1
|
Zhao Y, Yao Y, Li H, Han Z, Ma X. Integrated transcriptome and metabolism unravel critical roles of carbon metabolism and oxidoreductase in mushroom with Korshinsk peashrub substrates. BMC Genomics 2024; 25:763. [PMID: 39107700 PMCID: PMC11302058 DOI: 10.1186/s12864-024-10666-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
Edible fungi cultivation serves as an efficient biological approach to transforming agroforestry byproducts, particularly Korshinsk peashrub (KP) branches into valuable mushroom (Lentinus edodes) products. Despite the widespread use of KP, the molecular mechanisms underlying its regulation of mushroom development remain largely unknown. In this study, we conducted a combined analysis of transcriptome and metabolism of mushroom fruiting bodies cultivated on KP substrates compared to those on apple wood sawdust (AWS) substrate. Our aim was to identify key metabolic pathways and genes that respond to the effects of KP substrates on mushrooms. The results revealed that KP induced at least a 1.5-fold increase in protein and fat content relative to AWS, with 15% increase in polysaccharide and total sugar content in mushroom fruiting bodies. There are 1196 differentially expressed genes (DEGs) between mushrooms treated with KP relative to AWS. Bioinformatic analysis show significant enrichments in amino acid metabolic process, oxidase activity, malic enzyme activity and carbon metabolism among the 698 up-regulated DEGs induced by KP against AWS. Additionally, pathways associated with organic acid transport and methane metabolism were significantly enriched among the 498 down-regulated DEGs. Metabolomic analysis identified 439 differentially abundant metabolites (DAMs) in mushrooms treated with KP compared to AWS. Consistent with the transcriptome data, KEGG analysis on metabolomic dataset suggested significant enrichments in carbon metabolism, alanine, aspartate and glutamate metabolism among the up-regulated DAMs by KP. In particular, some DAMs were enhanced by 1.5-fold, including D-glutamine, L-glutamate, glucose and pyruvate in mushroom samples treated with KP relative to AWS. Targeted metabolomic analysis confirmed the contents of DAMs related to glutamate metabolism and energy metabolism. In conclusion, our findings suggest that reprogrammed carbon metabolism and oxidoreductase pathways act critical roles in the enhanced response of mushroom to KP substrates.
Collapse
Affiliation(s)
- Yuan Zhao
- Qinghai University, Xining, 810016, China.
- College of Ecol-Environmental Engineering, Qinghai University, Xining, 810016, China.
| | - Youhua Yao
- Qinghai University, Xining, 810016, China
- Academy of Agriculture and Forestry, Qinghai University, Xining, 810016, China
- Qinghai Key Laboratory of Genetic Breeding of Highland Barley/Qinghai Highland Barley Sub- Center of National Wheat Improvement Center, Xining, 810016, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, 810016, China
| | - Hongying Li
- Qinghai University, Xining, 810016, China
- College of Ecol-Environmental Engineering, Qinghai University, Xining, 810016, China
| | - Zirui Han
- Qinghai University, Xining, 810016, China
- College of Ecol-Environmental Engineering, Qinghai University, Xining, 810016, China
| | - Xuewen Ma
- Qinghai University, Xining, 810016, China
- College of Ecol-Environmental Engineering, Qinghai University, Xining, 810016, China
| |
Collapse
|
2
|
Shen N, Xie H, Liu K, Li X, Wang L, Deng Y, Chen L, Bian Y, Xiao Y. Near-gapless genome and transcriptome analyses provide insights into fruiting body development in Lentinula edodes. Int J Biol Macromol 2024; 263:130610. [PMID: 38447851 DOI: 10.1016/j.ijbiomac.2024.130610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/01/2024] [Accepted: 03/02/2024] [Indexed: 03/08/2024]
Abstract
Fruiting body development in macrofungi is an intensive research subject. In this study, high-quality genomes were assembled for two sexually compatible monokaryons from a heterokaryotic Lentinula edodes strain WX1, and variations in L. edodes genomes were analyzed. Specifically, differential gene expression and allele-specific expression (ASE) were analyzed using the two monokaryotic genomes and transcriptome data from four different stages of fruiting body development in WX1. Results revealed that after aeration, mycelia sensed cell wall stress, pheromones, and a decrease in CO2 concentration, leading to up-regulated expression in genes related to cell adhesion, cell wall remodeling, proteolysis, and lipid metabolism, which may promote primordium differentiation. Aquaporin genes and those related to proteolysis, mitosis, lipid, and carbohydrate metabolism may play important roles in primordium development, while genes related to tissue differentiation and sexual reproduction were active in fruiting body. Several essential genes for fruiting body development were allele-specifically expressed and the two nuclear types could synergistically regulate fruiting body development by dominantly expressing genes with different functions. ASE was probably induced by long terminal repeat-retrotransposons. Findings here contribute to the further understanding of the mechanism of fruiting body development in macrofungi.
Collapse
Affiliation(s)
- Nan Shen
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Institute of Applied Mycology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Haoyu Xie
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Institute of Applied Mycology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Kefang Liu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Institute of Applied Mycology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xinru Li
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Institute of Applied Mycology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Lu Wang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Institute of Applied Mycology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Youjin Deng
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Lianfu Chen
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Institute of Applied Mycology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yinbing Bian
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Institute of Applied Mycology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yang Xiao
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Institute of Applied Mycology, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
3
|
Saengha W, Karirat T, Pitisin N, Plangklang S, Butkhup L, Udomwong P, Ma NL, Konsue A, Chanthaket P, Katisart T, Luang-In V. Exploring the Bioactive Potential of Calostoma insigne, an Endangered Culinary Puffball Mushroom, from Northeastern Thailand. Foods 2023; 13:113. [PMID: 38201139 PMCID: PMC10778563 DOI: 10.3390/foods13010113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/25/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Calostoma insigne puffball mushrooms are only found in forests with rich biodiversity in very few countries including Thailand, and their biofunctions remain largely unexplored. This study used the agar disk diffusion assay, the anti-glucosidase assay, and the 3, 4, 5-dimethylthiazol-2-yl-2-5-diphenyltetrazolium bromide (MTT) assay to evaluate the bioactive potential of these endangered puffball mushrooms. Internal transcribed spacer (ITS) gene analysis identified C. insigne, a puffball mushroom with green, globose, and spiny spores. Fourier-transform infrared spectroscopy (FTIR) analysis confirmed the polysaccharide structure while scanning electron microscopy (SEM) revealed a fiber-like network. The ethanolic gelatinous fruiting body extract exhibited 1,1-diphenyl-2-picrylhydrazyl (DPPH)-scavenging capacity (57.96%), a ferric ion-reducing antioxidant power (FRAP) value of 1.73 mg FeSO4/g, and α-glucosidase inhibition (73.18%). C. insigne cytotoxicity was effective towards HT-29 colon cancer cells using the MTT assay (IC50 of 770.6 µg/mL at 72 h) and also showed antiproliferative capacity (IC50 of 297.1 µg/mL). This puffball mushroom stimulated apoptotic genes and proteins (caspase-3, Bax, and p21) via an intrinsic apoptotic pathway in HT-29 cells. In the laboratory, the medium formula consisting of 20% potato, 2% sucrose, and 0.2% peptone was optimal to increase fungal mycelial biomass (2.74 g DW/100 mL), with propagation at pH 5.0 and 30 °C. Puffball mushrooms are consumed as local foods and also confer several potential health benefits, making them worthy of conservation for sustainable utilization.
Collapse
Affiliation(s)
- Worachot Saengha
- Natural Antioxidant Innovation Research Unit, Department of Biotechnology, Faculty of Technology, Mahasarakham University, Maha Sarakham 44150, Thailand; (W.S.); (T.K.); (N.P.); (S.P.); (L.B.)
| | - Thipphiya Karirat
- Natural Antioxidant Innovation Research Unit, Department of Biotechnology, Faculty of Technology, Mahasarakham University, Maha Sarakham 44150, Thailand; (W.S.); (T.K.); (N.P.); (S.P.); (L.B.)
| | - Nathanon Pitisin
- Natural Antioxidant Innovation Research Unit, Department of Biotechnology, Faculty of Technology, Mahasarakham University, Maha Sarakham 44150, Thailand; (W.S.); (T.K.); (N.P.); (S.P.); (L.B.)
| | - Supawadee Plangklang
- Natural Antioxidant Innovation Research Unit, Department of Biotechnology, Faculty of Technology, Mahasarakham University, Maha Sarakham 44150, Thailand; (W.S.); (T.K.); (N.P.); (S.P.); (L.B.)
| | - Luchai Butkhup
- Natural Antioxidant Innovation Research Unit, Department of Biotechnology, Faculty of Technology, Mahasarakham University, Maha Sarakham 44150, Thailand; (W.S.); (T.K.); (N.P.); (S.P.); (L.B.)
| | - Piyachat Udomwong
- International College of Digital Innovation, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Nyuk Ling Ma
- BIOSES Research Interest Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia;
| | - Ampa Konsue
- Thai Traditional Medicinal Research Unit, Division of Applied Thai Traditional Medicine, Faculty of Medicine, Mahasarakham University, Maha Sarakham 44000, Thailand;
| | | | - Teeraporn Katisart
- Department of Biology, Faculty of Science, Mahasarakham University, Maha Sarakham 44150, Thailand;
| | - Vijitra Luang-In
- Natural Antioxidant Innovation Research Unit, Department of Biotechnology, Faculty of Technology, Mahasarakham University, Maha Sarakham 44150, Thailand; (W.S.); (T.K.); (N.P.); (S.P.); (L.B.)
| |
Collapse
|
4
|
Li Y, Wang H, Zhang Y, Xiang Q, Chen Q, Yu X, Zhang L, Peng W, Penttinen P, Gu Y. Hydrated lime promoted the polysaccharide content and affected the transcriptomes of Lentinula edodes during brown film formation. Front Microbiol 2023; 14:1290180. [PMID: 38111638 PMCID: PMC10726012 DOI: 10.3389/fmicb.2023.1290180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/13/2023] [Indexed: 12/20/2023] Open
Abstract
Brown film formation, a unique developmental stage in the life cycle of Lentinula edodes, is essential for the subsequent development of fruiting bodies in L. edodes cultivation. The pH of mushroom growth substrates are usually adjusted with hydrated lime, yet the effects of hydrated lime on cultivating L. edodes and the molecular mechanisms associated with the effects have not been studied systemically. We cultivated L. edodes on substrates supplemented with 0% (CK), 1% (T1), 3% (T2), and 5% (T3) hydrated lime (Ca (OH)2), and applied transcriptomics and qRT-PCR to study gene expression on the brown film formation stage. Hydrated lime increased polysaccharide contents in L. edodes, especially in T2, where the 5.3% polysaccharide content was approximately 1.5 times higher than in the CK. The addition of hydrated lime in the substrate promoted laccase, lignin peroxidase and manganese peroxidase activities, implying that hydrated lime improved the ability of L. edodes to decompose lignin and provide nutrition for its growth and development. Among the annotated 9,913 genes, compared to the control, 47 genes were up-regulated and 52 genes down-regulated in T1; 73 genes were up-regulated and 44 were down-regulated in T2; and 125 genes were up-regulated and 65 genes were down-regulated in T3. Differentially expressed genes (DEGs) were enriched in the amino acid metabolism, lipid metabolism and carbohydrate metabolism related pathways. The carbohydrate-active enzyme genes up-regulated in the hydrated lime treatments were mostly glycosyl hydrolase genes. The results will facilitate future optimization of L. edodes cultivation techniques and possibly shortening the production cycle.
