plant kingdom.
Collapse
Affiliation(s)
- Farshad Davoodi Mastakani
- Department of Agricultural Biotechnology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Gabriel Pagheh
- Department of Agricultural Biotechnology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Sajad Rashidi Monfared
- Department of Agricultural Biotechnology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Masoud Shams-Bakhsh
- Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
17
|
Sobhani Najafabadi A, Naghavi MR. Mining Ferula gummosa transcriptome to identify miRNAs involved in the regulation and biosynthesis of terpenes. Gene 2018; 645:41-47. [DOI: 10.1016/j.gene.2017.12.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/19/2017] [Accepted: 12/19/2017] [Indexed: 12/24/2022]
|
18
|
Singh N, Sharma A. Turmeric (Curcuma longa): miRNAs and their regulating targets are involved in development and secondary metabolite pathways. C R Biol 2017; 340:481-491. [PMID: 29126713 DOI: 10.1016/j.crvi.2017.09.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 08/20/2017] [Accepted: 09/30/2017] [Indexed: 01/22/2023]
Abstract
Turmeric has been used as a therapeutic herb over centuries in traditional medicinal systems due to the presence of several secondary metabolite compounds. microRNAs are known to regulate gene expression at the post-transcriptional level by transcriptional cleavage or translation repression. miRNAs have been demonstrated to play an active role in secondary metabolism regulation. The present work was focused on the identification of the miRNAs involved in the regulation of secondary metabolite and development process of turmeric. Eighteen miRNA families were identified for turmeric. Sixteen miRNA families were observed to regulate 238 target transcripts. LncRNAs targets of the putative miRNA candidates were also predicted. Our results indicated their role in binding, reproduction, stress, and other developmental processes. Gene annotation and pathway analysis illustrated the biological function of the targets regulated by the putative miRNAs. The miRNA-mediated gene regulatory network also revealed co-regulated targets that were regulated by two or more miRNA families. miR156 and miR5015 were observed to be involved in rhizome development. miR5021 showed regulation for terpenoid backbone biosynthesis and isoquinoline alkaloid biosynthesis pathways. The flavonoid biosynthesis pathway was observed to be regulated by miR2919. The analysis revealed the probable involvement of three miRNAs (miR1168.2, miR156b and miR1858) in curcumin biosynthesis. Other miRNAs were found to be involved in the growth and developmental process of turmeric. Phylogenetic analysis of selective miRNAs was also performed.
Collapse
Affiliation(s)
- Noopur Singh
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, 226015 Lucknow, UP, India.
| | - Ashok Sharma
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, 226015 Lucknow, UP, India.
| |
Collapse
|
19
|
Shen EM, Singh SK, Ghosh JS, Patra B, Paul P, Yuan L, Pattanaik S. The miRNAome of Catharanthus roseus: identification, expression analysis, and potential roles of microRNAs in regulation of terpenoid indole alkaloid biosynthesis. Sci Rep 2017; 7:43027. [PMID: 28223695 PMCID: PMC5320439 DOI: 10.1038/srep43027] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 01/18/2017] [Indexed: 12/02/2022] Open
Abstract
MicroRNAs (miRNAs) regulate numerous crucial biological processes in plants. However, information is limited on their involvement in the biosynthesis of specialized metabolites in plants, including Catharanthus roseus that produces a number of pharmaceutically valuable, bioactive terpenoid indole alkaloids (TIAs). Using small RNA-sequencing, we identified 181 conserved and 173 novel miRNAs (cro-miRNAs) in C. roseus seedlings. Genome-wide expression analysis revealed that a set of cro-miRNAs are differentially regulated in response to methyl jasmonate (MeJA). In silico target prediction identified 519 potential cro-miRNA targets that include several auxin response factors (ARFs). The presence of cleaved transcripts of miRNA-targeted ARFs in C. roseus cells was confirmed by Poly(A) Polymerase-Mediated Rapid Amplification of cDNA Ends (PPM-RACE). We showed that auxin (indole acetic acid, IAA) repressed the expression of key TIA pathway genes in C. roseus seedlings. Moreover, we demonstrated that a miRNA-regulated ARF, CrARF16, binds to the promoters of key TIA pathway genes and repress their expression. The C. roseus miRNAome reported here provides a comprehensive account of the cro-miRNA populations, as well as their abundance and expression profiles in response to MeJA. In addition, our findings underscore the importance of miRNAs in posttranscriptional control of the biosynthesis of specialized metabolites.
