1
|
Roh JD, Bae M, Kim H, Yang Y, Lee Y, Cho Y, Lee S, Li Y, Yang E, Jang H, Kim H, Kim H, Kang H, Ellegood J, Lerch JP, Bae YC, Kim JY, Kim E. Lithium normalizes ASD-related neuronal, synaptic, and behavioral phenotypes in DYRK1A-knockin mice. Mol Psychiatry 2024:10.1038/s41380-024-02865-2. [PMID: 39633007 DOI: 10.1038/s41380-024-02865-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024]
Abstract
Dyrk1A deficiency is linked to various neurodevelopmental disorders, including developmental delays, intellectual disability (ID) and autism spectrum disorders (ASD). Haploinsufficiency of Dyrk1a in mice reportedly leads to ASD-related phenotypes. However, the key pathological mechanisms remain unclear and human DYRK1A mutations remain uncharacterized in mice. Here, we generated and studied Dyrk1a-knockin mice carrying a human ASD patient mutation (Ile48LysfsX2; Dyrk1a-I48K mice). These mice display severe microcephaly, social and cognitive deficits, dendritic shrinkage, excitatory synaptic deficits, and altered phospho-proteomic patterns enriched for multiple signaling pathways and synaptic proteins. Early chronic lithium treatment of newborn mutant mice rescues the brain volume, behavior, dendritic, synaptic, and signaling/synapse phospho-proteomic phenotypes at juvenile and adult stages. These results suggest that signaling/synaptic alterations contribute to the phenotypic alterations seen in Dyrk1a-I48K mice, and that early correction of these alterations by lithium treatment has long-lasting effects in preventing juvenile and adult-stage phenotypes.
Collapse
Affiliation(s)
- Junyeop Daniel Roh
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Mihyun Bae
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Hyosang Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Yeji Yang
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, 34141, Korea
- Digital Omics Research Center, Korea Basic Science Institute, Cheongju, 28119, Korea
| | - Yeunkeum Lee
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea
- Korea Institute of Drug Safety & Risk Management, Anyang, 14051, Korea
| | - Yisul Cho
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, 41940, Korea
| | - Suho Lee
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Yan Li
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Esther Yang
- Department of Anatomy and BK21 Graduate Program, Biomedical Sciences, College of Medicine, Korea University, Seoul, 02841, Korea
| | | | | | - Hyun Kim
- Department of Anatomy and BK21 Graduate Program, Biomedical Sciences, College of Medicine, Korea University, Seoul, 02841, Korea
| | - Hyojin Kang
- Division of National Supercomputing, KISTI, Daejeon, 34141, Korea
| | - Jacob Ellegood
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, M5T 3H7, Canada
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, M4G 1R8, Canada
| | - Jason P Lerch
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, M5T 3H7, Canada
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, Oxfordshire, OX39DU, UK
| | - Yong Chul Bae
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, 41940, Korea
| | - Jin Young Kim
- Digital Omics Research Center, Korea Basic Science Institute, Cheongju, 28119, Korea
| | - Eunjoon Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea.
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, 34141, Korea.
| |
Collapse
|
2
|
Scorrano G, Di Francesco L, Di Ludovico A, Chiarelli F, Matricardi S. Exploring the Landscape of Pre- and Post-Synaptic Pediatric Disorders with Epilepsy: A Narrative Review on Molecular Mechanisms Involved. Int J Mol Sci 2024; 25:11982. [PMID: 39596051 PMCID: PMC11593774 DOI: 10.3390/ijms252211982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/03/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Neurodevelopmental disorders (NDDs) are a group of conditions affecting brain development, with variable degrees of severity and heterogeneous clinical features. They include intellectual disability (ID), autism spectrum disorder (ASD), attention-deficit/hyperactivity disorder (ADHD), often coexisting with epilepsy, extra-neurological comorbidities, and multisystemic involvement. In recent years, next-generation sequencing (NGS) technologies allowed the identification of several gene pathogenic variants etiologically related to these disorders in a large cohort of affected children. These genes encode proteins involved in synaptic homeostasis, such as SNARE proteins, implicated in calcium-triggered pre-synaptic release of neurotransmitters, or channel subunit proteins, such as post-synaptic ionotropic glutamate receptors involved in the brain's fast excitatory neurotransmission. In this narrative review, we dissected emerged molecular mechanisms related to NDDs and epilepsy due to defects in pre- and post-synaptic transmission. We focused on the most recently discovered SNAREopathies and AMPA-related synaptopathies.
