1
|
Jia C, Shi Y, Wang H, Zhang Y, Luo F, Li Z, Tian Y, Lu X, Pei Z. Genome-wide identification and expression analysis of SMALL AUXIN UP RNA ( SAUR) genes in rice ( Oryza sativa). PLANT SIGNALING & BEHAVIOR 2024; 19:2391658. [PMID: 39148317 PMCID: PMC11328882 DOI: 10.1080/15592324.2024.2391658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/11/2023] [Accepted: 11/16/2023] [Indexed: 08/17/2024]
Abstract
SMALL AUXIN UP RNAs (SAURs), the largest family of early auxin response genes, plays crucial roles in multiple processes, including cell expansion, leaf growth and senescence, auxin transport, tropic growth and so on. Although the rice SAUR gene family was identified in 2006, it is necessary to identify the rice SAUR gene due to the imperfection of its analysis methods. In this study, a total of 60 OsSAURs (including two pseudogenes) distributed on 10 chromosomes were identified in rice (Oryza sativa). Bioinformatics tools were used to systematically analyze the physicochemical properties, subcellular localization, motif compositions, chromosomal location, gene duplication, evolutionary relationships, auxin-responsive cis-elements of the OsSAURs. In addition, the expression profiles obtained from microarray data analysis showed that OsSAUR genes had different expression patterns in different tissues and responded to auxin treatment, indicating functional differences among members of OsSAUR gene family. In a word, this study provides basic information for SAUR gene family of rice and lays a foundation for further study on the role of SAUR in rice growth and development.
Collapse
Affiliation(s)
- Chenhao Jia
- Tianjin Key Laboratory of Intelligent Breeding of Major Crops, College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin, China
| | - Yujiao Shi
- Tianjin Key Laboratory of Intelligent Breeding of Major Crops, College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin, China
| | - Hao Wang
- Tianjin Key Laboratory of Intelligent Breeding of Major Crops, College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin, China
| | - Yaofang Zhang
- College of Basic Sciences, Tianjin Agricultural University, Tianjin, China
| | - Feng Luo
- Tianjin Key Laboratory of Intelligent Breeding of Major Crops, College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin, China
| | - Zhibin Li
- Tianjin Key Laboratory of Intelligent Breeding of Major Crops, College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin, China
| | - Yubing Tian
- Tianjin Key Laboratory of Intelligent Breeding of Major Crops, College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin, China
| | - Xiangrui Lu
- Tianjin Key Laboratory of Intelligent Breeding of Major Crops, College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin, China
| | - Zhongyou Pei
- Tianjin Key Laboratory of Intelligent Breeding of Major Crops, College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin, China
| |
Collapse
|
2
|
Jiang Y, Guo S, Wang D, Tu L, Liu P, Guo X, Wang A, Zhu Y, Lu X, Chen Z, Wu X. Integrated GWAS, linkage, and transcriptome analysis to identify genetic loci and candidate genes for photoperiod sensitivity in maize. FRONTIERS IN PLANT SCIENCE 2024; 15:1441288. [PMID: 39351024 PMCID: PMC11440433 DOI: 10.3389/fpls.2024.1441288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/12/2024] [Indexed: 10/04/2024]
Abstract
Introduction Maize photosensitivity and the control of flowering not only are important for reproduction, but also play pivotal roles in the processes of domestication and environmental adaptation, especially involving the utilization strategy of tropical maize in high-latitude regions. Methods In this study, we used a linkage mapping population and an inbred association panel with the photoperiod sensitivity index (PSI) phenotyped under different environments and performed transcriptome analysis of T32 and QR273 between long-day and short-day conditions. Results The results showed that PSIs of days to tasseling (DTT), days to pollen shedding (DTP), and days to silking (DTS) indicated efficacious interactions with photoperiod sensitivity for maize latitude adaptation. A total of 48 quantitative trait loci (QTLs) and 252 quantitative trait nucleotides (QTNs) were detected using the linkage population and the inbred association panel. Thirteen candidate genes were identified by combining the genome-wide association study (GWAS) approach, linkage analysis, and transcriptome analysis, wherein five critical candidate genes, MYB163, bif1, burp8, CADR3, and Zm00001d050238, were significantly associated with photoperiod sensitivity. Discussion These results would provide much more abundant theoretical proofs to reveal the genetic basis of photoperiod sensitivity, which would be helpful to understand the genetic changes during domestication and improvement and contribute to reducing the barriers to use of tropical germplasm.