Collapse
Affiliation(s)
- Yan Li
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Hongcheng Wang
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Ying Zhang
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Quanju Xiang
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Qiang Chen
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Xiumei Yu
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Lingzi Zhang
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Weihong Peng
- Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Petri Penttinen
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Yunfu Gu
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
5
|
Ke S, Ding L, Niu X, Shan H, Song L, Xi Y, Feng J, Wei S, Liang Q. Comparative transcriptome analysis on candidate genes associated with fruiting body growth and development in Lyophyllum decastes. PeerJ 2023; 11:e16288. [PMID: 37904843 PMCID: PMC10613438 DOI: 10.7717/peerj.16288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/22/2023] [Indexed: 11/01/2023] Open
Abstract
Lyophyllum decastes is a mushroom that is highly regarded for its culinary and medicinal properties. Its delectable taste and texture make it a popular choice for consumption. To gain a deeper understanding of the molecular mechanisms involved in the development of the fruiting body of L. decastes, we used RNA sequencing to conduct a comparative transcriptome analysis. The analysis encompassed various developmental stages, including the vegetative mycelium, primordial initiation, young fruiting body, medium-size fruiting body, and mature fruiting body stages. A range of 40.1 to 60.6 million clean reads were obtained, and de novo assembly generated 15,451 unigenes with an average length of 1,462.68 bp. Functional annotation of transcriptomes matched 76.84% of the unigenes to known proteins available in at least one database. The gene expression analysis revealed a significant number of differentially expressed genes (DEGs) between each stage. These genes were annotated and subjected to Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses. Highly differentially expressed unigenes were also identified, including those that encode extracellular enzymes, transcription factors, and signaling pathways. The accuracy of the RNA-Seq and DEG analyses was validated using quantitative PCR. Enzyme activity analysis experiments demonstrated that the extracellular enzymes exhibited significant differences across different developmental stages. This study provides valuable insights into the molecular mechanisms that underlie the development of the fruiting body in L. decastes.
Collapse
Affiliation(s)
- Shanwen Ke
- Gansu Engineering Laboratory of Applied Mycology, Hexi University, Zhangye, Gansu, China
- Gansu Key Laboratory of Genetics and Breeding of Edible Fungi, Hexi University, Zhangye, Gansu, China
| | - LingQiang Ding
- Gansu Engineering Laboratory of Applied Mycology, Hexi University, Zhangye, Gansu, China
- Gansu Key Laboratory of Genetics and Breeding of Edible Fungi, Hexi University, Zhangye, Gansu, China
| | - Xin Niu
- Gansu Engineering Laboratory of Applied Mycology, Hexi University, Zhangye, Gansu, China
- Gansu Key Laboratory of Genetics and Breeding of Edible Fungi, Hexi University, Zhangye, Gansu, China
| | - Huajia Shan
- Gansu Engineering Laboratory of Applied Mycology, Hexi University, Zhangye, Gansu, China
- Gansu Key Laboratory of Genetics and Breeding of Edible Fungi, Hexi University, Zhangye, Gansu, China
| | - Liru Song
- Gansu Engineering Laboratory of Applied Mycology, Hexi University, Zhangye, Gansu, China
- Gansu Key Laboratory of Genetics and Breeding of Edible Fungi, Hexi University, Zhangye, Gansu, China
| | - Yali Xi
- Gansu Engineering Laboratory of Applied Mycology, Hexi University, Zhangye, Gansu, China
- Gansu Key Laboratory of Genetics and Breeding of Edible Fungi, Hexi University, Zhangye, Gansu, China
| | - Jiuhai Feng
- Gansu Engineering Laboratory of Applied Mycology, Hexi University, Zhangye, Gansu, China
- Gansu Key Laboratory of Genetics and Breeding of Edible Fungi, Hexi University, Zhangye, Gansu, China
| | - Shenglong Wei
- Gansu Engineering Laboratory of Applied Mycology, Hexi University, Zhangye, Gansu, China
- Gansu Key Laboratory of Genetics and Breeding of Edible Fungi, Hexi University, Zhangye, Gansu, China
| | - Qianqian Liang
- Gansu Engineering Laboratory of Applied Mycology, Hexi University, Zhangye, Gansu, China
- Gansu Key Laboratory of Genetics and Breeding of Edible Fungi, Hexi University, Zhangye, Gansu, China
| |
Collapse
|
6
|
Zhang W, Li Q, Wang J, Wang Z, Zhan H, Yu X, Zheng Y, Xiao T, Zhou LW. Biodegradation of Benzo[a]pyrene by a White-Rot Fungus Phlebia acerina: Surfactant-Enhanced Degradation and Possible Genes Involved. J Fungi (Basel) 2023; 9:978. [PMID: 37888234 PMCID: PMC10607704 DOI: 10.3390/jof9100978] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/19/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are persistent environmental pollutants that pose a threat to human health. Among these PAHs, benzo[a]pyrene (BaP), a five-ring compound, exhibits high resistance to biodegradation. White-rot fungus Phlebia acerina S-LWZ20190614-6 has demonstrated higher BaP degradation capabilities compared with Phanerochaete chrysosporium and P. sordida YK-624, achieving a degradation rate of 57.7% after 32 days of incubation under a ligninolytic condition. To further enhance the biodegradation rate, three nonionic surfactants were used, and the addition of 1 or 2 g·L-1 of polyethylene glycol monododecyl ether (Brij 30) resulted in nearly complete BaP biodegradation by P. acerina S-LWZ20190614-6. Interestingly, Brij 30 did not significantly affect the activity of manganese peroxidase and lignin peroxidase, but it did decrease laccase activity. Furthermore, the impact of cytochrome P450 on BaP degradation by P. acerina S-LWZ20190614-6 was found to be relatively mild. Transcriptomic analysis provided insights into the degradation mechanism of BaP, revealing the involvement of genes related to energy production and the synthesis of active enzymes crucial for BaP degradation. The addition of Brij 30 significantly upregulated various transferase and binding protein genes in P. acerina S-LWZ20190614-6. Hence, the bioremediation potential of BaP by the white-rot fungus P. acerina S-LWZ20190614-6 holds promise and warrants further exploration.
Collapse
Affiliation(s)
- Wenquan Zhang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Qiaoyu Li
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Jianqiao Wang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Ziyu Wang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Hongjie Zhan
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Xiaolong Yu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yan Zheng
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Tangfu Xiao
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China
| | - Li-Wei Zhou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
7
|
Gao H, Ye S, Liu Y, Fan X, Yin C, Liu Y, Liu J, Qiao Y, Chen X, Yao F, Shi D. Transcriptome analysis provides insight into gamma irradiation delaying quality deterioration of postharvest Lentinula edodes during cold storage. FOOD CHEMISTRY. MOLECULAR SCIENCES 2023; 6:100172. [PMID: 37213208 PMCID: PMC10199187 DOI: 10.1016/j.fochms.2023.100172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 04/27/2023] [Accepted: 05/06/2023] [Indexed: 05/23/2023]
Abstract
To better determine how gamma irradiation (GI) improves abiotic stress resistance, a transcriptome analysis of postharvest L. edodes in response to 1.0 kGy GI was conducted, and further the underlying mechanism of GI in delaying quality deterioration over 20 d of cold storage was explored. The results suggested that GI was involved in multiple metabolic processes in irradiated postharvest L. edodes. In comparison with the control group, the GI group contained 430 differentially expressed genes, including 151 upregulated genes and 279 downregulated genes, which unveiled characteristic expression profiles and pathways. The genes involved in the pentose phosphate pathway were mainly upregulated and the expression level of the gene encoding deoxy-D-gluconate 3-dehydrogenase was 9.151-fold higher. In contrast, the genes related to other energy metabolism pathways were downregulated. Concurrently, GI inhibited the expression of genes associated with delta 9-fatty acid desaturase, ribosomes, and HSP20; thus, GI helped postpone the degradation of lipid components, suppress transcriptional metabolism and regulate the stress response. Additionally, the metabolic behavior of DNA repair induced by GI intensified by noticeable upregulation. These regulatory effects could play a potential and nonnegligible role in delaying the deterioration of L. edodes quality. The results provide new information on the regulatory mechanism of postharvest L. edodes when subjected to 1.0 kGy GI during cold storage.
Collapse
Affiliation(s)
- Hong Gao
- Key Laboratory of Cold Chain Logistics Technology for Agro-product, Ministry of Agriculture and Rural Affairs, Research Institute of Agricultural Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Shuang Ye
- School of Food and Biological Engineering, Hubei University of Technology, 28 Nanli Road, Wuhan 430068, China
| | - Yani Liu
- School of Food and Biological Engineering, Hubei University of Technology, 28 Nanli Road, Wuhan 430068, China
| | - Xiuzhi Fan
- Key Laboratory of Cold Chain Logistics Technology for Agro-product, Ministry of Agriculture and Rural Affairs, Research Institute of Agricultural Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Chaomin Yin
- Key Laboratory of Cold Chain Logistics Technology for Agro-product, Ministry of Agriculture and Rural Affairs, Research Institute of Agricultural Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Ying Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jingyu Liu
- Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Yu Qiao
- Key Laboratory of Cold Chain Logistics Technology for Agro-product, Ministry of Agriculture and Rural Affairs, Research Institute of Agricultural Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Xueling Chen
- Key Laboratory of Cold Chain Logistics Technology for Agro-product, Ministry of Agriculture and Rural Affairs, Research Institute of Agricultural Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Fen Yao
- Key Laboratory of Cold Chain Logistics Technology for Agro-product, Ministry of Agriculture and Rural Affairs, Research Institute of Agricultural Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Defang Shi
- Key Laboratory of Cold Chain Logistics Technology for Agro-product, Ministry of Agriculture and Rural Affairs, Research Institute of Agricultural Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| |
Collapse
|
8
|
Song X, Chen M, Zhao Y, Zhang M, Zhang L, Zhang D, Song C, Shang X, Tan Q. Multi-stage nuclear transcriptomic insights of morphogenesis and biparental role changes in Lentinula edodes. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12624-y. [PMID: 37439832 DOI: 10.1007/s00253-023-12624-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 07/14/2023]
Abstract
Based on six offspring with different mitochondrial (M) and parental nuclear (N) genotypes, the multi-stage morphological characteristics and nuclear transcriptomes of Lentinula edodes were compared to investigate morphogenesis mechanisms during cultivation, the key reason for cultivar resistance to genotype changes, and regulation related to biparental role changes. Six offspring had specific transcriptomic data and morphological characteristics that were mainly regulated by the two parental nuclei, followed by the cytoplasm, at different growth stages. Importing a wild N genotype easily leads to failure or instability of fruiting; however, importing wild M genotypes may improve cultivars. Major facilitator superfamily (MFS) transporter genes encoding specific metabolites in spawns may play crucial roles in fruiting body formation. Pellets from submerged cultivation and spawns from sawdust substrate cultivation showed different carbon metabolic pathways, especially in secondary metabolism, degradation of lignin, cellulose and hemicellulose, and plasma membrane transport (mainly MFS). When the stage of small young pileus (SYP) was formed on the surface of the bag, the spawns inside were mainly involved in nutrient accumulation. Just broken pileus (JBP) showed a different expression of plasma membrane transporter genes related to intracellular material transport compared to SYP and showed different ribosomal proteins and cytochrome P450 functioning in protein biosynthesis and metabolism than near spreading pileus (NSP). Biparental roles mainly regulate offspring metabolism, growth, and morphogenesis by differentially expressing specific genes during different vegetative growth stages. Additionally, some genes encoding glycine-rich RNA-binding proteins, F-box, and folliculin-interacting protein repeat-containing proteins may be related to multi-stage morphogenesis. KEY POINTS: • Replacement of nuclear genotype is not suitable for cultivar breeding of L. edodes. • Some genes show a biparental role-divergent expression at mycelial growth stage. • Transcriptomic changes of some sawdust substrate cultivation stages have been elucidated.
Collapse
Affiliation(s)
- Xiaoxia Song
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, People's Republic of China
| | - Mingjie Chen
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, People's Republic of China
| | - Yan Zhao
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, People's Republic of China
| | - Meiyan Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, People's Republic of China
| | - Lujun Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, People's Republic of China
| | - Dang Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, People's Republic of China
| | - Chunyan Song
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, People's Republic of China.
