1
|
Liu J, He F, Chen Z, Liu M, Xiao Y, Wang Y, Cai Y, Du J, Jin W, Liu X. Subtilisin-like protease 4 regulates cold tolerance through cell wall modification in rice. Sci Rep 2025; 15:426. [PMID: 39747628 PMCID: PMC11696678 DOI: 10.1038/s41598-024-84491-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 12/24/2024] [Indexed: 01/04/2025] Open
Abstract
Rice is susceptible to cold temperatures, especially during the seedling stage. Despite extensive research into the cold tolerance mechanisms of rice, the number of cloned genes remains limited. Plant subtilisin-like proteases (SUBs or SBTs) are protein-hydrolyzing enzymes which play important roles in various aspects of plant growth as well as the plant response to biotic and abiotic stress. The rice SUB gene family consists of 62 members, but it is unknown whether they are involved in the response to cold stress. In this study, we observed that a loss-of-function SUB4 mutant exhibited enhanced cold tolerance at the seedling stage. The sub4 mutant seedlings exhibited improved survival rates and related physiological parameters, including relative electrolyte conductivity, chlorophyll content, malondialdehyde content, and antioxidant enzyme activity. Transcriptomic analysis revealed that differentially expressed genes responsive to cold stress in the sub4 mutants were primarily associated with metabolism and signal transduction. Notably, the majority of cold-responsive genes were associated with cell wall functions, including those related to cell wall organization, chitin catabolic processes, and oxidoreductases. Our findings suggest that SUB4 negatively regulates the cold response in rice seedlings, possibly by modifying the properties of the cell wall.
Collapse
Affiliation(s)
- Jingyan Liu
- Tianjin Key Laboratory of Intelligent Breeding of Major Crops, College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin, 300384, China.
| | - Fei He
- Tianjin Key Laboratory of Intelligent Breeding of Major Crops, College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin, 300384, China
| | - Zhicai Chen
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Meng Liu
- Tianjin Key Laboratory of Intelligent Breeding of Major Crops, College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin, 300384, China
| | - Yingni Xiao
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
| | - Ying Wang
- Tianjin Key Laboratory of Intelligent Breeding of Major Crops, College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin, 300384, China
| | - YuMeng Cai
- Tianjin Key Laboratory of Intelligent Breeding of Major Crops, College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin, 300384, China
| | - Jin Du
- Tianjin Key Laboratory of Intelligent Breeding of Major Crops, College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin, 300384, China
| | - Weiwei Jin
- Tianjin Key Laboratory of Intelligent Breeding of Major Crops, College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin, 300384, China
| | - Xuejun Liu
- Tianjin Key Laboratory of Intelligent Breeding of Major Crops, College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin, 300384, China.
| |
Collapse
|
2
|
Li N, Miao J, Li Y, Ji F, Yang M, Dai K, Zhou Z, Hu D, Guo H, Fang H, Wang H, Wang M, Yang J. Comparative transcriptome analysis and meta-QTLs mapping reveal the regulatory mechanism of cold tolerance in rice at the budding stage. Heliyon 2024; 10:e37933. [PMID: 39328527 PMCID: PMC11425124 DOI: 10.1016/j.heliyon.2024.e37933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024] Open
Abstract
Rice (Oryza sativa L.) is one of the most extensively farmed food crops, but its development and productivity are significantly impacted by cold stress during the budding period. In this study, transcriptome sequencing was conducted on two types of rice: the cold-sensitive indica rice A117 and the substantially cold-tolerant japonica rice B106 under control and cold treatments. Differentially expressed genes between the two materials under cold conditions were analyzed using GO and KEGG enrichment analyses. The results revealed that processes such as the TCA cycle, glycolysis/glycogenesis, oxidative phosphorylation, and glutathione metabolism contribute to B106's cold tolerance. Additionally, an enrichment analysis of cold-induced genes in each material and shared genes identified significant enrichment in pathways such as glutathione metabolism, phenylpropanoid biosynthesis, and photosynthesis-antenna proteins. Initial cold tolerance QTLs at the rice bud stage were collected from published literature, and meta-QTL mapping identified 9 MQTLs. Gene expression profiling led to the identification of 75 potential DEGs within the 9 MQTLs region, from which four candidate genes (Os02g0194100, Os03g0802500, Os05g0129000, and Os07g0462000) were selected using qRT-PCR and gene annotation. These findings provide genetic resources for further research on the molecular mechanisms underlying rice's response to cold stress during the bud stage.
Collapse
Affiliation(s)
- Nan Li
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming, 650500, China
| | - Jiahao Miao
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming, 650500, China
| | - Yichao Li
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming, 650500, China
| | - Faru Ji
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming, 650500, China
| | - Min Yang
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming, 650500, China
| | - Kunyan Dai
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming, 650500, China
| | - Zixian Zhou
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming, 650500, China
| | - Die Hu
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming, 650500, China
| | - Haiyang Guo
- Zhaoqing Academy of Agriculture and Forestry Sciences, Zhaoqing, 526040, China
| | - Hong Fang
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming, 650500, China
| | - Hongyang Wang
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming, 650500, China
| | - Maohui Wang
- Zhaoqing Academy of Agriculture and Forestry Sciences, Zhaoqing, 526040, China
| | - Jing Yang
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming, 650500, China
| |
Collapse
|
3
|
Shahzad N, Nabi HG, Qiao L, Li W. The Molecular Mechanism of Cold-Stress Tolerance: Cold Responsive Genes and Their Mechanisms in Rice ( Oryza sativa L.). BIOLOGY 2024; 13:442. [PMID: 38927322 PMCID: PMC11200503 DOI: 10.3390/biology13060442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
Rice (Oryza sativa L.) production is highly susceptible to temperature fluctuations, which can significantly reduce plant growth and development at different developmental stages, resulting in a dramatic loss of grain yield. Over the past century, substantial efforts have been undertaken to investigate the physiological, biochemical, and molecular mechanisms of cold stress tolerance in rice. This review aims to provide a comprehensive overview of the recent developments and trends in this field. We summarized the previous advancements and methodologies used for identifying cold-responsive genes and the molecular mechanisms of cold tolerance in rice. Integration of new technologies has significantly improved studies in this era, facilitating the identification of essential genes, QTLs, and molecular modules in rice. These findings have accelerated the molecular breeding of cold-resistant rice varieties. In addition, functional genomics, including the investigation of natural variations in alleles and artificially developed mutants, is emerging as an exciting new approach to investigating cold tolerance. Looking ahead, it is imperative for scientists to evaluate the collective impacts of these novel genes to develop rice cultivars resilient to global climate change.
Collapse
Affiliation(s)
- Nida Shahzad
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, Xianyang 712100, China; (N.S.); (L.Q.)
| | - Hafiz Ghulam Nabi
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China;
| | - Lei Qiao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, Xianyang 712100, China; (N.S.); (L.Q.)
| | - Wenqiang Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, Xianyang 712100, China; (N.S.); (L.Q.)
| |
Collapse
|
4
|
Bhupenchandra I, Chongtham SK, Gangarani Devi A, Dutta P, Lamalakshmi E, Mohanty S, Choudhary AK, Das A, Sarika K, Kumar S, Yumnam S, Sagolsem D, Rupert Anand Y, Bhutia DD, Victoria M, Vinodh S, Tania C, Dhanachandra Sharma A, Deb L, Sahoo MR, Seth CS, Swapnil P, Meena M. Harnessing weedy rice as functional food and source of novel traits for crop improvement. PLANT, CELL & ENVIRONMENT 2024. [PMID: 38436101 DOI: 10.1111/pce.14868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 03/05/2024]
Abstract
A relative of cultivated rice (Oryza sativa L.), weedy or red rice (Oryza spp.) is currently recognized as the dominant weed, leading to a drastic loss of yield of cultivated rice due to its highly competitive abilities like producing more tillers, panicles, and biomass with better nutrient uptake. Due to its high nutritional value, antioxidant properties (anthocyanin and proanthocyanin), and nutrient absorption ability, weedy rice is gaining immense research attentions to understand its genetic constitution to augment future breeding strategies and to develop nutrition-rich functional foods. Consequently, this review focuses on the unique gene source of weedy rice to enhance the cultivated rice for its crucial features like water use efficiency, abiotic and biotic stress tolerance, early flowering, and the red pericarp of the seed. It explores the debating issues on the origin and evolution of weedy rice, including its high diversity, signalling aspects, quantitative trait loci (QTL) mapping under stress conditions, the intricacy of the mechanism in the expression of the gene flow, and ecological challenges of nutrient removal by weedy rice. This review may create a foundation for future researchers to understand the gene flow between cultivated crops and weedy traits and support an improved approach for the applicability of several models in predicting multiomics variables.
Collapse
Affiliation(s)
- Ingudam Bhupenchandra
- ICAR-Farm Science Centre Tamenglong, ICAR Research Complex for NEH Region, Manipur Centre, Imphal, Manipur, India
| | - Sunil Kumar Chongtham
- Multi Technology Testing Centre and Vocational Training Centre, College of Horticulture, Central Agricultural University, Bermiok, Sikkim, India
| | - Ayam Gangarani Devi
- ICAR Research Complex for North Eastern Hill Region, Tripura Centre Lembucherra, Tripura, India
| | - Pranab Dutta
- School of Crop Protection, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Umiam, Meghalaya, India
| | - Elangbam Lamalakshmi
- ICAR Research Complex for North Eastern Hill Region, Sikkim Centre, Tadong, Sikkim, India
| | - Sansuta Mohanty
- Molecular Biology and Biotechnology Department, Faculty of Agricultural Sciences, Siksha O Anusandhan University, Bhubaneswar, Odisha, India
| | - Anil K Choudhary
- Division of Crop Production, ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Anup Das
- ICAR Research Complex for North Eastern Hill Region, Lembucherra, Tripura, India
| | - Konsam Sarika
- ICAR Research Complex for North Eastern Hill Region, Manipur Centre, Imphal, Manipur, India
| | - Sumit Kumar
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
- Department of Plant Pathology, B.M. College of Agriculture, Khandwa, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior, Madhya Pradesh, India
| | - Sonika Yumnam
- All India Coordinated Research Project on Chickpea, Central Agricultural University, Imphal, Manipur, India
| | - Diana Sagolsem
- Multi Technology Testing Centre and Vocational Training Centre, College of Horticulture, Central Agricultural University, Bermiok, Sikkim, India
| | - Y Rupert Anand
- Multi Technology Testing Centre and Vocational Training Centre, College of Horticulture, Central Agricultural University, Bermiok, Sikkim, India
| | - Dawa Dolma Bhutia
- Multi Technology Testing Centre and Vocational Training Centre, College of Horticulture, Central Agricultural University, Bermiok, Sikkim, India
| | - M Victoria
- Multi Technology Testing Centre and Vocational Training Centre, College of Horticulture, Central Agricultural University, Bermiok, Sikkim, India
| | - S Vinodh
- Multi Technology Testing Centre and Vocational Training Centre, College of Horticulture, Central Agricultural University, Bermiok, Sikkim, India
| | - Chongtham Tania
- ICAR Research Complex for North Eastern Hill Region, Manipur Centre, Imphal, Manipur, India
| | | | - Lipa Deb
- School of Crop Protection, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Umiam, Meghalaya, India
| | - Manas Ranjan Sahoo
- ICAR Research Complex for North Eastern Hill Region, Manipur Centre, Imphal, Manipur, India
| | | | - Prashant Swapnil
- Department of Botany, School of Basic Science, Central University of Punjab, Bhatinda, Punjab, India
| | - Mukesh Meena
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| |
Collapse
|
5
|
Jan S, Rustgi S, Barmukh R, Shikari AB, Leske B, Bekuma A, Sharma D, Ma W, Kumar U, Kumar U, Bohra A, Varshney RK, Mir RR. Advances and opportunities in unraveling cold-tolerance mechanisms in the world's primary staple food crops. THE PLANT GENOME 2024; 17:e20402. [PMID: 37957947 DOI: 10.1002/tpg2.20402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 11/15/2023]
Abstract
Temperatures below or above optimal growth conditions are among the major stressors affecting productivity, end-use quality, and distribution of key staple crops including rice (Oryza sativa), wheat (Triticum aestivum), and maize (Zea mays L.). Among temperature stresses, cold stress induces cellular changes that cause oxidative stress and slowdown metabolism, limit growth, and ultimately reduce crop productivity. Perception of cold stress by plant cells leads to the activation of cold-responsive transcription factors and downstream genes, which ultimately impart cold tolerance. The response triggered in crops to cold stress includes gene expression/suppression, the accumulation of sugars upon chilling, and signaling molecules, among others. Much of the information on the effects of cold stress on perception, signal transduction, gene expression, and plant metabolism are available in the model plant Arabidopsis but somewhat lacking in major crops. Hence, a complete understanding of the molecular mechanisms by which staple crops respond to cold stress remain largely unknown. Here, we make an effort to elaborate on the molecular mechanisms employed in response to low-temperature stress. We summarize the effects of cold stress on the growth and development of these crops, the mechanism of cold perception, and the role of various sensors and transducers in cold signaling. We discuss the progress in cold tolerance research at the genome, transcriptome, proteome, and metabolome levels and highlight how these findings provide opportunities for designing cold-tolerant crops for the future.
