1
|
He L, Wang X, Chen X. Unveiling the role of microRNAs in metabolic dysregulation of Gestational Diabetes Mellitus. Reprod Biol 2024; 24:100924. [PMID: 39013209 DOI: 10.1016/j.repbio.2024.100924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/26/2024] [Accepted: 06/05/2024] [Indexed: 07/18/2024]
Abstract
Gestational Diabetes Mellitus (GDM) presents a significant health concern globally, necessitating a comprehensive understanding of its metabolic intricacies for effective management. MicroRNAs (miRNAs) have emerged as pivotal regulators in GDM pathogenesis, influencing glucose metabolism, insulin signaling, and lipid homeostasis during pregnancy. Dysregulated miRNA expression, both upregulated and downregulated, contributes to GDM-associated metabolic abnormalities. Ethnic and temporal variations in miRNA expression underscore the multifaceted nature of GDM susceptibility. This review examines the dysregulation of miRNAs in GDM and their regulatory functions in metabolic disorders. We discuss the involvement of specific miRNAs in modulating key pathways implicated in GDM pathogenesis, such as glucose metabolism, insulin signaling, and lipid homeostasis. Furthermore, we explore the potential diagnostic and therapeutic implications of miRNAs in GDM management, highlighting the promise of miRNA-based interventions for mitigating the adverse consequences of GDM on maternal and offspring health.
Collapse
Affiliation(s)
- Ling He
- Department of Obstetrics, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoli Wang
- Department of Obstetrics, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangyi Chen
- Department of Obstetrics, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
2
|
Ghaneialvar H, Mohseni MM, Kenarkoohi A, Kakaee S. Are miR-26a and miR-26b microRNAs potent prognostic markers of gestational diabetes? Health Sci Rep 2024; 7:e2152. [PMID: 38831779 PMCID: PMC11144624 DOI: 10.1002/hsr2.2152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/02/2024] [Accepted: 05/08/2024] [Indexed: 06/05/2024] Open
Abstract
Background Gestational diabetes mellitus is a common public health problem, accompanied by complications for the mother and fetus. So, introducing new biomarkers to identify early diabetes is essential. As serum miRNAs are potentially appropriate markers, we investigated miR-26a and miR-26b expression levels in pregnant women with and without gestational diabetes. Method Demographic and clinical characteristics of 40 gestational diabetic patients and 40 healthy controls were assessed. The expression level of miR-26a and miR-26b microRNAs was measured by real-time PCR. Statistical analysis was done with GraphPad Prism software (version 8.4.3). Result The findings of this study showed that the expression level of miR-26a and miR-26b increased in women with gestational diabetes compared with healthy pregnant women, but the increase in expression was only significant for miR-26a (p < 0.05). Conclusion According to the statistical and ROC curves, we suggest miR-26a as a potential biomarker for the early diagnosis of gestational diabetes mellitus.
Collapse
Affiliation(s)
- Hori Ghaneialvar
- Biotechnology and Medicinal Plants Research CenterIlam University of Medical SciencesIlamIran
| | | | - Azra Kenarkoohi
- Department of Laboratory Sciences, School of Allied Medical SciencesIlam University of Medical SciencesIlamIran
| | - Saeed Kakaee
- Biotechnology and Medicinal Plants Research CenterIlam University of Medical SciencesIlamIran
| |
Collapse
|
3
|
Kunysz M, Cieśla M, Darmochwał-Kolarz D. Evaluation of miRNA Expression in Patients with Gestational Diabetes Mellitus: Investigating Diagnostic Potential and Clinical Implications. Diabetes Metab Syndr Obes 2024; 17:881-891. [PMID: 38414865 PMCID: PMC10898488 DOI: 10.2147/dmso.s443755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/24/2024] [Indexed: 02/29/2024] Open
Abstract
Purpose Gestational diabetes mellitus (GDM) is common pregnancy complication (8%), characterized by hyperglycemia resulting from pathological homeostatic mechanisms. There's a concerning trend of increasing GDM prevalence. New markers, particularly epigenetic ones, are sought for early detection and enhanced care. miRNA are small non-coding RNA molecules. The main goal was to investigate the potential role of miRNA (miR-16-5p, miR-222-3p, miR-21-5p) in GDM and their association with clinical features. Patients and Methods The study included 72 pregnant patients, with 42 having GDM and 30 in the control group. miRNA expression was measured using ELISA. Results There were no significant differences in miR-222-3p expression between GDM patients and the control group. The GDM group exhibited a positive correlation between miR-16-5p expression and miR-21-5p expression as well as between miR-16-5p expression and insulin resistance. In the GDM group, a positive correlation was observed between miR-21-5p expression and fasting glucose levels. Conclusion Results do not confirm the role of miR-222-3p in GDM pathogenesis or as a diagnostic marker. Additionally, a role for miR-16-5p in GDM pathogenesis was observed. Furthermore, a potential role for miR-21-5p in monitoring GDM treatment is indicated.
Collapse
Affiliation(s)
- Mateusz Kunysz
- Department of Obstetrics & Gynecology, Institute of Medical Sciences, College of Medical Sciences, University of Rzeszow, Rzeszow, 35-959, Poland
| | - Marek Cieśla
- College of Medical Sciences, University of Rzeszow, Rzeszow, 35-959, Poland
| | - Dorota Darmochwał-Kolarz
- Department of Obstetrics & Gynecology, Institute of Medical Sciences, College of Medical Sciences, University of Rzeszow, Rzeszow, 35-959, Poland
| |
Collapse
|
4
|
Nemecz M, Stefan DS, Comarița IK, Constantin A, Tanko G, Guja C, Georgescu A. Microvesicle-associated and circulating microRNAs in diabetic dyslipidemia: miR-218, miR-132, miR-143, and miR-21, miR-122, miR-155 have biomarker potential. Cardiovasc Diabetol 2023; 22:260. [PMID: 37749569 PMCID: PMC10521428 DOI: 10.1186/s12933-023-01988-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/09/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND Circulating MicroRNAs (miRNAs) carried by microvesicles (MVs) have various physiological and pathological functions by post-transcriptional regulation of gene expression being considered markers for many diseases including diabetes and dyslipidemia. We aimed to identify new common miRNAs both in MVs and plasma that could be predictive biomarkers for diabetic dyslipidemia evolution. METHODS For this purpose, plasma from 63 participants in the study (17 type 2 diabetic patients, 17 patients with type 2 diabetes and dyslipidemia, 14 patients with dyslipidemia alone and 15 clinically healthy persons without diabetes or dyslipidemia) was used for the analysis of circulating cytokines, MVs, miRNAs and MV-associated miRNAs. RESULTS The results uncovered three miRNAs, miR-218, miR-132 and miR-143, whose expression was found to be significantly up-regulated in both circulating MVs and plasma from diabetic patients with dyslipidemia. These miRNAs showed significant correlations with important plasma markers, representative of this pathology. Thus, MV/plasma miR-218 was negatively correlated with the levels of erythrocyte MVs, plasma miR-132 was positively connected with MV miR-132 and negatively with uric acid and erythrocyte plasma levels, and plasma miR-143 was negatively related with creatinine levels and diastolic blood pressure. Also, three miRNAs common to MV and plasma, namely miR-21, miR-122, and miR-155, were identified to be down-regulated and up-regulated, respectively, in diabetic dyslipidemia. In addition, MV miR-21 was positively linked with cholesterol plasma levels and plasma miR-21 with TNFα plasma levels, MV miR-122 was negatively correlated with LDL-c levels and plasma miR-122 with creatinine and diastolic blood pressure and positively with MV miR-126 levels, MV miR-155 was positively associated with cholesterol and total MV levels and negatively with HDL-c levels, whereas plasma miR-155 was positively correlated with Il-1β plasma levels and total MV levels and negatively with MV miR-223 levels. CONCLUSIONS In conclusion, miR-218, miR-132, miR-143, and miR-21, miR-122, miR-155 show potential as biomarkers for diabetic dyslipidemia, but there is a need for more in-depth studies. These findings bring new information regarding the molecular biomarkers specific to diabetic dyslipidemia and could have important implications for the treatment of patients affected by this pathology.
Collapse
Affiliation(s)
- Miruna Nemecz
- Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of the Romanian Academy, Bucharest, Romania.
| | - Diana Simona Stefan
- National Institute of Diabetes, Nutrition and Metabolic Disease 'Prof. Dr. Nicolae Constantin Paulescu', Bucharest, Romania
| | - Ioana Karla Comarița
- Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of the Romanian Academy, Bucharest, Romania
| | - Alina Constantin
- Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of the Romanian Academy, Bucharest, Romania
| | - Gabriela Tanko
- Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of the Romanian Academy, Bucharest, Romania
| | - Cristian Guja
- National Institute of Diabetes, Nutrition and Metabolic Disease 'Prof. Dr. Nicolae Constantin Paulescu', Bucharest, Romania
| | - Adriana Georgescu
- Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of the Romanian Academy, Bucharest, Romania.
| |
Collapse
|
5
|
Jie R, Qian J, Tang Y, Li Y, Xu M, Zhao X, Chen M. Role of Increased miR-222-3p Expression in Peripheral Blood and Wound Marginal Tissues of Type 2 Diabetes Mellitus Patients with Diabetic Foot Ulcer. Diabetes Metab Syndr Obes 2023; 16:2419-2432. [PMID: 37602205 PMCID: PMC10439793 DOI: 10.2147/dmso.s410986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/28/2023] [Indexed: 08/22/2023] Open
Abstract
Purpose To study the correlations of miR-222-3p expression in the peripheral blood and wound marginal tissues of type 2 diabetes mellitus (T2DM) patients with the onset of diabetic foot ulcer (DFU), as well as explore the clinical value possessed by miR-222-3p in the diagnosis and treatment outcomes of DFU. Methods The study included 70 T2DM patients who did not suffer foot ulcers (T2DM group), 146 T2DM patients who suffered foot ulcers (DFU group), as well as 70 normal controls (NC group). Quantitative real-time PCR determined the MiR-222-3p relative expression. Clinical features and risk factors regarding DFU were assessed. Multiple stepwise logistic regression analysis assisted in confirming whether miR-222-3p expression could serve for independently predicting the risk factors for DFU. ROC curve analysis evaluated the diagnostic value exhibited by miR-222-3p level against DFU. Results T2DM group exhibited an obviously higher MiR-222-3p expression relative to NC group [1.98 (0.98, 3.62) vs 0.92 (0.61, 1.87)] (P < 0.01), but DFU group exhibited an obviously higher miR-222-3p expression relative to T2DM group [5.61 (1.98, 10.24) vs 1.98 (0.98, 3.62)] (P < 0.01). Besides, miR-222-3p expression presented a negative correlation with DFU healing rate (P < 0.05). According to Kaplan-Meier survival curve analysis, the group with high miR-222-3p expression showed higher unhealed DFU cumulative rate relative to the group with low expression (log-rank, P = 0.011, 0.001, respectively). Multivariate logistic regression analysis confirmed that high miR-222-3p expressions could independently predict DFU risk (OR=3.85, 95% CI 1.18~12.37, P = 0.008). According to the ROC curve analysis, the AUC of miR-222-3p specific to DFU diagnosis reached 0.803, with the best sensitivity of 95.93% and best specificity of 96.27%. Conclusion The increased expression of miR-222-3p in the peripheral blood of T2DM patients is closely related to the occurrence of DFU. MiR-222-3p is a biomarker with potential clinical value in diagnosing and evaluating the prognosis of DFU.
Collapse
Affiliation(s)
- Ruyan Jie
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230032, People’s Republic of China
| | - Jing Qian
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230032, People’s Republic of China
| | - Ying Tang
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230032, People’s Republic of China
| | - Yutong Li
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230032, People’s Republic of China
| | - Murong Xu
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230032, People’s Republic of China
| | - Xiaotong Zhao
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230032, People’s Republic of China
| | - Mingwei Chen
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230032, People’s Republic of China
| |
Collapse
|
6
|
da Silva PHCM, Santos KDF, da Silva L, da Costa CCP, Santos RDS, Reis AADS. MicroRNAs Associated with the Pathophysiological Mechanisms of Gestational Diabetes Mellitus: A Systematic Review for Building a Panel of miRNAs. J Pers Med 2023; 13:1126. [PMID: 37511739 PMCID: PMC10381583 DOI: 10.3390/jpm13071126] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/07/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
miRNAs, a class of small non-coding RNAs, play a role in post-transcriptional gene expression. Therefore, this study aimed to conduct a systematic review of miRNAs associated with GDM to build a panel of miRNAs. A bibliographic search was carried out in the PubMed/Medline, Virtual Health Library (VHL), Web of Science, and EMBASE databases, selecting observational studies in English without time restriction. The protocol was registered on the PROSPERO platform (number CRD42021291791). Fifty-five studies were included in this systematic review, and 82 altered miRNAs in GDM were identified. In addition, four miRNAs were most frequently dysregulated in GDM (mir-16-5p, mir-20a-5p, mir-222-3p, and mir-330-3p). The dysregulation of these miRNAs is associated with the mechanisms of cell cycle homeostasis, growth, and proliferation of pancreatic β cells, glucose uptake and metabolism, insulin secretion, and resistance. On the other hand, identifying miRNAs associated with GDM and elucidating its main mechanisms can assist in the characterization and definition of potential biomarkers for the diagnosis and treatment of GDM.
Collapse
Affiliation(s)
- Pedro Henrique Costa Matos da Silva
- Laboratory of Molecular Pathology, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia 74690-090, GO, Brazil (K.d.F.S.)
| | - Kamilla de Faria Santos
- Laboratory of Molecular Pathology, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia 74690-090, GO, Brazil (K.d.F.S.)
| | - Laura da Silva
- Laboratory of Molecular Pathology, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia 74690-090, GO, Brazil (K.d.F.S.)
| | - Caroline Christine Pincela da Costa
- Laboratory of Molecular Pathology, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia 74690-090, GO, Brazil (K.d.F.S.)
| | - Rodrigo da Silva Santos
- Laboratory of Molecular Pathology, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia 74690-090, GO, Brazil (K.d.F.S.)