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| | - Xiaodong Shang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, People's Republic of China
| | - Qi Tan
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, People's Republic of China
| |
Collapse
|
9
|
Yu C, Zhang Y, Ren Y, Zhao Y, Song X, Yang H, Chen M. Composition and contents of fatty acids and amino acids in the mycelia of Lentinula edodes. Food Sci Nutr 2023; 11:4038-4046. [PMID: 37457198 PMCID: PMC10345669 DOI: 10.1002/fsn3.3392] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/23/2023] [Accepted: 04/12/2023] [Indexed: 07/18/2023] Open
Abstract
With the global shortages of animal protein foods, mycoprotein as a low-cost alternative source of protein by its high-protein and low-fat content has become a development trend. Lentinula edodes (L. edodes) is a healthy food with high protein and low fiber. This work evaluated the nutritional value of L. edodes mycelia, and determined the composition and contents of fatty acids and amino acids. Eleven saturated fatty acids (SFAs) and 12 unsaturated fatty acids (UFAs) were detected in the mycelia of L. edodes. The UFA content accounted for 75.7% and 73.1% of the total fatty acid content in the mycelia of strains 18 and 18N44, respectively. Linoleic acid was the major polyunsaturated fatty acid (PUFA) in the mycelia, accounting for 91.0% and 86.3% of the UFAs, respectively. The mycelia of the two strains contained 17 types of amino acids, and the essential amino acids were sufficient (357.92 ± 0.42 and 398.38 ± 4.52 mg/g pro, respectively), both close to the WHO/FAO reference protein pattern value. The most abundant essential amino acid was Lys, and the limiting amino acids were Met + Cys and Ile, respectively. The SRC values in the mycelia of the two strains were 68.07 and 54.86, and the EAAI values were 67.70 and 74.42, respectively, both being close to those of ovalbumin. It is concluded that L. edodes mycelia are rich in easily absorbed high-quality proteins and PUFAs, and can be used as a source for meat analog required by vegetarians. This study provides a scientific basis for the further utilization of mycelial resources.
Collapse
Affiliation(s)
- Chang‐Xia Yu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South)Ministry of AgricultureShanghaiChina
| | - Ya‐Ru Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South)Ministry of AgricultureShanghaiChina
| | - Yun‐Fei Ren
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South)Ministry of AgricultureShanghaiChina
| | - Yan Zhao
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South)Ministry of AgricultureShanghaiChina
| | - Xiao‐Xia Song
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South)Ministry of AgricultureShanghaiChina
| | - Huan‐Ling Yang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South)Ministry of AgricultureShanghaiChina
| | - Ming‐Jie Chen
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South)Ministry of AgricultureShanghaiChina
| |
Collapse
|
10
|
Nagy L, Vonk P, Künzler M, Földi C, Virágh M, Ohm R, Hennicke F, Bálint B, Csernetics Á, Hegedüs B, Hou Z, Liu X, Nan S, Pareek M, Sahu N, Szathmári B, Varga T, Wu H, Yang X, Merényi Z. Lessons on fruiting body morphogenesis from genomes and transcriptomes of Agaricomycetes. Stud Mycol 2023; 104:1-85. [PMID: 37351542 PMCID: PMC10282164 DOI: 10.3114/sim.2022.104.01] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/02/2022] [Indexed: 01/09/2024] Open
Abstract
Fruiting bodies (sporocarps, sporophores or basidiomata) of mushroom-forming fungi (Agaricomycetes) are among the most complex structures produced by fungi. Unlike vegetative hyphae, fruiting bodies grow determinately and follow a genetically encoded developmental program that orchestrates their growth, tissue differentiation and sexual sporulation. In spite of more than a century of research, our understanding of the molecular details of fruiting body morphogenesis is still limited and a general synthesis on the genetics of this complex process is lacking. In this paper, we aim at a comprehensive identification of conserved genes related to fruiting body morphogenesis and distil novel functional hypotheses for functionally poorly characterised ones. As a result of this analysis, we report 921 conserved developmentally expressed gene families, only a few dozens of which have previously been reported to be involved in fruiting body development. Based on literature data, conserved expression patterns and functional annotations, we provide hypotheses on the potential role of these gene families in fruiting body development, yielding the most complete description of molecular processes in fruiting body morphogenesis to date. We discuss genes related to the initiation of fruiting, differentiation, growth, cell surface and cell wall, defence, transcriptional regulation as well as signal transduction. Based on these data we derive a general model of fruiting body development, which includes an early, proliferative phase that is mostly concerned with laying out the mushroom body plan (via cell division and differentiation), and a second phase of growth via cell expansion as well as meiotic events and sporulation. Altogether, our discussions cover 1 480 genes of Coprinopsis cinerea, and their orthologs in Agaricus bisporus, Cyclocybe aegerita, Armillaria ostoyae, Auriculariopsis ampla, Laccaria bicolor, Lentinula edodes, Lentinus tigrinus, Mycena kentingensis, Phanerochaete chrysosporium, Pleurotus ostreatus, and Schizophyllum commune, providing functional hypotheses for ~10 % of genes in the genomes of these species. Although experimental evidence for the role of these genes will need to be established in the future, our data provide a roadmap for guiding functional analyses of fruiting related genes in the Agaricomycetes. We anticipate that the gene compendium presented here, combined with developments in functional genomics approaches will contribute to uncovering the genetic bases of one of the most spectacular multicellular developmental processes in fungi. Citation: Nagy LG, Vonk PJ, Künzler M, Földi C, Virágh M, Ohm RA, Hennicke F, Bálint B, Csernetics Á, Hegedüs B, Hou Z, Liu XB, Nan S, M. Pareek M, Sahu N, Szathmári B, Varga T, Wu W, Yang X, Merényi Z (2023). Lessons on fruiting body morphogenesis from genomes and transcriptomes of Agaricomycetes. Studies in Mycology 104: 1-85. doi: 10.3114/sim.2022.104.01.
Collapse
Affiliation(s)
- L.G. Nagy
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - P.J. Vonk
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands;
| | - M. Künzler
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland;
| | - C. Földi
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - M. Virágh
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - R.A. Ohm
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands;
| | - F. Hennicke
- Project Group Genetics and Genomics of Fungi, Chair Evolution of Plants and Fungi, Ruhr-University Bochum, 44780, Bochum, North Rhine-Westphalia, Germany;
| | - B. Bálint
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - Á. Csernetics
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - B. Hegedüs
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - Z. Hou
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - X.B. Liu
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - S. Nan
- Institute of Applied Mycology, Huazhong Agricultural University, 430070 Hubei Province, PR China
| | - M. Pareek
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - N. Sahu
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - B. Szathmári
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - T. Varga
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - H. Wu
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - X. Yang
- Institute of Applied Mycology, Huazhong Agricultural University, 430070 Hubei Province, PR China
| | - Z. Merényi
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| |
Collapse
|
11
|
Wu J, Wang X, Zhang R, Fu Q, Tang F, Shi F, Temuer B, Zhang Z. Comparative Transcriptome and Anatomic Characteristics of Stems in Two Alfalfa Genotypes. PLANTS (BASEL, SWITZERLAND) 2022; 11:2601. [PMID: 36235467 PMCID: PMC9570624 DOI: 10.3390/plants11192601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Stems are more important to forage quality than leaves in alfalfa. To understand lignin formation at different stages in alfalfa, lignin distribution, anatomical characteristics and transcriptome profile were employed using two alfalfa cultivars. The results showed that the in vitro true digestibility (IVTD) of stems in WL168 was significantly higher than that of Zhungeer, along with the significantly lower neutral detergent fiber (NDF), acid detergent fiber (ADF) and lignin contents. In addition, Zhungeer exhibited increased staining of the xylem areas in the stems of different developmental stages compared to WL168. Interestingly, the stems of WL168 appeared intracellular space from the stage 3, while Zhungeer did not. The comparative transcriptome analysis showed that a total of 1993 genes were differentially expressed in the stem between the cultivars, with a higher number of expressed genes in the stage 4. Of the differentially expressed genes, starch and sucrose metabolism as well as phenylpropanoid biosynthesis pathways were the most significantly enriched pathways. Furthermore, expression of genes involved in lignin biosynthesis such as PAL, 4CL, HCT, CAD, COMT and POD coincides with the anatomic characteristics and lignin accumulation. These results may help elucidate the regulatory mechanisms of lignin biosynthesis and improve forage quality in alfalfa.
Collapse
Affiliation(s)
- Jierui Wu
- Key Laboratory of Grassland Resources of the Ministry of Education, Technology Engineering Center of Drought and Cold-Resistant Grass Breeding in the North of the National Forestry and Grassland Administration, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010010, China
| | - Xiaoyu Wang
- Key Laboratory of Grassland Resources of the Ministry of Education, Technology Engineering Center of Drought and Cold-Resistant Grass Breeding in the North of the National Forestry and Grassland Administration, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010010, China
| | - Ruxue Zhang
- Key Laboratory of Grassland Resources of the Ministry of Education, Technology Engineering Center of Drought and Cold-Resistant Grass Breeding in the North of the National Forestry and Grassland Administration, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010010, China
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot 010010, China
| | - Qingwen Fu
- Key Laboratory of Grassland Resources of the Ministry of Education, Technology Engineering Center of Drought and Cold-Resistant Grass Breeding in the North of the National Forestry and Grassland Administration, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010010, China
| | - Fang Tang
- Key Laboratory of Grassland Resources of the Ministry of Education, Technology Engineering Center of Drought and Cold-Resistant Grass Breeding in the North of the National Forestry and Grassland Administration, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010010, China
| | - Fengling Shi
- Key Laboratory of Grassland Resources of the Ministry of Education, Technology Engineering Center of Drought and Cold-Resistant Grass Breeding in the North of the National Forestry and Grassland Administration, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010010, China
| | - Buhe Temuer
- Key Laboratory of Grassland Resources of the Ministry of Education, Technology Engineering Center of Drought and Cold-Resistant Grass Breeding in the North of the National Forestry and Grassland Administration, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010010, China
| | - Zhiqiang Zhang
- Key Laboratory of Grassland Resources of the Ministry of Education, Technology Engineering Center of Drought and Cold-Resistant Grass Breeding in the North of the National Forestry and Grassland Administration, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010010, China
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot 010010, China
| |
Collapse
|
12
|
Hu JL, Yierfulati G, Wang LL, Yang BY, Lv QY, Chen XJ. Identification of potential models for predicting progestin insensitivity in patients with endometrial atypical hyperplasia and endometrioid endometrial cancer based on ATAC-Seq and RNA-Seq integrated analysis. Front Genet 2022; 13:952083. [PMID: 36092919 PMCID: PMC9459090 DOI: 10.3389/fgene.2022.952083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/26/2022] [Indexed: 11/15/2022] Open
Abstract
Objective: The aim of this study was to establish predictive models based on the molecular profiles of endometrial lesions, which might help identify progestin-insensitive endometrial atypical hyperplasia (EAH) or endometrioid endometrial cancer (EEC) patients before progestin-based fertility-preserving treatment initiation. Methods: Endometrial lesions from progestin-sensitive (PS, n = 7) and progestin-insensitive (PIS, n = 7) patients were prospectively collected before progestin treatment and then analyzed by ATAC-Seq and RNA-Seq. Potential chromatin accessibility and expression profiles were compared between the PS and PIS groups. Candidate genes were identified by bioinformatics analyses and literature review. Then expanded samples (n = 35) were used for validating bioinformatics data and conducting model establishment. Results: ATAC-Seq and RNA-Seq data were separately analyzed and then integrated for the subsequent research. A total of 230 overlapping differentially expressed genes were acquired from ATAC-Seq and RNA-Seq integrated analysis. Further, based on GO analysis, REACTOME pathways, transcription factor prediction, motif enrichment, Cytoscape analysis and literature review, 25 candidate genes potentially associated with progestin insensitivity were identified. Finally, expanded samples were used for data verification, and based on these data, three predictive models comprising 9 genes (FOXO1, IRS2, PDGFC, DIO2, SOX9, BCL11A, APOE, FYN, and KLF4) were established with an overall predictive accuracy above 90%. Conclusion: This study provided potential predictive models that might help identify progestin-insensitive EAH and EEC patients before fertility-preserving treatment.