Collapse
Affiliation(s)
- Ethan M Shen
- Department of Plant and Soil Sciences, University of Kentucky, 1401 University Drive, Lexington, KY 40546, USA.,Math, Science, and Technology Center, Paul Laurence Dunbar High School, 1600 Man o' War Boulevard, Lexington, KY 40513, USA
| | - Sanjay K Singh
- Department of Plant and Soil Sciences, University of Kentucky, 1401 University Drive, Lexington, KY 40546, USA
| | - Jayadri S Ghosh
- Department of Plant and Soil Sciences, University of Kentucky, 1401 University Drive, Lexington, KY 40546, USA
| | - Barunava Patra
- Department of Plant and Soil Sciences, University of Kentucky, 1401 University Drive, Lexington, KY 40546, USA
| | - Priyanka Paul
- Department of Plant and Soil Sciences, University of Kentucky, 1401 University Drive, Lexington, KY 40546, USA
| | - Ling Yuan
- Department of Plant and Soil Sciences, University of Kentucky, 1401 University Drive, Lexington, KY 40546, USA
| | - Sitakanta Pattanaik
- Department of Plant and Soil Sciences, University of Kentucky, 1401 University Drive, Lexington, KY 40546, USA
| |
Collapse
|
20
|
Agarwal S, Nagpure NS, Srivastava P, Kumar R, Pandey M, Srivastava S, Jena JK, Das P, Kushwaha B. In Silico Mining of Conserved miRNAs of Indian Catfish Clarias batrachus (Linnaeus, 1758) from the Contigs, ESTs, and BAC End Sequences. Appl Biochem Biotechnol 2016; 182:956-966. [DOI: 10.1007/s12010-016-2373-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 12/12/2016] [Indexed: 12/21/2022]
|
21
|
Agarwal S, Nagpure NS, Srivastava P, Kushwaha B, Kumar R, Pandey M, Srivastava S. In silico genome wide mining of conserved and novel miRNAs in the brain and pineal gland of Danio rerio using small RNA sequencing data. GENOMICS DATA 2016; 7:46-53. [PMID: 26981358 PMCID: PMC4778606 DOI: 10.1016/j.gdata.2015.11.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/02/2015] [Accepted: 11/18/2015] [Indexed: 11/28/2022]
Abstract
MicroRNAs (miRNAs) are small, non-coding RNA molecules that bind to the mRNA of the target genes and regulate the expression of the gene at the post-transcriptional level. Zebrafish is an economically important freshwater fish species globally considered as a good predictive model for studying human diseases and development. The present study focused on uncovering known as well as novel miRNAs, target prediction of the novel miRNAs and the differential expression of the known miRNA using the small RNA sequencing data of the brain and pineal gland (dark and light treatments) obtained from NCBI SRA. A total of 165, 151 and 145 known zebrafish miRNAs were found in the brain, pineal gland (dark treatment) and pineal gland (light treatment), respectively. Chromosomes 4 and 5 of zebrafish reference assembly GRCz10 were found to contain maximum number of miR genes. The miR-181a and miR-182 were found to be highly expressed in terms of number of reads in the brain and pineal gland, respectively. Other ncRNAs, such as tRNA, rRNA and snoRNA, were curated against Rfam. Using GRCz10 as reference, the subsequent bioinformatic analyses identified 25, 19 and 9 novel miRNAs from the brain, pineal gland (dark treatment) and pineal gland (light treatment), respectively. Targets of the novel miRNAs were identified, based on sequence complementarity between miRNAs and mRNA, by searching for antisense hits in the 3'-UTR of reference RNA sequences of the zebrafish. The discovery of novel miRNAs and their targets in the zebrafish genome can be a valuable scientific resource for further functional studies not only in zebrafish but also in other economically important fishes.