Collapse
Affiliation(s)
- Sofora Jan
- Division of Genetics & Plant Breeding, Faculty of Agriculture (FoA), SKUAST-Kashmir, Wadura Campus, Sopore Kashmir, India
| | - Sachin Rustgi
- Department of Plant and Environmental Sciences, Clemson University, Florence, South Carolina, USA
| | - Rutwik Barmukh
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- Centre for Crop & Food Innovation, State Agricultural Biotechnology Centre, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Asif B Shikari
- Division of Genetics & Plant Breeding, Faculty of Agriculture (FoA), SKUAST-Kashmir, Wadura Campus, Sopore Kashmir, India
| | - Brenton Leske
- Department of Primary Industries and Regional Development, South Perth, Western Australia, Australia
| | - Amanuel Bekuma
- Department of Primary Industries and Regional Development, South Perth, Western Australia, Australia
| | - Darshan Sharma
- Department of Primary Industries and Regional Development, South Perth, Western Australia, Australia
| | - Wujun Ma
- Centre for Crop & Food Innovation, State Agricultural Biotechnology Centre, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
- College of Agronomy, Qingdao Agriculture University, Qingdao, China
| | - Upendra Kumar
- Department of Plant Science, Mahatma Jyotiba Phule Rohilkhand University, Bareilly, Uttar Pradesh, India
| | - Uttam Kumar
- Borlaug Institute for South Asia (BISA), Ludhiana, Punjab, India
| | - Abhishek Bohra
- Centre for Crop & Food Innovation, State Agricultural Biotechnology Centre, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Rajeev K Varshney
- Centre for Crop & Food Innovation, State Agricultural Biotechnology Centre, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Reyazul Rouf Mir
- Division of Genetics & Plant Breeding, Faculty of Agriculture (FoA), SKUAST-Kashmir, Wadura Campus, Sopore Kashmir, India
| |
Collapse
|
6
|
Yang J, Miao J, Li N, Zhou Z, Dai K, Ji F, Yang M, Tan C, Liu J, Wang H, Tang W. Genetic dissection of cold tolerance at the budding stage of rice in an indica-japonica recombination inbred line population. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 204:108086. [PMID: 37890228 DOI: 10.1016/j.plaphy.2023.108086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 09/07/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023]
Abstract
Rice is highly cold-sensitive, and thus, the promotion of cold resistance in buds is essential. In this study, we conducted a mapping analysis to identify quantitative trait loci (QTLs) associated with cold tolerance in buds. The analysis was performed using a recombinant inbred line (RIL) population consisting of 192 lines derived from the cold-tolerant strain 02428 and the cold-sensitive strain YZX. Seven additive loci on chromosomes 1, 4, 5, and 6 were identified, of which loci 3 and 7 were found in two crop seasons, indicating stability. Three epistatic interactions, one present over two seasons, were found. Loci 3 and 7 pyramided with two main-effect QTLs observed to control the rate of low-temperature germination in our previous study. Two materials with good cold resistance at the germination and bud stages were obtained, namely, G93 and G146. Transcriptome sequencing analysis of the two parent buds after cold treatment found that genes expressed differentially between the two parents were related to photosynthesis, energy metabolism, and reactive oxygen scavenging. Five candidate genes, namely, Os01g0385400, Os01g0388000, Os06g0287700, Os06g0289200, and Os06g0291100, were selected in the two stable intervals based on gene expression profiles and annotations. These genetic loci exhibit strong potential as targets for breeding cold tolerance in buds and require additional investigation. In conclusion, this work provides valuable genetic resources that can be utilized to improve the cold tolerance of rice.
Collapse
Affiliation(s)
- Jing Yang
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming 650500, China
| | - Jiahao Miao
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming 650500, China
| | - Nan Li
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming 650500, China
| | - Zixian Zhou
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming 650500, China
| | - Kunyan Dai
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming 650500, China
| | - Faru Ji
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming 650500, China
| | - Min Yang
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming 650500, China
| | - Chen Tan
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming 650500, China
| | - Jing Liu
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming 650500, China.
| | - Hongyang Wang
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming 650500, China.
| | - Wei Tang
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming 650500, China.
| |
Collapse
|
7
|
Lin G, Ma L, He X, Tang J, Wang L. Gene regulation and ionome homeostasis in rice plants in response to arsenite stress: potential connection between transcriptomics and ionomics. Biometals 2023; 36:1157-1169. [PMID: 37198524 DOI: 10.1007/s10534-023-00510-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/11/2023] [Indexed: 05/19/2023]
Abstract
Ionomics and transcriptomics were applied to demonstrate response of rice to arsenite [As(III)] stress in the current study. Rice plants were cultured in nutrient solutions treated with 0, 100 and 500 μg/L As(III) coded as CK, As1 and As5, respectively. The rice ionomes exhibited discriminatory response to environmental disturbances. Solid evidence of the effects of As(III) stress on binding, transport or metabolism of P, K, Ca, Zn and Cu was obtained in this work. Differentially expressed genes (DEGs) in the shoots were identified in three datasets: As1 vs CK, As5 vs CK and As5 vs As1. DEGs identified simultaneously in two or three datasets were selected for subsequent interaction and enrichment analyses. Upregulation of genes involved in protein kinase activity, phosphorus metabolic process and phosphorylation were detected in the rice treated with As(III), resulting in the maintenance of P homeostasis in the shoots. Zn and Ca binding genes were up-regulated since excess As inhibited the translocation of Zn and Ca from roots to shoots. Increased expression of responsive genes including HMA, WRKY, NAC and PUB genes conferred As tolerance in the rice plants to cope with external As(III) stress. The results suggested that As(III) stress could disturb the uptake and translocation of macro and essential elements by rice. Plants could regulate the expression of corresponding genes to maintain mineral nutrient homeostasis for essential metabolic processes.
Collapse
Affiliation(s)
- Guobing Lin
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Li Ma
- College of Forestry, Henan Agriculture University, Zhengzhou, 450002, China
| | - Xiaoman He
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Jie Tang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Lin Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China.
| |
Collapse
|
8
|
Akbari A, Ismaili A, Amirbakhtiar N, Pouresmael M, Shobbar ZS. Genome-wide transcriptional profiling provides clues to molecular mechanisms underlying cold tolerance in chickpea. Sci Rep 2023; 13:6279. [PMID: 37072529 PMCID: PMC10113226 DOI: 10.1038/s41598-023-33398-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/12/2023] [Indexed: 05/03/2023] Open
Abstract
Chickpea is an important food legume cultivated in several countries. A sudden drop in autumn temperature, freezing winter temperature, and late spring cold events result in significant losses in chickpea production. The current study used RNA sequencing of two cold tolerant (Saral) and sensitive (ILC533) Kabuli chickpea genotypes to identify cold tolerance-associated genes/pathways. A total of 200.85 million raw reads were acquired from the leaf samples by Illumina sequencing, and around 86% of the clean reads (199 million) were mapped to the chickpea reference genome. The results indicated that 3710 (1980 up- and 1730 down-regulated) and 3473 (1972 up- and 1501 down-regulated) genes were expressed differentially under cold stress in the tolerant and sensitive genotypes, respectively. According to the GO enrichment analysis of uniquely down-regulated genes under cold stress in ILC533, photosynthetic membrane, photosystem II, chloroplast part, and photosystem processes were enriched, revealing that the photosynthesis is severely sensitive to cold stress in this sensitive genotype. Many remarkable transcription factors (CaDREB1E, CaMYB4, CaNAC47, CaTCP4, and CaWRKY33), signaling/regulatory genes (CaCDPK4, CaPP2C6, CaMKK2, and CaHSFA3), and protective genes (CaCOR47, CaLEA3, and CaGST) were identified among the cold-responsive genes of the tolerant genotype. These findings would help improve cold tolerance across chickpea genotypes by molecular breeding or genetic engineering.
Collapse
Affiliation(s)
- Alireza Akbari
- Department of Plant Production and Genetic Engineering, Faculty of Agriculture, Lorestan University, Khorramabad, Iran
| | - Ahmad Ismaili
- Department of Plant Production and Genetic Engineering, Faculty of Agriculture, Lorestan University, Khorramabad, Iran.
| | - Nazanin Amirbakhtiar
- Genetic Research Department, Seed and Plant Improvement Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Masoumeh Pouresmael
- Genetic Research Department, Seed and Plant Improvement Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Zahra-Sadat Shobbar
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization, Karaj, Iran.
| |
Collapse
|
9
|
Thapa R, Tabien RE, Johnson CD, Septiningsih EM. Comparative transcriptomic analysis of germinating rice seedlings to individual and combined anaerobic and cold stress. BMC Genomics 2023; 24:185. [PMID: 37024819 PMCID: PMC10080786 DOI: 10.1186/s12864-023-09262-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 03/20/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Rice is one of the most important cereals consumed worldwide. Two major abiotic factors affecting rice plants in different growth stages are flooding stress and cold stress. These abiotic stresses can take place independently or simultaneously and significantly affect rice plants during germination and seedling growth. Fortunately, a wide array of phenotypic responses conferring flooding stress and chilling stress tolerance exist within the rice germplasm, indicating the presence of different molecular mechanisms underlying tolerance to these stresses. Understanding these differences may assist in developing improved rice cultivars having higher tolerance to both stresses. In this study, we conducted a comparative global gene expression analysis of two rice genotypes with contrasting phenotypes under cold stress, anaerobic stress, and combined cold and anaerobic stress during germination. RESULTS The differential gene expression analysis revealed that 5571 differentially expressed genes (DEGs), 7206 DEGs, and 13279 DEGs were identified under anaerobic stress, cold stress, and combined stress, respectively. Genes involved in the carbohydrate metabolic process, glucosyltransferase activity, regulation of nitrogen compound metabolic process, protein metabolic process, lipid metabolic process, cellular nitrogen compound biosynthetic process, lipid biosynthetic process, and a microtubule-based process were enriched across all stresses. Notably, the common Gene Ontology (GO) analysis identified three hub genes, namely Os08g0176800 (similar to mRNA-associated protein mrnp 41), Os11g0454200 (dehydrin), and OS10g0505900 (expressed protein). CONCLUSION A large number of differentially expressed genes were identified under anaerobic, cold conditions during germination and the combination of the two stress conditions in rice. These results will assist in the identification of promising candidate genes for possible manipulation toward rice crops that are more tolerant under flooding and cold during germination, both independently and concurrently.