Collapse
Affiliation(s)
- Jia-Li Hu
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Gulinazi Yierfulati
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Lu-Lu Wang
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Bing-Yi Yang
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Qiao-Ying Lv
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
- *Correspondence: Qiao-Ying Lv, ; Xiao-Jun Chen,
| | - Xiao-Jun Chen
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
- *Correspondence: Qiao-Ying Lv, ; Xiao-Jun Chen,
| |
Collapse
|
13
|
Comparative transcriptome analysis revealed candidate genes involved in fruiting body development and sporulation in Ganoderma lucidum. Arch Microbiol 2022; 204:514. [PMID: 35867171 DOI: 10.1007/s00203-022-03088-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/20/2022] [Indexed: 11/02/2022]
Abstract
Ganoderma lucidum is an edible mushroom highly regarded in the traditional Chinese medicine. To better understand the molecular mechanisms underlying fruiting body development in G. lucidum, transcriptome analysis based on RNA sequencing was carried out on different developmental stages: mycelium (G1); primordium (G2); young fruiting body (G3); mature fruiting body (G4); fruiting body in post-sporulation stage (G5). In total, 26,137 unigenes with an average length of 1078 bp were de novo assembled. Functional annotation of transcriptomes matched 72.49% of the unigenes to known proteins available in at least one database. Differentially expressed genes (DEGs) were identified between the evaluated stages: 3135 DEGs in G1 versus G2; 120 in G2 versus G3; 3919 in G3 versus G4; and 1012 in G4 versus G5. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of DEGs identified in G1 versus G2 revealed that, in addition to global and overview maps, enriched pathways were related to amino acid metabolism and carbohydrate metabolism. In contrast, DEGs identified in G2 versus G3 were mainly assigned to the category of metabolism of amino acids and their derivatives, comprising mostly upregulated unigenes. In addition, highly expressed unigenes associated with the transition between different developmental stages were identified, including those encoding hydrophobins, cytochrome P450s, extracellular proteases, and several transcription factors. Meanwhile, highly expressed unigenes related to meiosis such as DMC1, MSH4, HOP1, and Mek1 were also analyzed. Our study provides important insights into the molecular mechanisms underlying fruiting body development and sporulation in G. lucidum.
Collapse
|
14
|
Berger RG, Bordewick S, Krahe NK, Ersoy F. Mycelium vs. Fruiting Bodies of Edible Fungi-A Comparison of Metabolites. Microorganisms 2022; 10:1379. [PMID: 35889098 PMCID: PMC9315710 DOI: 10.3390/microorganisms10071379] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 11/16/2022] Open
Abstract
Edible mushrooms are widely appreciated for their appealing flavours, low caloric values and high content of presumably health-protecting metabolites. Their long history of safe use together with the looming worldwide food crisis have revived the idea of generating meat analogues and protein isolates by the controlled fermentation of mycelia of these edible fungi as a dietary option. The occurrence of proteins, polysaccharides, smaller metabolites, metal ions and toxins in mycelia and fruiting bodies is compared among the three most popular species, Agaricus bisporus (button mushroom), Pleurotus ostreatus (oyster mushroom), Lentinus edodes (shiitake) and some closely related species. Large effects of substrate chemistry, strain, developmental stage and ecological interactions result in a wide variation of the concentrations of some metabolites in both mycelial cells and fruiting bodies. This is obviously a result of the high adaptation abilities required to survive in natural habitats. Fungal bioprocesses are decoupled from agricultural production and can be operated anytime, anywhere, and on any scale according to demand. It is concluded that fungal biomass, if produced under food-grade conditions and on an industrial scale, could provide a safe and nutritious meat substitute and protein isolates with a high biological value for future vegan foods.
Collapse
Affiliation(s)
| | | | | | - Franziska Ersoy
- Institute of Food Chemistry, Leibniz University Hannover, Callinstraße 5, 30167 Hannover, Germany; (R.G.B.); (S.B.); (N.-K.K.)
| |
Collapse
|
15
|
Wang C, Zhang X, Zeng Z, Song F, Lin Z, Chen L, Cai Z. Transcriptome Analysis Explored the Differential Genes’ Expression During the Development of the Stropharia rugosoannulata Fruiting Body. Front Genet 2022; 13:924050. [PMID: 35903349 PMCID: PMC9318406 DOI: 10.3389/fgene.2022.924050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Stropharia rugosoannulata (S. rugosoannulata) is a fungus with great edible and nutritional values; however, the development mechanism of its fruiting body has not been studied. Thus, this study aimed to analyze the differentially expressed genes (DEGs) in four stages; primordia stage (Sra1), young mushroom stage (Sra2), picking stage (Sra3), and opening umbrella stage (Sra4). Therefore, total RNA was extracted for further RNA-sequencing analysis. In three pairwise comparison groups (PCGs), Sra1 vs. Sra2, Sra2 vs. Sra3, and Sra3 vs. Sra4, a total of 3,112 DEGs were identified among the three PCGs. A GO analysis of the DEGs showed that there were 21 terms significantly enriched in Sra1 vs. Sra2 PCG. There was no significantly enriched GO term in the other two PCGs. Furthermore, KEGG pathway analysis showed that these DEGs were mainly enriched in glucose and amino acid metabolisms. Moreover we found that intron retention (IR) and the alternative 3′ splice site (A3SS) accounted for more than 80%. The development of the S. rugosoannulata fruiting body mainly involved glucose and amino acid metabolisms. IR and A3SS were the two main types of ASE, which played an important role in the development and maturation of the S. rugosoannulata fruiting body.
Collapse
Affiliation(s)
- Cui Wang
- Department of Health and Food, Fujian Vocational College of Bioengineering, Fuzhou, China
| | - Xunjie Zhang
- Department of Health and Food, Fujian Vocational College of Bioengineering, Fuzhou, China
| | - Zhiheng Zeng
- Institute of Edible Mushroom, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Feifei Song
- Department of Health and Food, Fujian Vocational College of Bioengineering, Fuzhou, China
| | - Zhen Lin
- Department of Health and Food, Fujian Vocational College of Bioengineering, Fuzhou, China
| | - Liangjun Chen
- Department of Health and Food, Fujian Vocational College of Bioengineering, Fuzhou, China
| | - Zhixin Cai
- Institute of Edible Mushroom, Fujian Academy of Agricultural Sciences, Fuzhou, China
- *Correspondence: Zhixin Cai,
| |
Collapse
|
16
|
Gao Q, Yan D, Song S, Fan Y, Wang S, Liu Y, Huang Y, Rong C, Guo Y, Zhao S, Qin W, Xu J. Haplotype-Resolved Genome Analyses Reveal Genetically Distinct Nuclei within a Commercial Cultivar of Lentinula edodes. J Fungi (Basel) 2022; 8:167. [PMID: 35205921 PMCID: PMC8877449 DOI: 10.3390/jof8020167] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/05/2022] [Accepted: 02/06/2022] [Indexed: 01/02/2023] Open
Abstract
Lentinula edodes is a tetrapolar basidiomycete with two haploid nuclei in each cell during most of their life cycle. Understanding the two haploid nuclei genome structures and their interactions on growth and fruiting body development has significant practical implications, especially for commercial cultivars. In this study, we isolated and assembled the two haploid genomes from a commercial strain of L. edodes using Illumina, HiFi, and Hi-C technologies. The total genome lengths were 50.93 Mb and 49.80 Mb for the two monokaryons SP3 and SP30, respectively, with each assembled into 10 chromosomes with 99.63% and 98.91% anchoring rates, respectively, for contigs more than 100 Kb. Genome comparisons suggest that two haploid nuclei likely derived from distinct genetic ancestries, with ~30% of their genomes being unique or non-syntenic. Consistent with a tetrapolar mating system, the two mating-type loci A (matA) and B (matB) of L. edodes were found located on two different chromosomes. However, we identified a new but incomplete homeodomain (HD) sublocus at ~2.8 Mb from matA in both monokaryons. Our study provides a solid foundation for investigating the relationships among cultivars and between cultivars and wild strains and for studying how two genetically divergent nuclei coordinate to regulate fruiting body formation in L. edodes.
Collapse
Affiliation(s)
- Qi Gao
- Beijing Engineering Research Center for Edible Mushroom, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, 9 Shuguang Garden Zhonglu, Haidian District, Beijing 100097, China; (Q.G.); (S.S.); (Y.F.); (S.W.); (Y.L.); (Y.H.); (C.R.); (Y.G.); (S.Z.); (W.Q.)
| | - Dong Yan
- Beijing Engineering Research Center for Edible Mushroom, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, 9 Shuguang Garden Zhonglu, Haidian District, Beijing 100097, China; (Q.G.); (S.S.); (Y.F.); (S.W.); (Y.L.); (Y.H.); (C.R.); (Y.G.); (S.Z.); (W.Q.)
| | - Shuang Song
- Beijing Engineering Research Center for Edible Mushroom, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, 9 Shuguang Garden Zhonglu, Haidian District, Beijing 100097, China; (Q.G.); (S.S.); (Y.F.); (S.W.); (Y.L.); (Y.H.); (C.R.); (Y.G.); (S.Z.); (W.Q.)
| | - Yangyang Fan
- Beijing Engineering Research Center for Edible Mushroom, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, 9 Shuguang Garden Zhonglu, Haidian District, Beijing 100097, China; (Q.G.); (S.S.); (Y.F.); (S.W.); (Y.L.); (Y.H.); (C.R.); (Y.G.); (S.Z.); (W.Q.)
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Shouxian Wang
- Beijing Engineering Research Center for Edible Mushroom, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, 9 Shuguang Garden Zhonglu, Haidian District, Beijing 100097, China; (Q.G.); (S.S.); (Y.F.); (S.W.); (Y.L.); (Y.H.); (C.R.); (Y.G.); (S.Z.); (W.Q.)
| | - Yu Liu
- Beijing Engineering Research Center for Edible Mushroom, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, 9 Shuguang Garden Zhonglu, Haidian District, Beijing 100097, China; (Q.G.); (S.S.); (Y.F.); (S.W.); (Y.L.); (Y.H.); (C.R.); (Y.G.); (S.Z.); (W.Q.)
| | - Yu Huang
- Beijing Engineering Research Center for Edible Mushroom, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, 9 Shuguang Garden Zhonglu, Haidian District, Beijing 100097, China; (Q.G.); (S.S.); (Y.F.); (S.W.); (Y.L.); (Y.H.); (C.R.); (Y.G.); (S.Z.); (W.Q.)
- College of Agriculture and Food Engineering, Baise University, 21 Zhongshan Second Street, Youjiang District, Baise 533000, China
| | - Chengbo Rong
- Beijing Engineering Research Center for Edible Mushroom, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, 9 Shuguang Garden Zhonglu, Haidian District, Beijing 100097, China; (Q.G.); (S.S.); (Y.F.); (S.W.); (Y.L.); (Y.H.); (C.R.); (Y.G.); (S.Z.); (W.Q.)
| | - Yuan Guo
- Beijing Engineering Research Center for Edible Mushroom, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, 9 Shuguang Garden Zhonglu, Haidian District, Beijing 100097, China; (Q.G.); (S.S.); (Y.F.); (S.W.); (Y.L.); (Y.H.); (C.R.); (Y.G.); (S.Z.); (W.Q.)
| | - Shuang Zhao
- Beijing Engineering Research Center for Edible Mushroom, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, 9 Shuguang Garden Zhonglu, Haidian District, Beijing 100097, China; (Q.G.); (S.S.); (Y.F.); (S.W.); (Y.L.); (Y.H.); (C.R.); (Y.G.); (S.Z.); (W.Q.)