Collapse
Affiliation(s)
- Giovanna Scorrano
- Department of Pediatrics, University of Chieti-Pescara, Sant’Annunziata Hospital, 66100 Chieti, Italy; (G.S.); (A.D.L.); (F.C.)
| | - Ludovica Di Francesco
- Department of Neonatology, University of L’Aquila, San Salvatore Hospital, 67100 L’Aquila, Italy;
| | - Armando Di Ludovico
- Department of Pediatrics, University of Chieti-Pescara, Sant’Annunziata Hospital, 66100 Chieti, Italy; (G.S.); (A.D.L.); (F.C.)
| | - Francesco Chiarelli
- Department of Pediatrics, University of Chieti-Pescara, Sant’Annunziata Hospital, 66100 Chieti, Italy; (G.S.); (A.D.L.); (F.C.)
| | - Sara Matricardi
- Department of Pediatrics, University of Chieti-Pescara, Sant’Annunziata Hospital, 66100 Chieti, Italy; (G.S.); (A.D.L.); (F.C.)
| |
Collapse
|
3
|
Quiccione MS, Tirozzi A, Cassioli G, Morelli M, Costanzo S, Pepe A, Bracone F, Magnacca S, Cerletti C, Licastro D, Di Castelnuovo A, Donati MB, de Gaetano G, Iacoviello L, Gialluisi A. Are Methylation Patterns in the KALRN Gene Associated with Cognitive and Depressive Symptoms? Findings from the Moli-sani Cohort. Int J Mol Sci 2024; 25:10317. [PMID: 39408648 PMCID: PMC11476580 DOI: 10.3390/ijms251910317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
The KALRN gene (encoding kalirin) has been implicated in several neuropsychiatric and neurodegenerative disorders. However, genetic evidence supporting this implication is limited and targeted epigenetic analyses are lacking. Here, we tested associations between epigenetic variation in KALRN and interindividual variation in depressive symptoms (PHQ9) and cognitive (MoCA) performance, in an Italian population cohort (N = 2409; mean (SD) age: 67 (9) years; 55% women). First, we analyzed the candidate region chr3:124584826-124584886 (hg38), within the KALRN promoter, through pyrosequencing of 1385 samples. Then, we widened the investigated region by analyzing 137 CpGs annotated to the whole gene, rescued from epigenome-wide (Illumina EPIC) data from 1024 independent samples from the same cohort. These were tested through stepwise regression models adjusted for age, sex, circulating leukocytes fractions, education, prevalent health conditions and lifestyles. We observed no statistically significant associations with methylation levels in the three CpGs tested through pyrosequencing, or in the gene-wide association analysis with MoCA score. However, we observed a statistically significant association between PHQ9 and cg13549966 (chr3:124106738; β (Standard Error) = 0.28 (0.08), Bonferroni-corrected p = 0.025), located close to the transcription start site of the gene. This association was driven by a polychoric factor tagging somatic depressive symptoms (β (SE) = 0.127 (0.064), p = 0.048). This evidence underscores the importance of studying epigenetic variation within the KALRN gene and the role that it may play in brain diseases, particularly in atypical depression, which is often characterized by somatic symptoms.
Collapse
Affiliation(s)
- Miriam Shasa Quiccione
- Department of Epidemiology and Prevention, IRCCS Neuromed, Via dell’Elettronica, 86077 Pozzilli, Italy; (M.S.Q.); (A.T.); (M.M.); (S.C.); (A.P.); (F.B.); (S.M.); (C.C.); (A.D.C.); (M.B.D.); (G.d.G.); (A.G.)
| | - Alfonsina Tirozzi
- Department of Epidemiology and Prevention, IRCCS Neuromed, Via dell’Elettronica, 86077 Pozzilli, Italy; (M.S.Q.); (A.T.); (M.M.); (S.C.); (A.P.); (F.B.); (S.M.); (C.C.); (A.D.C.); (M.B.D.); (G.d.G.); (A.G.)
| | - Giulia Cassioli
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy;
| | - Martina Morelli
- Department of Epidemiology and Prevention, IRCCS Neuromed, Via dell’Elettronica, 86077 Pozzilli, Italy; (M.S.Q.); (A.T.); (M.M.); (S.C.); (A.P.); (F.B.); (S.M.); (C.C.); (A.D.C.); (M.B.D.); (G.d.G.); (A.G.)
| | - Simona Costanzo
- Department of Epidemiology and Prevention, IRCCS Neuromed, Via dell’Elettronica, 86077 Pozzilli, Italy; (M.S.Q.); (A.T.); (M.M.); (S.C.); (A.P.); (F.B.); (S.M.); (C.C.); (A.D.C.); (M.B.D.); (G.d.G.); (A.G.)
| | - Antonietta Pepe
- Department of Epidemiology and Prevention, IRCCS Neuromed, Via dell’Elettronica, 86077 Pozzilli, Italy; (M.S.Q.); (A.T.); (M.M.); (S.C.); (A.P.); (F.B.); (S.M.); (C.C.); (A.D.C.); (M.B.D.); (G.d.G.); (A.G.)