Collapse
Affiliation(s)
- Suyash Agarwal
- Division of Molecular Biology and Biotechnology, ICAR-National Bureau of Fish Genetic Resources, Lucknow 226 002, Uttar Pradesh, India
| | - Naresh Sahebrao Nagpure
- Division of Molecular Biology and Biotechnology, ICAR-National Bureau of Fish Genetic Resources, Lucknow 226 002, Uttar Pradesh, India
| | - Prachi Srivastava
- AMITY Institute of Biotechnology, AMITY University Uttar Pradesh, Lucknow Campus, Lucknow 226 028, India
| | - Basdeo Kushwaha
- Division of Molecular Biology and Biotechnology, ICAR-National Bureau of Fish Genetic Resources, Lucknow 226 002, Uttar Pradesh, India
| | - Ravindra Kumar
- Division of Molecular Biology and Biotechnology, ICAR-National Bureau of Fish Genetic Resources, Lucknow 226 002, Uttar Pradesh, India
| | - Manmohan Pandey
- Division of Molecular Biology and Biotechnology, ICAR-National Bureau of Fish Genetic Resources, Lucknow 226 002, Uttar Pradesh, India
| | - Shreya Srivastava
- Division of Molecular Biology and Biotechnology, ICAR-National Bureau of Fish Genetic Resources, Lucknow 226 002, Uttar Pradesh, India
| |
Collapse
|
22
|
Singh N, Srivastava S, Sharma A. Identification and analysis of miRNAs and their targets in ginger using bioinformatics approach. Gene 2016; 575:570-576. [PMID: 26392033 DOI: 10.1016/j.gene.2015.09.036] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 07/20/2015] [Accepted: 09/16/2015] [Indexed: 12/17/2022]
Abstract
MicroRNAs (miRNAs) are a large family of endogenous small RNAs derived from the non-protein coding genes. miRNA regulates the gene expression at the post-transcriptional level and plays an important role in plant development. Zingiber officinale is an important medicinal plant having numerous therapeutic properties. Its bioactive compound gingerol and essential oil posses important pharmacological and physiological activities. In this study, we used a homology search based computational approach for identifying miRNAs in Z. officinale. A total of 16 potential miRNA families (miR167, miR407, miR414, miR5015, miR5021, miR5644, miR5645, miR5656, miR5658, miR5664, miR827, miR838, miR847, miR854, miR862 and miR864) were predicted in ginger. Phylogenetic and conserved analyses were performed for predicted miRNAs. Thirteen miRNA families were found to regulate 300 target transcripts and play an important role in cell signaling, reproduction, metabolic process and stress. To understand the miRNA mediated gene regulatory control and to validate miRNA target predictions, a biological network was also constructed. Gene ontology and pathway analyses were also done. miR5015 was observed to regulate the biosynthesis of gingerol by inhibiting phenyl ammonia lyase (PAL), a precursor enzyme in the biosynthesis of gingerol. Our results revealed that most of the predicted miRNAs were involved in the regulation of rhizome development. miR5021, miR854 and miR838 were identified to regulate the rhizome development and the essential oil biosynthesis in ginger.