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia 74690-090, GO, Brazil
| | - Angela Adamski da Silva Reis
- Laboratory of Molecular Pathology, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia 74690-090, GO, Brazil (K.d.F.S.)
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia 74690-090, GO, Brazil
| |
Collapse
|
7
|
Elhag DA, Al Khodor S. Exploring the potential of microRNA as a diagnostic tool for gestational diabetes. J Transl Med 2023; 21:392. [PMID: 37330548 PMCID: PMC10276491 DOI: 10.1186/s12967-023-04269-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/11/2023] [Indexed: 06/19/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that play critical roles in regulating host gene expression. Recent studies have indicated a role of miRNAs in the pathogenesis of gestational diabetes mellitus (GDM), a common pregnancy-related disorder characterized by impaired glucose metabolism. Aberrant expression of miRNAs has been observed in the placenta and/or maternal blood of GDM patients, suggesting their potential use as biomarkers for early diagnosis and prognosis. Additionally, several miRNAs have been shown to modulate key signaling pathways involved in glucose homeostasis, insulin sensitivity, and inflammation, providing insights into the pathophysiology of GDM. This review summarizes the current knowledge on the dynamics of miRNA in pregnancy, their role in GDM as well as their potential as diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Duaa Ahmed Elhag
- Maternal and Child Health Division, Research Branch, Sidra Medicine, Doha, Qatar
| | - Souhaila Al Khodor
- Maternal and Child Health Division, Research Branch, Sidra Medicine, Doha, Qatar.
| |
Collapse
|
8
|
Dinesen S, El-Faitarouni A, Frisk NLS, Sørensen AE, Dalgaard LT. Circulating microRNA as Biomarkers for Gestational Diabetes Mellitus-A Systematic Review and Meta-Analysis. Int J Mol Sci 2023; 24:6186. [PMID: 37047159 PMCID: PMC10094234 DOI: 10.3390/ijms24076186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
Gestational diabetes mellitus (GDM) is a severe pregnancy complication for both the woman and the child. Women who suffer from GDM have a greater risk of developing Type 2 diabetes mellitus (T2DM) later in life. Identification of any potential biomarkers for the early prediction of gestational diabetes can help prevent the disease in women with a high risk. Studies show microRNA (miRNA) as a potential biomarker for the early discovery of GDM, but there is a lack of clarity as to which miRNAs are consistently altered in GDM. This study aimed to perform a systematic review and meta-analysis to investigate miRNAs associated with GDM by comparing GDM cases with normoglycemic controls. The systematic review was performed according to PRISMA guidelines with searches in PubMed, Web of Science, and ScienceDirect. The primary search resulted in a total of 849 articles, which were screened according to the prior established inclusion and exclusion criteria. Following the screening of articles, the review was based on the inclusion of 35 full-text articles, which were evaluated for risk of bias and estimates of quality, after which data were extracted and relative values for miRNAs were calculated. A meta-analysis was performed for the miRNA species investigated in three or more studies: MiR-29a, miR-330, miR-134, miR-132, miR-16, miR-223, miR-155, miR-122, miR-17, miR-103, miR-125, miR-210, and miR-222. While some miRNAs showed considerable between-study variability, miR-29a, miR-330, miR-134, miR-16, miR-223, and miR-17 showed significant overall upregulation in GDM, while circulating levels of miR-132 and miR-155 were decreased among GDM patients, suggesting further studies of these as biomarkers for early GDM discovery.
Collapse
Affiliation(s)
- Sofie Dinesen
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
| | - Alisar El-Faitarouni
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
| | | | - Anja Elaine Sørensen
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
- Roskilde Hospital, Region Zealand, 4000 Roskilde, Denmark
| | - Louise Torp Dalgaard
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
| |
Collapse
|
9
|
Lowe WL. Genetics and Epigenetics: Implications for the Life Course of Gestational Diabetes. Int J Mol Sci 2023; 24:6047. [PMID: 37047019 PMCID: PMC10094577 DOI: 10.3390/ijms24076047] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Gestational diabetes (GDM) is one of the most common complications of pregnancy, affecting as many as one in six pregnancies. It is associated with both short- and long-term adverse outcomes for the mother and fetus and has important implications for the life course of affected women. Advances in genetics and epigenetics have not only provided new insight into the pathophysiology of GDM but have also provided new approaches to identify women at high risk for progression to postpartum cardiometabolic disease. GDM and type 2 diabetes share similarities in their pathophysiology, suggesting that they also share similarities in their genetic architecture. Candidate gene and genome-wide association studies have identified susceptibility genes that are shared between GDM and type 2 diabetes. Despite these similarities, a much greater effect size for MTNR1B in GDM compared to type 2 diabetes and association of HKDC1, which encodes a hexokinase, with GDM but not type 2 diabetes suggest some differences in the genetic architecture of GDM. Genetic risk scores have shown some efficacy in identifying women with a history of GDM who will progress to type 2 diabetes. The association of epigenetic changes, including DNA methylation and circulating microRNAs, with GDM has also been examined. Targeted and epigenome-wide approaches have been used to identify DNA methylation in circulating blood cells collected during early, mid-, and late pregnancy that is associated with GDM. DNA methylation in early pregnancy had some ability to identify women who progressed to GDM, while DNA methylation in blood collected at 26-30 weeks gestation improved upon the ability of clinical factors alone to identify women at risk for progression to abnormal glucose tolerance post-partum. Finally, circulating microRNAs and long non-coding RNAs that are present in early or mid-pregnancy and associated with GDM have been identified. MicroRNAs have also proven efficacious in predicting both the development of GDM as well as its long-term cardiometabolic complications. Studies performed to date have demonstrated the potential for genetic and epigenetic technologies to impact clinical care, although much remains to be done.
Collapse
Affiliation(s)
- William L Lowe
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Rubloff 12, 420 E. Superior Street, Chicago, IL 60611, USA
| |
Collapse
|
10
|
Karami M, Mousavi SH, Rafiee M, Heidari R, Shahrokhi SZ. Biochemical and molecular biomarkers: unraveling their role in gestational diabetes mellitus. Diabetol Metab Syndr 2023; 15:5. [PMID: 36631877 PMCID: PMC9832639 DOI: 10.1186/s13098-023-00980-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
Gestational diabetes mellitus (GDM) is the most prevalent metabolic disorder during pregnancy, causing short- and long-term complications for both mother and baby. GDM is a multifactorial disease, and it may be affected by interactions between genetic, epigenetic, and environmental factors. However, the exact etiology is poorly understood. Despite the high prevalence of GDM, there is still debate regarding the optimal time for screening, the diagnostic threshold to apply, and the best strategies for treatment. Identifying effective strategies for therapeutic purposes as well as accurate biomarkers for prognostic and diagnostic purposes will reduce the GDM incidence and improve its management. In recent years, new biochemical and molecular biomarkers such as microRNAs, single-nucleotide polymorphisms, and DNA methylation have received great interest in the diagnosis of GDM. In this review, we discuss current and future diagnostic approaches for the detection of GDM and evaluate lifestyle and pharmacological strategies for GDM prevention.
Collapse
Affiliation(s)
- Masoumeh Karami
- Department of Biochemistry, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Seyyed Hossein Mousavi
- Department of Cardiology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Mohammad Rafiee
- Department of Medical Laboratory Sciences, School of Paramedical Sciences, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Reza Heidari
- Medical Biotechnology Research Center, AJA University of Medical Sciences, Tehran, Iran
- Research Center for Cancer Screening and Epidemiology, AJA University of Medical Sciences, Tehran, Iran
| | - Seyedeh Zahra Shahrokhi
- Department of Biochemistry, School of Medicine, AJA University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Dinesen S, El-Faitarouni A, Dalgaard LT. Circulating microRNAs associated with gestational diabetes mellitus: useful biomarkers? J Endocrinol 2023; 256:JOE-22-0170. [PMID: 36346274 DOI: 10.1530/joe-22-0170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/08/2022] [Indexed: 11/09/2022]
Abstract
Different types of small non-coding RNAs, especially miRNAs, may be found in the circulation, either protein-bound or enclosed in extracellular vesicles. During gestation, and particularly during gestational diabetes mellitus (GDM), the levels of several miRNAs are altered. Worldwide the incidence of GDM is increasing, in part driven by the current obesity epidemic. This is a point of public health concern because offspring of women with GDM frequently suffer from short- and long-term complications of maternal GDM. This has prompted the investigation of whether levels of specific miRNA species, detected early in gestation, may be used as diagnostic or prognostic markers for the development of GDM. Here, we summarize the mechanisms of RNA secretion and review circulating miRNAs associated with GDM. Several miRNAs are associated with GDM: miR-29a-3p and miR-29b-3p are generally upregulated in GDM pregnancies, also when measured prior to the development of GDM, while miR-16-5p is consistently upregulated in GDM pregnancies, especially in late gestation. miR-330-3p in circulation is increased in late gestation GDM women, especially in those with poor insulin secretion. miR-17-5p, miR-19a/b-3p, miR-223-3p, miR-155-5p, miR-125-a/b-5p, miR-210-3p and miR-132 are also associated with GDM, but less so and with more contradictory results reported. There could be a publication bias as miRNAs identified early are investigated the most, suggesting that it is likely that additional, more recently detected miRNAs could also be associated with GDM. Thus, circulating miRNAs show potential as biomarkers of GDM diagnosis or prognosis, especially multiple miRNAs containing prediction algorithms show promise, but further studies are needed.
Collapse
Affiliation(s)
- Sofie Dinesen
- Department of Science and Environment, Roskilde University, Universitetsvej 1, Roskilde, Denmark
| | - Alisar El-Faitarouni
- Department of Science and Environment, Roskilde University, Universitetsvej 1, Roskilde, Denmark
| | - Louise T Dalgaard
- Department of Science and Environment, Roskilde University, Universitetsvej 1, Roskilde, Denmark
| |
Collapse
|
12
|
Ding L, Shen Y, Wang A, Lu C, Gu X, Jiang L. Construction of a novel miRNA regulatory network and identification of target genes in gestational diabetes mellitus by integrated analysis. Front Genet 2022; 13:966296. [PMID: 36544488 PMCID: PMC9762355 DOI: 10.3389/fgene.2022.966296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 11/09/2022] [Indexed: 12/03/2022] Open
Abstract
Backgrounds: Given the roles of microRNA (miRNA) in human diseases and the high incidence of gestational diabetes mellitus (GDM), the aim of the study was to examine miRNA signatures and crucial pathways, as well as possible biomarkers for GDM diagnosis. Methods: We conducted a two-stage study to explore functional miRNA and those target genes. Twelve participants (6 GDM and 6 non-GDM) were first enrolled and performed RNA sequencing analysis. The overlapped candidate genes were further screened in combination with differentially expressed genes (DEGs) of GEO datasets (GSE87295, GSE49524 and GSE19649) and potential target genes of DEMs. Candidate genes, critical pathways, small molecular compounds and regulatory networks were identified using bioinformatic analysis. The potential candidate genes were then investigated using the GEO dataset (GSE103552) of 19 participants in the validation stage (11 GDM and 8 non-GDM women). Results: Briefly, blood samples were sequenced interrogating 50 miRNAs, including 20 upregulated and 30 downregulated differentially expressed microRNAs(DEMs) in our internal screening dataset. After screening GEO databases, 123 upregulated and 70 downregulated genes were overlapped through DEGs of GEO datasets and miRNA-target genes. MiR-29b-1-5p-TGFB2, miR-142-3p-TGFB2, miR-9-5p-FBN2, miR-212-5p-FBN2, miR-542-3p-FBN1, miR-9-5p-FBN1, miR-508-3p-FBN1, miR-493-5p-THBS1, miR-29b-3p-COL4A1, miR-432-5p-COL5A2, miR-9-5p-TGFBI, miR-486-3p-SLC7A5 and miR-6515-5p-SLC1A5 were revealed as thirteen possible regulating pathways by integrative analysis. Conclusion: Overall, thirteen candidate miRNA-target gene regulatory pathways representing potentially novel biomarkers of GDM diseases were revealed. Ten chemicals were identified as putative therapeutic agents for GDM. This study examined a series of DEGs that are associated with epigenetic alternations of miRNA through an integrated approach and gained insight into biological pathways in GDM. Precise diagnosis and therapeutic targets of GDM would be further explored through putative genes in the future.