| | - Francesca Bracone
- Department of Epidemiology and Prevention, IRCCS Neuromed, Via dell’Elettronica, 86077 Pozzilli, Italy; (M.S.Q.); (A.T.); (M.M.); (S.C.); (A.P.); (F.B.); (S.M.); (C.C.); (A.D.C.); (M.B.D.); (G.d.G.); (A.G.)
| | - Sara Magnacca
- Department of Epidemiology and Prevention, IRCCS Neuromed, Via dell’Elettronica, 86077 Pozzilli, Italy; (M.S.Q.); (A.T.); (M.M.); (S.C.); (A.P.); (F.B.); (S.M.); (C.C.); (A.D.C.); (M.B.D.); (G.d.G.); (A.G.)
| | - Chiara Cerletti
- Department of Epidemiology and Prevention, IRCCS Neuromed, Via dell’Elettronica, 86077 Pozzilli, Italy; (M.S.Q.); (A.T.); (M.M.); (S.C.); (A.P.); (F.B.); (S.M.); (C.C.); (A.D.C.); (M.B.D.); (G.d.G.); (A.G.)
| | | | - Augusto Di Castelnuovo
- Department of Epidemiology and Prevention, IRCCS Neuromed, Via dell’Elettronica, 86077 Pozzilli, Italy; (M.S.Q.); (A.T.); (M.M.); (S.C.); (A.P.); (F.B.); (S.M.); (C.C.); (A.D.C.); (M.B.D.); (G.d.G.); (A.G.)
| | - Maria Benedetta Donati
- Department of Epidemiology and Prevention, IRCCS Neuromed, Via dell’Elettronica, 86077 Pozzilli, Italy; (M.S.Q.); (A.T.); (M.M.); (S.C.); (A.P.); (F.B.); (S.M.); (C.C.); (A.D.C.); (M.B.D.); (G.d.G.); (A.G.)
| | - Giovanni de Gaetano
- Department of Epidemiology and Prevention, IRCCS Neuromed, Via dell’Elettronica, 86077 Pozzilli, Italy; (M.S.Q.); (A.T.); (M.M.); (S.C.); (A.P.); (F.B.); (S.M.); (C.C.); (A.D.C.); (M.B.D.); (G.d.G.); (A.G.)
| | - Licia Iacoviello
- Department of Epidemiology and Prevention, IRCCS Neuromed, Via dell’Elettronica, 86077 Pozzilli, Italy; (M.S.Q.); (A.T.); (M.M.); (S.C.); (A.P.); (F.B.); (S.M.); (C.C.); (A.D.C.); (M.B.D.); (G.d.G.); (A.G.)
- Department of Medicine and Surgery, LUM University, 70010 Casamassima, Italy
| | - Alessandro Gialluisi
- Department of Epidemiology and Prevention, IRCCS Neuromed, Via dell’Elettronica, 86077 Pozzilli, Italy; (M.S.Q.); (A.T.); (M.M.); (S.C.); (A.P.); (F.B.); (S.M.); (C.C.); (A.D.C.); (M.B.D.); (G.d.G.); (A.G.)
- Department of Medicine and Surgery, LUM University, 70010 Casamassima, Italy
| |
Collapse
|
4
|
Chen XY, Cheng AY, Wang ZY, Jin JM, Lin JY, Wang B, Guan YY, Zhang H, Jiang YX, Luan X, Zhang LJ. Dbl family RhoGEFs in cancer: different roles and targeting strategies. Biochem Pharmacol 2024; 223:116141. [PMID: 38499108 DOI: 10.1016/j.bcp.2024.116141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/06/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
Small Ras homologous guanosine triphosphatase (Rho GTPase) family proteins are highly associated with tumorigenesis and development. As intrinsic exchange activity regulators of Rho GTPases, Rho guanine nucleotide exchange factors (RhoGEFs) have been demonstrated to be closely involved in tumor development and received increasing attention. They mainly contain two families: the diffuse B-cell lymphoma (Dbl) family and the dedicator of cytokinesis (Dock) family. More and more emphasis has been paid to the Dbl family members for their abnormally high expression in various cancers and their correlation to poor prognosis. In this review, the common and distinctive structures of Dbl family members are discussed, and their roles in cancer are summarized with a focus on Ect2, Tiam1/2, P-Rex1/2, Vav1/2/3, Trio, KALRN, and LARG. Significantly, the strategies targeting Dbl family RhoGEFs are highlighted as novel therapeutic opportunities for cancer.