Collapse
Affiliation(s)
- Yulin Jiang
- Institute of Upland Food Crops, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of Crop Genetic Resources and Germplasm Innovation in Karst Region, Guiyang, China
| | - Shuang Guo
- Institute of Upland Food Crops, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
- College of Agriculture, Guizhou University, Guiyang, China
| | - Dong Wang
- Institute of Upland Food Crops, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
- College of Agriculture, Guizhou University, Guiyang, China
| | - Liang Tu
- Institute of Upland Food Crops, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
| | - Pengfei Liu
- Institute of Upland Food Crops, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
| | - Xiangyang Guo
- Institute of Upland Food Crops, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
| | - Angui Wang
- Institute of Upland Food Crops, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
| | - Yunfang Zhu
- Institute of Upland Food Crops, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
| | - Xuefeng Lu
- Institute of Upland Food Crops, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of Crop Genetic Resources and Germplasm Innovation in Karst Region, Guiyang, China
| | - Zehui Chen
- Institute of Upland Food Crops, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
| | - Xun Wu
- Institute of Upland Food Crops, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of Crop Genetic Resources and Germplasm Innovation in Karst Region, Guiyang, China
| |
Collapse
|
3
|
Cheng Y, Sun S, Lou H, Dong Y, He H, Mei Q, Liu J. The ectomycorrhizal fungus Scleroderma bovista improves growth of hazelnut seedlings and plays a role in auxin signaling and transport. Front Microbiol 2024; 15:1431120. [PMID: 39171259 PMCID: PMC11335501 DOI: 10.3389/fmicb.2024.1431120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024] Open
Abstract
Introduction Scleroderma bovista can form symbiotic ectomycorrhizal fungi with hazel roots. The mechanism through which S. bovista promotes hazelnut growth remains unclear. Methods This study aimed to evaluate the effect of ectomycorrhizal fungus S. bovista on the growth and development of hazel roots and gene expression changes through comparative transcriptome analysis. Results After inoculation with S. bovista, the fungus symbiotically formed ectomycorrhiza with hazel roots. The fresh weights of the aboveground and underground parts of My treatment (inoculated with S. bovista and formed mycorrhiza) were much higher than those of the control, respectively. The length, project area, surface area, volume, forks, and diameter of the inoculated seedlings root were 1.13 to 2.48 times higher than those of the control. In the paired comparison, 3,265 upregulated and 1,916 downregulated genes were identified. The most significantly enriched Gene Ontology term for the upregulated Differentially Expressed Genes was GO:0005215 (transporter activity). Immunohistochemical analysis suggested that the expression levels of auxin and Auxin Response Factor9 were significantly increased by S. bovista after the formation of mycorrhizal fungi in hazelnut root tips. Discussion These results indicate that genes related to auxin biosynthesis, transport and signaling, and transport of nutrients may contribute to root development regulation in hazel ectomycorrhiza.
Collapse
|
4
|
Wang W, Zheng Y, Qiu L, Yang D, Zhao Z, Gao Y, Meng R, Zhao H, Zhang S. Genome-wide identification of the SAUR gene family and screening for SmSAURs involved in root development in Salvia miltiorrhiza. PLANT CELL REPORTS 2024; 43:165. [PMID: 38861173 DOI: 10.1007/s00299-024-03260-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/05/2024] [Indexed: 06/12/2024]
Abstract
KEY MESSAGE SmSAUR4, SmSAUR18, SmSAUR28, SmSAUR37, and SmSAUR38 were probably involved in the auxin-mediated root development in Salvia miltiorrhiza. Salvia miltiorrhiza is a widely utilized medicinal plant in China. Its roots and rhizomes are the main medicinal portions and are closely related to the quality of this herb. Previous studies have revealed that auxin plays pivotal roles in S. miltiorrhiza root development. Whether small auxin-up RNA genes (SAURs), which are crucial early auxin response genes, are involved in auxin-mediated root development in S. miltiorrhiza is worthy of investigation. In this study, 55 SmSAUR genes in S. miltiorrhiza were identified, and their physical and chemical properties, gene structure, cis-acting elements, and evolutionary relationships were analyzed. The expression levels of SmSAUR genes in different organs of S. miltiorrhiza were detected using RNA-seq combined with qRT‒PCR. The root development of S. miltiorrhiza seedlings was altered by the application of indole-3-acetic acid (IAA), and Pearson correlation coefficient analysis was conducted to screen SmSAURs that potentially participate in this physiological process. The diameter of primary lateral roots was positively correlated with SmSAUR4. The secondary lateral root number was positively correlated with SmSAUR18 and negatively correlated with SmSAUR4. The root length showed a positive correlation with SmSAUR28 and SmSAUR37 and a negative correlation with SmSAUR38. The fresh root biomass exhibited a positive correlation with SmSAUR38 and a negative correlation with SmSAUR28. The aforementioned SmSAURs were likely involved in auxin-mediated root development in S. miltiorrhiza. Our study provides a comprehensive overview of SmSAURs and provides the groundwork for elucidating the molecular mechanism underlying root morphogenesis in this species.
Collapse
Affiliation(s)
- Wei Wang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Yuwei Zheng
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Lin Qiu
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Dongfeng Yang
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
| | - Ziyang Zhao
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Yuanyuan Gao
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Ru Meng
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Hongguang Zhao
- Shaanxi Tasly Plants Pharmaceutical Co., Ltd., Shangluo, 726000, Shaanxi, China
| | - Shuncang Zhang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
5
|
Chu NTB, Le MT, La HV, Le QTN, Le TD, Tran HTT, Tran LTM, Le CT, Nguyen DV, Cao PB, Chu HD. Genome-wide identification, characterization, and expression analysis of the small auxin-up RNA gene family during zygotic and somatic embryo maturation of the cacao tree (Theobroma cacao). Genomics Inform 2024; 22:2. [PMID: 38907330 PMCID: PMC11184954 DOI: 10.1186/s44342-024-00003-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/12/2023] [Indexed: 06/23/2024] Open
Abstract
Small auxin-up RNA (SAUR) proteins were known as a large family that supposedly participated in various biological processes in higher plant species. However, the SAUR family has been still not explored in cacao (Theobroma cacao L.), one of the most important industrial trees. The present work, as an in silico study, revealed comprehensive aspects of the structure, phylogeny, and expression of TcSAUR gene family in cacao. A total of 90 members of the TcSAUR gene family have been identified and annotated in the cacao genome. According to the physic-chemical features analysis, all TcSAUR proteins exhibited slightly similar characteristics. Phylogenetic analysis showed that these TcSAUR proteins could be categorized into seven distinct groups, with 10 sub-groups. Our results suggested that tandemly duplication events, segmental duplication events, and whole genome duplication events might be important in the growth of the TcSAUR gene family in cacao. By re-analyzing the available transcriptome databases, we found that a number of TcSAUR genes were exclusively expressed during the zygotic embryogenesis and somatic embryogenesis. Taken together, our study will be valuable to further functional characterizations of candidate TcSAUR genes for the genetic engineering of cacao.