Collapse
Affiliation(s)
- Liyan Ding
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Yi Shen
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Anqi Wang
- Department of Nursing, Collaborative Research Center, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Changlian Lu
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Xuefeng Gu
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China,School of Pharmacy, Shanghai University of Medicine & Health Sciences, Shanghai, China,*Correspondence: Liying Jiang, ; Xuefeng Gu,
| | - Liying Jiang
- Shanghai Key Laboratory of Molecular Imaging, Jiading Central Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China,*Correspondence: Liying Jiang, ; Xuefeng Gu,
| |
Collapse
|
13
|
Cardiovascular Disease-Associated MicroRNAs as Novel Biomarkers of First-Trimester Screening for Gestational Diabetes Mellitus in the Absence of Other Pregnancy-Related Complications. Int J Mol Sci 2022; 23:ijms231810635. [PMID: 36142536 PMCID: PMC9501303 DOI: 10.3390/ijms231810635] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/25/2022] Open
Abstract
We assessed the diagnostic potential of cardiovascular disease-associated microRNAs for the early prediction of gestational diabetes mellitus (GDM) in singleton pregnancies of Caucasian descent in the absence of other pregnancy-related complications. Whole peripheral venous blood samples were collected within 10 to 13 weeks of gestation. This retrospective study involved all pregnancies diagnosed with only GDM (n = 121) and 80 normal term pregnancies selected with regard to equality of sample storage time. Gene expression of 29 microRNAs was assessed using real-time RT-PCR. Upregulation of 11 microRNAs (miR-1-3p, miR-20a-5p, miR-20b-5p, miR-23a-3p, miR-100-5p, miR-125b-5p, miR-126-3p, miR-181a-5p, miR-195-5p, miR-499a-5p, and miR-574-3p) was observed in pregnancies destinated to develop GDM. Combined screening of all 11 dysregulated microRNAs showed the highest accuracy for the early identification of pregnancies destinated to develop GDM. This screening identified 47.93% of GDM pregnancies at a 10.0% false positive rate (FPR). The predictive model for GDM based on aberrant microRNA expression profile was further improved via the implementation of clinical characteristics (maternal age and BMI at early stages of gestation and an infertility treatment by assisted reproductive technology). Following this, 69.17% of GDM pregnancies were identified at a 10.0% FPR. The effective prediction model specifically for severe GDM requiring administration of therapy involved using a combination of these three clinical characteristics and three microRNA biomarkers (miR-20a-5p, miR-20b-5p, and miR-195-5p). This model identified 78.95% of cases at a 10.0% FPR. The effective prediction model for GDM managed by diet only required the involvement of these three clinical characteristics and eight microRNA biomarkers (miR-1-3p, miR-20a-5p, miR-20b-5p, miR-100-5p, miR-125b-5p, miR-195-5p, miR-499a-5p, and miR-574-3p). With this, the model identified 50.50% of GDM pregnancies managed by diet only at a 10.0% FPR. When other clinical variables such as history of miscarriage, the presence of trombophilic gene mutations, positive first-trimester screening for preeclampsia and/or fetal growth restriction by the Fetal Medicine Foundation algorithm, and family history of diabetes mellitus in first-degree relatives were included in the GDM prediction model, the predictive power was further increased at a 10.0% FPR (72.50% GDM in total, 89.47% GDM requiring therapy, and 56.44% GDM managed by diet only). Cardiovascular disease-associated microRNAs represent promising early biomarkers to be implemented into routine first-trimester screening programs with a very good predictive potential for GDM.
Collapse
|
14
|
Sharma AK, Singh S, Singh H, Mahajan D, Kolli P, Mandadapu G, Kumar B, Kumar D, Kumar S, Jena MK. Deep Insight of the Pathophysiology of Gestational Diabetes Mellitus. Cells 2022; 11:2672. [PMID: 36078079 PMCID: PMC9455072 DOI: 10.3390/cells11172672] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 12/19/2022] Open
Abstract
Diabetes mellitus is a severe metabolic disorder, which consistently requires medical care and self-management to restrict complications, such as obesity, kidney damage and cardiovascular diseases. The subtype gestational diabetes mellitus (GDM) occurs during pregnancy, which severely affects both the mother and the growing foetus. Obesity, uncontrolled weight gain and advanced gestational age are the prominent risk factors for GDM, which lead to high rate of perinatal mortality and morbidity. In-depth understanding of the molecular mechanism involved in GDM will help researchers to design drugs for the optimal management of the condition without affecting the mother and foetus. This review article is focused on the molecular mechanism involved in the pathophysiology of GDM and the probable biomarkers, which can be helpful for the early diagnosis of the condition. The early diagnosis of the metabolic disorder, most preferably in first trimester of pregnancy, will lead to its effective long-term management, reducing foetal developmental complications and mortality along with safety measures for the mother.
Collapse
Affiliation(s)
- Amarish Kumar Sharma
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Sanjeev Singh
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Himanshu Singh
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Deviyani Mahajan
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Prachetha Kolli
- Microgen Health Inc., 14225 Sullyfield Cir Suite E, Chantilly, VA 20151, USA
| | | | - Bimlesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Dharmendra Kumar
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar 125001, Haryana, India
| | - Sudarshan Kumar
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Manoj Kumar Jena
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
| |
Collapse
|
15
|
Lu W, Hu C. Molecular biomarkers for gestational diabetes mellitus and postpartum diabetes. Chin Med J (Engl) 2022; 135:1940-1951. [PMID: 36148588 PMCID: PMC9746787 DOI: 10.1097/cm9.0000000000002160] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Indexed: 11/25/2022] Open
Abstract
ABSTRACT Gestational diabetes mellitus (GDM) is a growing public health problem worldwide that threatens both maternal and fetal health. Identifying individuals at high risk for GDM and diabetes after GDM is particularly useful for early intervention and prevention of disease progression. In the last decades, a number of studies have used metabolomics, genomics, and proteomic approaches to investigate associations between biomolecules and GDM progression. These studies clearly demonstrate that various biomarkers reflect pathological changes in GDM. The established markers have potential use as screening and diagnostic tools in GDM and in postpartum diabetes research. In the present review, we summarize recent studies of metabolites, single-nucleotide polymorphisms, microRNAs, and proteins associated with GDM and its transition to postpartum diabetes, with a focus on their predictive value in screening and diagnosis.
Collapse
Affiliation(s)
- Wenqian Lu
- Shanghai Diabetes Institute, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510630, China
- Department of Endocrinology and Metabolism, Fengxian Central Hospital Affiliated to the Southern Medical University, Shanghai 201400, China
| | - Cheng Hu
- Shanghai Diabetes Institute, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510630, China
- Department of Endocrinology and Metabolism, Fengxian Central Hospital Affiliated to the Southern Medical University, Shanghai 201400, China
| |
Collapse
|
16
|
Coetzee A, Hall DR, Conradie M. Hyperglycemia First Detected in Pregnancy in South Africa: Facts, Gaps, and Opportunities. FRONTIERS IN CLINICAL DIABETES AND HEALTHCARE 2022; 3:895743. [PMID: 36992779 PMCID: PMC10012101 DOI: 10.3389/fcdhc.2022.895743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/01/2022] [Indexed: 06/19/2023]
Abstract
This review contextualizes hyperglycemia in pregnancy from a South-African perspective. It aims to create awareness of the importance of hyperglycemia in pregnancy in low-middle-income countries. We address unanswered questions to guide future research on sub-Saharan African women with hyperglycemia first detected in pregnancy (HFDP). South African women of childbearing age have the highest prevalence of obesity in sub-Saharan Africa. They are predisposed to Type 2 diabetes (T2DM), the leading cause of death in South African women. T2DM remains undiagnosed in many African countries, with two-thirds of people living with diabetes unaware. With the South African health policy's increased focus on improving antenatal care, women often gain access to screening for non-communicable diseases for the first time in pregnancy. While screening practices and diagnostic criteria for gestational diabetes mellitus (GDM) differ amongst geographical areas in South Africa (SA), hyperglycemia of varying degrees is often first detected in pregnancy. This is often erroneously ascribed to GDM, irrespective of the degree of hyperglycemia and not overt diabetes. T2DM and GDM convey a graded increased risk for the mother and fetus during and after pregnancy, with cardiometabolic risk accumulating across the lifespan. Resource limitations and high patient burden have hampered the opportunity to implement accessible preventative care in young women at increased risk of developing T2DM in the broader public health system in SA. All women with HFDP, including those with true GDM, should be followed and undergo glucose assessment postpartum. In SA, studies conducted early postpartum have noted persistent hyperglycemia in a third of women after GDM. Interpregnancy care is advantageous and may attain a favourable metabolic legacy in these young women, but the yield of return following delivery is suboptimal. We review the current best evidence regarding HFDP and contextualize the applicability in SA and other African or low-middle-income countries. The review identifies gaps and shares pragmatic solutions regarding clinical factors that may improve awareness, identification, diagnosis, and management of women with HFDP.
Collapse
Affiliation(s)
- Ankia Coetzee
- Department of Medicine, Division of Endocrinology Stellenbosch University and Tygerberg Hospital, Cape Town, South Africa
| | - David R. Hall
- Department of Obstetrics and Gynecology, Stellenbosch University and Tygerberg Hospital, Cape Town, South Africa
| | - Magda Conradie
- Department of Medicine, Division of Endocrinology Stellenbosch University and Tygerberg Hospital, Cape Town, South Africa
| |
Collapse
|
17
|
Sun W, Wang P, Wang S. Plasmatic circRNAs Panel to Predict the Risk of Macrosomia in Women with Gestational Diabetes Mellitus. Gynecol Obstet Invest 2022; 87:141-149. [PMID: 35605584 DOI: 10.1159/000513670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 12/10/2020] [Indexed: 11/19/2022]
Abstract
OBJECTIVES Fetal macrosomia and its associated complications are the most frequent and serious morbidities for infants associated with gestational diabetes mellitus (GDM). In this study, we aimed to determine the expression of circulating circRNAs in humans, which may be promising biomarkers for the diagnosis of GDM or predicting the macrosomia in GDM patients. DESIGN A multi-stage validation and risk score formula analysis was applied for validation. PARTICIPANTS/MATERIALS, SETTING, METHODS A total of 26 circRNAs previously reported highly expressed in placenta tissues or umbilical cord blood of GDM patients during the pregnancy were enrolled. We recruited a total of 200 patients with GDM with or without macrosomia, 200 healthy pregnant woman, and 200 healthy volunteers. RESULTS We discovered that four circRNAs including circRNA_1030, circRNA_23658, circRNA_0009049, and circRNA_32231 were upregulated in plasmatic samples of patients with GDM with or without macrosomia in training set and validation set compared with the healthy pregnant woman and healthy volunteers. Further receiver operating characteristic (ROC) curve analysis in risk score formula indicated a high diagnostic ability and area under ROC curve value (AUC) of 0.950 and 0.815 in training set and validation set for predicting GDM from controls group, for predicting macrosomia from GDM, the AUC was 0.975 and 0.820, respectively. The four circRNAs were further investigated with stable expression in human plasma samples. LIMITATIONS The study was limited by larger scale of sample validation and the detailed mechanism investigation. CONCLUSION The circRNA_1030, circRNA_23658, circRNA_0009049, and circRNA_32231 might be the potential biomarkers for predicting the GDM and macrosomia during the perinatal period.
Collapse
Affiliation(s)
- Wenping Sun
- Department of Obstetrics and Gynecology, Qinghai Red-Cross Hospital, Xining, China
| | - Pinghua Wang
- Department of Obstetrics and Gynecology, Qinghai Red-Cross Hospital, Xining, China
| | - Shenglan Wang
- Department of Obstetrics and Gynecology, Qinghai Red-Cross Hospital, Xining, China
| |
Collapse
|
18
|
Tagoma A, Haller-Kikkatalo K, Oras A, Roos K, Kirss A, Uibo R. Plasma cytokines during pregnancy provide insight into the risk of diabetes in the gestational diabetes risk group. J Diabetes Investig 2022; 13:1596-1606. [PMID: 35524472 PMCID: PMC9434577 DOI: 10.1111/jdi.13828] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/04/2022] [Accepted: 05/05/2022] [Indexed: 11/30/2022] Open
Abstract
Aims/Introduction Gestational diabetes (GDM) is characterized by low‐grade systemic inflammation, which manifests as changes in the levels of cytokines in the blood. We aimed to investigate plasma immune mediators during gestational weeks 23–28 in 213 women at risk for GDM, and to find associations between GDM and its complications. Materials and Methods We quantified the levels of adipokines: adiponectin, leptin, plasminogen activator inhibitor‐1 and resistin; chemokines: C‐C motif chemokine ligand 2 (CCL2), CCL4, C‐X‐C motif chemokine ligand 8 (CXCL8) and CXCL10; and cytokines: granulocyte‐macrophage colony‐stimulating factor, interferon‐γ, interleukin (IL)‐1β, soluble (s)IL‐1RI, IL‐2, sIL‐2Ra, IL‐4, IL‐5, IL‐6, IL‐7, IL‐10, IL‐12(p70), IL‐13, IL‐15, IL‐17A, IL‐17F, IL‐21, IL‐22, IL‐23, IL‐27, transforming growth factor (TGF)‐β1, TGF‐β2, TGF‐β3, tumor necrosis factor‐α and soluble tumor necrosis factor receptor 2 using the Milliplex®MAP Magnetic Bead assay on Luminex®200™, and compared the results with clinical data from pregnancy and post‐partum follow up. Results Lower levels of adiponectin and higher levels of CCL2 (Wilcoxon test, P = 3.4E‐03 and P = 0.03, respectively) were found in women with GDM. IL‐27 levels were associated with lower odds of GDM (adjusted logistic regression 0.90, P = 2.4E‐03), and showed a risk association with glutamic acid decarboxylase autoantibody positivity (adjusted odds ratio 1.13, P = 2.8E‐03). Similarly, higher IL‐22 levels increased the odds of glutamic acid decarboxylase autoantibody positivity (adjusted odds ratio 4.23, P = 0.04). TGF‐β1 was associated with post‐partum fasting glucose levels, and CCL4 with post‐partum C‐peptide levels (linear regression, P = 0.04 and P = 0.01, respectively). Women who developed pregnancy complications had higher levels of CXCL10 and CCL4 (linear regression, P = 7.0E‐04 and P = 0.01, respectively). Conclusions Plasma adiponectin and CCL2 concentrations distinguish women with GDM. IL‐27 and IL‐22 levels might select women with an autoimmune reaction, whereas increased TGF‐β1 and CCL4 are associated with post‐partum glucose and insulin metabolism.