Collapse
Affiliation(s)
- Xin-Yi Chen
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ao-Yu Cheng
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zi-Ying Wang
- School of Biological Engineering, Tianjin University of Science&Technology, Tianjin 301617, China
| | - Jin-Mei Jin
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jia-Yi Lin
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Bei Wang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ying-Yun Guan
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Hao Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yi-Xin Jiang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Xin Luan
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Li-Jun Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
5
|
Martínez Duncker Rebolledo E, Chan D, Christensen KE, Reagan AM, Howell GR, Rozen R, Trasler J. Sperm DNA methylation defects in a new mouse model of the 5,10-methylenetetrahydrofolate reductase 677C>T variant and correction with moderate dose folic acid supplementation. Mol Hum Reprod 2024; 30:gaae008. [PMID: 38366926 PMCID: PMC10980591 DOI: 10.1093/molehr/gaae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/30/2024] [Indexed: 02/19/2024] Open
Abstract
5,10-Methylenetetrahydrofolate reductase (MTHFR) is an enzyme that plays a key role in providing methyl groups for DNA methylation, including during spermatogenesis. A common genetic variant in humans (MTHFR 677C>T) results in reduced enzyme activity and has been linked to various disorders, including male infertility. A new animal model has been created by reproducing the human equivalent of the polymorphism in mice using CRISPR/Cas9. Biochemical parameters in the Mthfr 677TT mice recapitulate alterations found in MTHFR 677TT men. Our aims were to characterize the sperm DNA methylome of the Mthfr 677CC and TT mice on a control diet (2 mg folic acid/kg diet) and assess the effects of folic acid supplementation (10 mg/kg diet) on the sperm DNA methylome. Body and reproductive organ weights, testicular sperm counts, and histology were examined. DNA methylation in sperm was assessed using bisulfite pyrosequencing and whole-genome bisulfite sequencing (WGBS). Reproductive parameters and locus-specific imprinted gene methylation were unaffected by genotype or diet. Using WGBS, sperm from 677TT mice had 360 differentially methylated tiles as compared to 677CC mice, predominantly hypomethylation (60% of tiles). Folic acid supplementation mostly caused hypermethylation in sperm of males of both genotypes and was found to partially correct the DNA methylation alterations in sperm associated with the TT genotype. The new mouse model will be useful in understanding the role of MTHFR deficiency in male fertility and in designing folate supplementation regimens for the clinic.
Collapse
Affiliation(s)
- Edgar Martínez Duncker Rebolledo
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Donovan Chan
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Karen E Christensen
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | | | - Gareth R Howell
- The Jackson Laboratory, Bar Harbor, ME, USA
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, USA
| | - Rima Rozen
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Department of Pediatrics, McGill University, Montreal, QC, Canada
| | - Jacquetta Trasler
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Department of Pediatrics, McGill University, Montreal, QC, Canada
- Department of Pharmacology & Therapeutics, Montreal, QC, Canada
| |
Collapse
|
6
|
Huang H, Chen L, Yuan J, Zhang H, Yang J, Xu Z, Chen Y. Role and mechanism of EphB3 in epileptic seizures and epileptogenesis through Kalirin. Mol Cell Neurosci 2024; 128:103915. [PMID: 38143048 DOI: 10.1016/j.mcn.2023.103915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/06/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023] Open
Abstract
BACKGROUND The EphB receptor tyrosine kinase family participates in intricate signaling pathways that orchestrate neural networks, guide neuronal axon development, and modulate synaptic plasticity through interactions with surface-bound ephrinB ligands. Additionally, Kalirin, a Rho guanine nucleotide exchange factor, is notably expressed in the postsynaptic membrane of excitatory neurons and plays a role in synaptic morphogenesis. This study postulates that Kalirin may act as a downstream effector of EphB3 in epilepsy. This investigation focuses on understanding the link between EphB3 and epilepsy. MATERIALS AND METHODS Chronic seizure models using LiCl-pilocarpine (LiCl/Pilo) and pentylenetetrazol were developed in rats. Neuronal excitability was gauged through whole-cell patch clamp recordings on rat hippocampal slices. Real-time PCR determined Kalirin's mRNA expression, and Western blotting was employed to quantify EphB3 and Kalirin protein levels. Moreover, dendritic spine density in epileptic rats was evaluated using Golgi staining. RESULTS Modulation of EphB3 functionality influenced acute seizure severity, latency duration, and frequency of spontaneous recurrent seizures. Golgi staining disclosed an EphB3-driven alteration in dendritic spine density within the hippocampus of epileptic rats, underscoring its pivotal role in the reconfiguration of hippocampal neural circuits. Furthermore, our data propose Kalirin as a prospective downstream mediator of the EphB3 receptor. CONCLUSIONS Our findings elucidate that EphB3 impacts the action potential dynamics in isolated rat hippocampal slices and alters dendritic spine density in the inner molecular layer of epileptic rat hippocampi, likely through Kalirin-mediated pathways. This hints at EphB3's significant role in shaping excitatory circuit loops and recurrent seizure activity via Kalirin.