Collapse
Affiliation(s)
- Ngoc Thi Bich Chu
- Faculty of Natural Sciences, Hung Vuong University, Viet Tri City, Phu Tho Province, 35000, Vietnam
| | - Man Thi Le
- Faculty of Natural Sciences, Hung Vuong University, Viet Tri City, Phu Tho Province, 35000, Vietnam
| | - Hong Viet La
- Institute of Research and Application, Hanoi Pedagogical University 2, Phuc Yen City, Vinh Phuc Province, 280000, Vietnam
| | - Quynh Thi Ngoc Le
- Department of Biotechnology, Thuyloi University, Hanoi City, 116830, Vietnam
| | - Thao Duc Le
- Agricultural Genetics Institute, Vietnam Academy of Agricultural Sciences, Hanoi City, 143330, Vietnam
| | - Huyen Thi Thanh Tran
- Faculty of Biology, Hanoi National University of Education, Xuan Thuy Road, Cau Giay District, Hanoi City, 122300, Vietnam
| | - Lan Thi Mai Tran
- Faculty of Natural Sciences, Hung Vuong University, Viet Tri City, Phu Tho Province, 35000, Vietnam
| | - Chi Toan Le
- Faculty of Biology and Agricultural Engineering, Hanoi Pedagogical University 2, Phuc Yen City, Vinh Phuc Province, 280000, Vietnam
| | - Dung Viet Nguyen
- Faculty of Natural Sciences, Hung Vuong University, Viet Tri City, Phu Tho Province, 35000, Vietnam
- Thanh Thuy Junior High School, Thanh Thuy District, Phu Tho Province, 35850, Vietnam
| | - Phi Bang Cao
- Faculty of Natural Sciences, Hung Vuong University, Viet Tri City, Phu Tho Province, 35000, Vietnam.
| | - Ha Duc Chu
- Faculty of Agricultural Technology, University of Engineering and Technology, Vietnam National University Hanoi, Xuan Thuy Road, Cau Giay District, Hanoi City, 122300, Vietnam.
| |
Collapse
|
6
|
Liu Y, Ma X, Mao F, Qiu J, Bi J, Li X, Gu X, Zheng Y, Zhao Y. HMGR and CHS gene cloning, characterizations and tissue-specific expressions in Polygala tenuifolia Willd. PLoS One 2024; 19:e0300895. [PMID: 38527035 PMCID: PMC10962832 DOI: 10.1371/journal.pone.0300895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 03/03/2024] [Indexed: 03/27/2024] Open
Abstract
Triterpenoid saponins and flavonoids have several pharmacological activities against P. tenuifolia. The 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) and chalcone synthase (CHS) are the rate-limiting enzymes of triterpenoid saponin and flavonoid biosynthesis, respectively. In this study, HMGR and CHS genes were cloned from P. tenuifolia, and their bioinformatics analyses and tissue-specific expression were investigated. The results showed that the HMGR and CHS genes were successfully cloned, separately named the PtHMGR gene (NCBI accession: MK424118) and PtCHS gene (NCBI accession: MK424117). The PtHMGR gene is 2323 bp long, has an open reading frame (ORF) of 1782 bp, and encods 593 amino acids. The PtCHS gene is 1633 bp long with an ORF of 1170 bp, encoding 389 amino acids. PtHMGR and PtCHS were both hydrophobic, not signal peptides or secreted proteins, containing 10 conserved motifs. PtHMGR and PtCHS separately showed high homology with HMGR and CHS proteins from other species, and their secondary structures mainly included α-helix and random curl. The tertiary structure of PtHMGR was highly similarity to that the template 7ULI in RCSB PDB with 92.0% coverage rate. The HMG-CoA-binding domain of PtHMGR is located at 173-572 amino acid residues, including five bound sites. The tertiary structure of PtCHS showed high consistency with the template 1I86 in RCSB PDB with 100% coverage rate, contained malonyl CoA and 4-coumaroyl-CoA linkers. The expression of PtHMGR and PtCHS is tissue-specific. PtHMGR transcripts were mainly accumulated in roots, followed by leaves, and least in stems, and were significantly positively correlated with the contents of total saponin and tenuifolin. PtCHS was highly expressed in the stems, followed by the leaves, with low expression in the roots. PtCHS transcripts showed a significant positive correlation with total flavonoids content, however, they were significantly negatively correlated with the content of polygalaxanthone III (a type of flavonoids). This study provided insight for further revealing the roles of PtHMGR and PtCHS.