Collapse
Affiliation(s)
- Aili Tagoma
- Department of Immunology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, 50411, Estonia
| | - Kadri Haller-Kikkatalo
- Department of Immunology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, 50411, Estonia
| | - Astrid Oras
- Department of Immunology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, 50411, Estonia
| | - Kristine Roos
- Department of Immunology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, 50411, Estonia.,Nova Vita Clinic, Tallinn, 11314, Estonia
| | - Anne Kirss
- Women's Clinic, Tartu University Hospital, Tartu, 50406, Estonia
| | - Raivo Uibo
- Department of Immunology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, 50411, Estonia
| |
Collapse
|
19
|
Umbilical cord blood metabolomics: association with intrauterine hyperglycemia. Pediatr Res 2022; 91:1530-1535. [PMID: 33980991 DOI: 10.1038/s41390-021-01516-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/11/2021] [Accepted: 03/20/2021] [Indexed: 11/08/2022]
Abstract
BACKGROUND Intrauterine hyperglycemia can harm a fetus's growth and development, and this can be seen in the umbilical cord blood metabolism disorder. However, the metabolites and metabolic mechanisms involved in the condition remain unknown. METHODS Targeted metabolomics using liquid chromatography and MetaboAnalyst were conducted in this study to explore differences in metabolites and metabolic pathways between individuals with hyperglycemia or well-controlled gestational diabetes mellitus (GDM) and healthy controls. RESULTS Univariate analysis found that the hyperglycemic and healthy control groups differed in 30 metabolites, while the well-controlled GDM and the healthy control groups differed only in three metabolites-ursodeoxycholic acid, docosahexaenoic acid, and 8,11,14-eicosatrienoic acid. Most of these metabolic variations were negatively associated with neonatal weights. Further research showed that the variations in the metabolites were primarily associated with the metabolic pathways of linoleic acid (LA) and alpha-linolenic acid (ALA). CONCLUSION Gestational hyperglycemia and well-controlled GDM, which may play a major role by inhibiting the LA and ALA metabolic pathways, have detrimental effects on cord blood metabolism. IMPACT The main point of this paper is that intrauterine hyperglycemia has a negative effect on cord blood metabolism mainly through the linoleic acid and alpha-linolenic acid metabolic pathways. This is a study to report a new association between well-controlled GDM and cord blood metabolism. This study provides a possible explanation for the association between intrauterine hyperglycemia and neonatal adverse birth outcomes.
Collapse
|
20
|
Jain N, Gupta P, Sahoo S, Mallick B. Non-coding RNAs and their cross-talks impacting reproductive health of women. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1695. [PMID: 34825502 DOI: 10.1002/wrna.1695] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 09/02/2021] [Accepted: 09/10/2021] [Indexed: 12/26/2022]
Abstract
Non-coding RNAs (ncRNAs) work as crucial posttranscriptional modulators of gene expression regulating a wide array of biological processes that impact normal physiology, including reproductive health. The health of women, especially reproductive health, is now a prime focus of society that ensures the females' overall physical, social, and mental well-being. Furthermore, there has been a growing cognizance of ncRNAs' possible applications in diagnostics and therapeutics of dreaded diseases. Hence, understanding the functions and mode of actions of ncRNAs in the context of women's health will allow us to develop effective prognostic and therapeutic strategies that will enhance the quality of life of women. Herein, we summarize recent progress on ncRNAs, such as microRNAs (miRNAs) and long ncRNAs (lncRNAs), and their implications in reproductive health by tying the knot with lifestyle factors that affect fertility complications, pregnancy outcomes, and so forth. We also discourse the interplay among the RNA species, especially miRNAs, lncRNAs, and protein-coding RNAs, through the competing endogenous RNA regulations in diseases of women associated with maternal and fetal health. This review provides new perspectives correlating ncRNAs, lifestyle, and reproductive health of women, which will attract future studies to improve women's lives. This article is categorized under: RNA in Disease and Development > RNA in Disease Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.
Collapse
Affiliation(s)
- Neha Jain
- RNAi and Functional Genomics Laboratory, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Pooja Gupta
- RNAi and Functional Genomics Laboratory, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Swapnil Sahoo
- RNAi and Functional Genomics Laboratory, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Bibekanand Mallick
- RNAi and Functional Genomics Laboratory, Department of Life Science, National Institute of Technology, Rourkela, India
| |
Collapse
|
21
|
Filardi T, Catanzaro G, Grieco GE, Splendiani E, Trocchianesi S, Santangelo C, Brunelli R, Guarino E, Sebastiani G, Dotta F, Morano S, Ferretti E. Identification and Validation of miR-222-3p and miR-409-3p as Plasma Biomarkers in Gestational Diabetes Mellitus Sharing Validated Target Genes Involved in Metabolic Homeostasis. Int J Mol Sci 2022; 23:ijms23084276. [PMID: 35457094 PMCID: PMC9028517 DOI: 10.3390/ijms23084276] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 12/16/2022] Open
Abstract
Gestational diabetes mellitus (GDM) causes both maternal and fetal adverse outcomes. The deregulation of microRNAs (miRNAs) in GDM suggests their involvement in GDM pathogenesis and complications. Exosomes are extracellular vesicles (EVs) of endosomal origin, released via exocytosis into the extracellular compartment. Through EVs, miRNAs are delivered in distant target cells and are able to affect gene expression. In this study, miRNA expression was analyzed to find new miRNAs that could improve GDM classification and molecular characterization. MiRNA were profiled in total plasma and EVs in GDM patients and normal glucose tolerance (NGT) women. Samples were collected at third trimester of gestation from two diabetes centers. MiRNA expression was profiled in a discovery cohort using the multiplexed NanoString nCounter Human v3 miRNA. Validation analysis was performed in a second independent cohort using RT-qPCR. A set of miRNAs resulted to be differentially expressed (DE) in total plasma and EVs in GDM. Among them, total plasma miR-222-3p and miR-409-3p were validated in the independent cohort. MiR-222-3p levels correlated with fasting plasma glucose (FPG) (p < 0.001) and birth weight (p = 0.012), whereas miR-409-3p expression correlated with FPG (p < 0.001) and inversely with gestational age (p = 0.001). The major validated target genes of the deregulated miRNAs were consistently linked to type 2 diabetes and GDM pathophysiology. MiR-222-3p and miR-409-3p are two circulating biomarkers that could improve GDM classification power and act in the context of the molecular events leading to the metabolic alterations observed in GDM.
Collapse
Affiliation(s)
- Tiziana Filardi
- Department of Experimental Medicine, “Sapienza” University, 00161 Rome, Italy; (T.F.); (S.M.); (E.F.)
| | - Giuseppina Catanzaro
- Department of Experimental Medicine, “Sapienza” University, 00161 Rome, Italy; (T.F.); (S.M.); (E.F.)
- Correspondence:
| | - Giuseppina Emanuela Grieco
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (G.E.G.); (G.S.); (F.D.)
- Fondazione Umberto di Mario, Toscana Life Sciences, 53100 Siena, Italy
| | - Elena Splendiani
- Department of Molecular Medicine, “Sapienza” University, 00161 Rome, Italy; (E.S.); (S.T.)
| | - Sofia Trocchianesi
- Department of Molecular Medicine, “Sapienza” University, 00161 Rome, Italy; (E.S.); (S.T.)
| | - Carmela Santangelo
- Center for Gender-Specific Medicine, Gender Specific Prevention and Health Unit, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Roberto Brunelli
- Maternal and Child Health and Urological Sciences, “Sapienza” University, 00161 Rome, Italy;
| | - Elisa Guarino
- UOC Diabetologia, Azienda Ospedaliera Universitaria Senese, 53100 Siena, Italy;
| | - Guido Sebastiani
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (G.E.G.); (G.S.); (F.D.)
- Fondazione Umberto di Mario, Toscana Life Sciences, 53100 Siena, Italy
| | - Francesco Dotta
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (G.E.G.); (G.S.); (F.D.)
- Fondazione Umberto di Mario, Toscana Life Sciences, 53100 Siena, Italy
- UOC Diabetologia, Azienda Ospedaliera Universitaria Senese, 53100 Siena, Italy;
- Tuscany Centre for Precision Medicine (CReMeP), 53100 Siena, Italy
| | - Susanna Morano
- Department of Experimental Medicine, “Sapienza” University, 00161 Rome, Italy; (T.F.); (S.M.); (E.F.)
| | - Elisabetta Ferretti
- Department of Experimental Medicine, “Sapienza” University, 00161 Rome, Italy; (T.F.); (S.M.); (E.F.)
| |
Collapse
|
22
|
Genomics and Epigenomics of Gestational Diabetes Mellitus: Understanding the Molecular Pathways of the Disease Pathogenesis. Int J Mol Sci 2022; 23:ijms23073514. [PMID: 35408874 PMCID: PMC8998752 DOI: 10.3390/ijms23073514] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 11/16/2022] Open
Abstract
One of the most common complications during pregnancy is gestational diabetes mellitus (GDM), hyperglycemia that occurs for the first time during pregnancy. The condition is multifactorial, caused by an interaction between genetic, epigenetic, and environmental factors. However, the underlying mechanisms responsible for its pathogenesis remain elusive. Moreover, in contrast to several common metabolic disorders, molecular research in GDM is lagging. It is important to recognize that GDM is still commonly diagnosed during the second trimester of pregnancy using the oral glucose tolerance test (OGGT), at a time when both a fetal and maternal pathophysiology is already present, demonstrating the increased blood glucose levels associated with exacerbated insulin resistance. Therefore, early detection of metabolic changes and associated epigenetic and genetic factors that can lead to an improved prediction of adverse pregnancy outcomes and future cardio-metabolic pathologies in GDM women and their children is imperative. Several genomic and epigenetic approaches have been used to identify the genes, genetic variants, metabolic pathways, and epigenetic modifications involved in GDM to determine its etiology. In this article, we explore these factors as well as how their functional effects may contribute to immediate and future pathologies in women with GDM and their offspring from birth to adulthood. We also discuss how these approaches contribute to the changes in different molecular pathways that contribute to the GDM pathogenesis, with a special focus on the development of insulin resistance.
Collapse
|
23
|
Sørensen AE, van Poppel MNM, Desoye G, Simmons D, Damm P, Jensen DM, Dalgaard LT. The Temporal Profile of Circulating miRNAs during Gestation in Overweight and Obese Women with or without Gestational Diabetes Mellitus. Biomedicines 2022; 10:biomedicines10020482. [PMID: 35203692 PMCID: PMC8962411 DOI: 10.3390/biomedicines10020482] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 12/12/2022] Open
Abstract
Circulating non-coding microRNAs (miRNAs) are important for placentation, but their expression profiles across gestation in pregnancies, which are complicated by gestational diabetes mellitus (GDM), have not been fully established. Investigating a single time point is insufficient, as pregnancy is dynamic, involving several processes, including placenta development, trophoblast proliferation and differentiation and oxygen sensing. Thus, the aim of this study was to compare the temporal expression of serum miRNAs in pregnant women with and without GDM. This is a nested case-control study of longitudinal data obtained from a multicentric European study (the ‘DALI’ study). All women (n = 82) were overweight/obese (BMI ≥ 29 kg/m2) and were normal glucose tolerant (NGT) at baseline (before 20 weeks of gestation). We selected women (n = 41) who were diagnosed with GDM at 24–28 weeks, according to the IADPSG/WHO2013 criteria. They were matched with 41 women who remained NGT in their pregnancy. miRNA (miR-16-5p, -29a-3p, -103-3p, -134-5p, -122-5p, -223-3p, -330-3p and miR-433-3p) were selected based on their suggested importance for placentation, and measurements were performed at baseline and at 24–28 and 35–37 weeks of gestation. Women with GDM presented with overall miRNA levels above those observed for women remaining NGT. In both groups, levels of miR-29a-3p and miR-134-5p increased consistently with progressing gestation. The change over time only differed for miR-29a-3p when comparing women with GDM with those remaining NGT (p = 0.044). Our findings indicate that among overweight/obese women who later develop GDM, miRNA levels are already elevated early in pregnancy and remain above those of women who remain NGT during their pregnancy. Maternal circulating miRNAs may provide further insight into placentation and the cross talk between the maternal and fetal compartments.
Collapse
Affiliation(s)
- Anja Elaine Sørensen
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark;
- Correspondence: ; Tel.: +45-4674-3994
| | - Mireille N. M. van Poppel
- Faculty of Environmental and Regional Sciences and Education, Institute of Human Movement Science, Sport and Health, University of Graz, 8010 Graz, Austria;
| | - Gernot Desoye
- Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria;
- Center for Pregnant Women with Diabetes, Department of Obstetrics, Rigshospitalet, 2100 Copenhagen, Denmark;
| | - David Simmons
- Macarthur Clinical School, School of Medicine, Western Sydney University, Campbelltown, NSE 2560, Australia;
| | - Peter Damm
- Center for Pregnant Women with Diabetes, Department of Obstetrics, Rigshospitalet, 2100 Copenhagen, Denmark;
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Dorte Møller Jensen
- Department of Gynecology and Obstetrics, Odense University Hospital, 5000 Odense, Denmark;
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, 5000 Odense, Denmark
- Steno Diabetes Center Odense, Department of Gynecology and Obstetrics, Odense University Hospital, 5000 Odense, Denmark
| | - Louise Torp Dalgaard
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark;
| | | |
Collapse
|
24
|
Zheng H, Yu Z, Wang H, Liu H, Chen X. MicroRNA-195-5p facilitates endothelial dysfunction by inhibiting vascular endothelial growth factor A in gestational diabetes mellitus. Reprod Biol 2022; 22:100605. [PMID: 35078033 DOI: 10.1016/j.repbio.2022.100605] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/12/2022]
Abstract
Gestational diabetes mellitus (GDM) is a common disorder during pregnancy associated with endothelial dysfunction in the placental vasculature. MicroRNAs (miRNAs), which are short noncoding RNAs that modulate post-transcriptional gene expression, affect GDM progression. MiR-195-5p was reported to be a putative biomarker for GDM diagnosis, whose expression was markedly elevated in serum of GDM patients. Therefore, our study intended to explore whether miR-195-5p regulates endothelial cell dysfunction in GDM. Human placental microvascular endothelial cells (hPMECs) were treated with high concentration of glucose to establish an in vitro GDM model. The apoptosis, proliferation and angiogenesis of hPMECs were detected by flow cytometry analysis, CCK-8 assay and tube formation assay. The binding between vascular endothelial growth factor A (VEGFA) and miR-195-5p was verified by luciferase reporter assay. GDM mouse model was established by intraperitoneal injection of streptozocin. Cell apoptosis and the pathological changes in GDM mouse placenta tissues were evaluated by TUNEL staining and HE staining. Gene expression was detected by RT-qPCR. Protein levels were evaluated by western blotting. In this study, miR-195-5p knockdown promoted the proliferation and angiogenesis as well as inhibited the apoptosis of HG-treated hPMECs. MiR-195-5p targeted VEGFA, whose expression was downregulated in HG-treated hPMECs. VEGFA silencing antagonized the influence of miR-195-5p knockdown on the phenotypes of HG-treated hPMECs. Additionally, miR-195-5p inhibition decelerated cell apoptosis and improved pathological changes in GDM mouse placenta tissues. MiR-195-5p level was negatively correlated to VEGFA level in GDM mouse placenta tissues. Overall, miR-195-5p facilitates the endothelial cell dysfunction by inhibiting VEGFA in GDM.