Collapse
Affiliation(s)
- Hao Huang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, No.74, Linjiang Road, Chongqing 400010, China; Department of Neurology, The Affiliated Hospital of Zunyi Medical University, No.149 Dalian Road, Zunyi 563003, Guizhou Province, China
| | - Ling Chen
- Department of Neurology, The Affiliated Hospital of Zunyi Medical University, No.149 Dalian Road, Zunyi 563003, Guizhou Province, China
| | - Jinxian Yuan
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, No.74, Linjiang Road, Chongqing 400010, China
| | - Haiqing Zhang
- Department of Neurology, The Affiliated Hospital of Zunyi Medical University, No.149 Dalian Road, Zunyi 563003, Guizhou Province, China
| | - Juan Yang
- Department of Neurology, The Affiliated Hospital of Zunyi Medical University, No.149 Dalian Road, Zunyi 563003, Guizhou Province, China
| | - Zucai Xu
- Department of Neurology, The Affiliated Hospital of Zunyi Medical University, No.149 Dalian Road, Zunyi 563003, Guizhou Province, China.
| | - Yangmei Chen
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, No.74, Linjiang Road, Chongqing 400010, China.
| |
Collapse
|
7
|
Chung M, Carter EK, Veire AM, Dammer EB, Chang J, Duong DM, Raj N, Bassell GJ, Glass JD, Gendron TF, Nelson PT, Levey AI, Seyfried NT, McEachin ZT. Cryptic exon inclusion is a molecular signature of LATE-NC in aging brains. Acta Neuropathol 2024; 147:29. [PMID: 38308693 PMCID: PMC10838224 DOI: 10.1007/s00401-023-02671-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/30/2023] [Accepted: 12/17/2023] [Indexed: 02/05/2024]
Abstract
The aggregation, mislocalization, and phosphorylation of TDP-43 are pathologic hallmarks of several neurodegenerative diseases and provide a defining criterion for the neuropathologic diagnosis of Limbic-predominant Age-related TDP-43 Encephalopathy (LATE). LATE neuropathologic changes (LATE-NC) are often comorbid with other neurodegenerative pathologies including Alzheimer's disease neuropathologic changes (ADNC). We examined whether TDP-43 regulated cryptic exons accumulate in the hippocampus of neuropathologically confirmed LATE-NC cases. We found that several cryptic RNAs are robustly expressed in LATE-NC cases with or without comorbid ADNC and correlate with pTDP-43 abundance; however, the accumulation of cryptic RNAs is more robust in LATE-NC with comorbid ADNC. Additionally, cryptic RNAs can robustly distinguish LATE-NC from healthy controls and AD cases. These findings expand our current understanding and provide novel potential biomarkers for LATE pathogenesis.
Collapse
Affiliation(s)
- Mingee Chung
- Department of Cell Biology, Emory University, Atlanta, GA, 30322, USA
- Laboratory for Translational Cell Biology, Emory University, Atlanta, GA, 30322, USA
| | - E Kathleen Carter
- Department of Biochemistry, Emory University, Atlanta, GA, 30322, USA
| | - Austin M Veire
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Eric B Dammer
- Department of Biochemistry, Emory University, Atlanta, GA, 30322, USA
| | - Jianjun Chang
- Department of Cell Biology, Emory University, Atlanta, GA, 30322, USA
| | - Duc M Duong
- Department of Biochemistry, Emory University, Atlanta, GA, 30322, USA
| | - Nisha Raj
- Department of Cell Biology, Emory University, Atlanta, GA, 30322, USA
- Laboratory for Translational Cell Biology, Emory University, Atlanta, GA, 30322, USA
- Department of Human Genetics, Emory University, Atlanta, GA, 30322, USA
| | - Gary J Bassell
- Department of Cell Biology, Emory University, Atlanta, GA, 30322, USA
- Laboratory for Translational Cell Biology, Emory University, Atlanta, GA, 30322, USA
- Center for Neurodegenerative Diseases, Emory University, Atlanta, GA, 30322, USA
| | - Jonathan D Glass
- Center for Neurodegenerative Diseases, Emory University, Atlanta, GA, 30322, USA
- Department of Neurology, Emory University, Atlanta, GA, 30322, USA
| | - Tania F Gendron
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Peter T Nelson
- Department of Pathology and Sanders-Brown Center On Aging, University of Kentucky, Lexington, KY, 40536, USA
| | - Allan I Levey
- Center for Neurodegenerative Diseases, Emory University, Atlanta, GA, 30322, USA.
- Department of Neurology, Emory University, Atlanta, GA, 30322, USA.
| | - Nicholas T Seyfried
- Department of Biochemistry, Emory University, Atlanta, GA, 30322, USA.
- Center for Neurodegenerative Diseases, Emory University, Atlanta, GA, 30322, USA.
| | - Zachary T McEachin
- Department of Cell Biology, Emory University, Atlanta, GA, 30322, USA.
- Laboratory for Translational Cell Biology, Emory University, Atlanta, GA, 30322, USA.
- Department of Human Genetics, Emory University, Atlanta, GA, 30322, USA.