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
| | - Wentao Qin
- Beijing Engineering Research Center for Edible Mushroom, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, 9 Shuguang Garden Zhonglu, Haidian District, Beijing 100097, China; (Q.G.); (S.S.); (Y.F.); (S.W.); (Y.L.); (Y.H.); (C.R.); (Y.G.); (S.Z.); (W.Q.)
| | - Jianping Xu
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
17
|
Deng K, Lan X, Chen Y, Wang T, Li M, Xu Y, Cao X, Xie G, Xie L. Integration of Transcriptomics and Metabolomics for Understanding the Different Vegetative Growth in Morchella Sextelata. Front Genet 2022; 12:829379. [PMID: 35186020 PMCID: PMC8854800 DOI: 10.3389/fgene.2021.829379] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 12/30/2021] [Indexed: 11/13/2022] Open
Abstract
Morchella sextelata is an edible and medicinal fungus with high nutritional, medicinal, and economic value. Recently, M. sextelata has been produced through artificial cultivation in China, but its stable production remains problematic because the details of its growth and development process are limitedly understood. Herein, to investigate the dynamic process of M. sextelata development, we integrated the transcriptomics and metabolomics data of M. sextelata from three developmental stages: the young mushroom period (YMP), marketable mature period (MMP), and physiological maturity period (PMP). The results showed that the transcriptome changed dynamically at different stages and demonstrated the significant enrichment of pathways that regulate plant growth and development, such as N-glycan biosynthesis and carbon and purine metabolism. Similarly, small-molecule metabolites, such as D-fructose-1,6-biphosphate, which was upregulated during the YMP, dihydromyricetin, which was upregulated during the MMP, and L-citrulline, which was upregulated during the PMP, also showed phase-dependent characteristics. Then, combined analysis of the transcriptome data and metabolome traits revealed that the transcriptome may affect metabolic molecules during different growth stages of M. sextelata via specific enzymes, such as α-glucosidase and glucanase, which were included in two opposite transcriptome modules. In summary, this integration of transcriptomics and metabolomics data for understanding the vegetative growth of M. sextelata during different developmental stages implicated several key genes, metabolites, and pathways involved in the vegetative growth. We believe that these findings will provide comprehensive insights into the dynamic process of growth and development in M. sextelata and new clues for optimizing the methods for its cultivation application.
Collapse
Affiliation(s)
- Kejun Deng
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
- *Correspondence: Kejun Deng, ; Liyuan Xie,
| | - Xiuhua Lan
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
- Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Ying Chen
- Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Ting Wang
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Mengke Li
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yingyin Xu
- Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Xuelian Cao
- Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Guangbo Xie
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Liyuan Xie
- Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu, China
- *Correspondence: Kejun Deng, ; Liyuan Xie,
| |
Collapse
|
18
|
Wen XY, Jing P. Dietary cerebrosides in seven edible mushrooms: One step detection, quantification, and Si-SPE assisted isolation. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
19
|
Zhang Z, Chen Q, Tan Y, Shuang S, Dai R, Jiang X, Temuer B. Combined Transcriptome and Metabolome Analysis of Alfalfa Response to Thrips Infection. Genes (Basel) 2021; 12:genes12121967. [PMID: 34946916 PMCID: PMC8701657 DOI: 10.3390/genes12121967] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 11/22/2022] Open
Abstract
Thrips (Thysanoptera: Thripidae) is a major insect pest for alfalfa which can result in decreased plant nutrients, low yields, and even plant death. To identify the differentially expressed genes and metabolites in response to thrips in alfalfa, a combination of metabolomics and transcriptomics was employed using alfalfa (Caoyuan No. 2) with and without thrips infestation. The results showed that the flavonoid biosynthesis and isoflavonoid biosynthesis pathways were the most significantly enriched pathways in response to thrips infection, as shown by the combined transcriptome and metabolome analysis. The transcriptome results showed that SA and JA signal transduction and PAPM-triggered immunity and the MAPK signaling pathway–plant pathways played a crucial role in thrips-induced plant resistance in alfalfa. In addition, we found that thrips infestation could also induce numerous changes in plant primary metabolism, such as carbohydrate and amino acid metabolism as compared to the control. Overall, our results described here should improve fundamental knowledge of molecular responses to herbivore-inducible plant defenses and contribute to the design of strategies against thrips in alfalfa.
Collapse
Affiliation(s)
- Zhiqiang Zhang
- Key Laboratory of Grassland Resources of the Ministry of Education, Technology Engineering Center of Drought and Cold-Resistant Grass Breeding in North of the National Forestry and Grassland Administration, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China; (Z.Z.); (Q.C.); (S.S.); (X.J.)
- Key Laboratory of Grassland Resources of the Ministry of Education, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China;
| | - Qi Chen
- Key Laboratory of Grassland Resources of the Ministry of Education, Technology Engineering Center of Drought and Cold-Resistant Grass Breeding in North of the National Forestry and Grassland Administration, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China; (Z.Z.); (Q.C.); (S.S.); (X.J.)
| | - Yao Tan
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010011, China;
| | - Shuang Shuang
- Key Laboratory of Grassland Resources of the Ministry of Education, Technology Engineering Center of Drought and Cold-Resistant Grass Breeding in North of the National Forestry and Grassland Administration, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China; (Z.Z.); (Q.C.); (S.S.); (X.J.)
| | - Rui Dai
- Key Laboratory of Grassland Resources of the Ministry of Education, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China;
| | - Xiaohong Jiang
- Key Laboratory of Grassland Resources of the Ministry of Education, Technology Engineering Center of Drought and Cold-Resistant Grass Breeding in North of the National Forestry and Grassland Administration, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China; (Z.Z.); (Q.C.); (S.S.); (X.J.)
| | - Buhe Temuer
- Key Laboratory of Grassland Resources of the Ministry of Education, Technology Engineering Center of Drought and Cold-Resistant Grass Breeding in North of the National Forestry and Grassland Administration, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China; (Z.Z.); (Q.C.); (S.S.); (X.J.)
- Key Laboratory of Grassland Resources of the Ministry of Education, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China;
- Correspondence: ; Tel.: +86-0471-4316259
| |
Collapse
|
20
|
Wan JN, Li Y, Guo T, Ji GY, Luo SZ, Ji KP, Cao Y, Tan Q, Bao DP, Yang RH. Whole-Genome and Transcriptome Sequencing of Phlebopus portentosus Reveals Its Associated Ectomycorrhizal Niche and Conserved Pathways Involved in Fruiting Body Development. Front Microbiol 2021; 12:732458. [PMID: 34659161 PMCID: PMC8511702 DOI: 10.3389/fmicb.2021.732458] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/03/2021] [Indexed: 02/03/2023] Open
Abstract
Phlebopus portentosus (Berk. and Broome) Boedijin, a widely consumed mushroom in China and Thailand, is the first species in the order Boletaceae to have been industrially cultivated on a large scale. However, to date, the lignocellulose degradation system and molecular basis of fruiting body development in P. portentosus have remained cryptic. In the present study, genome and transcriptome sequencing of P. portentosus was performed during the mycelium (S), primordium (P), and fruiting body (F) stages. A genome of 32.74 Mb with a 48.92% GC content across 62 scaffolds was obtained. A total of 9,464 putative genes were predicted from the genome, of which the number of genes related to plant cell wall-degrading enzymes was much lower than that of some saprophytic mushrooms with specific ectomycorrhizal niches. Principal component analysis of RNA-Seq data revealed that the gene expression profiles at all three stages were different. The low expression of plant cell wall-degrading genes also confirmed the limited ability to degrade lignocellulose. The expression profiles also revealed that some conserved and specific pathways were enriched in the different developmental stages of P. portentosus. Starch and sucrose metabolic pathways were enriched in the mycelium stage, while DNA replication, the proteasome and MAPK signaling pathways may be associated with maturation. These results provide a new perspective for understanding the key pathways and hub genes involved in P. portentosus development.
Collapse
Affiliation(s)
- Jia-Ning Wan
- Key Laboratory of Agricultural Genetics and Breeding of Shanghai, Key Laboratory of Edible Fungal Resources and Utilization (South), National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yan Li
- Key Laboratory of Agricultural Genetics and Breeding of Shanghai, Key Laboratory of Edible Fungal Resources and Utilization (South), National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Ting Guo
- Key Laboratory of Agricultural Genetics and Breeding of Shanghai, Key Laboratory of Edible Fungal Resources and Utilization (South), National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Guang-Yan Ji
- Hongzhen Agricultural Science and Technology Co. Ltd., Jinghong, China
| | - Shun-Zhen Luo
- Hongzhen Agricultural Science and Technology Co. Ltd., Jinghong, China
| | - Kai-Ping Ji
- Hongzhen Agricultural Science and Technology Co. Ltd., Jinghong, China
| | - Yang Cao
- Hongzhen Agricultural Science and Technology Co. Ltd., Jinghong, China
| | - Qi Tan
- Key Laboratory of Agricultural Genetics and Breeding of Shanghai, Key Laboratory of Edible Fungal Resources and Utilization (South), National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Da-Peng Bao
- Key Laboratory of Agricultural Genetics and Breeding of Shanghai, Key Laboratory of Edible Fungal Resources and Utilization (South), National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Rui-Heng Yang
- Key Laboratory of Agricultural Genetics and Breeding of Shanghai, Key Laboratory of Edible Fungal Resources and Utilization (South), National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
21
|
Abdelshafy AM, Luo Z, Belwal T, Ban Z, Li L. A Comprehensive Review on Preservation of Shiitake Mushroom (Lentinus Edodes): Techniques, Research Advances and Influence on Quality Traits. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1967381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Asem Mahmoud Abdelshafy
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Key Laboratory of Agro-Products Postharvest Handling, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
- Food Science and Technology Department, Faculty of Agriculture, Al-Azhar University – Assiut Branch, Assiut, Egypt
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Key Laboratory of Agro-Products Postharvest Handling, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Tarun Belwal
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Key Laboratory of Agro-Products Postharvest Handling, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
| | - Zhaojun Ban
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Li Li
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Key Laboratory of Agro-Products Postharvest Handling, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
- Department of Ningbo Research Institute, Zhejiang University, Ningbo, China
| |
Collapse
|
22
|
Sun L, Xin G, Hou Z, Zhao X, Xu H, Bao X, Xia R, Li Y, Li L. Biosynthetic Mechanism of Key Volatile Biomarkers of Harvested Lentinula edodes Triggered by Spore Release. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9350-9361. [PMID: 34369774 DOI: 10.1021/acs.jafc.1c02410] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this study, headspace solid-phase microextraction-gas chromatography-mass spectrometry, multivariate analyses, and transcriptomics were used to explore the biosynthesis of key volatiles and the formation of spores in Lentinula (L.) edodes. Among the 50 volatiles identified, 1-octen-3-ol, phenethyl alcohol, and several esters were considered key aromas because of their higher odor activity values. Eleven volatiles were screened as biomarkers by orthogonal partial least squares discriminant analysis, and hierarchical cluster analysis showed that these biomarkers could represent all volatiles to distinguish the spore release stage. The activities of lipoxygenase (LOX), hydroperoxide lyase, alcohol dehydrogenase, and alcohol acyltransferase were higher in L. edodes with spore release. Moreover, linolenic acid and phenylalanine metabolism were involved in aroma biosynthesis. One LOX-related gene and five aryl alcohol dehydrogenase-related genes could regulate the biosynthesis of 1-octen-3-ol, phenethyl alcohol, and phenylacetaldehyde. In addition, several key genes were involved in meiosis to regulate sporulation.