Collapse
Affiliation(s)
- Ranjita Thapa
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, 77843, USA
- Present address: Section of Plant Breeding and Genetics, School of Integrative Plant Sciences, Cornell University, Ithaca, NY, 14853, USA
| | | | - Charles D Johnson
- Genomics and Bioinformatics Service, Texas A&M AgriLife Research, College Station, TX, 77843, USA
| | - Endang M Septiningsih
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
10
|
Wang Z, Wu X, Chen Y, Wu C, Long W, Zhu S. Transcriptomic profiling of the cold stress and recovery responsiveness of two contrasting Guizhou HE rice genotypes. Genes Genomics 2023; 45:401-412. [PMID: 36469228 DOI: 10.1007/s13258-022-01321-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/28/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND At the seed germination stage, rice is sensitive to cold stress, which adversely affects its growth and development. Guizhou HE rice comprises several different landraces, most of which are cold tolerant. OBJECTIVE To identify differentially expressed genes and molecular mechanism underlying the cold tolerance of Guizhou HE. METHODS Two Guizhou HE genotypes, AC44 (cold-sensitive) and AC96 (cold-tolerant), which exhibit opposite phenotypes in response to cold treatment at the seed germination stage were used. Comprehensive gene expressions of AC44 and AC96 under 4 °C cold treatment and subsequent recovery conditions were comparatively analyzed by RNA sequencing. RESULTS Overall, 11,082 and 7749 differentially expressed genes were detected in AC44 and AC96, respectively. Comparative transcriptome analysis demonstrated that, compared with AC44, AC96 presented fewer upregulated and downregulated genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses demonstrated that AC96 presented more upregulated GO terms, especially terms associated with biological processes. However, AC44 presented more terms related to cellular components, mainly chloroplasts. Moreover, DEGs related to the auxin signaling pathway (including ARF and IAA family members) and transcription factors (including members of the F-box, bZIP, basic helix-loop-helix [bHLH], and MYB-like transcription factor families) were found to be expressed specifically in AC96; thus, these DEGs may be responsible for the cold tolerance of AC96. CONCLUSIONS These findings present information about the cold tolerance mechanism of Guizhou HE rice at the germination stage, providing valuable resources and candidate genes for breeding cold-tolerant rice genotypes.
Collapse
Affiliation(s)
- Zhongni Wang
- Guizhou Rice Research Institute, Guizhou Provincial Academy of Agricultural Sciences, Guiyang, 550006, China
| | - Xian Wu
- Guizhou Rice Research Institute, Guizhou Provincial Academy of Agricultural Sciences, Guiyang, 550006, China
| | - Yuxuan Chen
- College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Chaoxin Wu
- Guizhou Rice Research Institute, Guizhou Provincial Academy of Agricultural Sciences, Guiyang, 550006, China
| | - Wuhua Long
- Guizhou Rice Research Institute, Guizhou Provincial Academy of Agricultural Sciences, Guiyang, 550006, China
| | - Susong Zhu
- Guizhou Rice Research Institute, Guizhou Provincial Academy of Agricultural Sciences, Guiyang, 550006, China.
| |
Collapse
|
11
|
Wang YJ, Wu LL, Sun MH, Li Z, Tan XF, Li JA. Transcriptomic and metabolomic insights on the molecular mechanisms of flower buds in responses to cold stress in two Camellia oleifera cultivars. FRONTIERS IN PLANT SCIENCE 2023; 14:1126660. [PMID: 36968351 PMCID: PMC10037702 DOI: 10.3389/fpls.2023.1126660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION The Camellia oleifera (C. oleifera) cultivars 'Huashuo' (HS) and 'Huaxin' (HX) are new high-yielding and economically valuable cultivars that frequently encounter prolonged cold weather during the flowering period, resulting in decreased yields and quality. The flower buds of HS sometimes fail to open or open incompletely under cold stress, whereas the flower buds of HX exhibit delayed opening but the flowers and fruits rarely drop. METHODS In this study, flower buds at the same development stage of two C. oleifera cultivars were used as test materials for a combination of physiological, transcriptomic and metabolomic analyses, to unravel the different cold regulatory mechanisms between two cultivars of C. oleifera. RESULTS AND DISCUSSION Key differentially expressed genes (DEGs) and differentially expressed metabolites (DEMs) involved in sugar metabolism, phenylpropanoid biosynthesis, and hormone signal transduction were significantly higher in HX than in HS, which is consistent with phenotypic observations from a previous study. The results indicate that the flower buds of HX are less affected by long-term cold stress than those of HS, and that cold resistance in C. oleifera cultivars varies among tissues or organs.This study will provide a basis for molecular markers and molecular breeding of C. oleifera.
Collapse
Affiliation(s)
- Ya-Jun Wang
- Key Laboratory of Cultivation and Protection for Non-wood Forest Trees, Ministry of Education, and the Key Laboratory of Non-Wood Forest Products, Forestry Ministry, Central South University of Forestry and Technology, Changsha, China
- Engineering Technology Research Center of Southern Hilly and Mountainous Ecological Non-Wood Forest Industry of Hunan Province, Changsha, China
- Camellia Oil Tree Research Institute of Central South University of Forestry and Technology, Changsha, China
- The Belt and Road International Union Research Center for Tropical Arid Non-wood Forest in Hunan Province, Changsha, China
| | - Ling-Li Wu
- Key Laboratory of Cultivation and Protection for Non-wood Forest Trees, Ministry of Education, and the Key Laboratory of Non-Wood Forest Products, Forestry Ministry, Central South University of Forestry and Technology, Changsha, China
- Engineering Technology Research Center of Southern Hilly and Mountainous Ecological Non-Wood Forest Industry of Hunan Province, Changsha, China
- Camellia Oil Tree Research Institute of Central South University of Forestry and Technology, Changsha, China
- The Belt and Road International Union Research Center for Tropical Arid Non-wood Forest in Hunan Province, Changsha, China
| | - Min-hong Sun
- Key Laboratory of Cultivation and Protection for Non-wood Forest Trees, Ministry of Education, and the Key Laboratory of Non-Wood Forest Products, Forestry Ministry, Central South University of Forestry and Technology, Changsha, China
- Engineering Technology Research Center of Southern Hilly and Mountainous Ecological Non-Wood Forest Industry of Hunan Province, Changsha, China
| | - Ze Li
- Key Laboratory of Cultivation and Protection for Non-wood Forest Trees, Ministry of Education, and the Key Laboratory of Non-Wood Forest Products, Forestry Ministry, Central South University of Forestry and Technology, Changsha, China
- Engineering Technology Research Center of Southern Hilly and Mountainous Ecological Non-Wood Forest Industry of Hunan Province, Changsha, China
- Camellia Oil Tree Research Institute of Central South University of Forestry and Technology, Changsha, China
- The Belt and Road International Union Research Center for Tropical Arid Non-wood Forest in Hunan Province, Changsha, China
| | - Xiao-Feng Tan
- Key Laboratory of Cultivation and Protection for Non-wood Forest Trees, Ministry of Education, and the Key Laboratory of Non-Wood Forest Products, Forestry Ministry, Central South University of Forestry and Technology, Changsha, China
- Engineering Technology Research Center of Southern Hilly and Mountainous Ecological Non-Wood Forest Industry of Hunan Province, Changsha, China
- Camellia Oil Tree Research Institute of Central South University of Forestry and Technology, Changsha, China
- The Belt and Road International Union Research Center for Tropical Arid Non-wood Forest in Hunan Province, Changsha, China
| | - Jian-An Li
- Key Laboratory of Cultivation and Protection for Non-wood Forest Trees, Ministry of Education, and the Key Laboratory of Non-Wood Forest Products, Forestry Ministry, Central South University of Forestry and Technology, Changsha, China
- Engineering Technology Research Center of Southern Hilly and Mountainous Ecological Non-Wood Forest Industry of Hunan Province, Changsha, China
- Camellia Oil Tree Research Institute of Central South University of Forestry and Technology, Changsha, China
- The Belt and Road International Union Research Center for Tropical Arid Non-wood Forest in Hunan Province, Changsha, China
| |
Collapse
|
12
|
Yang X, Liu C, Li M, Li Y, Yan Z, Feng G, Liu D. Integrated transcriptomics and metabolomics analysis reveals key regulatory network that response to cold stress in common Bean (Phaseolus vulgaris L.). BMC PLANT BIOLOGY 2023; 23:85. [PMID: 36759761 PMCID: PMC9909927 DOI: 10.1186/s12870-023-04094-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Cold temperatures can be detrimental to crop survival and productivity. Breeding progress can be improved by understanding the molecular basis of low temperature tolerance. We investigated the key routes and critical metabolites related to low temperature resistance in cold-tolerant and -sensitive common bean cultivars 120 and 093, respectively. Many potential genes and metabolites implicated in major metabolic pathways during the chilling stress response were identified through transcriptomics and metabolomics research. Under chilling stress, the expression of many genes involved in lipid, amino acid, and flavonoid metabolism, as well as metabolite accumulation increased in the two bean types. Malondialdehyde (MDA) content was lower in 120 than in 093. Regarding amino acid metabolism, 120 had a higher concentration of acidic amino acids than 093, whereas 093 had a higher concentration of basic amino acids. Methionine accumulation was clearly higher in 120 than in 093. In addition, 120 had a higher concentration of many types of flavonoids than 093. Flavonoids, methionine and malondialdehyde could be used as biomarkers of plant chilling injury. Transcriptome analysis of hormone metabolism revealed considerably greater, expression of abscisic acid (ABA), gibberellin (GA), and jasmonic acid (JA) in 093 than in 120 during chilling stress, indicating that hormone regulation modes in 093 and 120 were different. Thus, chilling stress tolerance is different between 093 and 120 possibly due to transcriptional and metabolic regulation.
Collapse
Affiliation(s)
- Xiaoxu Yang
- Horticulture Department, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150000, China
| | - Chang Liu
- Horticulture Department, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150000, China
| | - Mengdi Li
- Horticulture Department, College of Life Sciences, Heilongjiang University, Harbin, 150000, China
| | - Yanmei Li
- Horticulture Department, College of Life Sciences, Heilongjiang University, Harbin, 150000, China
| | - Zhishan Yan
- Horticulture Department, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150000, China
| | - Guojun Feng
- Horticulture Department, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150000, China.
| | - Dajun Liu
- Horticulture Department, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150000, China.
| |
Collapse
|
13
|
Tsegaw M, Zegeye WA, Jiang B, Sun S, Yuan S, Han T, Wu T. Progress and Prospects of the Molecular Basis of Soybean Cold Tolerance. PLANTS (BASEL, SWITZERLAND) 2023; 12:459. [PMID: 36771543 PMCID: PMC9919458 DOI: 10.3390/plants12030459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/26/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Cold stress is a major factor influencing the geographical distribution of soybean growth and causes immense losses in productivity. Understanding the molecular mechanisms that the soybean has undergone to survive cold temperatures will have immense value in improving soybean cold tolerance. This review focuses on the molecular mechanisms involved in soybean response to cold. We summarized the recent studies on soybean cold-tolerant quantitative trait loci (QTLs), transcription factors, associated cold-regulated (COR) genes, and the regulatory pathways in response to cold stress. Cold-tolerant QTLs were found to be overlapped with the genomic region of maturity loci of E1, E3, E4, pubescence color locus of T, stem growth habit gene locus of Dt1, and leaf shape locus of Ln, indicating that pleiotropic loci may control multiple traits, including cold tolerance. The C-repeat responsive element binding factors (CBFs) are evolutionarily conserved across species. The expression of most GmDREB1s was upregulated by cold stress and overexpression of GmDREB1B;1 in soybean protoplast, and transgenic Arabidopsis plants can increase the expression of genes with the DRE core motif in their promoter regions under cold stress. Other soybean cold-responsive regulators, such as GmMYBJ1, GmNEK1, GmZF1, GmbZIP, GmTCF1a, SCOF-1 and so on, enhance cold tolerance by regulating the expression of COR genes in transgenic Arabidopsis. CBF-dependent and CBF-independent pathways are cross-talking and work together to activate cold stress gene expression. Even though it requires further dissection for precise understanding, the function of soybean cold-responsive transcription factors and associated COR genes studied in Arabidopsis shed light on the molecular mechanism of cold responses in soybeans and other crops. Furthermore, the findings may also provide practical applications for breeding cold-tolerant soybean varieties in high-latitude and high-altitude regions.