- Center for Neurodegenerative Diseases, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
8
|
Jiang D, Ji C, Zhou X, Wang Z, Sun Q, Wang X, An X, Ling W, Kang B. Pathway analysis of spermidine anti-oxidative stress and inducing autophagy in granulosa cells of Sichuan white geese. Theriogenology 2024; 215:290-301. [PMID: 38118229 DOI: 10.1016/j.theriogenology.2023.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/22/2023]
Abstract
Spermidine, a natural polyamine, has been proven antioxidant function, but its pathway and mechanism of action remain unclear. Based on the oxidative stress model by 3-nitropropionic acid (3-NPA), the study explored the pathways by spermidine to rescue oxidative stress via autophagic process in goose granulosa cells by RNA-seq and RNA interference. In transcriptional regulation, in addition to KEGG pathways related to cell proliferation and differentiation, lots of KEGG pathways associated with inflammation, metabolism, and signaling were also significantly enriched in 3-NPA vs. 3-NPA + spermidine treatments. Six key genes (JUN, CD44, KITLG, RND2, BMP4 and KALRN) involved in spermidine-mediated anti-oxidative stress were screened. Furthermore, the experimental results showed that spermidine (80 μmol/L) significantly increased autophagic gene expression in goose granulosa cells, while EP300-siRNA or MAP1S-siRNA also significantly increased autophagic process. The autophagic gene expressions were no difference between EP300-siRNA and EP300-siRNA + spermidine treatments, although spermidine significantly increased autophagic process of granulosa cells compared to MAP1S-siRNA alone. In addition, inhibition of mTOR pathway significantly increased autophagic gene expression, which was further enhanced by spermidine in combined with mTOR inhibitor. These results suggest that spermidine can alleviate oxidative stress by inducing autophagy regulated by EP300, MAP1S and mTOR as well as regulating other independent gene expressions in goose granulosa cells.
Collapse
Affiliation(s)
- Dongmei Jiang
- State Key Laboratory of Swine and Poultry Breeding Industry, Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Chengweng Ji
- State Key Laboratory of Swine and Poultry Breeding Industry, Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Xuemin Zhou
- State Key Laboratory of Swine and Poultry Breeding Industry, Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Zelong Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Qian Sun
- State Key Laboratory of Swine and Poultry Breeding Industry, Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Xin Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Xiaoguang An
- State Key Laboratory of Swine and Poultry Breeding Industry, Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Weikang Ling
- State Key Laboratory of Swine and Poultry Breeding Industry, Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Bo Kang
- State Key Laboratory of Swine and Poultry Breeding Industry, Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
9
|
Frederiksen SD, Wicki-Stordeur LE, Swayne LA. Overlap in synaptic neurological condition susceptibility pathways and the neural pannexin 1 interactome revealed by bioinformatics analyses. Channels (Austin) 2023; 17:2253102. [PMID: 37807670 PMCID: PMC10563626 DOI: 10.1080/19336950.2023.2253102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/22/2023] [Indexed: 10/10/2023] Open
Abstract
Many neurological conditions exhibit synaptic impairments, suggesting mechanistic convergence. Additionally, the pannexin 1 (PANX1) channel and signaling scaffold is linked to several of these neurological conditions and is an emerging regulator of synaptic development and plasticity; however, its synaptic pathogenic contributions are relatively unexplored. To this end, we explored connections between synaptic neurodevelopmental disorder and neurodegenerative disease susceptibility genes discovered by genome-wide association studies (GWASs), and the neural PANX1 interactome (483 proteins) identified from mouse Neuro2a (N2a) cells. To identify shared susceptibility genes, we compared synaptic suggestive GWAS candidate genes amongst autism spectrum disorders, schizophrenia, Parkinson's disease, and Alzheimer's disease. To further probe PANX1 signaling pathways at the synapse, we used bioinformatics tools to identify PANX1 interactome signaling pathways and protein-protein interaction clusters. To shed light on synaptic disease mechanisms potentially linking PANX1 and these four neurological conditions, we performed additional cross-analyses between gene ontologies enriched for the PANX1 synaptic and disease-susceptibility gene sets. Finally, to explore the regional specificity of synaptic PANX1-neurological condition connections, we identified brain region-specific elevations of synaptic PANX1 interactome and GWAS candidate gene set transcripts. Our results confirm considerable overlap in risk genes for autism spectrum disorders and schizophrenia and identify potential commonalities in genetic susceptibility for neurodevelopmental disorders and neurodegenerative diseases. Our findings also pinpointed novel putative PANX1 links to synaptic disease-associated pathways, such as regulation of vesicular trafficking and proteostasis, warranting further validation.