Collapse
Affiliation(s)
- Libin Sun
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Guang Xin
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhenshan Hou
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Xuemei Zhao
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Heran Xu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiujing Bao
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Rongrong Xia
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Yunting Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Li Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
23
|
Yan D, Gao Q, Rong C, Liu Y, Song S, Yu Q, Zhou K, Liao Y. Comparative transcriptome analysis of abnormal cap and healthy fruiting bodies of the edible mushroom Lentinula edodes. Fungal Genet Biol 2021; 156:103614. [PMID: 34400332 DOI: 10.1016/j.fgb.2021.103614] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 07/22/2021] [Accepted: 08/08/2021] [Indexed: 11/29/2022]
Abstract
Lentinula edodes, a commercially important mushroom, is cultivated worldwide. Artificially cultivated L. edodes often present with abnormal symptoms in the fruiting body, which affect their commercial value and reduce production efficiency. In this study, we carried out a comparative transcriptome analysis of normal fruiting body pileus (LeNP), normal margin in abnormal fruiting body pileus (LeAPNM), and abnormal margin in abnormal fruiting body pileus (LeAPAM). Metabolic pathways such as those involved in transmembrane transport, ribosome production, tryptophan metabolism, arginine and proline metabolism, and the metabolism of other amino acids were significantly enriched in LeAPAM. F-box, short-chain dehydrogenases/reductases, the major facilitator superfamily, and the FMN_red superfamily are related to malformation in L. edodes. Genes encoding heat shock proteins, G protein, and β-1,3-glucanase in the GH5 family showed different expression patterns, suggesting that these genes are involved in the development of L. edodes fruiting bodies. In particular, CAZymes, which are involved in the development of cell walls in L. edodes, were highly expressed in LeAPAM. According to TEM observation, the cell wall of LeAPAM samples showed significant thickening compared to the other samples. These results suggested that cell wall anabolism in LeAPAM samples was more active than that in normal fruiting bodies, enhancing the environmental adaptability of the fungus. This study provides preliminary data for future research aimed at solving the phenomenon of abnormal fruiting bodies of L. edodes.
Collapse
Affiliation(s)
- Dong Yan
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center for Edible Mushroom, 9 Shuguang Garden Zhonglu, Haidian District, Beijing 100097, China
| | - Qi Gao
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center for Edible Mushroom, 9 Shuguang Garden Zhonglu, Haidian District, Beijing 100097, China.
| | - Chengbo Rong
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center for Edible Mushroom, 9 Shuguang Garden Zhonglu, Haidian District, Beijing 100097, China
| | - Yu Liu
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center for Edible Mushroom, 9 Shuguang Garden Zhonglu, Haidian District, Beijing 100097, China
| | - Shuang Song
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center for Edible Mushroom, 9 Shuguang Garden Zhonglu, Haidian District, Beijing 100097, China
| | - Qiuyu Yu
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center for Edible Mushroom, 9 Shuguang Garden Zhonglu, Haidian District, Beijing 100097, China
| | - Kaixin Zhou
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center for Edible Mushroom, 9 Shuguang Garden Zhonglu, Haidian District, Beijing 100097, China; College of Agriculture and Food Engineering, Baise University, 21 Zhongshan Second Street, Youjiang District, Guangxi 533000, China
| | - Yanling Liao
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center for Edible Mushroom, 9 Shuguang Garden Zhonglu, Haidian District, Beijing 100097, China; College of Agriculture and Food Engineering, Baise University, 21 Zhongshan Second Street, Youjiang District, Guangxi 533000, China
| |
Collapse
|
24
|
Li Q, Chen J, Liu J, Yu H, Zhang L, Song C, Li Y, Jiang N, Tan Q, Shang X, Gu Y. De novo Sequencing and Comparative Transcriptome Analyses Provide First Insights Into Polysaccharide Biosynthesis During Fruiting Body Development of Lentinula edodes. Front Microbiol 2021; 12:627099. [PMID: 34326817 PMCID: PMC8313990 DOI: 10.3389/fmicb.2021.627099] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 05/31/2021] [Indexed: 11/15/2022] Open
Abstract
Polysaccharides separated from Lentinula edodes are well known for their medicinal properties. However, the precise molecular mechanisms of polysaccharide biosynthesis in L. edodes remain unclear. In this study, the fruiting bodies of L. edodes in four developmental stages with significant differences in polysaccharide yield were collected, and the characteristics of polysaccharides were studied. De novo sequencing and comparative transcriptomic analysis were performed by using high-throughput Illumina RNA-sequencing. KS1P30, KS2P30, KS3P30, and KS4P30 were obtained from the four developmental stages, respectively, by hot water extraction and 30% ethanol precipitation. These four polysaccharides had good immune activity in vitro; all of them were β-glucopyranose with a high molecular weight. Glucose was the main monosaccharide component of these polysaccharides. High-quality clean reads (57.88, 53.17, 53.28, and 47.56 million for different growth stages) and mapping ratios ranging from 84.75 to 90.11% were obtained. In total, 11,493 (96.56%) unigenes and 18,924 (97.46%) transcripts were successfully annotated in five public databases. The biosynthetic pathway and related genes of LEFP30 were mined. The molecular mechanism of LEFP30 yield change in the different developmental stages was predicted. The results provide some insights into the possible mechanisms involved in the biosynthetic pathway of this kind of polysaccharide in L. edodes fruiting bodies. They also indicate that candidate genes can be used as important resources for biotechnology and molecular breeding to regulate L. edodes fruiting body polysaccharide biosynthesis.
Collapse
Affiliation(s)
- Qiaozhen Li
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Jing Chen
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Jianyu Liu
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Hailong Yu
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Lujun Zhang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Chunyan Song
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yu Li
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Ning Jiang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Qi Tan
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Xiaodong Shang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yunfu Gu
- College of Resources, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
25
|
Smith CA. Macrosynteny analysis between Lentinula edodes and Lentinula novae-zelandiae reveals signals of domestication in Lentinula edodes. Sci Rep 2021; 11:9845. [PMID: 33972587 PMCID: PMC8110776 DOI: 10.1038/s41598-021-89146-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 04/08/2021] [Indexed: 12/03/2022] Open
Abstract
The basidiomycete fungus Lentinula novae-zelandiae is endemic to New Zealand and is a sister taxon to Lentinula edodes, the second most cultivated mushroom in the world. To explore the biology of this organism, a high-quality chromosome level reference genome of L. novae-zelandiae was produced. Macrosyntenic comparisons between the genome assembly of L. novae-zelandiae, L. edodes and a set of three genome assemblies of diverse species from the Agaricomycota reveal a high degree of macrosyntenic restructuring within L. edodes consistent with signal of domestication. These results show L. edodes has undergone significant genomic change during the course of its evolutionary history, likely a result of its cultivation and domestication over the last 1000 years.
Collapse
|
26
|
Guo S, Wang D, Ma Y, Zhang Y, Zhao X. Combination of RNA-Seq transcriptomics and iTRAQ proteomics reveal the mechanism involved in fresh-cut yam yellowing. Sci Rep 2021; 11:7755. [PMID: 33833352 PMCID: PMC8032744 DOI: 10.1038/s41598-021-87423-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/23/2021] [Indexed: 01/22/2023] Open
Abstract
The aim of this study was to examine the regulation of transcriptomics and proteomics related to the yellowing of fresh-cut yams after storage. The comparison of yellow fresh-cut yam (YFY) vs. white fresh-cut yam (control) revealed 6894 upregulated and 6800 downregulated differentially expressed genes along with 1277 upregulated and 677 downregulated differentially expressed proteins. The results showed that the total carotenoids, flavonoids, and bisdemethoxycurcumin in YFY were higher than in the control due to the significant up-regulation of critical genes in the carotenoid biosynthesis pathway, flavonoid biosynthesis pathway, and stilbenoid, diarylheptanoid, and gingerol biosynthesis pathway. In addition, the tricarboxylic acid cycle and phenylpropanoid biosynthesis were both enhanced in YFY compared to the control, providing energy and precursors for the formation of yellow pigments. The results suggest that the synthesis of yellow pigments is regulated by critical genes, which might explain the yellowing of fresh-cut yam after storage.
Collapse
Affiliation(s)
- Shuang Guo
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing, 100097, China
| | - Dan Wang
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing, 100097, China
| | - Yue Ma
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing, 100097, China
| | - Yan Zhang
- Longda Food Group Co. LTD, Shandong, 265231, China
| | - Xiaoyan Zhao
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China.
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing, 100097, China.
| |
Collapse
|
27
|
Liu Q, Cui X, Song Z, Kong W, Kang Y, Kong W, Ng TB. Coating shiitake mushrooms (Lentinus edodes) with a polysaccharide from Oudemansiella radicata improves product quality and flavor during postharvest storage. Food Chem 2021; 352:129357. [PMID: 33714165 DOI: 10.1016/j.foodchem.2021.129357] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 01/11/2021] [Accepted: 02/10/2021] [Indexed: 01/06/2023]
Abstract
In this work, we investigated whether coating fresh shiitake mushrooms with a polysaccharide isolated from Oudemansiella radicata (ORWP) would impact key quality characteristics after 18 d of storage at 4 °C. We found that ORWP-coated mushrooms had significant improvements in many qualities during storage, including reduced weight loss, improved firmness, reduced browning, decreased malondialdehyde content, and an improved physical microstructure. Further, ORWP-coated mushrooms had higher contents of nutritional and cell wall compounds compared to control samples. ORWP-coated mushrooms had reduced activities of the following enzymes: protease, polyphenol oxidase, peroxidase, phenylalanine ammonia lyase, cellulase, and chitinase, relative to control samples. However, mushrooms coated with ORWP had higher concentrations of superoxide dismutase and catalase, as well as higher contents of certain key monosodium glutamate-resembling amino acids, umami 5'-nucleotides and 1-octen-3-ol. These findings suggest that ORWP coatings have potential value as a method to improve the postharvest quality of shiitake mushrooms.
Collapse
Affiliation(s)
- Qin Liu
- Institute of Plant Nutrition, Agricultural Resources and Environmental Science, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Xiao Cui
- Institute of Plant Nutrition, Agricultural Resources and Environmental Science, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Zhibo Song
- Institute of Plant Nutrition, Agricultural Resources and Environmental Science, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Weiwei Kong
- Institute of Plant Nutrition, Agricultural Resources and Environmental Science, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Yuanchun Kang
- Institute of Plant Nutrition, Agricultural Resources and Environmental Science, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Weili Kong
- Institute of Plant Nutrition, Agricultural Resources and Environmental Science, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China.
| | - Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| |
Collapse
|
28
|
Transcriptome analyses reveals the dynamic nature of oil accumulation during seed development of Plukenetia volubilis L. Sci Rep 2020; 10:20467. [PMID: 33235240 PMCID: PMC7686490 DOI: 10.1038/s41598-020-77177-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 11/05/2020] [Indexed: 02/06/2023] Open
Abstract
Sacha inchi (Plukenetia volubilis L.) is a shrub native to Amazon rainforests that’s of commercial interest as its seeds contain 35–60% edible oil (dry weight). This oil is one of the healthiest vegetable oils due to its high polyunsaturated fatty acid content and favourable ratio of omega-6 to omega-3 fatty acids. De novo transcriptome assembly and comparative analyses were performed on sacha inchi seeds from five stages of seed development in order to identifying genes associated with oil accumulation and fatty acid production. Of 30,189 unigenes that could be annotated in public databases, 20,446 were differentially expressed unigenes. A total of 14 KEGG pathways related to lipid metabolism were found, and 86 unigenes encoding enzymes involved in α-linolenic acid (ALA) biosynthesis were obtained including five unigenes encoding FATA (Unigene0008403), SAD (Unigene0012943), DHLAT (Unigene0014324), α-CT (Unigene0022151) and KAS II (Unigene0024371) that were significantly up-regulated in the final stage of seed development. A total of 66 unigenes encoding key enzymes involved in the synthesis of triacylglycerols (TAGs) were found, along with seven unigenes encoding PDCT (Unigene0000909), LPCAT (Unigene0007846), Oleosin3 (Unigene0010027), PDAT1 (Unigene0016056), GPDH (Unigene0022660), FAD2 (Unigene0037808) and FAD3 (Unigene0044238); these also proved to be up-regulated in the final stage of seed development.