Collapse
Affiliation(s)
- Haoyu Zheng
- Department of Obstetrics, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian 223300, Jiangsu, China
| | - Zhou Yu
- Department of Obstetrics, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian 223300, Jiangsu, China
| | - Hairong Wang
- Department of Obstetrics, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian 223300, Jiangsu, China
| | - Hongxue Liu
- Department of Obstetrics, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian 223300, Jiangsu, China
| | - Xiaoqin Chen
- Department of Obstetrics, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian 223300, Jiangsu, China.
| |
Collapse
|
25
|
Lewis KA, Chang L, Cheung J, Aouizerat BE, Jelliffe-Pawlowski LL, McLemore MR, Piening B, Rand L, Ryckman KK, Flowers E. Systematic review of transcriptome and microRNAome associations with gestational diabetes mellitus. Front Endocrinol (Lausanne) 2022; 13:971354. [PMID: 36704034 PMCID: PMC9871895 DOI: 10.3389/fendo.2022.971354] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 12/20/2022] [Indexed: 01/11/2023] Open
Abstract
PURPOSE Gestational diabetes (GDM) is associated with increased risk for preterm birth and related complications for both the pregnant person and newborn. Changes in gene expression have the potential to characterize complex interactions between genetic and behavioral/environmental risk factors for GDM. Our goal was to summarize the state of the science about changes in gene expression and GDM. DESIGN The systematic review was conducted using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. METHODS PubMed articles about humans, in English, from any date were included if they described mRNA transcriptome or microRNA findings from blood samples in adults with GDM compared with adults without GDM. RESULTS Sixteen articles were found representing 1355 adults (n=674 with GDM, n=681 controls) from 12 countries. Three studies reported transcriptome results and thirteen reported microRNA findings. Identified pathways described various aspects of diabetes pathogenesis, including glucose and insulin signaling, regulation, and transport; natural killer cell mediated cytotoxicity; and fatty acid biosynthesis and metabolism. Studies described 135 unique miRNAs that were associated with GDM, of which eight (miR-16-5p, miR-17-5p, miR-20a-5p, miR-29a-3p, miR-195-5p, miR-222-3p, miR-210-3p, and miR-342-3p) were described in 2 or more studies. Findings suggest that miRNA levels vary based on the time in pregnancy when GDM develops, the time point at which they were measured, sex assigned at birth of the offspring, and both the pre-pregnancy and gestational body mass index of the pregnant person. CONCLUSIONS The mRNA, miRNA, gene targets, and pathways identified in this review contribute to our understanding of GDM pathogenesis; however, further research is warranted to validate previous findings. In particular, longitudinal repeated-measures designs are needed that control for participant characteristics (e.g., weight), use standardized data collection methods and analysis tools, and are sufficiently powered to detect differences between subgroups. Findings may be used to improve early diagnosis, prevention, medication choice and/or clinical treatment of patients with GDM.
Collapse
Affiliation(s)
- Kimberly A. Lewis
- School of Nursing, Department of Physiological Nursing, University of California, San Francisco, San Francisco, CA, United States
- *Correspondence: Kimberly A. Lewis,
| | - Lisa Chang
- School of Nursing, Department of Physiological Nursing, University of California, San Francisco, San Francisco, CA, United States
| | - Julinna Cheung
- College of Biological Sciences, University of California at Davis, Davis, CA, United States
| | | | - Laura L. Jelliffe-Pawlowski
- Department of Epidemiology and Biostatistics, School of Medicine, University of California at San Francisco, San Francisco, CA, United States
| | - Monica R. McLemore
- School of Nursing, Department of Family Health Care Nursing, University of California, San Francisco, San Francisco, CA, United States
| | - Brian Piening
- Earle A. Chiles Research Institute, Providence St Joseph Health, Portland, OR, United States
| | - Larry Rand
- Obstetrics and Gynecology, Reproductive Sciences, School of Medicine, University of California at San Francisco, San Francisco, CA, United States
| | - Kelli K. Ryckman
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA, United States
| | - Elena Flowers
- School of Nursing, Department of Physiological Nursing, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
26
|
Masete M, Dias S, Malaza N, Adam S, Pheiffer C. A Big Role for microRNAs in Gestational Diabetes Mellitus. Front Endocrinol (Lausanne) 2022; 13:892587. [PMID: 35957839 PMCID: PMC9357936 DOI: 10.3389/fendo.2022.892587] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/24/2022] [Indexed: 12/16/2022] Open
Abstract
Maternal diabetes is associated with pregnancy complications and poses a serious health risk to both mother and child. Growing evidence suggests that pregnancy complications are more frequent and severe in pregnant women with pregestational type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM) compared to women with gestational diabetes mellitus (GDM). Elucidating the pathophysiological mechanisms that underlie the different types of maternal diabetes may lead to targeted strategies to prevent or reduce pregnancy complications. In recent years, microRNAs (miRNAs), one of the most common epigenetic mechanisms, have emerged as key players in the pathophysiology of pregnancy-related disorders including diabetes. This review aims to provide an update on the status of miRNA profiling in pregnancies complicated by maternal diabetes. Four databases, Pubmed, Web of Science, EBSCOhost, and Scopus were searched to identify studies that profiled miRNAs during maternal diabetes. A total of 1800 articles were identified, of which 53 are included in this review. All studies profiled miRNAs during GDM, with no studies on miRNA profiling during pregestational T1DM and T2DM identified. Studies on GDM were mainly focused on the potential of miRNAs to serve as predictive or diagnostic biomarkers. This review highlights the lack of miRNA profiling in pregnancies complicated by T1DM and T2DM and identifies the need for miRNA profiling in all types of maternal diabetes. Such studies could contribute to our understanding of the mechanisms that link maternal diabetes type with pregnancy complications.
Collapse
Affiliation(s)
- Matladi Masete
- Biomedical Research and Innovation Platform, South African Medical Research Council, Cape Town, South Africa
- Department of Obstetrics and Gynaecology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Stephanie Dias
- Biomedical Research and Innovation Platform, South African Medical Research Council, Cape Town, South Africa
| | - Nompumelelo Malaza
- Biomedical Research and Innovation Platform, South African Medical Research Council, Cape Town, South Africa
- Department of Obstetrics and Gynaecology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Sumaiya Adam
- Department of Obstetrics and Gynaecology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Carmen Pheiffer
- Biomedical Research and Innovation Platform, South African Medical Research Council, Cape Town, South Africa
- Department of Obstetrics and Gynaecology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Center for Cardio-Metabolic Research in Africa (CARMA), Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Cape Town, South Africa
- *Correspondence: Carmen Pheiffer,
| |
Collapse
|
27
|
Yildiz MT, Tutar L, Giritlioğlu NI, Bayram B, Tutar Y. MicroRNAs and Heat Shock Proteins in Breast Cancer Biology. Methods Mol Biol 2022; 2257:293-310. [PMID: 34432285 DOI: 10.1007/978-1-0716-1170-8_15] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Breast cancer has five major immune types; luminal A, luminal B, HER2, Basal-like, and normal-like. Cells produce a family of protein called heat shock proteins (Hsps) in response to exposure to thermal and other proteotoxic stresses play essential roles in cancer metabolism and this large family shows a diverse set of Hsp involvement in different breast cancer immune types. Recently, Hsp members categorized according to their immune type roles. Hsp family consists of several subtypes formed by molecular weight; Hsp70, Hsp90, Hsp100, Hsp40, Hsp60, and small molecule Hsps. Cancer cells employ Hsps as survival factors since most of these proteins prevent apoptosis. Several studies monitored Hsp roles in breast cancer cells and reported Hsp27 involvement in drug resistance, Hsp70 in tumor cell transformation-progression, and interaction with p53. Furthermore, the association of Hsp90 with steroid receptors and signaling proteins in patients with breast cancer directed research to focus on Hsp-based treatments. miRNAs are known to play key roles in all types of cancer that are upregulated or downregulated in cancer which respectively referred to as oncogenes (oncomirs) or tumor suppressors. Expression profiles of miRNAs may be used to classify, diagnose, and predict different cancer types. It is clear that miRNAs play regulatory roles in gene expression and this work reveals miRNA correlation to Hsp depending on specific breast cancer immune types. Deregulation of specific Hsp genes in breast cancer subtypes allows for identification of new targets for drug design and cancer treatment. Here, we performed miRNA network analysis by recruiting Hsp genes detected in breast cancer subtypes and reviewed some of the miRNAs related to aforementioned Hsp genes.
Collapse
Affiliation(s)
- Mehmet Taha Yildiz
- Division of Molecular Medicine, Hamidiye Institute of Health Sciences, University of Health Sciences, Istanbul, Turkey
| | - Lütfi Tutar
- Department of Molecular Biology and Genetics, Faculty of Art and Sciences, Kırşehir Ahi Evran University, Kırşehir, Turkey
| | - Nazlı Irmak Giritlioğlu
- Department of Molecular Medicine, Hamidiye Institute of Health Sciences, University of Health Sciences, Istanbul, Turkey
| | - Banu Bayram
- Department of Nutrition and Dietetics, Hamidiye Faculty of Health Sciences, University of Health Sciences, Istanbul, Turkey
| | - Yusuf Tutar
- Division of Molecular Medicine, Hamidiye Institute of Health Sciences, University of Health Sciences, Istanbul, Turkey. .,Division of Biochemistry, Department of Basic Pharmaceutical Sciences, Hamidiye Faculty of Pharmacy, University of Health Sciences, Istanbul, Turkey.
| |
Collapse
|
28
|
Frørup C, Mirza AH, Yarani R, Nielsen LB, Mathiesen ER, Damm P, Svare J, Engelbrekt C, Størling J, Johannesen J, Mortensen HB, Pociot F, Kaur S. Plasma Exosome-Enriched Extracellular Vesicles From Lactating Mothers With Type 1 Diabetes Contain Aberrant Levels of miRNAs During the Postpartum Period. Front Immunol 2021; 12:744509. [PMID: 34691048 PMCID: PMC8531745 DOI: 10.3389/fimmu.2021.744509] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/10/2021] [Indexed: 12/12/2022] Open
Abstract
Type 1 diabetes is an immune-driven disease, where the insulin-producing beta cells from the pancreatic islets of Langerhans becomes target of immune-mediated destruction. Several studies have highlighted the implication of circulating and exosomal microRNAs (miRNAs) in type 1 diabetes, underlining its biomarker value and novel therapeutic potential. Recently, we discovered that exosome-enriched extracellular vesicles carry altered levels of both known and novel miRNAs in breast milk from lactating mothers with type 1 diabetes. In this study, we aimed to characterize exosomal miRNAs in the circulation of lactating mothers with and without type 1 diabetes, hypothesizing that differences in type 1 diabetes risk in offspring from these groups are reflected in the circulating miRNA profile. We performed small RNA sequencing on exosome-enriched extracellular vesicles extracted from plasma of 52 lactating mothers around 5 weeks postpartum (26 with type 1 diabetes and 26 age-matched controls), and found a total of 2,289 miRNAs in vesicles from type 1 diabetes and control libraries. Of these, 176 were differentially expressed in plasma from mothers with type 1 diabetes (167 upregulated; 9 downregulated, using a cut-off of abs(log2FC) >1 and FDR adjusted p-value <0.05). Extracellular vesicles were verified by nanoparticle tracking analysis, transmission electron microscopy and immunoblotting. Five candidate miRNAs were selected based on their involvement in diabetes and immune modulation/beta-cell functions: hsa-miR-127-3p, hsa-miR-146a-5p, hsa-miR-26a-5p, hsa-miR-24-3p and hsa-miR-30d-5p. Real-time qPCR validation confirmed that hsa-miR-146a-5p, hsa-miR-26a-5p, hsa-miR-24-3p, and hsa-miR-30d-5p were significantly upregulated in lactating mothers with type 1 diabetes as compared to lactating healthy mothers. To determine possible target genes and affected pathways of the 5 miRNA candidates, computational network-based analyses were carried out with TargetScan, mirTarBase, QIAGEN Ingenuity Pathway Analysis and PantherDB database. The candidates showed significant association with inflammatory response and cytokine and chemokine mediated signaling pathways. With this study, we detect aberrant levels of miRNAs within plasma extracellular vesicles from lactating mothers with type 1 diabetes during the postpartum period, including miRNAs with associations to disease pathogenesis and inflammatory responses.