Collapse
Affiliation(s)
- Yang Liu
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province, China
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang, Hebei Province, China
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Shijiazhuang, Hebei Province, China
| | - Xiaofang Ma
- Yinchuan Women and Children Health Care Hospital, Yinchuan, Ningxia, China
| | - Fuying Mao
- Experimental Center, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province, China
| | - Jinmiao Qiu
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province, China
| | - Jingyi Bi
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province, China
| | - Xiaowei Li
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province, China
| | - Xian Gu
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province, China
| | - Yuguang Zheng
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang, Hebei Province, China
- Hebei Chemical and Pharmaceutical College, Shijiazhuang, Hebei Province, China
| | - Yunsheng Zhao
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province, China
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang, Hebei Province, China
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Shijiazhuang, Hebei Province, China
| |
Collapse
|
7
|
Hamid R, Jacob F, Ghorbanzadeh Z, Jafari L, Alishah O. Dynamic roles of small RNAs and DNA methylation associated with heterosis in allotetraploid cotton (Gossypium hirsutum L.). BMC PLANT BIOLOGY 2023; 23:488. [PMID: 37828433 PMCID: PMC10571366 DOI: 10.1186/s12870-023-04495-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/28/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND Heterosis is a complex phenomenon wherein the hybrids outperform their parents. Understanding the underlying molecular mechanism by which hybridization leads to higher yields in allopolyploid cotton is critical for effective breeding programs. Here, we integrated DNA methylation, transcriptomes, and small RNA profiles to comprehend the genetic and molecular basis of heterosis in allopolyploid cotton at three developmental stages. RESULTS Transcriptome analysis revealed that numerous DEGs responsive to phytohormones (auxin and salicylic acid) were drastically altered in F1 hybrid compared to the parental lines. DEGs involved in energy metabolism and plant growth were upregulated, whereas DEGs related to basal defense were downregulated. Differences in homoeologous gene expression in F1 hybrid were greatly reduced after hybridization, suggesting that higher levels of parental expression have a vital role in heterosis. Small RNAome and methylome studies showed that the degree of DNA methylation in hybrid is higher when compared to the parents. A substantial number of allele-specific expression genes were found to be strongly regulated by CG allele-specific methylation levels. The hybrid exhibited higher 24-nt-small RNA (siRNA) expression levels than the parents. The regions in the genome with increased levels of 24-nt-siRNA were chiefly related to genes and their flanking regulatory regions, demonstrating a possible effect of these molecules on gene expression. The transposable elements correlated with siRNA clusters in the F1 hybrid had higher methylation levels but lower expression levels, which suggest that these non-additively expressed siRNA clusters, reduced the activity of transposable elements through DNA methylation in the hybrid. CONCLUSIONS These multi-omics data provide insights into how changes in epigenetic mechanisms and gene expression patterns can lead to heterosis in allopolyploid cotton. This makes heterosis a viable tool in cotton breeding.
Collapse
Affiliation(s)
- Rasmieh Hamid
- Department of Plant Breeding, Cotton Research Institute of Iran (CRII), Agricultural Research, Education and Extension Organization (AREEO), Gorgan, Iran.
| | - Feba Jacob
- Centre for Plant Biotechnology and Molecular Biology, Kerala Agricultural University, Thrissur, India
| | - Zahra Ghorbanzadeh
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Leila Jafari
- Horticultural Science Department, Faculty of Agriculture and Natural Resources, University of Hormozgan, Bandar Abbas, Iran
- Research Group of Agroecology in Dryland Areas, University of Hormozgan, Bandar Abbas, Iran
| | - Omran Alishah
- Department of Plant Breeding, Cotton Research Institute of Iran (CRII), Agricultural Research, Education and Extension Organization (AREEO), Gorgan, Iran
| |
Collapse
|
8
|
Kong Y, Wang G, Tang H, Yang J, Yang Y, Wang J, Li G, Li Y, Yuan J. Multi-omics analysis provides insight into the phytotoxicity of chicken manure and cornstalk on seed germination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160611. [PMID: 36460104 DOI: 10.1016/j.scitotenv.2022.160611] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/21/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
To minimize environmental risks and the phytotoxic influence of organic materials on crop growth, it is necessary to test their phytotoxicity and maturity when they were used in farmland. However, the stress response of seed germination to chicken manure and cornstalks is not clear. This study used multi-omics analysis to investigate the inhibition mechanism of seed germination by chicken manure and cornstalk. Chicken manure caused destructive inhibition of seed germination with higher phytotoxicity (GI = 0). Cornstalk also had a low GI (8.81 %), while it mainly inhibited radicle growth (RL = 9.39 %) rather than seed germination (GR = 93.33 %). The response of radish seed germination to chicken manure and cornstalk phytotoxic stresses was accompanied by metabolic adjustments of storage substance accumulation, antioxidant enzyme activity change, phytohormone induction, and expression of specific proteins and gene regulation. Combined transcriptomic and proteomic analysis revealed that differential expression of 13,090 (5944 upregulated/7146 downregulated) and 3850 (2389 upregulated/1461 downregulated) genes (DEGs), and 1041 (82 upregulated/932 downregulated) and 575 (111 upregulated/464 downregulated) proteins (DEPs) at chicken manure and cornstalk treatment, respectively. Most down-regulated genes and proteins were involved in phenylpropanoid biosynthesis under chicken manure stress, which caused irreversible inhibition of seed germination. Down-regulation of phytohormone signal transduction-related genes under cornstalk stress resulted in inhibition of radicle growth, but the inhibitory stress was restorable. These findings provide new insight into the phytotoxicity of livestock manure and cornstalk on seed germination.