Collapse
Affiliation(s)
- Mesfin Tsegaw
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Department of Agricultural Biotechnology, Institute of Biotechnology, University of Gondar, Gondar P.O. Box 194, Ethiopia
| | - Workie Anley Zegeye
- Department of Agricultural Biotechnology, Institute of Biotechnology, University of Gondar, Gondar P.O. Box 194, Ethiopia
- John Innes Centre, Norwich Bioscience Institutes, Norwich NR2 3LA, UK
| | - Bingjun Jiang
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shi Sun
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shan Yuan
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tianfu Han
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tingting Wu
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
14
|
Yao D, Wang J, Peng W, Zhang B, Wen X, Wan X, Wang X, Li X, Ma J, Liu X, Fan Y, Sun G. Transcriptomic profiling of wheat stem during meiosis in response to freezing stress. FRONTIERS IN PLANT SCIENCE 2023; 13:1099677. [PMID: 36714719 PMCID: PMC9878610 DOI: 10.3389/fpls.2022.1099677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/19/2022] [Indexed: 06/18/2023]
Abstract
Low temperature injury in spring has seriously destabilized the production and grain quality of common wheat. However, the molecular mechanisms underlying spring frost tolerance remain elusive. In this study, we investigated the response of a frost-tolerant wheat variety Zhongmai8444 to freezing stress at the meiotic stage. Transcriptome profiles over a time course were subsequently generated by high-throughput sequencing. Our results revealed that the prolonged freezing temperature led to the significant reductions in plant height and seed setting rate. Cell wall thickening in the vascular tissue was also observed in the stems. RNA-seq analyses demonstrated the identification of 1010 up-regulated and 230 down-regulated genes shared by all time points of freezing treatment. Enrichment analysis revealed that gene activity related to hormone signal transduction and cell wall biosynthesis was significantly modulated under freezing. In addition, among the identified differentially expressed genes, 111 transcription factors belonging to multiple gene families exhibited dynamic expression pattern. This study provided valuable gene resources beneficial for the breeding of wheat varieties with improved spring frost tolerance.
Collapse
Affiliation(s)
- Danyu Yao
- National Engineering Laboratory of Crop Molecular Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Juan Wang
- National Engineering Laboratory of Crop Molecular Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wentao Peng
- National Engineering Laboratory of Crop Molecular Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Agricultural Science and Engineering, Liaocheng University, Liaocheng, Shandong, China
| | - Bowen Zhang
- National Engineering Laboratory of Crop Molecular Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Agronomy, Jilin Agricultural University, Changchun, Jilin, China
| | - Xiaolan Wen
- National Engineering Laboratory of Crop Molecular Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, Hebei, China
| | - Xiaoneng Wan
- National Engineering Laboratory of Crop Molecular Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiuyuan Wang
- National Engineering Laboratory of Crop Molecular Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Agricultural Science and Engineering, Liaocheng University, Liaocheng, Shandong, China
| | - Xinchun Li
- National Engineering Laboratory of Crop Molecular Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jian Ma
- College of Agronomy, Jilin Agricultural University, Changchun, Jilin, China
| | - Xiaofen Liu
- College of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, Hebei, China
| | - Yinglun Fan
- College of Agricultural Science and Engineering, Liaocheng University, Liaocheng, Shandong, China
| | - Guozhong Sun
- National Engineering Laboratory of Crop Molecular Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
15
|
Han Z, Li F, Qiao W, Zheng X, Cheng Y, Zhang L, Huang J, Wang Y, Lou D, Xing M, Fan W, Nie Y, Guo W, Wang S, Liu Z, Yang Q. Global whole-genome comparison and analysis to classify subpopulations and identify resistance genes in weedy rice relevant for improving crops. FRONTIERS IN PLANT SCIENCE 2023; 13:1089445. [PMID: 36704170 PMCID: PMC9872009 DOI: 10.3389/fpls.2022.1089445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/19/2022] [Indexed: 06/18/2023]
Abstract
Common weedy rice plants are important genetic resources for modern breeding programs because they are the closest relatives to rice cultivars and their genomes contain elite genes. Determining the utility and copy numbers of WRKY and nucleotide-binding site (NBS) resistance-related genes may help to clarify their variation patterns and lead to crop improvements. In this study, the weedy rice line LM8 was examined at the whole-genome level. To identify the Oryza sativa japonica subpopulation that LM8 belongs to, the single nucleotide polymorphisms (SNPs) of 180 cultivated and 23 weedy rice varieties were used to construct a phylogenetic tree and a principal component analysis and STRUCTURE analysis were performed. The results indicated that LM8 with admixture components from japonica (GJ) and indica (XI) belonged to GJ-admixture (GJ-adm), with more than 60% of its genetic background derived from XI-2 (22.98%), GJ-tropical (22.86%), and GJ-subtropical (17.76%). Less than 9% of its genetic background was introgressed from weedy rice. Our results also suggested LM8 may have originated in a subtropical or tropical geographic region. Moreover, the comparisons with Nipponbare (NIP) and Shuhui498 (R498) revealed many specific structure variations (SVs) in the LM8 genome and fewer SVs between LM8 and NIP than between LM8 and R498. Next, 96 WRKY and 464 NBS genes were identified and mapped on LM8 chromosomes to eliminate redundancies. Three WRKY genes (ORUFILM02g002693, ORUFILM05g002725, and ORUFILM05g001757) in group III and one RNL [including the resistance to powdery mildew 8 (RPW8) domain, NBS, and leucine rich repeats (LRRs)] type NBS gene (ORUFILM12g000772) were detected in LM8. Among the NBS genes, the RPW8 domain was detected only in ORUFILM12g000772. This gene may improve plant resistance to pathogens as previously reported. Its classification and potential utility imply LM8 should be considered as a germplasm resource relevant for rice breeding programs.
Collapse
Affiliation(s)
- Zhenyun Han
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fei Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Weihua Qiao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, China
| | - Xiaoming Zheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, China
- International Rice Research Institute, Metro Manila, Philippines
| | - Yunlian Cheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lifang Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jingfen Huang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanyan Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Danjing Lou
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Meng Xing
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Weiya Fan
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yamin Nie
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenlong Guo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shizhuang Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ziran Liu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qingwen Yang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, China
| |
Collapse
|
16
|
Yongbin Q, Summat P, Panyawut N, Sikaewtung K, Ditthab K, Tongmark K, Chakhonkaen S, Sangarwut N, Wasinanon T, Kaewmungkun K, Muangprom A. Identification of Rice Accessions Having Cold Tolerance at the Seedling Stage and Development of Novel Genotypic Assays for Predicting Cold Tolerance. PLANTS (BASEL, SWITZERLAND) 2023; 12:215. [PMID: 36616346 PMCID: PMC9823403 DOI: 10.3390/plants12010215] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/08/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Rice is susceptible to cold stress at the seedling stage, which can delay growth and decrease yield. We evaluated 187 rice accessions for cold tolerance at the seedling stage and developed genotypic assays for three markers. All japonica (20/20) and 20/140 indica accessions were highly cold tolerant. Two SNP markers specific for COLD1 and LOC_Os10g34840 were practical to use by normal agarose gel. The SNP marker specific for COLD1 was highly specific for predicting cold tolerance. However, the sensitivity of this marker was low as several cold-tolerant indica accessions lacked the cold-tolerant allele. The LOC_Os10g34840 marker was slightly more sensitive than the COLD1 marker for predicting highly cold-tolerant accessions. An insertion/deletion variant in the NAC6 gene was identified as a novel cold tolerance marker. The NAC6 marker predicted more highly cold-tolerant accessions compared with the other two markers. The SNP marker specific for LOC_Os10g34840 and the NAC6 marker were present in several tested subgroups, suggesting their wide effects and distribution. The three markers combined predicted the most highly cold-tolerant accessions, indicating that the marker combination is superior for applications such as marker-assisted breeding. The cold-tolerant accessions and the genotypic marker assays will be useful for future rice breeding.
Collapse
Affiliation(s)
- Qi Yongbin
- Institute of Crop Science and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Patcharaporn Summat
- National Center for Genetic Engineering and Biotechnology, Thailand Science Park, Khlong Luang, Pathum Thani 12120, Thailand
- Department of Biotechnology, Faculty of Science and Technology, Thammasat University, Rangsit Centre, Khlong Luang, Pathum Thani 12120, Thailand
| | - Natjaree Panyawut
- National Center for Genetic Engineering and Biotechnology, Thailand Science Park, Khlong Luang, Pathum Thani 12120, Thailand
- Nadi District Agricultural Extension Office, Chamanan Road, Nadi Subdistrict, Nadi District, Prachinburi 25220, Thailand
| | - Kannika Sikaewtung
- National Center for Genetic Engineering and Biotechnology, Thailand Science Park, Khlong Luang, Pathum Thani 12120, Thailand
| | - Khanittha Ditthab
- National Center for Genetic Engineering and Biotechnology, Thailand Science Park, Khlong Luang, Pathum Thani 12120, Thailand
| | - Keasinee Tongmark
- National Center for Genetic Engineering and Biotechnology, Thailand Science Park, Khlong Luang, Pathum Thani 12120, Thailand
| | - Sriprapai Chakhonkaen
- National Center for Genetic Engineering and Biotechnology, Thailand Science Park, Khlong Luang, Pathum Thani 12120, Thailand
| | - Numphet Sangarwut
- National Center for Genetic Engineering and Biotechnology, Thailand Science Park, Khlong Luang, Pathum Thani 12120, Thailand
| | - Thiwawan Wasinanon
- National Center for Genetic Engineering and Biotechnology, Thailand Science Park, Khlong Luang, Pathum Thani 12120, Thailand
| | - Kanokwan Kaewmungkun
- National Center for Genetic Engineering and Biotechnology, Thailand Science Park, Khlong Luang, Pathum Thani 12120, Thailand
| | - Amorntip Muangprom
- National Center for Genetic Engineering and Biotechnology, Thailand Science Park, Khlong Luang, Pathum Thani 12120, Thailand
| |
Collapse
|
17
|
Wu Y, Li X, Zhang J, Zhao H, Tan S, Xu W, Pan J, Yang F, Pi E. ERF subfamily transcription factors and their function in plant responses to abiotic stresses. FRONTIERS IN PLANT SCIENCE 2022; 13:1042084. [PMID: 36531407 PMCID: PMC9748296 DOI: 10.3389/fpls.2022.1042084] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/09/2022] [Indexed: 06/09/2023]
Abstract
Ethylene Responsive Factor (ERF) subfamily comprise the largest number of proteins in the plant AP2/ERF superfamily, and have been most extensively studied on the biological functions. Members of this subfamily have been proven to regulate plant resistances to various abiotic stresses, such as drought, salinity, chilling and some other adversities. Under these stresses, ERFs are usually activated by mitogen-activated protein kinase induced phosphorylation or escape from ubiquitin-ligase enzymes, and then form complex with nucleic proteins before binding to cis-element in promoter regions of stress responsive genes. In this review, we will discuss the phylogenetic relationships among the ERF subfamily proteins, summarize molecular mechanism how the transcriptional activity of ERFs been regulated and how ERFs of different subgroup regulate the transcription of stress responsive genes, such as high-affinity K+ transporter gene PalHKT1;2, reactive oxygen species related genes LcLTP, LcPrx, and LcRP, flavonoids synthesis related genes FtF3H and LhMYBSPLATTER, etc. Though increasing researches demonstrate that ERFs are involved in various abiotic stresses, very few interact proteins and target genes of them have been comprehensively annotated. Hence, future research prospects are described on the mechanisms of how stress signals been transited to ERFs and how ERFs regulate the transcriptional expression of stress responsive genes.