Collapse
|
29
|
Liu XB, Xia EH, Li M, Cui YY, Wang PM, Zhang JX, Xie BG, Xu JP, Yan JJ, Li J, Nagy LG, Yang ZL. Transcriptome data reveal conserved patterns of fruiting body development and response to heat stress in the mushroom-forming fungus Flammulina filiformis. PLoS One 2020; 15:e0239890. [PMID: 33064719 PMCID: PMC7567395 DOI: 10.1371/journal.pone.0239890] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
Mushroom-forming fungi are complex multicellular organisms that form the basis of a large industry, yet, our understanding of the mechanisms of mushroom development and its responses to various stresses remains limited. The winter mushroom (Flammulina filiformis) is cultivated at a large commercial scale in East Asia and is a species with a preference for low temperatures. This study investigated fruiting body development in F. filiformis by comparing transcriptomes of 4 developmental stages, and compared the developmental genes to a 200-genome dataset to identify conserved genes involved in fruiting body development, and examined the response of heat sensitive and -resistant strains to heat stress. Our data revealed widely conserved genes involved in primordium development of F. filiformis, many of which originated before the emergence of the Agaricomycetes, indicating co-option for complex multicellularity during evolution. We also revealed several notable fruiting-specific genes, including the genes with conserved stipe-specific expression patterns and the others which related to sexual development, water absorption, basidium formation and sporulation, among others. Comparative analysis revealed that heat stress induced more genes in the heat resistant strain (M1) than in the heat sensitive one (XR). Of particular importance are the hsp70, hsp90 and fes1 genes, which may facilitate the adjustment to heat stress in the early stages of fruiting body development. These data highlighted novel genes involved in complex multicellular development in fungi and aid further studies on gene function and efforts to improve the productivity and heat tolerance in mushroom-forming fungi.
Collapse
Affiliation(s)
- Xiao-Bin Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming, Yunnan, China
| | - En-Hua Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| | - Meng Li
- Yunnan Tobacco Science Research Institute, Kunming, China
| | - Yang-Yang Cui
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming, Yunnan, China
| | - Pan-Meng Wang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming, Yunnan, China
| | - Jin-Xia Zhang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Bao-Gui Xie
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jian-Ping Xu
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Jun-Jie Yan
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jing Li
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming, Yunnan, China
- Key Laboratory of Conservation and Utilization for Bioresources and Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan University, Kunming, Yunnan, China
| | - László G. Nagy
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Szeged, Hungary
| | - Zhu L. Yang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming, Yunnan, China
- * E-mail:
| |
Collapse
|
30
|
Okuda Y, Ito M, Shimada Y, Ishigami M, Matsumoto T. Morphological, cytological and genetic analyzes of the 'sango' mutant with the defects in basidiocarp development in edible mushroom Pleurotus pulmonarius. FEMS Microbiol Lett 2020; 366:5626343. [PMID: 31730201 DOI: 10.1093/femsle/fnz227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 11/08/2019] [Indexed: 11/15/2022] Open
Abstract
A spontaneous, morphological variation 'sango' was observed in the progeny of a Pleurotus pulmonarius (Fr.) Quél. wild-type basidiocarp (also known as fruiting body) collected from the field. This variant developed wart- and coral-like structures instead of normal basidiocarps. Microscopic analysis showed that the sango phenotype had defects in the differentiation of the pileus and hymenium. Basidiocarp phenotypic data analysis in the progenies revealed that the sango trait is a heritable mutation character controlled by a single recessive gene. This mutation locus was mapped on linkage group III of a previously constructed genetic linkage map by amplified fragment length polymorphism (AFLP) technique in P. pulmonarius. Four AFLP markers identified by bulked segregant analysis showed linkage to the sango mutation locus, with the genetic distance ranging from 0 to 2.1 cM. Of these markers, one marker was co-segregated with the sango mutation locus. This knowledge will be a useful foundation for practical breeding as well as for elucidating molecular mechanisms in basidiocarp development of main edible mushrooms.
Collapse
Affiliation(s)
- Yasuhito Okuda
- Contribution No. 418 from the Tottori Mycological Institute, 211 Kokoge, Tottori 689-1125, Japan
| | - Mikinari Ito
- Faculty of Agriculture, Tottori University, 4-101 Koyamacho-Minami, Tottori 680-8553, Japan
| | - Yu Shimada
- Faculty of Agriculture, Tottori University, 4-101 Koyamacho-Minami, Tottori 680-8553, Japan
| | - Masato Ishigami
- Faculty of Agriculture, Tottori University, 4-101 Koyamacho-Minami, Tottori 680-8553, Japan
| | - Teruyuki Matsumoto
- Faculty of Agriculture, Tottori University, 4-101 Koyamacho-Minami, Tottori 680-8553, Japan
| |
Collapse
|
31
|
Tang X, Ding X, Hou YL. Comparative analysis of transcriptomes revealed the molecular mechanism of development of Tricholoma matsutake at different stages of fruiting bodies. Food Sci Biotechnol 2020; 29:939-951. [PMID: 32582456 DOI: 10.1007/s10068-020-00732-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/17/2019] [Accepted: 01/02/2020] [Indexed: 11/27/2022] Open
Abstract
The purpose of the study is to investigate the molecular mechanisms of development of Tricholoma matsutake fruiting body at the primordial stage (TM-1), the intermediate stage (TM-2) and the mature stage (TM-3) using RNA-Seq sequencing technology. The analysis of gene expression level revealed that the Spn2 and Eef1a1 gene were the key genes in the primordial stage of T. matsutake by regulating cytokinesis, protein synthesis, and cell growth. And the Ubc, Atp6, Cytb, and Pth2 gene were the key genes in the mature stage of T. matsutake by regulating energy metabolism and protein synthesis. Differential expression genes (DEGs) analysis results showed that Cdc28, Rad53, Dun1, Pho85 and Pho81 were the key DEGs regulating cell cycle genes of T. matsutake from primordial stage to intermediate stage. And APC, Cyr1, Cdc45, Spo11 and Rec8 genes were the key DEGs for the meiosis and sporogenesis of T. matsutake from the intermediate stage to the mature stage.
Collapse
Affiliation(s)
- Xian Tang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Sciences, China West Normal University, 1# Shida Road, Nanchong, 637009 Sichuan Province China
| | - Xiang Ding
- College of Environmental Science and Engineering, China West Normal University, 1# Shida Road, Nanchong, 637009 Sichuan Province China
| | - Yi-Ling Hou
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Sciences, China West Normal University, 1# Shida Road, Nanchong, 637009 Sichuan Province China
| |
Collapse
|
32
|
Tang L, Shang J, Song C, Yang R, Shang X, Mao W, Bao D, Tan Q. Untargeted Metabolite Profiling of Antimicrobial Compounds in the Brown Film of Lentinula edodes Mycelium via LC-MS/MS Analysis. ACS OMEGA 2020; 5:7567-7575. [PMID: 32280900 PMCID: PMC7144172 DOI: 10.1021/acsomega.0c00398] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 03/18/2020] [Indexed: 05/13/2023]
Abstract
The brown film (BF) of Lentinula edodes mycelium has been reported to exert biological activities during mushroom cultivation; however, to date, there is limited information on its chemical composition. In this study, untargeted metabolomics analysis was performed via liquid chromatography-mass spectrometry (LC-MS), and the results were used to screen the antimicrobial compounds. A total of 236 differential metabolites were found among the BF stages compared with the white hyphal stage. Among them, five important antimicrobial metabolites related to antimicrobial activities, namely, 6-deoxyerythronolide B, tanikolide, hydroxyanthraquinone, benzylideneacetone, and 9-OxooTrE, were present at high levels in the BF samples. The score plots of the principal component analysis indicated that the samples from four time points could be classified into two groups. This study provided a comprehensive profile of the antimicrobial compounds produced during BF formation and partly clarified the antibacterial and antifungal mechanism of the BF of L. edodes mycelium.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Qi Tan
- . Phone/Fax: +86-21-6220-6780
| |
Collapse
|
33
|
Yan D, Liu Y, Rong C, Song S, Zhao S, Qin L, Wang S, Gao Q. Characterization of brown film formed by Lentinula edodes. Fungal Biol 2020; 124:135-143. [DOI: 10.1016/j.funbio.2019.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/05/2019] [Accepted: 12/18/2019] [Indexed: 12/13/2022]
|
34
|
|
35
|
Integration of ATAC-Seq and RNA-Seq Identifies Key Genes in Light-Induced Primordia Formation of Sparassis latifolia. Int J Mol Sci 2019; 21:ijms21010185. [PMID: 31888059 PMCID: PMC6981827 DOI: 10.3390/ijms21010185] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/20/2019] [Accepted: 12/22/2019] [Indexed: 01/01/2023] Open
Abstract
Light is an essential environmental factor for Sparassis latifolia primordia formation, but the molecular mechanism is still unclear. In this study, differential expression profiling of light-induced primordia formation (LIPF) was established by integrating the assay for transposase accessible chromatin by sequencing (ATAC-seq) and RNA-seq technology. The integrated results from the ATAC-seq and RNA-seq showed 13 down-regulated genes and 17 up-regulated genes in both the L vs. D and P vs. D groups, for both methods. According to the gene ontology (GO) annotation of these differentially expressed genes (DEGs), the top three biological process categories were cysteine biosynthetic process via cystathionine, vitamin B6 catabolic, and glycine metabolic; the top three molecular function categories were 5-methyltetrahydropteroyltriglutamate-homocysteine S-methyltransferase activity, glycine binding, and pyridoxal phosphate binding; cellular component categories were significantly enriched in the glycine cleavage complex. The KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analysis revealed that these genes were associated with vitamin B6 metabolism; selenocompound metabolism; cysteine and methionine metabolism; glycine, serine, and threonine metabolism; and glyoxylate and dicarboxylate metabolism pathways. The expression of most of the DEGs was validated by qRT-PCR. To the best of our knowledge, this study is the first integrative analysis of ATAC-seq and RNA-seq for macro-fungi. These results provided a new perspective on the understanding of key pathways and hub genes in LIPF in S. latifolia. It will be helpful in understanding the primary environmental response, and provides new information to the existing models of primordia formation in edible and medicinal fungi.
Collapse
|
36
|
Wang J, Wen X, Yang B, Liu D, Li X, Geng F. De novo transcriptome and proteome analysis of Dictyophora indusiata fruiting bodies provides insights into the changes during morphological development. Int J Biol Macromol 2019; 146:875-886. [PMID: 31726131 DOI: 10.1016/j.ijbiomac.2019.09.210] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/14/2019] [Accepted: 09/17/2019] [Indexed: 12/01/2022]
Abstract
De novo transcriptome assembly and shotgun proteome analysis of Dictyophora indusiata fruiting bodies were performed. A total of 19,704 unigenes were sequenced, and 4380 proteins were identified. Annotation and functional analysis of the identified proteins were significantly enriched in small molecule synthetic and metabolic processes, protein modification regulation (phosphorylation and ubiquitination), and vesicle transport. Furthermore, quantitative developmental transcriptome analysis was performed between the peach-shaped and mature fruiting bodies, and the results revealed that the metabolism and transport activities were upregulated in the mature stage, while protein translation was downregulated; this regulation is likely the main reason for the significant changes in the nutrients of fruiting bodies. Furthermore, the cell wall stress-dependent MAPK sub-pathway was activated in the mature stage, and fungal cell wall degradation-related genes were upregulated, which could promote reconstruction of the cell wall and might play a key role in the morphological development of D. indusiata fruiting bodies.