Collapse
Affiliation(s)
- Yilin Kong
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Guoying Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Huan Tang
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jia Yang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Yan Yang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Jiani Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Yun Li
- College of Resources and Environmental Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Jing Yuan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China.
| |
Collapse
|
9
|
Ma X, Dai S, Qin N, Zhu C, Qin J, Li J. Genome-wide identification and expression analysis of the SAUR gene family in foxtail millet (Setaria italica L.). BMC PLANT BIOLOGY 2023; 23:31. [PMID: 36639742 PMCID: PMC9840322 DOI: 10.1186/s12870-023-04055-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Auxin performs important functions in plant growth and development processes, as well as abiotic stress. Small auxin-up RNA (SAUR) is the largest gene family of auxin-responsive factors. However, the knowledge of the SAUR gene family in foxtail millet is largely obscure. RESULTS In the current study, 72 SiSAUR genes were identified and renamed according to their chromosomal distribution in the foxtail millet genome. These SiSAUR genes were unevenly distributed on nine chromosomes and were classified into three groups through phylogenetic tree analysis. Most of the SiSAUR members from the same group showed similar gene structure and motif composition characteristics. Analysis of cis-acting elements showed that many hormone and stress response elements were identified in the promoter region of SiSAURs. Gene replication analysis revealed that many SiSAUR genes were derived from gene duplication events. We also found that the expression of 10 SiSAURs was induced by abiotic stress and exogenous hormones, which indicated that SiSAUR genes may participated in complex physiological processes. CONCLUSIONS Overall, these results will be valuable for further studies on the biological role of SAUR genes in foxtail development and response to stress conditions and may shed light on the improvement of the genetic breeding of foxtail millet.
Collapse
Affiliation(s)
- Xiaoqian Ma
- College of Agriculture, Henan University of Science and Technology, Luoyang, 471000, Henan, People's Republic of China
| | - Shutao Dai
- Henan Academy of Agriculture Sciences, Cereal Crops Institute, Zhengzhou, 450002, Henan, People's Republic of China
| | - Na Qin
- Henan Academy of Agriculture Sciences, Cereal Crops Institute, Zhengzhou, 450002, Henan, People's Republic of China
| | - Cancan Zhu
- Henan Academy of Agriculture Sciences, Cereal Crops Institute, Zhengzhou, 450002, Henan, People's Republic of China
| | - Jiafan Qin
- Luoyang Academy of Agriculture and Forestry Sciences, Sweet Potato and Millet Institute, , Luoyang, 471023, Henan, People's Republic of China
| | - Junxia Li
- Henan Academy of Agriculture Sciences, Cereal Crops Institute, Zhengzhou, 450002, Henan, People's Republic of China.
| |
Collapse
|
10
|
Peng Z, Li W, Gan X, Zhao C, Paudel D, Su W, Lv J, Lin S, Liu Z, Yang X. Genome-Wide Analysis of SAUR Gene Family Identifies a Candidate Associated with Fruit Size in Loquat ( Eriobotrya japonica Lindl.). Int J Mol Sci 2022; 23:13271. [PMID: 36362065 PMCID: PMC9659022 DOI: 10.3390/ijms232113271] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 09/28/2023] Open
Abstract
Fruit size is an important fruit quality trait that influences the production and commodity values of loquats (Eriobotrya japonica Lindl.). The Small Auxin Upregulated RNA (SAUR) gene family has proven to play a vital role in the fruit development of many plant species. However, it has not been comprehensively studied in a genome-wide manner in loquats, and its role in regulating fruit size remains unknown. In this study, we identified 95 EjSAUR genes in the loquat genome. Tandem duplication and segmental duplication contributed to the expansion of this gene family in loquats. Phylogenetic analysis grouped the SAURs from Arabidopsis, rice, and loquat into nine clusters. By analyzing the transcriptome profiles in different tissues and at different fruit developmental stages and comparing two sister lines with contrasting fruit sizes, as well as by functional predictions, a candidate gene (EjSAUR22) highly expressed in expanding fruits was selected for further functional investigation. A combination of Indoleacetic acid (IAA) treatment and virus-induced gene silencing revealed that EjSAUR22 was not only responsive to auxin, but also played a role in regulating cell size and fruit expansion. The findings from our study provide a solid foundation for understanding the molecular mechanisms controlling fruit size in loquats, and also provide potential targets for manipulation of fruit size to accelerate loquat breeding.