Collapse
Affiliation(s)
- Noopur Singh
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, 226015 UP, India
| | - Swati Srivastava
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, 226015 UP, India
| | - Ashok Sharma
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, 226015 UP, India.
| |
Collapse
|
23
|
Prakash P, Rajakani R, Gupta V. Transcriptome-wide identification of Rauvolfia serpentina microRNAs and prediction of their potential targets. Comput Biol Chem 2015; 61:62-74. [PMID: 26815768 DOI: 10.1016/j.compbiolchem.2015.12.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 11/24/2015] [Accepted: 12/01/2015] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs of ∼ 19-24 nucleotides (nt) in length and considered as potent regulators of gene expression at transcriptional and post-transcriptional levels. Here we report the identification and characterization of 15 conserved miRNAs belonging to 13 families from Rauvolfia serpentina through in silico analysis of available nucleotide dataset. The identified mature R. serpentina miRNAs (rse-miRNAs) ranged between 20 and 22nt in length, and the average minimal folding free energy index (MFEI) value of rse-miRNA precursor sequences was found to be -0.815 kcal/mol. Using the identified rse-miRNAs as query, their potential targets were predicted in R. serpentina and other plant species. Gene Ontology (GO) annotation showed that predicted targets of rse-miRNAs include transcription factors as well as genes involved in diverse biological processes such as primary and secondary metabolism, stress response, disease resistance, growth, and development. Few rse-miRNAs were predicted to target genes of pharmaceutically important secondary metabolic pathways such as alkaloids and anthocyanin biosynthesis. Phylogenetic analysis showed the evolutionary relationship of rse-miRNAs and their precursor sequences to homologous pre-miRNA sequences from other plant species. The findings under present study besides giving first hand information about R. serpentina miRNAs and their targets, also contributes towards the better understanding of miRNA-mediated gene regulatory processes in plants.
Collapse
Affiliation(s)
- Pravin Prakash
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow 226015, India
| | - Raja Rajakani
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow 226015, India
| | - Vikrant Gupta
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow 226015, India.
| |
Collapse
|
24
|
Fan R, Li Y, Li C, Zhang Y. Differential microRNA Analysis of Glandular Trichomes and Young Leaves in Xanthium strumarium L. Reveals Their Putative Roles in Regulating Terpenoid Biosynthesis. PLoS One 2015; 10:e0139002. [PMID: 26406988 PMCID: PMC4583480 DOI: 10.1371/journal.pone.0139002] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 09/08/2015] [Indexed: 12/19/2022] Open
Abstract
The medicinal plant Xanthium strumarium L. (X. strumarium) is covered with glandular trichomes, which are the sites for synthesizing pharmacologically active terpenoids such as xanthatin. MicroRNAs (miRNAs) are a class of 21-24 nucleotide (nt) non-coding RNAs, most of which are identified as regulators of plant growth development. Identification of miRNAs involved in the biosynthesis of plant secondary metabolites remains limited. In this study, high-throughput Illumina sequencing, combined with target gene prediction, was performed to discover novel and conserved miRNAs with potential roles in regulating terpenoid biosynthesis in X. strumarium glandular trichomes. Two small RNA libraries from leaves and glandular trichomes of X. strumarium were established. In total, 1,185 conserved miRNAs and 37 novel miRNAs were identified, with 494 conserved miRNAs and 18 novel miRNAs being differentially expressed between the two tissue sources. Based on the X. strumarium transcriptome data that we recently constructed, 3,307 annotated mRNA transcripts were identified as putative targets of the differentially expressed miRNAs. KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis suggested that some of the differentially expressed miRNAs, including miR6435, miR5021 and miR1134, might be involved in terpenoid biosynthesis in the X. strumarium glandular trichomes. This study provides the first comprehensive analysis of miRNAs in X. strumarium, which forms the basis for further understanding of miRNA-based regulation on terpenoid biosynthesis.
Collapse
Affiliation(s)
- Rongyan Fan
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China, 430074
- Graduate University of Chinese Academy of Sciences, Beijing, China, 100049
| | - Yuanjun Li
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China, 430074
- Graduate University of Chinese Academy of Sciences, Beijing, China, 100049
| | - Changfu Li
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China, 430074
| | - Yansheng Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China, 430074
| |
Collapse
|