Collapse
|
18
|
Hussain MA, Luo D, Zeng L, Ding X, Cheng Y, Zou X, Lv Y, Lu G. Genome-wide transcriptome profiling revealed biological macromolecules respond to low temperature stress in Brassica napus L. FRONTIERS IN PLANT SCIENCE 2022; 13:1050995. [PMID: 36452101 PMCID: PMC9702069 DOI: 10.3389/fpls.2022.1050995] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/14/2022] [Indexed: 06/12/2023]
Abstract
Brassica napus L. (B. napus) is a vital oilseed crop cultivated worldwide; low temperature (LT) is one of the major stress factors that limit its growth, development, distribution, and production. Even though processes have been developed to characterize LT-responsive genes, only limited studies have exploited the molecular response mechanisms in B. napus. Here the transcriptome data of an elite B. napus variety with LT adaptability was acquired and applied to investigate the gene expression profiles of B. napus in response to LT stress. The bioinformatics study revealed a total of 79,061 unigenes, of which 3,703 genes were differentially expressed genes (DEGs), with 2,129 upregulated and 1,574 downregulated. The Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis pinpointed that the DEGs were enriched in LT-stress-responsive biological functions and metabolic pathways, which included sugar metabolism, antioxidant defense system, plant hormone signal transduction, and photosynthesis. Moreover, a group of LT-stress-responsive transcription factors with divergent expression patterns under LT was summarized. A combined protein interaction suggested that a complex interconnected regulatory network existed in all detected pathways. RNA-seq data was verified using real-time quantitative polymerase chain reaction analysis. Based on these findings, we presented a hypothesis model illustrating valuable information for understanding the LT response mechanisms in B. napus.
Collapse
Affiliation(s)
- Muhammad Azhar Hussain
- Key Laboratory of Biology and Genetic Improvement of Oil Crops Research Institute, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | - Dan Luo
- Key Laboratory of Biology and Genetic Improvement of Oil Crops Research Institute, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | - Liu Zeng
- Key Laboratory of Biology and Genetic Improvement of Oil Crops Research Institute, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | - Xiaoyu Ding
- Key Laboratory of Biology and Genetic Improvement of Oil Crops Research Institute, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | - Yong Cheng
- Key Laboratory of Biology and Genetic Improvement of Oil Crops Research Institute, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | - Xiling Zou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops Research Institute, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | - Yan Lv
- Key Laboratory of Biology and Genetic Improvement of Oil Crops Research Institute, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | - Guangyuan Lu
- School of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, China
| |
Collapse
|
19
|
Combination of Genomics, Transcriptomics Identifies Candidate Loci Related to Cold Tolerance in Dongxiang Wild Rice. PLANTS 2022; 11:plants11182329. [PMID: 36145730 PMCID: PMC9506393 DOI: 10.3390/plants11182329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/22/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022]
Abstract
Rice, a cold-sensitive crop, is a staple food for more than 50% of the world’s population. Low temperature severely compromises the growth of rice and challenges China’s food safety. Dongxiang wild rice (DXWR) is the most northerly common wild rice in China and has strong cold tolerance, but the genetic basis of its cold tolerance is still unclear. Here, we report quantitative trait loci (QTLs) analysis for seedling cold tolerance (SCT) using a high-density single nucleotide polymorphism linkage map in the backcross recombinant inbred lines that were derived from a cross of DXWR, and an indica cultivar, GZX49. A total of 10 putative QTLs were identified for SCT under 4 °C cold treatment, each explaining 2.0–6.8% of the phenotypic variation in this population. Furthermore, transcriptome sequencing of DXWR seedlings before and after cold treatment was performed, and 898 and 3413 differentially expressed genes (DEGs) relative to 0 h in cold-tolerant for 4 h and 12 h were identified, respectively. Gene ontology and Kyoto encyclopedia of genes and genomes (KEGG) analysis were performed on these DEGs. Using transcriptome data and genetic linkage analysis, combined with qRT-PCR, sequence comparison, and bioinformatics, LOC_Os08g04840 was putatively identified as a candidate gene for the major effect locus qSCT8. These findings provided insights into the genetic basis of SCT for the improvement of cold stress potential in rice breeding programs.
Collapse
|
20
|
Yousefi S, Marchese A, Salami SA, Benny J, Giovino A, Perrone A, Caruso T, Gholami M, Sarikhani H, Buti M, Martinelli F. Identifying conserved genes involved in crop tolerance to cold stress. FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:861-873. [PMID: 35785800 DOI: 10.1071/fp21290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Low temperature is a limiting factor for crop productivity in tropical and subtropical climates. Cold stress response in plants involves perceiving and relaying the signal through a transcriptional cascade composed of different transduction components, resulting in altered gene activity. We performed a meta-analysis of four previously published datasets of cold-tolerant and cold-sensitive crops to better understand the gene regulatory networks and identify key genes involved in cold stress tolerance conserved across phylogenetically distant species. Re-analysing the raw data with the same bioinformatics pipeline, we identified common cold tolerance-related genes. We found 236 and 242 commonly regulated genes in sensitive and tolerant genotypes, respectively. Gene enrichment analysis showed that protein modifications, hormone metabolism, cell wall, and secondary metabolism are the most conserved pathways involved in cold tolerance. Upregulation of the abiotic stress (heat and drought/salt) related genes [heat shock N -terminal domain-containing protein, 15.7kDa class I-related small heat shock protein-like, DNAJ heat shock N -terminal domain-containing protein, and HYP1 (HYPOTHETICAL PROTEIN 1)] in sensitive genotypes and downregulation of the abiotic stress (heat and drought/salt) related genes (zinc ion binding and pollen Ole e 1 allergen and extensin family protein) in tolerant genotypes was observed across the species. Almost all development-related genes were upregulated in tolerant and downregulated in sensitive genotypes. Moreover, protein-protein network analysis identified highly interacting proteins linked to cold tolerance. Mapping of abiotic stress-related genes on analysed species genomes provided information that could be essential to developing molecular markers for breeding and building up genetic improvement strategies using CRISPR/Cas9 technologies.
Collapse
Affiliation(s)
- Sanaz Yousefi
- Department of Horticultural Science, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
| | - Annalisa Marchese
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze - Ed. 4, 90128 Palermo, Italy
| | - Seyed Alireza Salami
- Department of Horticultural Sciences, Faculty of Agriculture and Natural Resources, University of Tehran, Karaj 31587-77871, Iran
| | - Jubina Benny
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze - Ed. 4, 90128 Palermo, Italy
| | - Antonio Giovino
- Council for Agricultural Research and Economics (CREA), Research Centre for Plant Protection and Certification (CREA-DC), 90011 Bagheria, Italy
| | - Anna Perrone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Palermo 90128, Italy
| | - Tiziano Caruso
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze - Ed. 4, 90128 Palermo, Italy
| | - Mansour Gholami
- Department of Horticultural Science, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
| | - Hassan Sarikhani
- Department of Horticultural Science, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
| | - Matteo Buti
- Department of Agriculture, Food, Environment and Forestry, University of Florence, Firenze, Italy
| | - Federico Martinelli
- Department of Biology, University of Florence, Firenze, Italy; and Istituto di Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Rome, Italy
| |
Collapse
|
21
|
Sainz MM, Filippi CV, Eastman G, Sotelo-Silveira J, Borsani O, Sotelo-Silveira M. Analysis of Thioredoxins and Glutaredoxins in Soybean: Evidence of Translational Regulation under Water Restriction. Antioxidants (Basel) 2022; 11:1622. [PMID: 36009341 PMCID: PMC9405309 DOI: 10.3390/antiox11081622] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/10/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
Soybean (Glycine max (L.) Merr.) establishes symbiosis with rhizobacteria, developing the symbiotic nodule, where the biological nitrogen fixation (BNF) occurs. The redox control is key for guaranteeing the establishment and correct function of the BNF process. Plants have many antioxidative systems involved in ROS homeostasis and signaling, among them a network of thio- and glutaredoxins. Our group is particularly interested in studying the differential response of nodulated soybean plants to water-deficit stress. To shed light on this phenomenon, we set up an RNA-seq experiment (for total and polysome-associated mRNAs) with soybean roots comprising combined treatments including the hydric and the nodulation condition. Moreover, we performed the initial identification and description of the complete repertoire of thioredoxins (Trx) and glutaredoxins (Grx) in soybean. We found that water deficit altered the expression of a greater number of differentially expressed genes (DEGs) than the condition of plant nodulation. Among them, we identified 12 thioredoxin (Trx) and 12 glutaredoxin (Grx) DEGs, which represented a significant fraction of the detected GmTrx and GmGrx in our RNA-seq data. Moreover, we identified an enriched network in which a GmTrx and a GmGrx interacted with each other and associated through several types of interactions with nitrogen metabolism enzymes.
Collapse
Affiliation(s)
- María Martha Sainz
- Laboratorio de Bioquímica, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Avenida Garzón 780, Montevideo 12900, Uruguay
| | - Carla Valeria Filippi
- Laboratorio de Bioquímica, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Avenida Garzón 780, Montevideo 12900, Uruguay
| | - Guillermo Eastman
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, MEC, Av. Italia 3318, Montevideo 11600, Uruguay
- Department of Biology, University of Virginia, 485 McCormick Rd., Charlottesville, VA 22904, USA
| | - José Sotelo-Silveira
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, MEC, Av. Italia 3318, Montevideo 11600, Uruguay
- Departamento de Biología Celular y Molecular, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay
| | - Omar Borsani
- Laboratorio de Bioquímica, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Avenida Garzón 780, Montevideo 12900, Uruguay
| | - Mariana Sotelo-Silveira
- Laboratorio de Bioquímica, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Avenida Garzón 780, Montevideo 12900, Uruguay
| |
Collapse
|
22
|
Luo Z, Zhou Z, Li Y, Tao S, Hu ZR, Yang JS, Cheng X, Hu R, Zhang W. Transcriptome-based gene regulatory network analyses of differential cold tolerance of two tobacco cultivars. BMC PLANT BIOLOGY 2022; 22:369. [PMID: 35879667 PMCID: PMC9316383 DOI: 10.1186/s12870-022-03767-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 07/20/2022] [Indexed: 05/02/2023]
Abstract
BACKGROUND Cold is one of the main abiotic stresses that severely affect plant growth and development, and crop productivity as well. Transcriptional changes during cold stress have already been intensively studied in various plant species. However, the gene networks involved in the regulation of differential cold tolerance between tobacco varieties with contrasting cold resistance are quite limited. RESULTS Here, we conducted multiple time-point transcriptomic analyses using Tai tobacco (TT, cold susceptibility) and Yan tobacco (YT, cold resistance) with contrasting cold responses. We identified similar DEGs in both cultivars after comparing with the corresponding control (without cold treatment), which were mainly involved in response to abiotic stimuli, metabolic processes, kinase activities. Through comparison of the two cultivars at each time point, in contrast to TT, YT had higher expression levels of the genes responsible for environmental stresses. By applying Weighted Gene Co-Expression Network Analysis (WGCNA), we identified two main modules: the pink module was similar while the brown module was distinct between the two cultivars. Moreover, we obtained 100 hub genes, including 11 important transcription factors (TFs) potentially involved in cold stress, 3 key TFs in the brown module and 8 key TFs in the pink module. More importantly, according to the genetic regulatory networks (GRNs) between TFs and other genes or TFs by using GENIE3, we identified 3 TFs (ABI3/VP1, ARR-B and WRKY) mainly functioning in differential cold responses between two cultivars, and 3 key TFs (GRAS, AP2-EREBP and C2H2) primarily involved in cold responses. CONCLUSION Collectively, our study provides valuable resources for transcriptome- based gene network studies of cold responses in tobacco. It helps to reveal how key cold responsive TFs or other genes are regulated through network. It also helps to identify the potential key cold responsive genes for the genetic manipulation of tobacco cultivars with enhanced cold tolerance in the future.