Collapse
Affiliation(s)
- Ze Peng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Innovation and Utilization of Horticultural Crop Resources in South China, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Wenxiang Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Innovation and Utilization of Horticultural Crop Resources in South China, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoqing Gan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Innovation and Utilization of Horticultural Crop Resources in South China, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Chongbin Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Innovation and Utilization of Horticultural Crop Resources in South China, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Dev Paudel
- Department of Environmental Horticulture, Gulf Coast Research and Education Center, IFAS, University of Florida, Wimauma, FL 33598, USA
| | - Wenbing Su
- Fruit Research Institute, Fujian Academy of Agricultural Science, Fuzhou 350013, China
| | - Juan Lv
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Shunquan Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Innovation and Utilization of Horticultural Crop Resources in South China, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Zongli Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Innovation and Utilization of Horticultural Crop Resources in South China, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Xianghui Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Innovation and Utilization of Horticultural Crop Resources in South China, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
11
|
Lv W, He X, Guo H, Lan H, Jiao Y, Li L, Lian Y, Wang Z, Xin Z, Ren Y, Lin T. Genome-Wide Identification of TaSAUR Gene Family Members in Hexaploid Wheat and Functional Characterization of TaSAUR66-5B in Improving Nitrogen Use Efficiency. Int J Mol Sci 2022; 23:ijms23147574. [PMID: 35886923 PMCID: PMC9319360 DOI: 10.3390/ijms23147574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/16/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022] Open
Abstract
Excessive input of nitrogen fertilizer not only causes a great waste of resources but brings about a series of ecological and environmental problems. Although Small Auxin Up-regulated RNAs (SAURs) participate in diverse biological processes, the function of SAURs in the nitrogen starvation response has not been well-studied. Here, we identified 308 TaSAURs in wheat and divided them into 10 subfamilies. The promoter regions of most TaSAURs contain hormone responsive elements, and their expression levels change under the treatment of different hormones, such as IAA, MeJA, and ABA. Interestingly, overexpression of one of the TaSAUR family members, a nitrogen starvation responsive gene, TaSAUR66-5B, can promote the growth of Arabidopsis and wheat roots. In addition, overexpression of TaSAUR66-5B in Arabidopsis up-regulates the expression levels of auxin biosynthesis related genes, suggesting that overexpression TaSAUR66-5B may promote root growth by increasing the biosynthesis of auxin. Furthermore, overexpression of TaSAUR66-5B in wheat can increase the biomass and grain yields of transgenic plants, as well as the nitrogen concentration and accumulation of both shoots and grains, especially under low nitrogen conditions. This study provides important genomic information of the TaSAUR gene family and lays a foundation for elucidating the functions of TaSAURs in improving nitrogen utilization efficiency in wheat.
Collapse
Affiliation(s)
- Weizeng Lv
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China; (W.L.); (H.G.); (H.L.); (Y.J.); (L.L.); (Y.L.); (Z.W.); (Z.X.)
| | - Xue He
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China;
| | - Haojuan Guo
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China; (W.L.); (H.G.); (H.L.); (Y.J.); (L.L.); (Y.L.); (Z.W.); (Z.X.)
| | - Haibin Lan
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China; (W.L.); (H.G.); (H.L.); (Y.J.); (L.L.); (Y.L.); (Z.W.); (Z.X.)
| | - Yanqing Jiao
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China; (W.L.); (H.G.); (H.L.); (Y.J.); (L.L.); (Y.L.); (Z.W.); (Z.X.)
| | - Le Li
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China; (W.L.); (H.G.); (H.L.); (Y.J.); (L.L.); (Y.L.); (Z.W.); (Z.X.)
| | - Yanhao Lian
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China; (W.L.); (H.G.); (H.L.); (Y.J.); (L.L.); (Y.L.); (Z.W.); (Z.X.)
| | - Zhiqiang Wang
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China; (W.L.); (H.G.); (H.L.); (Y.J.); (L.L.); (Y.L.); (Z.W.); (Z.X.)
| | - Zeyu Xin
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China; (W.L.); (H.G.); (H.L.); (Y.J.); (L.L.); (Y.L.); (Z.W.); (Z.X.)
| | - Yongzhe Ren
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China; (W.L.); (H.G.); (H.L.); (Y.J.); (L.L.); (Y.L.); (Z.W.); (Z.X.)
- Correspondence: (Y.R.); (T.L.)
| | - Tongbao Lin
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China; (W.L.); (H.G.); (H.L.); (Y.J.); (L.L.); (Y.L.); (Z.W.); (Z.X.)
- Correspondence: (Y.R.); (T.L.)
| |
Collapse
|
12
|
Comparative Genomic Analysis of SAUR Gene Family, Cloning and Functional Characterization of Two Genes (PbrSAUR13 and PbrSAUR52) in Pyrus bretschneideri. Int J Mol Sci 2022; 23:ijms23137054. [PMID: 35806062 PMCID: PMC9266570 DOI: 10.3390/ijms23137054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 11/17/2022] Open
Abstract
The SAUR (small auxin-up RNA) gene family is the biggest family of early auxin response genes in higher plants and has been associated with the control of a variety of biological processes. Although SAUR genes had been identified in several genomes, no systematic analysis of the SAUR gene family has been reported in Chinese white pear. In this study, comparative and systematic genomic analysis has been performed in the SAUR gene family and identified a total of 116 genes from the Chinese white pear. A phylogeny analysis revealed that the SAUR family could be classified into four groups. Further analysis of gene structure (introns/exons) and conserved motifs showed that they are diverse functions and SAUR-specific domains. The most frequent mechanisms are whole-genome duplication (WGD) and dispersed duplication (DSD), both of which may be important in the growth of the SAUR gene family in Chinese white pear. Moreover, cis-acting elements of the PbrSAUR genes were found in promoter regions associated with the auxin-responsive elements that existed in most of the upstream sequences. Remarkably, the qRT-PCR and transcriptomic data indicated that PbrSAUR13 and PbrSAUR52 were significantly expressed in fruit ripening. Subsequently, subcellular localization experiments revealed that PbrSAUR13 and PbrSAUR52 were localized in the nucleus. Moreover, PbrSAUR13 and PbrSAUR52 were screened for functional verification, and Dangshan pear and frandi strawberry were transiently transformed. Finally, the effects of these two genes on stone cells and lignin were analyzed by phloroglucinol staining, Fourier infrared spectroscopy, and qRT-PCR. It was found that PbrSAUR13 promoted the synthesis and accumulation of stone cells and lignin, PbrSAUR52 inhibited the synthesis and accumulation of stone cells and lignin. In conclusion, these results indicate that PbrSAUR13 and PbrSAUR52 are predominantly responsible for lignin inhibit synthesis, which provides a basic mechanism for further study of PbrSAUR gene functions.