Collapse
Affiliation(s)
| | | | - Leigh Anne Swayne
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
10
|
Tooley KB, Chucair-Elliott AJ, Ocañas SR, Machalinski AH, Pham KD, Hoolehan W, Kulpa AM, Stanford DR, Freeman WM. Differential usage of DNA modifications in neurons, astrocytes, and microglia. Epigenetics Chromatin 2023; 16:45. [PMID: 37953264 PMCID: PMC10642035 DOI: 10.1186/s13072-023-00522-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023] Open
Abstract
BACKGROUND Cellular identity is determined partly by cell type-specific epigenomic profiles that regulate gene expression. In neuroscience, there is a pressing need to isolate and characterize the epigenomes of specific CNS cell types in health and disease. In this study, we developed an in vivo tagging mouse model (Camk2a-NuTRAP) for paired isolation of neuronal DNA and RNA without cell sorting and then used this model to assess epigenomic regulation, DNA modifications in particular, of gene expression between neurons and glia. RESULTS After validating the cell-specificity of the Camk2a-NuTRAP model, we performed TRAP-RNA-Seq and INTACT-whole genome oxidative bisulfite sequencing (WGoxBS) to assess the neuronal translatome and epigenome in the hippocampus of young mice (4 months old). WGoxBS findings were validated with enzymatic methyl-Seq (EM-Seq) and nanopore sequencing. Comparing neuronal data to microglial and astrocytic data from NuTRAP models, microglia had the highest global mCG levels followed by astrocytes and then neurons, with the opposite pattern observed for hmCG and mCH. Differentially modified regions between cell types were predominantly found within gene bodies and distal intergenic regions, rather than proximal promoters. Across cell types there was a negative correlation between DNA modifications (mCG, mCH, hmCG) and gene expression at proximal promoters. In contrast, a negative correlation of gene body mCG and a positive relationship between distal promoter and gene body hmCG with gene expression was observed. Furthermore, we identified a neuron-specific inverse relationship between mCH and gene expression across promoter and gene body regions. CONCLUSIONS Neurons, astrocytes, and microglia demonstrate different genome-wide levels of mCG, hmCG, and mCH that are reproducible across analytical methods. However, modification-gene expression relationships are conserved across cell types. Enrichment of differential modifications across cell types in gene bodies and distal regulatory elements, but not proximal promoters, highlights epigenomic patterning in these regions as potentially greater determinants of cell identity. These findings also demonstrate the importance of differentiating between mC and hmC in neuroepigenomic analyses, as up to 30% of what is conventionally interpreted as mCG can be hmCG, which often has a different relationship to gene expression than mCG.
Collapse
Affiliation(s)
- Kyla B Tooley
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK, 73104, USA
| | - Ana J Chucair-Elliott
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK, 73104, USA
| | - Sarah R Ocañas
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK, 73104, USA
| | - Adeline H Machalinski
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK, 73104, USA
| | - Kevin D Pham
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK, 73104, USA
| | - Walker Hoolehan
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK, 73104, USA
| | - Adam M Kulpa
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK, 73104, USA
| | - David R Stanford
- Center for Biomedical Data Sciences, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Willard M Freeman
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Department of Biochemistry, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, USA.
| |
Collapse
|
11
|
Chen L, Luo T, Cui W, Zhu M, Xu Z, Huang H. Kalirin is involved in epileptogenesis by modulating the activity of the Rac1 signaling pathway. J Chem Neuroanat 2023; 131:102289. [PMID: 37196826 DOI: 10.1016/j.jchemneu.2023.102289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/19/2023]
Abstract
BACKGROUND AND OBJECTIVE Epilepsy is a common chronic brain disease. Despite the availability of various anti-seizure drugs, approximately 30 % of patients do not respond to treatment. Recent research suggests that Kalirin plays a role in regulating neurological function. However, the pathogenesis of Kalirin in epileptic seizures remains unclear. This study aims to investigate the role and mechanism of Kalirin in epileptogenesis. MATERIALS AND METHODS An epileptic model was induced by intraperitoneal injection of pentylenetetrazole (PTZ). Endogenous Kalirin was inhibited using shRNA. The expression of Kalirin, Rac1, and Cdc42 in the hippocampal CA1 region was measured using Western blotting. Spine and synaptic structures were examined using Golgi staining and electron microscopy. Moreover, the necrotic neurons in CA1 were examined using HE staining. RESULTS The results indicated that the epileptic score increased in epileptic animals, while inhibition of Kalirin decreased the epileptic scores and increased the latent period of the first seizure attack. Inhibition of Kalirin attenuated the increases in Rac1 expression, dendritic spine density, and synaptic vesicle number in the CA1 region induced by PTZ. However, the increase in Cdc42 expression was not affected by the inhibition of Kalirin. CONCLUSION This study suggests that Kalirin is involved in the development of seizures by modulating the activity of Rac1, providing a novel anti-epileptic target.