Collapse
Affiliation(s)
- Caroline Frørup
- Translational Type 1 Diabetes Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Aashiq H Mirza
- Translational Type 1 Diabetes Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark.,Department of Pharmacology, Weill Cornell Medical, New York, NY, United States
| | - Reza Yarani
- Translational Type 1 Diabetes Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Lotte B Nielsen
- Copenhagen Diabetes Research Center (CPH-DIRECT), Department of Pediatrics, Herlev and Gentofte Hospital, Herlev, Denmark
| | - Elisabeth R Mathiesen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Endocrinology, Rigshospitalet, Copenhagen, Denmark
| | - Peter Damm
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Center for Pregnant Women with Diabetes, Rigshospitalet, Copenhagen, Denmark.,Department of Obstetrics, Rigshospitalet, Copenhagen, Denmark
| | - Jens Svare
- Department of Obstetrics, Herlev and Gentofte Hospital, Herlev, Denmark
| | | | - Joachim Størling
- Translational Type 1 Diabetes Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jesper Johannesen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Copenhagen Diabetes Research Center (CPH-DIRECT), Department of Pediatrics, Herlev and Gentofte Hospital, Herlev, Denmark
| | - Henrik B Mortensen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Copenhagen Diabetes Research Center (CPH-DIRECT), Department of Pediatrics, Herlev and Gentofte Hospital, Herlev, Denmark
| | - Flemming Pociot
- Translational Type 1 Diabetes Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Copenhagen Diabetes Research Center (CPH-DIRECT), Department of Pediatrics, Herlev and Gentofte Hospital, Herlev, Denmark
| | - Simranjeet Kaur
- Translational Type 1 Diabetes Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
| |
Collapse
|
29
|
Ding H, Yao J, Xie H, Wang C, Chen J, Wei K, Ji Y, Liu L. MicroRNA-195-5p Downregulation Inhibits Endothelial Mesenchymal Transition and Myocardial Fibrosis in Diabetic Cardiomyopathy by Targeting Smad7 and Inhibiting Transforming Growth Factor Beta 1-Smads-Snail Pathway. Front Physiol 2021; 12:709123. [PMID: 34658906 PMCID: PMC8514870 DOI: 10.3389/fphys.2021.709123] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/18/2021] [Indexed: 12/20/2022] Open
Abstract
Diabetic cardiomyopathy (DCM) is a complication of diabetes mellitus, which is associated with fibrosis and microRNAs (miRs). This study estimated the mechanism of miR-195-5p in endothelial mesenchymal transition (EndMT) and myocardial fibrosis in DCM. After the establishment of DCM rat models, miR-195-5p was silenced by miR-195-5p antagomir. The cardiac function-related indexes diastolic left ventricular anterior wall (LVAW, d), systolic LVAW (d), diastolic left ventricular posterior wall (LVPW, d), systolic LVPW (d), left ventricular ejection fraction (LVEF), and fractional shortening (FS) were measured and miR-195-5p expression in myocardial tissue was detected. Myocardial fibrosis, collagen deposition, and levels of fibrosis markers were detected. Human umbilical vein endothelial cells (HUVECs) were exposed to high glucose (HG) and miR-195-5p was silenced. The levels of fibrosis proteins, endothelial markers, fibrosis markers, EndMT markers, and transforming growth factor beta 1 (TGF-β1)/Smads pathway-related proteins were measured in HUVECs. The interaction between miR-195-5p and Smad7 was verified. In vivo, miR-195-5p was highly expressed in the myocardium of DCM rats. Diastolic and systolic LVAW, diastolic and systolic LVPW were increased and LVEF and FS were decreased. Inhibition of miR-195-5p reduced cardiac dysfunction, myocardial fibrosis, collagen deposition, and EndMT, promoted CD31 and VE-cadehrin expressions, and inhibited α-SMA and vimentin expressions. In vitro, HG-induced high expression of miR-195-5p and the expression changes of endothelial markers CD31, VE-cadehrin and fibrosis markers α-SMA and vimentin were consistent with those in vivo after silencing miR-195-5p. In mechanism, miR-195-5p downregulation blocked EndMT by inhibiting TGF-β1-smads pathway. Smad7 was the direct target of miR-195-5p and silencing miR-195-5p inhibited EndMT by promoting Smad7 expression. Collectively, silencing miR-195-5p inhibits TGF-β1-smads-snail pathway by targeting Smad7, thus inhibiting EndMT and alleviating myocardial fibrosis in DCM.
Collapse
Affiliation(s)
- Huaisheng Ding
- Cardiovascular Department, Meishan People's Hospital, Meishan, China
| | - Jianhui Yao
- Cardiovascular Department, Meishan People's Hospital, Meishan, China
| | - Hongxiang Xie
- Cardiovascular Department, Meishan People's Hospital, Meishan, China
| | - Chengyu Wang
- Cardiovascular Department, Meishan People's Hospital, Meishan, China
| | - Jing Chen
- Cardiovascular Department, Meishan People's Hospital, Meishan, China
| | - Kaiyong Wei
- Cardiovascular Department, Meishan People's Hospital, Meishan, China
| | - Yangyang Ji
- Cardiovascular Department, Meishan People's Hospital, Meishan, China
| | - Lihong Liu
- Cardiovascular Department, Meishan People's Hospital, Meishan, China
| |
Collapse
|
30
|
Joglekar MV, Wong WKM, Ema FK, Georgiou HM, Shub A, Hardikar AA, Lappas M. Postpartum circulating microRNA enhances prediction of future type 2 diabetes in women with previous gestational diabetes. Diabetologia 2021; 64:1516-1526. [PMID: 33755745 DOI: 10.1007/s00125-021-05429-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 01/14/2021] [Indexed: 12/18/2022]
Abstract
AIMS/HYPOTHESIS Type 2 diabetes mellitus is a major cause of morbidity and death worldwide. Women with gestational diabetes mellitus (GDM) have greater than a sevenfold higher risk of developing type 2 diabetes in later life. Accurate methods for postpartum type 2 diabetes risk stratification are lacking. Circulating microRNAs (miRNAs) are well recognised as biomarkers/mediators of metabolic disease. We aimed to determine whether postpartum circulating miRNAs can predict the development of type 2 diabetes in women with previous GDM. METHODS In an observational study, plasma samples were collected at 12 weeks postpartum from 103 women following GDM pregnancy. Utilising a discovery approach, we measured 754 miRNAs in plasma from type 2 diabetes non-progressors (n = 11) and type 2 diabetes progressors (n = 10) using TaqMan-based real-time PCR on an OpenArray platform. Machine learning algorithms involving penalised logistic regression followed by bootstrapping were implemented. RESULTS Fifteen miRNAs were selected based on their importance in discriminating type 2 diabetes progressors from non-progressors in our discovery cohort. The levels of miRNA miR-369-3p remained significantly different (p < 0.05) between progressors and non-progressors in the validation sample set (n = 82; 71 non-progressors, 11 progressors) after adjusting for age and correcting for multiple comparisons. In a clinical model of prediction of type 2 diabetes that included six traditional risk factors (age, BMI, pregnancy fasting glucose, postpartum fasting glucose, cholesterol and triacylglycerols), the addition of the circulating miR-369-3p measured at 12 weeks postpartum improved the prediction of future type 2 diabetes from traditional AUC 0.83 (95% CI 0.68, 0.97) to an AUC 0.92 (95% CI 0.84, 1.00). CONCLUSIONS This is the first demonstration of miRNA-based type 2 diabetes prediction in women with previous GDM. Improved prediction will facilitate early lifestyle/drug intervention for type 2 diabetes prevention.
Collapse
Affiliation(s)
- Mugdha V Joglekar
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
- Diabetes and Islet Biology Group, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia
| | - Wilson K M Wong
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
- Diabetes and Islet Biology Group, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia
| | - Fahmida K Ema
- Diabetes and Islet Biology Group, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia
| | - Harry M Georgiou
- Department of Obstetrics and Gynaecology, University of Melbourne, Mercy Hospital for Women, Heidelberg, VIC, Australia
| | - Alexis Shub
- Department of Obstetrics and Gynaecology, University of Melbourne, Mercy Hospital for Women, Heidelberg, VIC, Australia
| | - Anandwardhan A Hardikar
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Campbelltown, NSW, Australia.
- Diabetes and Islet Biology Group, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia.
- Department of Science and Environment, Roskilde University, Roskilde, Denmark.
| | - Martha Lappas
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Heidelberg, VIC, Australia.
- Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, VIC, Australia.
| |
Collapse
|
31
|
Extracellular vesicle-enriched miRNA profiles across pregnancy in the MADRES cohort. PLoS One 2021; 16:e0251259. [PMID: 33979365 PMCID: PMC8115775 DOI: 10.1371/journal.pone.0251259] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/22/2021] [Indexed: 12/31/2022] Open
Abstract
MicroRNA (miRNA) circulating in plasma have been proposed as biomarkers for a variety of conditions and diseases, including complications during pregnancy. During pregnancy, about 15-25% of maternal plasma exosomes, a small size-class of EVs, are hypothesized to originate in the placenta, and may play a role in communication between the fetus and mother. However, few studies have addressed changes in miRNA over the course of pregnancy with repeated measures, nor focused on diverse populations. We describe changes in miRNA in early and late pregnancy from the MADRES cohort of primarily low-income Hispanic women based in Los Angeles, CA. miRNA derived from extracellular-vesicles (EVs) were isolated from maternal blood plasma samples collected in early and late pregnancy. In this study, we identified 64 of 130 detectable miRNA which significantly increased with gestational age at the time of collection (GA), and 26 which decreased with GA. Possible fetal sex-specific associations were observed for 30 of these 90 significant miRNA. Predicted gene targets for miRNA significantly associated with GA were identified using MirDIP and were found to be enriched for Gene Ontology categories that included energetic and metabolic processes but were underrepresented in immune-related categories. Circulating EV-associated miRNA during pregnancy are likely important for maternal-fetal communication, and may play roles in supporting and maintaining a healthy pregnancy, given the changing needs of the fetus.
Collapse
|
32
|
The Predictive Value of miR-16, -29a and -134 for Early Identification of Gestational Diabetes: A Nested Analysis of the DALI Cohort. Cells 2021; 10:cells10010170. [PMID: 33467738 PMCID: PMC7830355 DOI: 10.3390/cells10010170] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/08/2021] [Accepted: 01/14/2021] [Indexed: 12/13/2022] Open
Abstract
Early identification of gestational diabetes mellitus (GDM) aims to reduce the risk of adverse maternal and perinatal outcomes. Currently, no circulating biomarker has proven clinically useful for accurate prediction of GDM. In this study, we tested if a panel of small non-coding circulating RNAs could improve early prediction of GDM. We performed a nested case-control study of participants from the European multicenter ‘Vitamin D and lifestyle intervention for GDM prevention (DALI)’ trial using serum samples from obese pregnant women (BMI ≥ 29 kg/m2) entailing 82 GDM cases (early- and late- GDM), and 41 age- and BMI-matched women with normal glucose tolerance (NGT) throughout pregnancy (controls). Anthropometric, clinical and biochemical characteristics were obtained at baseline (<20 weeks of gestation) and throughout gestation. Baseline serum microRNAs (miRNAs) were measured using quantitative real time PCR (qPCR). Elevated miR-16-5p, -29a-3p, and -134-5p levels were observed in women, who were NGT at baseline and later developed GDM, compared with controls who remained NGT. A combination of the three miRNAs could distinguish later GDM from NGT cases (AUC 0.717, p = 0.001, compared with fasting plasma glucose (AUC 0.687, p = 0.004)) as evaluated by area under the curves (AUCs) using Receiver Operator Characteristics (ROC) analysis. Elevated levels of individual miRNAs or a combination hereof were associated with higher odds ratios of GDM. Conclusively, circulating miRNAs early in pregnancy could serve as valuable predictive biomarkers of GDM.
Collapse
|
33
|
Zhang TN, Wang W, Huang XM, Gao SY. Non-Coding RNAs and Extracellular Vehicles: Their Role in the Pathogenesis of Gestational Diabetes Mellitus. Front Endocrinol (Lausanne) 2021; 12:664287. [PMID: 34093439 PMCID: PMC8173208 DOI: 10.3389/fendo.2021.664287] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/06/2021] [Indexed: 12/21/2022] Open
Abstract
Gestational diabetes mellitus (GDM) is defined as glucose intolerance with onset or first recognition in the second or third trimester of pregnancy. GDM has a considerable impact on health outcomes of the mother and offspring during pregnancy, delivery, and beyond. Although the exact mechanism regarding GDM remains unclear, numerous studies have suggested that non-coding RNAs, including long non-coding (lnc)RNAs, microRNAs, and circular RNAs, were involved in the pathogenesis of GDM in which they played vital regulatory roles. Additionally, several studies have revealed that extracellular vehicles also participated in the pathogenesis of GDM, highlighting their important role in this disease. Considering the lack of effective biomarkers for the early identification of and specific treatment for GDM, non-coding RNAs and extracellular vehicles may be promising biomarkers and even targets for GDM therapies. This review provides an update on our understanding of the role of non-coding RNAs and extracellular vehicles in GDM. As our understanding of the function of lncRNAs and extracellular vehicles improves, the future appears promising for their use as potential biomarkers and treatment targets for GDM in clinical practice.