Collapse
|
13
|
PpSAUR43, an Auxin-Responsive Gene, Is Involved in the Post-Ripening and Softening of Peaches. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8050379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Auxin’s role in the post-ripening of peaches is widely recognized as important. However, little is known about the processes by which auxin regulates fruit post-ripening. As one of the early auxin-responsive genes, it is critical to understand the role of small auxin-up RNA (SAUR) genes in fruit post-ripening and softening. Herein, we identified 72 PpSAUR auxin-responsive factors in the peach genome and divided them into eight subfamilies based on phylogenetic analysis. Subsequently, the members related to peach post-ripening in the PpSAUR gene family were screened, and we targeted PpSAUR43. The expression of PpSAUR43 was decreased with fruit post-ripening in melting flesh (MF) fruit and was high in non-melting flesh (NMF) fruit. The overexpression of PpSAUR43 showed a slower rate of firmness decline, reduced ethylene production, and a delayed fruit post-ripening process. The MADS-box gene family plays an important regulatory role in fruit ripening. In this study, we showed with yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BIFC) experiments that PpSAUR43 can interact with the MADS-box transcription factor PpCMB1(PpMADS2), which indicates that PpSAUR43 may inhibit fruit ripening by suppressing the function of the PpCMB1 protein. Together, these results indicate that PpSAUR43 acts as a negative regulator involved in the peach post-ripening process.
Collapse
|
14
|
Liu Y, Xiao L, Chi J, Li R, Han Y, Cui F, Peng Z, Wan S, Li G. Genome-wide identification and expression of SAUR gene family in peanut (Arachis hypogaea L.) and functional identification of AhSAUR3 in drought tolerance. BMC PLANT BIOLOGY 2022; 22:178. [PMID: 35387613 PMCID: PMC8988358 DOI: 10.1186/s12870-022-03564-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/25/2022] [Indexed: 05/13/2023]
Abstract
BACKGROUND Small auxin-upregulated RNAs (SAURs) gene family plays important roles in plant growth, development, and stress responses. However, the function of few SAUR genes is known in the peanut (Arachis hypogaea L.), one of the world's major food legume crops. This study aimed to perform a comprehensive identification of the SAUR gene family from the peanut genome. RESULTS The genome-wide analysis revealed that a total of 162 SAUR genes were identified in the peanut genome. The phylogenetic analysis indicated that the SAUR proteins were classified into eight subfamilies. The SAUR gene family experienced a remarkable expansion after tetraploidization, which contributed to the tandem duplication events first occurring in subgenome A and then segmental duplication events occurring between A and B subgenomes. The expression profiles based on transcriptomic data showed that SAUR genes were dominantly expressed in the leaves, pistils, perianth, and peg tips, and were widely involved in tolerance against abiotic stresses. A total of 18 AhSAUR genes selected from different subfamilies randomly presented 4 major expression patterns according to their expression characteristics in response to indole-3-acetic acid. The members from the same subfamily showed a similar expression pattern. Furthermore, the functional analysis revealed that AhSAUR3 played a negative role in response to drought tolerance. CONCLUSIONS This study provided insights into the evolution and function of the SAUR gene family and may serve as a resource for further functional research on AhSAUR genes.