Collapse
Affiliation(s)
- Jinqiu Wang
- College of Pharmacy and Biological Engineering, Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, PR China
| | - Xuefei Wen
- College of Pharmacy and Biological Engineering, Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, PR China
| | - Bowen Yang
- College of Pharmacy and Biological Engineering, Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, PR China
| | - Dayu Liu
- College of Pharmacy and Biological Engineering, Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, PR China
| | - Xiang Li
- College of Pharmacy and Biological Engineering, Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, PR China
| | - Fang Geng
- College of Pharmacy and Biological Engineering, Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, PR China.
| |
Collapse
|
37
|
Zhao W, Jing X, Chang M, Meng J, Feng C. Vortex‐assisted Emulsification Microextraction for the Determination of Pyrethroids in Mushroom. B KOREAN CHEM SOC 2019. [DOI: 10.1002/bkcs.11850] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Wenfei Zhao
- College of Food Science and EngineeringShanxi Agricultural University Taigu 030801 China
| | - Xu Jing
- College of Food Science and EngineeringShanxi Agricultural University Taigu 030801 China
| | - Mingchang Chang
- College of Food Science and EngineeringShanxi Agricultural University Taigu 030801 China
| | - Junlong Meng
- College of Food Science and EngineeringShanxi Agricultural University Taigu 030801 China
| | - Cuiping Feng
- College of Food Science and EngineeringShanxi Agricultural University Taigu 030801 China
| |
Collapse
|
38
|
Luo Y, Wang G, Wang C, Gong Y, Bian Y, Zhou Y. Selection and Validation of Reference Genes for qRT-PCR in Lentinula edodes under Different Experimental Conditions. Genes (Basel) 2019; 10:genes10090647. [PMID: 31461882 PMCID: PMC6770232 DOI: 10.3390/genes10090647] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/17/2019] [Accepted: 08/22/2019] [Indexed: 12/04/2022] Open
Abstract
Lentinula edodes is the most consumed mushroom in Asia due to its nutritional and medicinal values, and the optimal reference gene is crucial for normalization of its gene expression analysis. Here, the expression stability of 18 candidate reference genes (CRGs) in L. edodes was analyzed by three statistical algorithms (geNorm, NormFinder and BestKeeper) under different stresses (heat, cadmium excess and Trichoderma atroviride infection), different substrates (straw, sawdust and corn stalk) and different development stages (mycelia, primordia and fruit bodies). Among the 18 CRGs, 28S, Actin and α-tub exhibited the highest expression stability in L. edodes under all conditions, while GPD, SPRYP and MSF showed the least stable expression. The best reference gene in different conditions was different. The pairwise variation values showed that two genes would be sufficient for accurate normalization under different conditions of L. edodes. This study will contribute to more accurate estimation of the gene relative expression levels under different conditions using the optimal reference gene in qRT-PCR (quantitative reverse transcription polymerase chain reaction) analysis.
Collapse
Affiliation(s)
- Yi Luo
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Gangzheng Wang
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou 510070, China
| | - Chen Wang
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yuhua Gong
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yinbing Bian
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yan Zhou
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
39
|
Li Y, Liu J, Wang G, Yang M, Yang X, Li T, Chen G. De novo transcriptome analysis of Pleurotus djamor to identify genes encoding CAZymes related to the decomposition of corn stalk lignocellulose. J Biosci Bioeng 2019; 128:529-536. [PMID: 31147217 DOI: 10.1016/j.jbiosc.2019.04.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 03/06/2019] [Accepted: 04/15/2019] [Indexed: 12/11/2022]
Abstract
CAZymes play a very important role in the biotransformation of corn stalk biomass, which is an important resource for sustainable development. Pleurotus djamor can produce CAZymes related to the decomposition of corn stalk lignocellulose biomass in sole corn stalk substrate; however, little is known about their encoding genes. In order to identify CAZymes encoding genes, RNA high-throughput sequencing of P. djamor was performed in this study. The results showed that a core set of 70 upregulated genes encoding putative CAZymes were revealed. They encode 19 kinds of CAZymes in total, of which there are 4 EGLs, 8 CBHs, 5 BGLs, and 12 LPMOs related to cellulose degradation, 8 XYNs, 1 XYL, 2 AGUs, 3 ABFs, 2 AGLs, and 2 AXEs related to hemicellulose degradation, and 5 LACCs, 2 MnPs, 5 VPs, 3 CDHs, 1 AAO, 1 GOX, 1 AOX, 2 GAOXs, and 3 GLOXs related to lignin degradation. This variety suggests that CAZymes may play a very important role in decomposing the lignocellulose biomass of corn stalk. This is the first study to report the de novo transcriptome sequencing of P. djamor, which will produce a dataset of genes encoding CAZymes, thereby laying the foundation to elucidate the degradation mechanism of corn stalk biomass and boost the biotransformation of corn stalk biomass resources.
Collapse
Affiliation(s)
- Yanli Li
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Science, Jilin Agricultural University, Xincheng Street 2888, Nanguan District, Changchun 130118, Jilin, China; Innovation Platform of Jilin Province for Straw Comprehensive Utilization Technology, Jilin Agricultural University, Xincheng Street 2888, Nanguan District, Changchun 130118, Jilin, China; Engineering Research Center of the Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Xincheng Street 2888, Nanguan District, Changchun 130118, Jilin, China.
| | - Jiahao Liu
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Science, Jilin Agricultural University, Xincheng Street 2888, Nanguan District, Changchun 130118, Jilin, China; Innovation Platform of Jilin Province for Straw Comprehensive Utilization Technology, Jilin Agricultural University, Xincheng Street 2888, Nanguan District, Changchun 130118, Jilin, China
| | - Gang Wang
- Innovation Platform of Jilin Province for Straw Comprehensive Utilization Technology, Jilin Agricultural University, Xincheng Street 2888, Nanguan District, Changchun 130118, Jilin, China
| | - Meiying Yang
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Science, Jilin Agricultural University, Xincheng Street 2888, Nanguan District, Changchun 130118, Jilin, China
| | - Xue Yang
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Science, Jilin Agricultural University, Xincheng Street 2888, Nanguan District, Changchun 130118, Jilin, China
| | - Tongbing Li
- Innovation Platform of Jilin Province for Straw Comprehensive Utilization Technology, Jilin Agricultural University, Xincheng Street 2888, Nanguan District, Changchun 130118, Jilin, China
| | - Guang Chen
- Innovation Platform of Jilin Province for Straw Comprehensive Utilization Technology, Jilin Agricultural University, Xincheng Street 2888, Nanguan District, Changchun 130118, Jilin, China
| |
Collapse
|
40
|
Liu L, He GJ, Chen L, Zheng J, Chen Y, Shen L, Tian X, Li E, Yang E, Liao G, Wang L. Genetic basis for coordination of meiosis and sexual structure maturation in Cryptococcus neoformans. eLife 2018; 7:38683. [PMID: 30281018 PMCID: PMC6235564 DOI: 10.7554/elife.38683] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 10/02/2018] [Indexed: 12/19/2022] Open
Abstract
In the human fungal pathogen Cryptococcus neoformans, sex can benefit its pathogenicity through production of meiospores, which are believed to offer both physical and meiosis-created lineage advantages for its infections. Cryptococcus sporulation occurs following two parallel events, meiosis and differentiation of the basidium, the characteristic sexual structure of the basidiomycetes. However, the circuit integrating these events to ensure subsequent sporulation is unclear. Here, we show the spatiotemporal coordination of meiosis and basidial maturation by visualizing event-specific molecules in developing basidia defined by a quantitative approach. Monitoring of gene induction timing together with genetic analysis reveals co-regulation of the coordinated events by a shared regulatory program. Two RRM family regulators, Csa1 and Csa2, are crucial components that bridge meiosis and basidial maturation, further determining sporulation. We propose that the regulatory coordination of meiosis and basidial development serves as a determinant underlying the production of infectious meiospores in C. neoformans.
Collapse
Affiliation(s)
- Linxia Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Guang-Jun He
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Lei Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jiao Zheng
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Yingying Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Lan Shen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xiuyun Tian
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Erwei Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Ence Yang
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Guojian Liao
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Linqi Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
41
|
Regional differences in thermal adaptation of a cold-water fish Rhynchocypris oxycephalus revealed by thermal tolerance and transcriptomic responses. Sci Rep 2018; 8:11703. [PMID: 30076386 PMCID: PMC6076256 DOI: 10.1038/s41598-018-30074-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 06/27/2018] [Indexed: 11/09/2022] Open
Abstract
Understanding how populations adapt to different thermal environments is an important issue for biodiversity conservation in the context of recent global warming. To test the hypothesis that populations from southern region are more sensitive to climate change than northern region in cold-water species, we determined the thermal tolerance of two geographical populations of a cold-water fish, Rhynchocypris oxycephalus: the Hangzhou population from southern region and the Gaizhou population from northern region, then compared their transcriptomic responses between a control and a high temperature treatment. The results showed that the thermal tolerance range and thermal tolerance polygon area of Hangzhou population were narrower than the Gaizhou population, indicating populations from southern region were possibly more vulnerable. Further transcriptomic analysis revealed that the Gaizhou population expressed more temperature responding genes than the Hangzhou population (583 VS. 484), corresponding with their higher thermal tolerance, while some of these genes (e.g. heat shock protein) showed higher expression in the Hangzhou population under control condition, suggesting individuals from southern region possibly have already responded to the present higher environmental temperature pressure. Therefore, these results confirm the prediction that populations from southern region are more sensitive to global warming, and will be important for their future conservation.
Collapse
|
42
|
Song HY, Kim DH, Kim JM. Comparative transcriptome analysis of dikaryotic mycelia and mature fruiting bodies in the edible mushroom Lentinula edodes. Sci Rep 2018; 8:8983. [PMID: 29895888 PMCID: PMC5997629 DOI: 10.1038/s41598-018-27318-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/31/2018] [Indexed: 02/08/2023] Open
Abstract
Lentinula edodes is a popular cultivated edible mushroom with high nutritional and medicinal value. To understand the regulation of gene expression in the dikaryotic mycelium and mature fruiting body in the commercially important Korean L. edodes strain, we first performed comparative transcriptomic analysis, using Illumina HiSeq platform. De novo assembly of these sequences revealed 11,675 representative transcripts in two different stages of L. edodes. A total of 9,092 unigenes were annotated and subjected to Gene Ontology, EuKaryotic Orthologous Groups, and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. Gene expression analysis revealed that 2,080 genes were differentially expressed, with 1,503 and 577 upregulated in the mycelium and a mature fruiting body, respectively. Analysis of 18 KEGG categories indicated that fruiting body-specific transcripts were significantly enriched in ‘replication and repair’ and ‘transcription’ pathways, which are important for premeiotic replication, karyogamy, and meiosis during maturation. We also searched for fruiting body-specific proteins such as aspartic protease, gamma-glutamyl transpeptidase, and cyclohexanone monooxygenase, which are involved in fruiting body maturation and isolation of functional substances. These transcriptomes will be useful in elucidating the molecular mechanisms of mature fruiting body development and beneficial properties, and contribute to the characterization of novel genes in L. edodes.
Collapse
Affiliation(s)
- Ha-Yeon Song
- Department of Bio-Environmental Chemistry, Institute of Life Science and Natural Resources, Wonkwang University, Iksan, Chonbuk, 54538, Korea
| | - Dae-Hyuk Kim
- Institute for Molecular Biology and Genetics, Center for Fungal Pathogenesis, Chonbuk National University, Jeonju, Chonbuk, 54896, Korea
| | - Jung-Mi Kim
- Department of Bio-Environmental Chemistry, Institute of Life Science and Natural Resources, Wonkwang University, Iksan, Chonbuk, 54538, Korea.
| |
Collapse
|
43
|
Nagy LG, Kovács GM, Krizsán K. Complex multicellularity in fungi: evolutionary convergence, single origin, or both? Biol Rev Camb Philos Soc 2018; 93:1778-1794. [DOI: 10.1111/brv.12418] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/23/2018] [Accepted: 03/28/2018] [Indexed: 12/22/2022]
Affiliation(s)
- László G. Nagy
- Synthetic and Systems Biology Unit; Institute of Biochemistry, BRC-HAS, 62 Temesvári krt; 6726 Szeged Hungary
| | - Gábor M. Kovács
- Department of Plant Anatomy; Institute of Biology, Eötvös Loránd University, Pázmány Péter sétány 1/C; H-1117 Budapest Hungary
- Plant Protection Institute, Centre for Agricultural Research; Hungarian Academy of Sciences (MTA-ATK); PO Box 102, H-1525 Budapest Hungary
| | - Krisztina Krizsán
- Synthetic and Systems Biology Unit; Institute of Biochemistry, BRC-HAS, 62 Temesvári krt; 6726 Szeged Hungary
| |
Collapse
|