Collapse
Affiliation(s)
- Tie-Ning Zhang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wei Wang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xin-Mei Huang
- Department of Endocrinology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
- *Correspondence: Xin-Mei Huang, ; Shan-Yan Gao,
| | - Shan-Yan Gao
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Xin-Mei Huang, ; Shan-Yan Gao,
| |
Collapse
|
34
|
Substantially Altered Expression Profile of Diabetes/Cardiovascular/Cerebrovascular Disease Associated microRNAs in Children Descending from Pregnancy Complicated by Gestational Diabetes Mellitus-One of Several Possible Reasons for an Increased Cardiovascular Risk. Cells 2020; 9:cells9061557. [PMID: 32604801 PMCID: PMC7349356 DOI: 10.3390/cells9061557] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/19/2020] [Accepted: 06/25/2020] [Indexed: 12/14/2022] Open
Abstract
Gestational diabetes mellitus (GDM), one of the major pregnancy-related complications, characterized as a transitory form of diabetes induced by insulin resistance accompanied by a low/absent pancreatic beta-cell compensatory adaptation to the increased insulin demand, causes the acute, long-term, and transgenerational health complications. The aim of the study was to assess if alterations in gene expression of microRNAs associated with diabetes/cardiovascular/cerebrovascular diseases are present in whole peripheral blood of children aged 3-11 years descending from GDM complicated pregnancies. A substantially altered microRNA expression profile was found in children descending from GDM complicated pregnancies. Almost all microRNAs with the exception of miR-92a-3p, miR-155-5p, and miR-210-3p were upregulated. The microRNA expression profile also differed between children after normal and GDM complicated pregnancies in relation to the presence of overweight/obesity, prehypertension/hypertension, and/or valve problems and heart defects. Always, screening based on the combination of microRNAs was superior over using individual microRNAs, since at 10.0% false positive rate it was able to identify a large proportion of children with an aberrant microRNA expression profile (88.14% regardless of clinical findings, 75.41% with normal clinical findings, and 96.49% with abnormal clinical findings). In addition, the higher incidence of valve problems and heart defects was found in children with a prior exposure to GDM. The extensive file of predicted targets of all microRNAs aberrantly expressed in children descending from GDM complicated pregnancies indicates that a large group of these genes is involved in ontologies of diabetes/cardiovascular/cerebrovascular diseases. In general, children with a prior exposure to GDM are at higher risk of later development of diabetes mellitus and cardiovascular/cerebrovascular diseases, and would benefit from dispensarisation as well as implementation of primary prevention strategies.
Collapse
|
35
|
Non-Coding RNA: Role in Gestational Diabetes Pathophysiology and Complications. Int J Mol Sci 2020; 21:ijms21114020. [PMID: 32512799 PMCID: PMC7312670 DOI: 10.3390/ijms21114020] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 05/30/2020] [Accepted: 06/02/2020] [Indexed: 12/12/2022] Open
Abstract
Gestational Diabetes Mellitus (GDM) is defined as glucose intolerance that develops in the second or third trimester of pregnancy. GDM can lead to short-term and long-term complications both in the mother and in the offspring. Diagnosing and treating this condition is therefore of great importance to avoid poor pregnancy outcomes. There is increasing interest in finding new markers with potential diagnostic, prognostic and therapeutic utility in GDM. Non-coding RNAs (ncRNAs), including microRNAs, long non-coding RNAs and circular RNAs, are critically involved in metabolic processes and their dysregulated expression has been reported in several pathological contexts. The aberrant expression of several circulating or placenta-related ncRNAs has been linked to insulin resistance and β-cell dysfunction, the key pathophysiological features of GDM. Furthermore, significant associations between altered ncRNA profiles and GDM-related complications, such as macrosomia or trophoblast dysfunction, have been observed. Remarkably, the deregulation of ncRNAs, which might be linked to a detrimental intrauterine environment, can lead to changes in the expression of target genes in the offspring, possibly contributing to the development of long-term GDM-related complications, such as metabolic and cardiovascular diseases. In this review, all the recent findings on ncRNAs and GDM are summarized, particularly focusing on the molecular aspects and the pathophysiological implications of this complex relationship.
Collapse
|
36
|
Liao X, Zhou Z, Zhang X. Effects of miR‑195‑5p on cell proliferation and apoptosis in gestational diabetes mellitus via targeting EZH2. Mol Med Rep 2020; 22:803-809. [PMID: 32626980 PMCID: PMC7339727 DOI: 10.3892/mmr.2020.11142] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/06/2020] [Indexed: 12/11/2022] Open
Abstract
Gestational diabetes mellitus (GDM) is a type of diabetes mellitus (DM) that occurs during pregnancy. The present study aimed to investigate the roles of microRNA (miR)‑195‑5p and enhancer of zeste homolog 2 (EZH2) in GDM, and their potential association. Human umbilical vein endothelial cells (HUVECs) were collected from healthy and GDM umbilical cords, and the endothelial properties were detected by flow cytometry. mRNA expression levels of miR‑195‑5p and EZH2, and EZH2 protein expression levels were detected by reverse transcription‑quantitative PCR (RT‑qPCR) and western blot analysis, respectively. Cell colony formation and flow cytometry were performed to determine cell proliferation and apoptosis. Furthermore, the target gene of miR‑195‑5p was predicted and assessed using a dual‑luciferase reporter assay. The levels of cell viability, proliferation and apoptosis following the overexpression of miR‑195‑5p, EZH2 or miR‑195‑5p + EZH2, were detected using Cell Counting Kit‑8, colony formation and flow cytometry assays, respectively. In addition, the mRNA expression levels of miR‑195‑59 and EZH2, and EZH2 protein expression levels following transfection with overexpression plasmids were detected using RT‑qPCR and western blot analysis, respectively. It was identified that high mRNA expression of miR‑195‑5p, and low EZH2 mRNA and protein expression levels decreased the level of cell proliferation and the high apoptotic rate of GDM‑HUVECs. In addition, miR‑195‑5p was predicted and identified to target EZH2, and miR‑195‑5p overexpression was identified to inhibit cell proliferation and promote apoptosis. However, it was demonstrated that upregulation of EZH2 could alleviate the inhibition of cell proliferation and the increased apoptotic rate induced by miR‑195‑5p overexpression. Therefore, the present results suggested that miR‑195‑5p may inhibit cell viability, proliferation and promote apoptosis by targeting EZH2 in GDM‑induced HUVECs.
Collapse
Affiliation(s)
- Xiaojie Liao
- Department of Obstetrics, Jingmen No. 1 People's Hospital, Jingmen, Hubei 448000, P.R. China
| | - Zhuolin Zhou
- Family Planning Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530000, P.R. China
| | - Xiaoliu Zhang
- Department of Obstetrics, Jingmen No. 1 People's Hospital, Jingmen, Hubei 448000, P.R. China
| |
Collapse
|
37
|
Pheiffer C, Dias S, Rheeder P, Adam S. MicroRNA Profiling in HIV-Infected South African Women with Gestational Diabetes Mellitus. Mol Diagn Ther 2020; 23:499-505. [PMID: 31111446 DOI: 10.1007/s40291-019-00404-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Recently, we reported that the microRNAs (miRNAs) miR-20a-5p and-to a lesser extent-miR-222-3p hold potential as biomarkers for gestational diabetes mellitus (GDM) in human immunodeficiency virus (HIV)-negative South African women. METHODS In this preliminary study, we measured the expression of these miRNAs in HIV-positive women (GDM 15, non-GDM 52; median 26.0 weeks; range 16-30). RESULTS Although the same trend of decreased expression of miR-20a-5p (1.5-fold decrease) and miR-222-3p (1.4-fold decrease) was observed in sera of women with and without GDM, these differences were not statistically significant. Stratification according to antiretroviral treatment (ART) confirmed decreased expression of miR-20a-5p and miR-222-3p in ART-naïve and ART-treated women with GDM, although again this was not statistically significant. CONCLUSION Our results demonstrate that HIV infection modifies the expression of miR-20a-5p and miR-222-3p in women with GDM. Importantly, this study highlights the complexities of miRNA profiling and the need for GDM biomarker discovery in both HIV-infected and uninfected individuals, particularly in South Africa, where approximately 30% of pregnancies are complicated by HIV. Further studies to elucidate the mechanisms that underlie these miRNA differences are needed.
Collapse
Affiliation(s)
- Carmen Pheiffer
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, Francie Van Zijl Drive, Tygerberg, Western Cape, 7505, South Africa. .,Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg, South Africa.
| | - Stephanie Dias
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, Francie Van Zijl Drive, Tygerberg, Western Cape, 7505, South Africa.,Department of Obstetrics and Gynecology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Paul Rheeder
- Department of Internal Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Sumaiya Adam
- Department of Obstetrics and Gynecology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
38
|
Wang J, Pan Y, Dai F, Wang F, Qiu H, Huang X. Serum miR-195-5p is upregulated in gestational diabetes mellitus. J Clin Lab Anal 2020; 34:e23325. [PMID: 32301163 PMCID: PMC7439337 DOI: 10.1002/jcla.23325] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 03/14/2020] [Accepted: 03/16/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Gestational diabetes mellitus (GDM) is defined as varying degrees of glucose intolerance with an onset or first recognition during pregnancy in women without previously diagnosed diabetes. Accumulating evidence indicates that miRNAs exert crucial roles in the pathogenesis and development of diabetes, including GDM. In the present study, we aimed to determine the clinical performance of miR-195-5p in GDM. METHODS First, the miR-195-5p expressions in serum samples from healthy pregnant women and women with GDM at 25 weeks pregnancy were detected using real-time polymerase chain reaction (RT-qPCR). Then, receive characteristic (ROC) curve was used to determine the diagnostic value of miR-195-5p in GDM. Finally, the correlation analysis of miR-195-5p expression with related clinicopathological factors was carried out to determine the clinical value of miR-195-5p in GDM. RESULTS In this study, we found that miR-195-5p expression was significantly increased in serum samples from GDM patients as compared with that in healthy pregnancies. Furthermore, miR-195-5p might be a putative biomarker for GDM diagnosis with an area under the curve (AUC) of 0.8451; the cutoff value was 1.598, sensitivity was 73.69%, specificity was 96.85%, accuracy was 81.26%, and Youden index was 70.54%. Expression of miR-195-5p was positively associated with fasting plasma glucose, one-hour plasma glucose, and two-hour plasma glucose. CONCLUSION miR-195-5p might function as a putative diagnostic biomarker for GDM and contribute to identifying at-risk mothers in pregnancy.
Collapse
Affiliation(s)
- Jianping Wang
- Department of Obstetrics and Gynecology, The second Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Yuanyuan Pan
- Department of Obstetrics and Gynecology, The second Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Fen Dai
- Department of Obstetrics and Gynecology, The second Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Fan Wang
- Department of Obstetrics and Gynecology, The second Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Haifan Qiu
- Department of Obstetrics and Gynecology, The second Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Xianping Huang
- Department of Obstetrics and Gynecology, The second Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| |
Collapse
|
39
|
Aryan L, Medzikovic L, Umar S, Eghbali M. Pregnancy-associated cardiac dysfunction and the regulatory role of microRNAs. Biol Sex Differ 2020; 11:14. [PMID: 32252821 PMCID: PMC7137306 DOI: 10.1186/s13293-020-00292-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/18/2020] [Indexed: 12/14/2022] Open
Abstract
Many crucial cardiovascular adaptations occur in the body during pregnancy to ensure successful gestation. Maladaptation of the cardiovascular system during pregnancy can lead to complications that promote cardiac dysfunction and may lead to heart failure (HF). About 12% of pregnancy-related deaths in the USA have been attributed to HF and the detrimental effects of cardiovascular complications on the heart can be long-lasting, pre-disposing the mother to HF later in life. Indeed, cardiovascular complications such as gestational diabetes mellitus, preeclampsia, gestational hypertension, and peripartum cardiomyopathy have been shown to induce cardiac metabolic dysfunction, oxidative stress, fibrosis, apoptosis, and diastolic and systolic dysfunction in the hearts of pregnant women, all of which are hallmarks of HF. The exact etiology and cardiac pathophysiology of pregnancy-related complications is not yet fully deciphered. Furthermore, diagnosis of cardiac dysfunction in pregnancy is often made only after clinical symptoms are already present, thus necessitating the need for novel diagnostic and prognostic biomarkers. Mounting data demonstrates an altered expression of maternal circulating miRNAs during pregnancy affected by cardiovascular complications. Throughout the past decade, miRNAs have become of growing interest as modulators and biomarkers of pathophysiology, diagnosis, and prognosis in cardiac dysfunction. While the association between pregnancy-related cardiovascular complications and cardiac dysfunction or HF is becoming increasingly evident, the roles of miRNA-mediated regulation herein remain poorly understood. Therefore, this review will summarize current reports on pregnancy-related cardiovascular complications that may lead to cardiac dysfunction and HF during and after pregnancy in previously healthy women, with a focus on the pathophysiological role of miRNAs.