Collapse
Affiliation(s)
- Zhenyu Luo
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, Jiangsu, China
| | - Zhicheng Zhou
- Hunan Tobacco Research Institute, Changsha, 410128, Hunan, China
| | - Yangyang Li
- Hunan Tobacco Research Institute, Changsha, 410128, Hunan, China
| | - Shentong Tao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, Jiangsu, China
| | - Zheng-Rong Hu
- Hunan Tobacco Research Institute, Changsha, 410128, Hunan, China
| | - Jia-Shuo Yang
- Hunan Tobacco Research Institute, Changsha, 410128, Hunan, China
| | - Xuejiao Cheng
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, Jiangsu, China.
| | - Risheng Hu
- Hunan Tobacco Research Institute, Changsha, 410128, Hunan, China.
| | - Wenli Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
23
|
Liu H, Yang L, Xu S, Lyu MJ, Wang J, Wang H, Zheng H, Xin W, Liu J, Zou D. OsWRKY115 on qCT7 links to cold tolerance in rice. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:2353-2367. [PMID: 35622122 DOI: 10.1007/s00122-022-04117-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/25/2022] [Indexed: 06/15/2023]
Abstract
qCT7, a novel QTL for increasing seedling cold tolerance in rice, was fine-mapped to a 70.9-kb region on chromosome 7, and key OsWRKY115 was identified in transgenic plants. Cold stress caused by underground cold-water irrigation seriously limits rice productivity. We systemically measured the cold-responsive traits of 2,570 F2 individuals derived from two widely cultivated rice cultivars, Kong-Yu-131 and Dong-Nong-422, to identify the major genomic regions associated with cold tolerance. A novel major QTL, qCT7, was mapped on chromosome 7 associated with the cold tolerance and survival, using whole-genome re-sequencing with bulked segregant analysis. Local QTL linkage analysis with F2 and fine mapping with recombinant plant revealed a 70.9-kb core region on qCT7 encoding 13 protein-coding genes. Only the LOC_Os07g27670 expression level encoding the OsWRKY115 transcription factor on the locus was specifically induced by cold stress in the cold-tolerant cultivar. Moreover, haplotype analysis and the KASP8 marker indicated that OsWRKY115 was significantly associated with cold tolerance. Overexpression and knockout of OsWRKY115 significantly affected cold tolerance in seedlings. Our experiments identified OsWRKY115 as a novel regulatory gene associated with cold response in rice, and the Kong-Yu-131 allele with specific cold-induced expression may be an important molecular variant.
Collapse
Affiliation(s)
- Hualong Liu
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Luomiao Yang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Shanbin Xu
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Ming-Jie Lyu
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jingguo Wang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Huan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hongliang Zheng
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Wei Xin
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Jun Liu
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Detang Zou
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
24
|
Bhat KA, Mahajan R, Pakhtoon MM, Urwat U, Bashir Z, Shah AA, Agrawal A, Bhat B, Sofi PA, Masi A, Zargar SM. Low Temperature Stress Tolerance: An Insight Into the Omics Approaches for Legume Crops. FRONTIERS IN PLANT SCIENCE 2022; 13:888710. [PMID: 35720588 PMCID: PMC9204169 DOI: 10.3389/fpls.2022.888710] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/27/2022] [Indexed: 05/27/2023]
Abstract
The change in climatic conditions is the major cause for decline in crop production worldwide. Decreasing crop productivity will further lead to increase in global hunger rate. Climate change results in environmental stress which has negative impact on plant-like deficiencies in growth, crop yield, permanent damage, or death if the plant remains in the stress conditions for prolonged period. Cold stress is one of the main abiotic stresses which have already affected the global crop production. Cold stress adversely affects the plants leading to necrosis, chlorosis, and growth retardation. Various physiological, biochemical, and molecular responses under cold stress have revealed that the cold resistance is more complex than perceived which involves multiple pathways. Like other crops, legumes are also affected by cold stress and therefore, an effective technique to mitigate cold-mediated damage is critical for long-term legume production. Earlier, crop improvement for any stress was challenging for scientific community as conventional breeding approaches like inter-specific or inter-generic hybridization had limited success in crop improvement. The availability of genome sequence, transcriptome, and proteome data provides in-depth sight into different complex mechanisms under cold stress. Identification of QTLs, genes, and proteins responsible for cold stress tolerance will help in improving or developing stress-tolerant legume crop. Cold stress can alter gene expression which further leads to increases in stress protecting metabolites to cope up the plant against the temperature fluctuations. Moreover, genetic engineering can help in development of new cold stress-tolerant varieties of legume crop. This paper provides a general insight into the "omics" approaches for cold stress in legume crops.
Collapse
Affiliation(s)
- Kaisar Ahmad Bhat
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Shalimar, India
- Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Reetika Mahajan
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Shalimar, India
| | - Mohammad Maqbool Pakhtoon
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Shalimar, India
- Department of Life Sciences, Rabindranath Tagore University, Bhopal, India
| | - Uneeb Urwat
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Shalimar, India
| | - Zaffar Bashir
- Deparment of Microbiology, University of Kashmir, Srinagar, India
| | - Ali Asghar Shah
- Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Ankit Agrawal
- Department of Life Sciences, Rabindranath Tagore University, Bhopal, India
| | - Basharat Bhat
- Division of Animal Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Parvaze A. Sofi
- Division of Genetics and Plant Breeding, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Antonio Masi
- Department of Agronomy, Food, Natural Resources, Animals, and Environment, University of Padova, Padua, Italy
| | - Sajad Majeed Zargar
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Shalimar, India
| |
Collapse
|
25
|
Kohlhase DR, McCabe CE, Singh AK, O’Rourke JA, Graham MA. Comparing Early Transcriptomic Responses of 18 Soybean ( Glycine max) Genotypes to Iron Stress. Int J Mol Sci 2021; 22:11643. [PMID: 34769077 PMCID: PMC8583884 DOI: 10.3390/ijms222111643] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 11/21/2022] Open
Abstract
Iron deficiency chlorosis (IDC) is an abiotic stress that negatively affects soybean (Glycine max [L.] Merr.) production. Much of our knowledge of IDC stress responses is derived from model plant species. Gene expression, quantitative trait loci (QTL) mapping, and genome-wide association studies (GWAS) performed in soybean suggest that stress response differences exist between model and crop species. Our current understanding of the molecular response to IDC in soybeans is largely derived from gene expression studies using near-isogenic lines differing in iron efficiency. To improve iron efficiency in soybeans and other crops, we need to expand gene expression studies to include the diversity present in germplasm collections. Therefore, we collected 216 purified RNA samples (18 genotypes, two tissue types [leaves and roots], two iron treatments [sufficient and deficient], three replicates) and used RNA sequencing to examine the expression differences of 18 diverse soybean genotypes in response to iron deficiency. We found a rapid response to iron deficiency across genotypes, most responding within 60 min of stress. There was little evidence of an overlap of specific differentially expressed genes, and comparisons of gene ontology terms and transcription factor families suggest the utilization of different pathways in the stress response. These initial findings suggest an untapped genetic potential within the soybean germplasm collection that could be used for the continued improvement of iron efficiency in soybean.
Collapse
Affiliation(s)
- Daniel R. Kohlhase
- Department of Agronomy, Iowa State University, Ames, IA 50011, USA; (D.R.K.); (A.K.S.)
| | - Chantal E. McCabe
- U.S. Department of Agriculture (USDA)—Agricultural Research Service (ARS), Corn Insects and Crop Genetics Research Unit, Ames, IA 50011, USA;
| | - Asheesh K. Singh
- Department of Agronomy, Iowa State University, Ames, IA 50011, USA; (D.R.K.); (A.K.S.)
| | - Jamie A. O’Rourke
- U.S. Department of Agriculture (USDA)—Agricultural Research Service (ARS), Corn Insects and Crop Genetics Research Unit, Ames, IA 50011, USA;
| | - Michelle A. Graham
- U.S. Department of Agriculture (USDA)—Agricultural Research Service (ARS), Corn Insects and Crop Genetics Research Unit, Ames, IA 50011, USA;
| |
Collapse
|
26
|
Zhou P, Li X, Liu X, Wen X, Zhang Y, Zhang D. Transcriptome profiling of Malus sieversii under freezing stress after being cold-acclimated. BMC Genomics 2021; 22:681. [PMID: 34548013 PMCID: PMC8456659 DOI: 10.1186/s12864-021-07998-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 09/07/2021] [Indexed: 01/03/2023] Open
Abstract
Background Freezing temperatures are an abiotic stress that has a serious impact on plant growth and development in temperate regions and even threatens plant survival. The wild apple tree (Malus sieversii) needs to undergo a cold acclimation process to enhance its freezing tolerance in winter. Changes that occur at the molecular level in response to low temperatures are poorly understood in wild apple trees. Results Phytohormone and physiology profiles and transcriptome analysis were used to elaborate on the dynamic response mechanism. We determined that JA, IAA, and ABA accumulated in the cold acclimation stage and decreased during freezing stress in response to freezing stress. To elucidate the molecular mechanisms of freezing stress after cold acclimation, we employed single molecular real-time (SMRT) and RNA-seq technologies to study genome-wide expression profiles in wild apple. Using the PacBio and Illumina platform, we obtained 20.79G subreads. These reads were assembled into 61,908 transcripts, and 24,716 differentially expressed transcripts were obtained. Among them, 4410 transcripts were differentially expressed during the whole process of freezing stress, and these were examined for enrichment via GO and KEGG analyses. Pathway analysis indicated that “plant hormone signal transduction”, “starch and sucrose metabolism”, “peroxisome” and “photosynthesis” might play a vital role in wild apple responses to freezing stress. Furthermore, the transcription factors DREB1/CBF, MYC2, WRKY70, WRKY71, MYB4 and MYB88 were strongly induced during the whole stress period. Conclusions Our study presents a global survey of the transcriptome profiles of wild apple trees in dynamic response to freezing stress after two days cold acclimation and provides insights into the molecular mechanisms of freezing adaptation of wild apple plants for the first time. The study also provides valuable information for further research on the antifreezing reaction mechanism and genetic improvement of M. sieversii after cold acclimation. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07998-0.
Collapse
Affiliation(s)
- Ping Zhou
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoshuang Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.,Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, 838008, China
| | - Xiaojie Liu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuejing Wen
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.,Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, 838008, China
| | - Yan Zhang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Daoyuan Zhang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China. .,Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, 838008, China.
| |
Collapse
|
27
|
Xue C, Jiang Y, Wang Z, Shan X, Yuan Y, Hua J. Tissue-level transcriptomic responses to local and distal chilling reveal potential chilling survival mechanisms in maize. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:erab323. [PMID: 34240135 DOI: 10.1093/jxb/erab323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Indexed: 06/13/2023]
Abstract
Chilling is a major stress to plants of subtropical and tropical origins including maize (Zea mays L.). To reveal molecular mechanisms underlying chilling tolerance and survival, we investigated transcriptomic responses to chilling stress in differentiated leaves and roots as well as in crowns with meristem activity in maize. Chilling stress on shoots and roots is found to each contributes to seedling lethality in maize. Comparison of maize lines with different chilling tolerance capacities reveals that chilling survival is highly associated with upregulation of abscisic acid biosynthesis and response as well as transcriptional regulators in leaves and crowns. It is also associated with the downregulation of translation in leaves and heat response in crowns. Chilling treatment on whole or part of the plants reveals that response to distal-chilling is very distinct from, and sometimes opposite to, response to local- or whole-plant chilling in both leaves and roots, suggesting a communication between shoots and roots in environmental response. This study thus provides transcriptomic responses in leaves, roots and crowns under differential chilling stresses in maize and reveals potential chilling tolerance and survival mechanisms which lays ground for improving chilling tolerance in crop plants.