Collapse
Affiliation(s)
- Yiyang Liu
- Key Laboratory of Crop Genetic Improvement & Ecology and Physiology, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Ji’nan, 250100 Shandong Province China
| | - Lina Xiao
- Key Laboratory of Crop Genetic Improvement & Ecology and Physiology, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Ji’nan, 250100 Shandong Province China
| | - Jingxian Chi
- Key Laboratory of Crop Genetic Improvement & Ecology and Physiology, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Ji’nan, 250100 Shandong Province China
- Key Lab of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji’nan, 250014 Shandong Province China
| | - Rongchong Li
- Key Laboratory of Crop Genetic Improvement & Ecology and Physiology, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Ji’nan, 250100 Shandong Province China
| | - Yan Han
- Key Laboratory of Crop Genetic Improvement & Ecology and Physiology, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Ji’nan, 250100 Shandong Province China
| | - Feng Cui
- Key Laboratory of Crop Genetic Improvement & Ecology and Physiology, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Ji’nan, 250100 Shandong Province China
| | - Zhenying Peng
- Key Laboratory of Crop Genetic Improvement & Ecology and Physiology, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Ji’nan, 250100 Shandong Province China
| | - Shubo Wan
- Key Laboratory of Crop Genetic Improvement & Ecology and Physiology, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Ji’nan, 250100 Shandong Province China
| | - Guowei Li
- Key Laboratory of Crop Genetic Improvement & Ecology and Physiology, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Ji’nan, 250100 Shandong Province China
- Key Lab of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji’nan, 250014 Shandong Province China
| |
Collapse
|
15
|
Zanin FC, Freitas NC, Pinto RT, Máximo WPF, Diniz LEC, Paiva LV. The SAUR gene family in coffee: genome-wide identification and gene expression analysis during somatic embryogenesis. Mol Biol Rep 2022; 49:1973-1984. [PMID: 35034287 DOI: 10.1007/s11033-021-07011-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 11/24/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Small auxin-up RNA (SAUR) genes form a wide family supposedly involved in different physiological and developmental processes in plants such as leaf senescence, auxin signaling and transport, hypocotyl development and tolerance to abiotic stresses. The transcription of SAUR genes is quickly induced by auxins, a group of phytohormones of major importance on embryo development. To better understand the distribution and expression profile of such still not explored family in Coffea sp., especially during the development of somatic embryogenesis (SE), SAUR members were characterized in silico using the available Coffea canephora genome data and analyzed for gene expression by RT-qPCR in C. arabica embryogenic samples. METHODS AND RESULTS Over C. canephora genome 31 CcSAURs were distributed by 11 chromosomes. Out of these 31 gene members, 5 SAURs were selected for gene expression analysis in C. arabica embryogenic materials. CaSAUR12 and CaSAUR18 were the members highly expressed through almost all plant materials. The other genes had more expression in at least one of the developing embryo stages or plantlets. The CaSAUR12 was the only member to exhibit an increased expression in both non-embryogenic calli and the developing embryo stages. CONCLUSION The identification of SAUR family on C. canephora genome followed by the analysis of gene expression profile across coffee somatic embryogenesis process on C. arabica represents a further additional step towards a better comprehension of molecular components acting on SE. Along with new research about this gene family such knowledge may support studies about clonal propagation methods via somatic embryogenesis to help the scientific community towards improvements into coffee crop.
Collapse
Affiliation(s)
- Fabiana Couto Zanin
- Central Laboratory of Molecular Biology, Department of Chemistry, Federal University of Lavras (UFLA), Lavras, MG, 37200000, Brazil
| | - Natália Chagas Freitas
- Central Laboratory of Molecular Biology, Department of Chemistry, Federal University of Lavras (UFLA), Lavras, MG, 37200000, Brazil
| | - Renan Terassi Pinto
- Central Laboratory of Molecular Biology, Department of Chemistry, Federal University of Lavras (UFLA), Lavras, MG, 37200000, Brazil
| | - Wesley Pires Flausino Máximo
- Central Laboratory of Molecular Biology, Department of Chemistry, Federal University of Lavras (UFLA), Lavras, MG, 37200000, Brazil
| | | | - Luciano Vilela Paiva
- Central Laboratory of Molecular Biology, Department of Chemistry, Federal University of Lavras (UFLA), Lavras, MG, 37200000, Brazil.
| |
Collapse
|
16
|
Zhang X, Gong X, Li D, Yue H, Qin Y, Liu Z, Li M, Ma F. Genome-Wide Identification of PRP Genes in Apple Genome and the Role of MdPRP6 in Response to Heat Stress. Int J Mol Sci 2021; 22:5942. [PMID: 34073055 PMCID: PMC8198058 DOI: 10.3390/ijms22115942] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/23/2021] [Accepted: 05/27/2021] [Indexed: 12/18/2022] Open
Abstract
Plant proline-rich proteins (PRPs) are cell wall proteins that occur in the plant kingdom and are involved in plant development and stress response. In this study, 9 PRP genes were identified from the apple genome and a comprehensive analysis of the PRP family was conducted, including gene structures, phylogenetic analysis, chromosome mapping, and so on. The expression of MdPRPs varied among tissues and in response to different types of stresses. MdPRP4 and MdPRP7 were induced by five detected stress treatments, including heat, drought, abscisic acid, cold, and salt; the expression patterns of the others varied under different types of stress. Subcellular localization showed that MdPRPs mainly functioned in the cytoplasm, except for MdPRP1 and MdPRP5, which also functioned in the nucleus. When MdPRP6 was overexpressed in tobacco, the transgenic plants showed higher tolerance to high temperature (48 °C) compared with wild-type (WT) plants. The transgenic plants showed milder wilting, a lower accumulation of electrolyte leakage, MDA and ROS, and a higher level of chlorophyll and SOD and POD activity, indicating that MdPRP6 may be an important gene in apples for heat stress tolerance. Overall, this study suggested that MdPRPs are critically important for the ability of apple responses to stresses.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mingjun Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, China; (X.Z.); (X.G.); (D.L.); (H.Y.); (Y.Q.); (Z.L.)
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, China; (X.Z.); (X.G.); (D.L.); (H.Y.); (Y.Q.); (Z.L.)
| |
Collapse
|
17
|
Bai L, Maimaitiyiming R, Wang L. Effects of four individual lactic acid bacteria on the physical and chemical and antioxidant properties of Kuqa apple juice during fermentation. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lin Bai
- Institute of College of Life Science and Technology Xinjiang University Urumqi People's Republic of China
| | - Ruxianguli Maimaitiyiming
- Institute of College of Life Science and Technology Xinjiang University Urumqi People's Republic of China
| | - Liang Wang
- Institute of College of Life Science and Technology Xinjiang University Urumqi People's Republic of China
| |
Collapse
|