Collapse
Affiliation(s)
- Laila Aryan
- Department of Anesthesiology, Division of Molecular Medicine, David Geffen School of Medicine at University of California, Los Angeles, BH-550 CHS, Los Angeles, CA, 90095-7115, USA
| | - Lejla Medzikovic
- Department of Anesthesiology, Division of Molecular Medicine, David Geffen School of Medicine at University of California, Los Angeles, BH-550 CHS, Los Angeles, CA, 90095-7115, USA
| | - Soban Umar
- Department of Anesthesiology, Division of Molecular Medicine, David Geffen School of Medicine at University of California, Los Angeles, BH-550 CHS, Los Angeles, CA, 90095-7115, USA
| | - Mansoureh Eghbali
- Department of Anesthesiology, Division of Molecular Medicine, David Geffen School of Medicine at University of California, Los Angeles, BH-550 CHS, Los Angeles, CA, 90095-7115, USA.
| |
Collapse
|
40
|
Diabetes Mellitus and Cardiovascular Risk Assessment in Mothers with a History of Gestational Diabetes Mellitus Based on Postpartal Expression Profile of MicroRNAs Associated with Diabetes Mellitus and Cardiovascular and Cerebrovascular Diseases. Int J Mol Sci 2020; 21:ijms21072437. [PMID: 32244558 PMCID: PMC7177375 DOI: 10.3390/ijms21072437] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/25/2020] [Accepted: 03/30/2020] [Indexed: 02/07/2023] Open
Abstract
Mothers with a history of gestational diabetes mellitus (GDM) have an increased risk of developing diabetes in the future and a lifelong cardiovascular risk. Postpartal expression profile of cardiovascular/cerebrovascular disease associated microRNAs was assessed 3–11 years after the delivery in whole peripheral blood of young and middle-aged mothers with a prior exposure to GDM with the aim to identify a high-risk group of mothers at risk of later development of diabetes mellitus and cardiovascular/cerebrovascular diseases who would benefit from implementation of early primary prevention strategies and long-term follow-up. The hypothesis of the assessment of cardiovascular risk in women was based on the knowledge that a series of microRNAs play a role in the pathogenesis of diabetes mellitus and cardiovascular/cerebrovascular diseases. Abnormal expression profile of multiple microRNAs was found in women with a prior exposure to GDM (miR-1-3p, miR-16-5p, miR-17-5p, miR-20a-5p, miR-20b-5p, miR-21-5p, miR-23a-3p, miR-24-3p, miR-26a-5p, miR-29a-3p, miR-100-5p, miR-103a-3p, miR-125b-5p, miR-126-3p, miR-130b-3p, miR-133a-3p, miR-143-3p, miR-145-5p, miR-146a-5p, miR-181a-5p, miR-195-5p, miR-199a-5p, miR-221-3p, miR-342-3p, miR-499a-5p, and-miR-574-3p). Postpartal combined screening of miR-1-3p, miR-16-5p, miR-17-5p, miR-20b-5p, miR-21-5p, miR-23a-3p, miR-26a-5p, miR-29a-3p, miR-103a-3p, miR-133a-3p, miR-146a-5p, miR-181a-5p, miR-195-5p, miR-199a-5p, miR-221-3p, and miR-499a-5p showed the highest accuracy for the identification of mothers with a prior exposure to GDM at a higher risk of later development of cardiovascular/cerebrovascular diseases (AUC 0.900, p < 0.001, sensitivity 77.48%, specificity 93.26%, cut off >0.611270413). It was able to identify 77.48% mothers with an increased cardiovascular risk at 10.0% FPR. Any of changes in epigenome (upregulation of miR-16-5p, miR-17-5p, miR-29a-3p, and miR-195-5p) that were induced by GDM-complicated pregnancy are long-acting and may predispose mothers affected with GDM to later development of diabetes mellitus and cardiovascular/cerebrovascular diseases. In addition, novel epigenetic changes (upregulation of serious of microRNAs) appeared in a proportion of women that were exposed to GDM throughout the postpartal life. Likewise, a previous occurrence of either GH, PE, and/or FGR, as well as a previous occurrence of GDM, is associated with the upregulation of miR-1-3p, miR-17-5p, miR-20a-5p, miR-20b-5p, miR-29a-3p, miR-100-5p, miR-125b-5p, miR-126-3p, miR-130b-3p, miR-133a-3p, miR-143-3p, miR-145-5p, miR-146a-5p, miR-181a-5p, miR-199a-5p, miR-221-3p, and miR-499a-5p. On the other hand, upregulation of miR-16-5p, miR-21-5p, miR-23a-3p, miR-24-3p, miR-26a-5p, miR-103a-3p, miR-195-5p, miR-342-3p, and miR-574-3p represents a unique feature of aberrant expression profile of women with a prior exposure to GDM. Screening of particular microRNAs may stratify a high-risk group of mothers with a history of GDM who might benefit from implementation of early primary prevention strategies.
Collapse
|
41
|
Yang H, Ma Q, Wang Y, Tang Z. Clinical application of exosomes and circulating microRNAs in the diagnosis of pregnancy complications and foetal abnormalities. J Transl Med 2020; 18:32. [PMID: 31969163 PMCID: PMC6975063 DOI: 10.1186/s12967-020-02227-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 01/13/2020] [Indexed: 12/16/2022] Open
Abstract
During pregnancy in humans, the physiology of the mother and foetus are finely regulated by many factors. Inappropriate regulation can result in pregnancy disorders, such as complications and foetal abnormalities. The early prediction or accurate diagnosis of related diseases is a concern of researchers. Liquid biopsy can be analysed for circulating cells, cell-free nucleic acids, and exosomes. Because exosomes can be detected in the peripheral blood of women in early pregnancy, these vesicles and their contents have become the focus of early prediction or diagnostic biomarker research on pregnancy complications and foetal developmental disorders. In this review, we focus on recent studies addressing the roles of peripheral blood exosomes and circulating miRNAs in pregnancy complications and in pregnancies with abnormal foetal developmental disorders, with particular attention paid to the potential application value of exosomes and circulating miRNAs as disease-specific biomarkers.
Collapse
Affiliation(s)
- Haiou Yang
- Department of Laboratory Medicine, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China. .,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China. .,Shanghai Municipal Key Clinical Specialty, Shanghai, China.
| | - Qianqian Ma
- Department of Laboratory Medicine, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China.,Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Yu Wang
- Department of Laboratory Medicine, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China.,Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Zhenhua Tang
- Department of Laboratory Medicine, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China. .,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China. .,Shanghai Municipal Key Clinical Specialty, Shanghai, China.
| |
Collapse
|
42
|
MicroRNA Signatures as Future Biomarkers for Diagnosis of Diabetes States. Cells 2019; 8:cells8121533. [PMID: 31795194 PMCID: PMC6953078 DOI: 10.3390/cells8121533] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/22/2019] [Accepted: 11/24/2019] [Indexed: 12/24/2022] Open
Abstract
Diabetes results from the inability of pancreatic islets to maintain blood glucose concentrations within a normal physiological range. Clinical features are usually not observed until islets begin to fail and irreversible damage has occurred. Diabetes is generally diagnosed based on elevated glucose, which does not distinguish between type 1 and 2 diabetes. Thus, new diagnostic approaches are needed to detect different modes of diabetes before manifestation of disease. During prediabetes (pre-DM), islets undergo stress and release micro (mi) RNAs. Here, we review studies that have measured and tracked miRNAs in the blood for those with recent-onset or longstanding type 1 diabetes, obesity, pre-diabetes, type 2 diabetes, and gestational diabetes. We summarize the findings on miRNA signatures with the potential to stage progression of different modes of diabetes. Advances in identifying selective biomarker signatures may aid in early detection and classification of diabetic conditions and treatments to prevent and reverse diabetes.
Collapse
|
43
|
Mas-Parés B, Xargay-Torrent S, Bonmatí A, Lizarraga-Mollinedo E, Martínez-Calcerrada JM, Carreras-Badosa G, Prats-Puig A, de Zegher F, Ibáñez L, López-Bermejo A, Bassols J. Umbilical Cord miRNAs in Small-for-Gestational-Age Children and Association With Catch-Up Growth: A Pilot Study. J Clin Endocrinol Metab 2019; 104:5285-5298. [PMID: 31125087 DOI: 10.1210/jc.2018-02346] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 05/20/2019] [Indexed: 12/14/2022]
Abstract
CONTEXT Catch-up growth in infants who are small for gestational age (SGA) is a risk factor for the development of cardiometabolic diseases in adulthood. The basis and mechanisms underpinning catch-up growth in newborns who are SGA are unknown. OBJECTIVE To identify umbilical cord miRNAs associated with catch-up growth in infants who are SGA and study their relationship with offspring's cardiometabolic parameters. DESIGN miRNA PCR panels were used to study the miRNA profile in umbilical cord tissue of five infants who were SGA with catch-up (SGA-CU), five without catch-up (SGA-nonCU), and five control infants [appropriate for gestational age (AGA)]. The miRNAs with the smallest nominal P values were validated in 64 infants (22 AGA, 18 SGA-nonCU, and 24 SGA-CU) and correlated with anthropometric parameters at 1 (n = 64) and 6 years of age (n = 30). RESULTS miR-501-3p, miR-576-5p, miR-770-5p, and miR-876-3p had nominally significant associations with increased weight, height, weight catch-up, and height catch-up at 1 year, and miR-374b-3p, miR-548c-5p, and miR-576-5p had nominally significant associations with increased weight, height, waist, hip, and renal fat at 6 years. Multivariate analysis suggested miR-576-5p as a predictor of weight catch-up and height catch-up at 1 year, as well as weight, waist, and renal fat at 6 years. In silico studies suggested that miR-576-5p participates in the regulation of inflammatory, growth, and proliferation signaling pathways. CONCLUSIONS Umbilical cord miRNAs could be novel biomarkers for the early identification of catch-up growth in infants who are SGA. miR-576-5p may contribute to the regulation of postnatal growth and influence the risk for cardiometabolic diseases associated with a mismatch between prenatal and postnatal weight gain.
Collapse
Affiliation(s)
- Berta Mas-Parés
- Maternal-Fetal Metabolic Research Group, Girona Institute for Biomedical Research, Salt, Spain
| | - Sílvia Xargay-Torrent
- Pediatric Endocrinology Research Group, Girona Institute for Biomedical Research, Salt, Spain
| | | | | | | | - Gemma Carreras-Badosa
- Pediatric Endocrinology Research Group, Girona Institute for Biomedical Research, Salt, Spain
| | - Anna Prats-Puig
- Department of Physical Therapy, University School of Health and Sport Sciences, University of Girona (EUSES-UdG), Girona, Spain
| | - Francis de Zegher
- Department of Development and Regeneration, University of Leuven, Leuven, Belgium
| | - Lourdes Ibáñez
- Department of Endocrinology, Pediatric Research Institute, Sant Joan de Déu Children's Hospital, Esplugues, Barcelona, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders, Carlos III Health Institute, Madrid, Spain
| | - Abel López-Bermejo
- Pediatric Endocrinology Research Group, Girona Institute for Biomedical Research, Salt, Spain
- Department of Pediatrics, Dr. Josep Trueta Hospital, Girona, Spain
| | - Judit Bassols
- Maternal-Fetal Metabolic Research Group, Girona Institute for Biomedical Research, Salt, Spain
| |
Collapse
|
44
|
Franzago M, Fraticelli F, Stuppia L, Vitacolonna E. Nutrigenetics, epigenetics and gestational diabetes: consequences in mother and child. Epigenetics 2019; 14:215-235. [PMID: 30865571 PMCID: PMC6557546 DOI: 10.1080/15592294.2019.1582277] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Gestational Diabetes Mellitus (GDM) is the most common metabolic condition during pregnancy and may result in short- and long-term complications for both mother and offspring. The complexity of phenotypic outcomes seems influenced by genetic susceptibility, nutrient-gene interactions and lifestyle interacting with clinical factors. There is strong evidence that not only the adverse genetic background but also the epigenetic modifications in response to nutritional and environmental factors could influence the maternal hyperglycemia in pregnancy and the foetal metabolic programming. In this view, the correlation between epigenetic modifications and their transgenerational effects represents a very interesting field of study. The present review gives insight into the role of gene variants and their interactions with nutrients in GDM. In addition, we provide an overview of the epigenetic changes and their role in the maternal-foetal transmission of chronic diseases. Overall, the knowledge of epigenetic modifications induced by an adverse intrauterine and perinatal environment could shed light on the potential pathophysiological mechanisms of long-term disease development in the offspring and provide useful tools for their prevention.
Collapse
Affiliation(s)
- Marica Franzago
- a Department of Medicine and Aging, School of Medicine and Health Sciences , "G. d'Annunzio" University, Chieti-Pescara , Chieti , Italy.,b Molecular Genetics, Unit , CeSI-Met , Chieti , Italy
| | - Federica Fraticelli
- a Department of Medicine and Aging, School of Medicine and Health Sciences , "G. d'Annunzio" University, Chieti-Pescara , Chieti , Italy
| | - Liborio Stuppia
- b Molecular Genetics, Unit , CeSI-Met , Chieti , Italy.,c Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences , "G. d'Annunzio" University, Chieti-Pescara , Chieti , Italy
| | - Ester Vitacolonna
- a Department of Medicine and Aging, School of Medicine and Health Sciences , "G. d'Annunzio" University, Chieti-Pescara , Chieti , Italy
| |
Collapse
|
45
|
Diabetes in Pregnancy and MicroRNAs: Promises and Limitations in Their Clinical Application. Noncoding RNA 2018; 4:ncrna4040032. [PMID: 30424584 PMCID: PMC6316501 DOI: 10.3390/ncrna4040032] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 10/29/2018] [Accepted: 11/05/2018] [Indexed: 12/12/2022] Open
Abstract
Maternal diabetes is associated with an increased risk of complications for the mother and her offspring. The latter have an increased risk of foetal macrosomia, hypoglycaemia, respiratory distress syndrome, preterm delivery, malformations and mortality but also of life-long development of obesity and diabetes. Epigenetics have been proposed as an explanation for this long-term risk, and microRNAs (miRNAs) may play a role, both in short- and long-term outcomes. Gestation is associated with increasing maternal insulin resistance, as well as β-cell expansion, to account for the increased insulin needs and studies performed in pregnant rats support a role of miRNAs in this expansion. Furthermore, several miRNAs are involved in pancreatic embryonic development. On the other hand, maternal diabetes is associated with changes in miRNA both in maternal and in foetal tissues. This review aims to summarise the existing knowledge on miRNAs in gestational and pre-gestational diabetes, both as diagnostic biomarkers and as mechanistic players, in the development of gestational diabetes itself and also of short- and long-term complications for the mother and her offspring.
Collapse
|
46
|
Molecular Biomarkers for Gestational Diabetes Mellitus. Int J Mol Sci 2018; 19:ijms19102926. [PMID: 30261627 PMCID: PMC6213110 DOI: 10.3390/ijms19102926] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/21/2018] [Accepted: 09/22/2018] [Indexed: 12/20/2022] Open
Abstract
Gestational diabetes mellitus (GDM) is a growing public health problem worldwide. The condition is associated with perinatal complications and an increased risk for future metabolic disease in both mothers and their offspring. In recent years, molecular biomarkers received considerable interest as screening tools for GDM. The purpose of this review is to provide an overview of the current status of single-nucleotide polymorphisms (SNPs), DNA methylation, and microRNAs as biomarkers for GDM. PubMed, Scopus, and Web of Science were searched for articles published between January 1990 and August 2018. The search terms included “gestational diabetes mellitus”, “blood”, “single-nucleotide polymorphism (SNP)”, “DNA methylation”, and “microRNAs”, including corresponding synonyms and associated terms for each word. This review updates current knowledge of the candidacy of these molecular biomarkers for GDM with recommendations for future research avenues.
Collapse
|