Collapse
Affiliation(s)
- Chunmei Xue
- College of Plant Science, Jilin University, Changchun 130062, P.R. China
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Yuan Jiang
- College of Plant Science, Jilin University, Changchun 130062, P.R. China
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Zhixue Wang
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Xiaohui Shan
- College of Plant Science, Jilin University, Changchun 130062, P.R. China
| | - Yaping Yuan
- College of Plant Science, Jilin University, Changchun 130062, P.R. China
| | - Jian Hua
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
28
|
Yang Y, Zheng C, Zhong C, Lu T, Gul J, Jin X, Zhang Y, Liu Q. Transcriptome analysis of Sonneratia caseolaris seedlings under chilling stress. PeerJ 2021; 9:e11506. [PMID: 34141477 PMCID: PMC8180195 DOI: 10.7717/peerj.11506] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/03/2021] [Indexed: 12/28/2022] Open
Abstract
Sonneratia caseolaris is a native mangrove species found in China. It is fast growing and highly adaptable for mangrove afforestation, but suffered great damage by chilling event once introduced to high latitude area. To understand the response mechanisms under chilling stress, physiological and transcriptomic analyses were conducted. The relative electrolyte conductivity, malondialdehyde (MDA) content, soluble sugar content and soluble protein content increased significantly under chilling stress. This indicated that S. caseolaris suffered great damage and increased the levels of osmoprotectants in response to the chilling stress. Gene expression comparison analysis of S. caseolaris leaves after 6 h of chilling stress was performed at the transcriptional scale using RNA-Seq. A total of 168,473 unigenes and 3,706 differentially expressed genes (DEGs) were identified. GO and KEGG enrichment analyses showed that the DEGs were mainly involved in carbohydrate metabolism, antioxidant enzyme, plant hormone signal transduction, and transcription factors (TFs). Sixteen genes associated with carbohydrate metabolism, antioxidant enzyme, phytohormones and TFs were selected for qRT-PCR verification, and they indicated that the transcriptome data were reliable. Our work provided a comprehensive review of the chilling response of S. caseolaris at both physiological and transcriptomic levels, which will prove useful for further studies on stress-responses in mangrove plants.
Collapse
Affiliation(s)
- Yong Yang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Chunfang Zheng
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, China
| | - Cairong Zhong
- Hainan Academy of Forestry, Hainan Mangrove Research Institute, Haikou, Hainan, China
| | - Tianxi Lu
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Juma Gul
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Xiang Jin
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Ying Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Qiang Liu
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, China
| |
Collapse
|
29
|
Comparative transcriptomic and physiological analyses of weedy rice and cultivated rice to identify vital differentially expressed genes and pathways regulating the ABA response. Sci Rep 2021; 11:12881. [PMID: 34145345 PMCID: PMC8213743 DOI: 10.1038/s41598-021-92504-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 06/03/2021] [Indexed: 01/15/2023] Open
Abstract
Weedy rice is a valuable germplasm resource characterized by its high tolerance to both abiotic and biotic stresses. Abscisic acid (ABA) serves as a regulatory signal in plant cells as part of their adaptive response to stress. However, a global understanding of the response of weedy rice to ABA remains to be elucidated. In the present study, the sensitivity to ABA of weedy rice (WR04-6) was compared with that of temperate japonica Shennong9816 (SN9816) in terms of seed germination and post-germination growth via the application of exogenous ABA and diniconazole, an inhibitor of ABA catabolism. Physiological analysis and a transcriptomic comparison allowed elucidation of the molecular and physiological mechanisms associated with continuous ABA and diniconazole treatment. WR04-6 was found to display higher ABA sensitivity than SN9816, resulting in the rapid promotion of antioxidant enzyme activity. Comparative transcriptomic analyses indicated that the number of differentially expressed genes (DEGs) in WR04-6 seedlings treated with 2 μM ABA or 10 μM diniconazole was greater than that in SN9816 seedlings. Genes involved in stress defense, hormone signal transduction, and glycolytic and citrate cycle pathways were highly expressed in WR04-6 in response to ABA and diniconazole. These findings provide new insight into key processes mediating the ABA response between weedy and cultivated rice.
Collapse
|
30
|
Lu X, Liu S, Zhi S, Chen J, Ye G. Comparative transcriptome profile analysis of rice varieties with different tolerance to zinc deficiency. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:375-390. [PMID: 33296551 DOI: 10.1111/plb.13227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
Zinc (Zn) is an indispensable element for rice growth. Zn deficiency results in brown blotches and streaks 2-3 weeks after transplanting, as well as stunting, reduced tillering, and low productivity of rice plants. These processes are controlled by different families of expressed genes. A comparative transcriptome profile analysis was conducted using the roots of two Zn deficiency tolerant varieties (UCP122 and KALIBORO26) and two sensitive varieties (IR26 and IR64) by merging data from untreated control (CK) and Zn deficiency treated samples. Results revealed a total of 4,688 differentially expressed genes (DEGs) between the normal Zn and deficient conditions, with 2,702 and 1,489 unique DEGs upregulated and downregulated, respectively. Functional enrichment analysis identified transcription factors (TFs), such as WRKY, MYB, ERF, and bHLH which are important in the regulation of the Zn deficiency response. Furthermore, chitinases, jasmonic acid, and phenylpropanoid pathways were found to be important in the Zn deficiency response. The metal tolerance protein (MTP) genes also appeared to play an important role in conferring tolerance to Zn deficiency. A heavy metal-associated domain-containing protein 7 was associated with tolerance to Zn deficiency and negatively regulated downstream genes. Collectively, our findings provide valuable expression patterns and candidate genes for the study of molecular mechanisms underlying the response to Zn deficiency and for improvements in breeding for tolerance to Zn deficiency in rice.
Collapse
Affiliation(s)
- X Lu
- CAAS-IRRI Joint Laboratory for Genomics-Assisted Germplasm Enhancement, Agricultural Genomics Institute in Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - S Liu
- CAAS-IRRI Joint Laboratory for Genomics-Assisted Germplasm Enhancement, Agricultural Genomics Institute in Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Group of Crop Genetics and Breeding, Jiangxi Agricultural University, Nanchang, China
| | - S Zhi
- CAAS-IRRI Joint Laboratory for Genomics-Assisted Germplasm Enhancement, Agricultural Genomics Institute in Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, China
| | - J Chen
- CAAS-IRRI Joint Laboratory for Genomics-Assisted Germplasm Enhancement, Agricultural Genomics Institute in Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - G Ye
- CAAS-IRRI Joint Laboratory for Genomics-Assisted Germplasm Enhancement, Agricultural Genomics Institute in Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Group of Crop Genetics and Breeding, Jiangxi Agricultural University, Nanchang, China
- Strategic Innovation Platform, International Rice Research Institute, Metro Manila, Philippines
| |
Collapse
|
31
|
Pan Y, Liang H, Gao L, Dai G, Chen W, Yang X, Qing D, Gao J, Wu H, Huang J, Zhou W, Huang C, Liang Y, Deng G. Transcriptomic profiling of germinating seeds under cold stress and characterization of the cold-tolerant gene LTG5 in rice. BMC PLANT BIOLOGY 2020; 20:371. [PMID: 32762649 PMCID: PMC7409433 DOI: 10.1186/s12870-020-02569-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/22/2020] [Indexed: 05/25/2023]
Abstract
BACKGROUND Low temperature is a limiting factor of rice productivity and geographical distribution. Wild rice (Oryza rufipogon Griff.) is an important germplasm resource for rice improvement. It has superior tolerance to many abiotic stresses, including cold stress, but little is known about the mechanism underlying its resistance to cold. RESULTS This study elucidated the molecular genetic mechanisms of wild rice in tolerating low temperature. Comprehensive transcriptome profiles of two rice genotypes (cold-sensitive ce 253 and cold-tolerant Y12-4) at the germinating stage under cold stress were comparatively analyzed. A total of 42.44-68.71 million readings were obtained, resulting in the alignment of 29,128 and 30,131 genes in genotypes 253 and Y12-4, respectively. Many common and differentially expressed genes (DEGs) were analyzed in the cold-sensitive and cold-tolerant genotypes. Results showed more upregulated DEGs in the cold-tolerant genotype than in the cold-sensitive genotype at four stages under cold stress. Gene ontology enrichment analyses based on cellular process, metabolic process, response stimulus, membrane part, and catalytic activity indicated more upregulated genes than downregulated ones in the cold-tolerant genotype than in the cold-sensitive genotype. Quantitative real-time polymerase chain reaction was performed on seven randomly selected DEGs to confirm the RNA Sequencing (RNA-seq) data. These genes showed similar expression patterns corresponding with the RNA-Seq method. Weighted gene co-expression network analysis (WGCNA) revealed Y12-4 showed more positive genes than 253 under cold stress. We also explored the cold tolerance gene LTG5 (Low Temperature Growth 5) encoding a UDP-glucosyltransferase. The overexpression of the LTG5 gene conferred cold tolerance to indica rice. CONCLUSION Gene resources related to cold stress from wild rice can be valuable for improving the cold tolerance of crops.
Collapse
Affiliation(s)
- Yinghua Pan
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, China
| | - Haifu Liang
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, China
| | - Lijun Gao
- Guangxi Academy of Agricultural Sciences/Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Nanning, China
| | - Gaoxing Dai
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, China
| | - Weiwei Chen
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, China
| | - Xinghai Yang
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, China
| | - Dongjin Qing
- Guangxi Academy of Agricultural Sciences/Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Nanning, China
| | - Ju Gao
- Guangxi Academy of Agricultural Sciences/Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Nanning, China
| | - Hao Wu
- Guangxi Academy of Agricultural Sciences/Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Nanning, China
| | - Juan Huang
- Guangxi Academy of Agricultural Sciences/Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Nanning, China
| | - Weiyong Zhou
- Guangxi Academy of Agricultural Sciences/Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Nanning, China
| | - Chengcui Huang
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, China
| | - Yuntao Liang
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, China
| | - Guofu Deng
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, China
| |
Collapse
|
32
|
Transcriptomic Profiling of Young Cotyledons Response to Chilling Stress in Two Contrasting Cotton ( Gossypium hirsutum L.) Genotypes at the Seedling Stage. Int J Mol Sci 2020; 21:ijms21145095. [PMID: 32707667 PMCID: PMC7404027 DOI: 10.3390/ijms21145095] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/14/2020] [Accepted: 07/17/2020] [Indexed: 12/19/2022] Open
Abstract
Young cotyledons of cotton seedlings are most susceptible to chilling stress. To gain insight into the potential mechanism of cold tolerance of young cotton cotyledons, we conducted physiological and comparative transcriptome analysis of two varieties with contrasting phenotypes. The evaluation of chilling injury of young cotyledons among 74 cotton varieties revealed that H559 was the most tolerant and YM21 was the most sensitive. The physiological analysis found that the ROS scavenging ability was lower, and cell membrane damage was more severe in the cotyledons of YM21 than that of H559 under chilling stress. RNA-seq analysis identified a total of 44,998 expressed genes and 19,982 differentially expressed genes (DEGs) in young cotyledons of the two varieties under chilling stress. Weighted gene coexpression network analysis (WGCNA) of all DEGs revealed four significant modules with close correlation with specific samples. The GO-term enrichment analysis found that lots of genes in H559-specific modules were involved in plant resistance to abiotic stress. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that pathways such as plant hormone signal transduction, MAPK signaling, and plant–pathogen interaction were related to chilling stress response. A total of 574 transcription factors and 936 hub genes in these modules were identified. Twenty hub genes were selected for qRT-PCR verification, revealing the reliability and accuracy of transcriptome data. These findings will lay a foundation for future research on the molecular mechanism of cold tolerance in cotyledons of cotton.
Collapse
|
33
|
Kong W, Zhang C, Qiang Y, Zhong H, Zhao G, Li Y. Integrated RNA-Seq Analysis and Meta-QTLs Mapping Provide Insights into Cold Stress Response in Rice Seedling Roots. Int J Mol Sci 2020; 21:ijms21134615. [PMID: 32610550 PMCID: PMC7369714 DOI: 10.3390/ijms21134615] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/24/2020] [Accepted: 06/26/2020] [Indexed: 12/20/2022] Open
Abstract
Rice (Oryza sativa L.) is a widely cultivated food crop around the world, especially in Asia. However, rice seedlings often suffer from cold stress, which affects their growth and yield. Here, RNA-seq analysis and Meta-QTLs mapping were performed to understand the molecular mechanisms underlying cold tolerance in the roots of 14-day-old seedlings of rice (RPY geng, cold-tolerant genotype). A total of 4779 of the differentially expressed genes (DEGs) were identified, including 2457 up-regulated and 2322 down-regulated DEGs. The GO, COG, KEEG, and Mapman enrichment results of DEGs revealed that DEGs are mainly involved in carbohydrate transport and metabolism, signal transduction mechanisms (plant hormone signal transduction), biosynthesis, transport and catabolism of secondary metabolites (phenylpropanoid biosynthesis), defense mechanisms, and large enzyme families mechanisms. Notably, the AP2/ERF-ERF, NAC, WRKY, MYB, C2H2, and bHLH transcription factors participated in rice’s cold–stress response and tolerance. On the other hand, we mapped the identified DEGs to 44 published cold–stress-related genes and 41 cold-tolerant Meta-QTLs regions. Of them, 12 DEGs were the published cold–stress-related genes and 418 DEGs fell into the cold-tolerant Meta-QTLs regions. In this study, the identified DEGs and the putative molecular regulatory network can provide insights for understanding the mechanism of cold stress tolerance in rice. In addition, DEGs in KEGG term-enriched terms or cold-tolerant Meta-QTLs will help to secure key candidate genes for further functional studies on the molecular mechanism of cold stress response in rice.
Collapse
|
34
|
Dasgupta P, Das A, Datta S, Banerjee I, Tripathy S, Chaudhuri S. Understanding the early cold response mechanism in IR64 indica rice variety through comparative transcriptome analysis. BMC Genomics 2020; 21:425. [PMID: 32580699 PMCID: PMC7315535 DOI: 10.1186/s12864-020-06841-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 06/16/2020] [Indexed: 11/10/2022] Open
Abstract
Background Cellular reprogramming in response to environmental stress involves alteration of gene expression, changes in the protein and metabolite profile for ensuring better stress management in plants. Similar to other plant species originating in tropical and sub-tropical areas, indica rice is highly sensitive to low temperature that adversely affects its growth and grain productivity. Substantial work has been done to understand cold induced changes in gene expression in rice plants. However, adequate information is not available for early gene expression, especially in indica variety. Therefore, a transcriptome profile was generated for cold shock treated seedlings of IR64 variety to identify early responsive genes. Results The functional annotation of early DEGs shows enrichment of genes involved in altered membrane rigidity and electrolytic leakage, the onset of calcium signaling, ROS generation and activation of stress responsive transcription factors in IR64. Gene regulatory network suggests that cold shock induced Ca2+ signaling activates DREB/CBF pathway and other groups of transcription factors such as MYB, NAC and ZFP; for activating various cold-responsive genes. The analysis also indicates that cold induced signaling proteins like RLKs, RLCKs, CDPKs and MAPKK and ROS signaling proteins. Further, several late-embryogenesis-abundant (LEA), dehydrins and low temperature-induced-genes were upregulated under early cold shock condition, indicating the onset of water-deficit conditions. Expression profiling in different high yielding cultivars shows high expression of cold-responsive genes in Heera and CB1 indica varieties. These varieties show low levels of cold induced ROS production, electrolytic leakage and high germination rate post-cold stress, compared to IR36 and IR64. Collectively, these results suggest that these varieties may have improved adaptability to cold stress. Conclusions The results of this study provide insights about early responsive events in Oryza sativa l.ssp. indica cv IR64 in response to cold stress. Our data shows the onset of cold response is associated with upregulation of stress responsive TFs, hydrophilic proteins and signaling molecules, whereas, the genes coding for cellular biosynthetic enzymes, cell cycle control and growth-related TFs are downregulated. This study reports that the generation of ROS is integral to the early response to trigger the ROS mediated signaling events during later stages.
Collapse
Affiliation(s)
- Pratiti Dasgupta
- Division of Plant Biology, Bose Institute, P1/12 CIT Scheme VII M, Kolkata, 700054, India
| | - Abhishek Das
- Structural Biology & Bioinformatics Division, CSIR- Indian Institute of Chemical Biology, Kolkata, 700032, India
| | - Sambit Datta
- Division of Plant Biology, Bose Institute, P1/12 CIT Scheme VII M, Kolkata, 700054, India
| | - Ishani Banerjee
- Division of Plant Biology, Bose Institute, P1/12 CIT Scheme VII M, Kolkata, 700054, India
| | - Sucheta Tripathy
- Structural Biology & Bioinformatics Division, CSIR- Indian Institute of Chemical Biology, Kolkata, 700032, India
| | - Shubho Chaudhuri
- Division of Plant Biology, Bose Institute, P1/12 CIT Scheme VII M, Kolkata, 700054, India.
| |
Collapse
|
35
|
Jiang C, Zhang H, Ren J, Dong J, Zhao X, Wang X, Wang J, Zhong C, Zhao S, Liu X, Gao S, Yu H. Comparative Transcriptome-Based Mining and Expression Profiling of Transcription Factors Related to Cold Tolerance in Peanut. Int J Mol Sci 2020; 21:ijms21061921. [PMID: 32168930 PMCID: PMC7139623 DOI: 10.3390/ijms21061921] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/03/2020] [Accepted: 03/05/2020] [Indexed: 01/22/2023] Open
Abstract
Plants tolerate cold stress by regulating gene networks controlling cellular and physiological traits to modify growth and development. Transcription factor (TF)-directed regulation of transcription within these gene networks is key to eliciting appropriate responses. Identifying TFs related to cold tolerance contributes to cold-tolerant crop breeding. In this study, a comparative transcriptome analysis was carried out to investigate global gene expression of entire TFs in two peanut varieties with different cold-tolerant abilities. A total of 87 TF families including 2328 TF genes were identified. Among them, 445 TF genes were significantly differentially expressed in two peanut varieties under cold stress. The TF families represented by the largest numbers of differentially expressed members were bHLH (basic helix—loop—helix protein), C2H2 (Cys2/His2 zinc finger protein), ERF (ethylene-responsive factor), MYB (v-myb avian myeloblastosis viral oncogene homolog), NAC (NAM, ATAF1/2, CUC2) and WRKY TFs. Phylogenetic evolutionary analysis, temporal expression profiling, protein–protein interaction (PPI) network, and functional enrichment of differentially expressed TFs revealed the importance of plant hormone signal transduction and plant-pathogen interaction pathways and their possible mechanism in peanut cold tolerance. This study contributes to a better understanding of the complex mechanism of TFs in response to cold stress in peanut and provides valuable resources for the investigation of evolutionary history and biological functions of peanut TFs genes involved in cold tolerance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Haiqiu Yu
- Correspondence: ; Tel.: +86-136-7420-1361
| |
Collapse
|
36
|
Han B, Ma X, Cui D, Wang Y, Geng L, Cao G, Zhang H, Han L. Comprehensive Evaluation and Analysis of the Mechanism of Cold Tolerance Based on the Transcriptome of Weedy Rice Seedlings. RICE (NEW YORK, N.Y.) 2020; 13:12. [PMID: 32056019 PMCID: PMC7018935 DOI: 10.1186/s12284-019-0363-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 12/20/2019] [Indexed: 06/10/2023]
Abstract
In this study, the cold-tolerance capacity of 133 varieties of weedy rice was evaluated based on the comprehensive evaluation index D, with Kongyu 131 used as a cold-tolerant control. A total of 39.8% of the 133 varieties were considered 'strong', indicating that weedy rice populations indeed have relatively strong cold-tolerance capacity as a whole, and the robust cold-tolerant varieties WR29 and WR157 were identified. Regression analysis showed that the metrics including the nitrogen recovery index, superoxide dismutase (SOD) content and malondialdehyde (MDA) content correlated significantly (P < 0.05) with cold tolerance and could be used as indicators of cold tolerance. On the basis of a transcriptome analysis of WR157, a robust cold-tolerant variety identified in this study, a total of 4645 putative DEGs were identified in treated groups compared to the control groups, with 2123 upregulated DEGs and 2522 downregulated DEGs. All upregulated DEGs were enriched on 1388 terms, all downregulated DEGs were enriched on 1566 terms; 911 of the 2123 upregulated DEGs fell into 98 KEGG categories and 1103 of the 2522 downregulated DEGs were in 115 categories. Further analysis showed that GO:0019740 and GO:0006808 are involved in nitrogen utilization; GO:0009269 and GO:0009414 are related to the stress response; and GO:0016491 and GO:0016614 are related to oxidoreductase activity. BACKGROUND: Weedy rice (Oryza) is a related pest species of cultivated rice (Oryza sativa L.) that has strong abiotic stress resistance; however, the comprehensive mechanism governing its cold tolerance is poorly understood. CONCLUSION: Our comprehensive evaluation based on five morphological indices and nine physiological indicators revealed outstanding levels of cold-tolerance capacity among weedy rice varieties from different regions and revealed some terms related to cold tolerance via transcriptome analysis. Our results underscored the reliable evaluation methods for additional cold tolerance studies and revealed several genes related to cold tolerance, which will help researchers breed cultivated rice varieties to increase their cold-tolerance capacity. These traits have the ability to increase seedling survival rate and growth, as well as future yields.
Collapse
Affiliation(s)
- Bing Han
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Xiaoding Ma
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Di Cui
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Yanjie Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Leiyue Geng
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
- Coastal Agriculture Institute, Hebei Academy of Agricultural and Forestry Sciences, Tangshan, 063299 China
| | - Guilan Cao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Hui Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Longzhi Han
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| |
Collapse
|
37
|
Li H, Gao W, Xue C, Zhang Y, Liu Z, Zhang Y, Meng X, Liu M, Zhao J. Genome-wide analysis of the bHLH gene family in Chinese jujube (Ziziphus jujuba Mill.) and wild jujube. BMC Genomics 2019; 20:568. [PMID: 31291886 PMCID: PMC6617894 DOI: 10.1186/s12864-019-5936-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 06/26/2019] [Indexed: 12/24/2022] Open
Abstract
Background The bHLH (basic helix-loop-helix) transcription factor is one of the largest families of transcription factors in plants, containing a large number of members with diverse functions. Chinese jujube (Ziziphus jujuba Mill.) is the species with the highest economic value in the family Rhamnaceae. However, the characteristics of the bHLH family in the jujube genome are still unclear. Hence, ZjbHLHs were first searched at a genome-wide level, their expression levels under various conditions were investigated systematically, and their protein-protein interaction networks were predicted. Results We identified 92 ZjbHLHs in the jujube genome, and these genes were classified into 16 classes according to bHLH domains. Ten ZjbHLHs with atypical bHLH domains were found. Seventy ZjbHLHs were mapped to but not evenly distributed on 12 pseudo- chromosomes. The domain sequences among ZjbHLHs were highly conserved, and their conserved residues were also identified. The tissue-specific expression of 37 ZjbHLH genes in jujube and wild jujube showed diverse patterns, revealing that these genes likely perform multiple functions. Many ZjbHLH genes were screened and found to be involved in flower and fruit development, especially in earlier developmental stages. A few genes responsive to phytoplasma invasion were also verified. Based on protein-protein interaction prediction and homology comparison, protein-protein interaction networks composed of 92 ZjbHLHs were also established. Conclusions This study provides a comprehensive bioinformatics analysis of 92 identified ZjbHLH genes. We explored their expression patterns in various tissues, the flowering process, and fruit ripening and under phytoplasma stress. The protein-protein interaction networks of ZjbHLHs provide valuable clues toward further studies of their biological functions. Electronic supplementary material The online version of this article (10.1186/s12864-019-5936-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hongtai Li
- College of Life Science, Hebei Agricultural University, Baoding, China.,Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, China
| | - Weilin Gao
- College of Life Science, Hebei Agricultural University, Baoding, China.,Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, China
| | - Chaoling Xue
- College of Life Science, Hebei Agricultural University, Baoding, China.,Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, China
| | - Yao Zhang
- College of Life Science, Hebei Agricultural University, Baoding, China.,Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, China
| | - Zhiguo Liu
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, China
| | - Yu Zhang
- College of Forestry, Hebei Agricultural University, Baoding, China
| | - Xianwei Meng
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, China
| | - Mengjun Liu
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, China
| | - Jin Zhao
- College of Life Science, Hebei Agricultural University, Baoding, China. .,Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, China.
| |
Collapse
|