Collapse
Affiliation(s)
- Ling Chen
- Department of Neurology, The Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, Guizhou province 563003, China
| | - Ting Luo
- Department of Neurology, The Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, Guizhou province 563003, China
| | - Wenxiu Cui
- Department of Neurology, The Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, Guizhou province 563003, China
| | - ManMing Zhu
- Department of Neurology, The Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, Guizhou province 563003, China
| | - Zucai Xu
- Department of Neurology, The Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, Guizhou province 563003, China
| | - Hao Huang
- Department of Neurology, The Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, Guizhou province 563003, China.
| |
Collapse
|
12
|
Masi M, Biundo F, Fiou A, Racchi M, Pascale A, Buoso E. The Labyrinthine Landscape of APP Processing: State of the Art and Possible Novel Soluble APP-Related Molecular Players in Traumatic Brain Injury and Neurodegeneration. Int J Mol Sci 2023; 24:ijms24076639. [PMID: 37047617 PMCID: PMC10095589 DOI: 10.3390/ijms24076639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/21/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Amyloid Precursor Protein (APP) and its cleavage processes have been widely investigated in the past, in particular in the context of Alzheimer’s Disease (AD). Evidence of an increased expression of APP and its amyloidogenic-related cleavage enzymes, β-secretase 1 (BACE1) and γ-secretase, at the hit axon terminals following Traumatic Brain Injury (TBI), firstly suggested a correlation between TBI and AD. Indeed, mild and severe TBI have been recognised as influential risk factors for different neurodegenerative diseases, including AD. In the present work, we describe the state of the art of APP proteolytic processing, underlining the different roles of its cleavage fragments in both physiological and pathological contexts. Considering the neuroprotective role of the soluble APP alpha (sAPPα) fragment, we hypothesised that sAPPα could modulate the expression of genes of interest for AD and TBI. Hence, we present preliminary experiments addressing sAPPα-mediated regulation of BACE1, Isthmin 2 (ISM2), Tetraspanin-3 (TSPAN3) and the Vascular Endothelial Growth Factor (VEGFA), each discussed from a biological and pharmacological point of view in AD and TBI. We finally propose a neuroprotective interaction network, in which the Receptor for Activated C Kinase 1 (RACK1) and the signalling cascade of PKCβII/nELAV/VEGF play hub roles, suggesting that vasculogenic-targeting therapies could be a feasible approach for vascular-related brain injuries typical of AD and TBI.
Collapse
Affiliation(s)
- Mirco Masi
- Computational and Chemical Biology, Italian Institute of Technology, Via Morego 30, 16163 Genova, Italy
| | - Fabrizio Biundo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
| | - André Fiou
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Via Taramelli 12/14, 27100 Pavia, Italy
| | - Marco Racchi
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Via Taramelli 12/14, 27100 Pavia, Italy
| | - Alessia Pascale
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Via Taramelli 12/14, 27100 Pavia, Italy
| | - Erica Buoso
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Via Taramelli 12/14, 27100 Pavia, Italy
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
13
|
Li C, Yan Y, Pan C, Adjei M, Shahzad K, Wang P, Pan M, Li K, Wang Y, Zhao W. Identification and analysis of differentially expressed (DE) circRNA in epididymis of yak and cattleyak. Front Vet Sci 2023; 10:1040419. [PMID: 36825227 PMCID: PMC9941329 DOI: 10.3389/fvets.2023.1040419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 01/18/2023] [Indexed: 02/09/2023] Open
Abstract
Circular RNAs (circRNAs), as endogenous non-coding RNA with unique closed ring structure, is closely related to animal reproduction, and understanding the expression of circRNA in yak and cattleyak epididymal tissues is of great significance for understanding cattleyak sterility. Based on this, we screened and identified the differentially expressed circRNA in the epididymis of three yaks and two cattleyak. A total of 1,298 circRNAs were identified in the epididymis of yak and cattleyak, of which 137 differentially expressed (DE) circRNAs and the functions of some of them were elucidated in this research, as well as qPCR verification to 6 circRNAs from the 137 DE circRNAs. Gene Ontology (GO) enrichment analysis suggested that DE circRNAs were mainly related to metabolic process, development process, immune system process, reproductive process, reproduction, biological adhesion and growth. COG classification analysis showed that the DE circRNAs derived genes were mainly related to replication, recombination and repair. KEGG pathway analysis suggested that DE circRNAs were mainly involved in RNA degradation. In addition, we also screened Bta-mir-103, which is a circRNA binding miRNA related to sperm activity.
Collapse
Affiliation(s)
- Chunhai Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Yan Yan
- College of Life Sciences, Yan'an University, Yan'An, Shaanxi, China
| | - Cheng Pan
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Michael Adjei
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Khuram Shahzad
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Peng Wang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Meilan Pan
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Kerui Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Ye Wang
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China,*Correspondence: Ye Wang ✉
| | - Wangsheng Zhao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China,Wangsheng Zhao ✉
| |
Collapse
|
14
|
Zhu P, Liu W, Zhang X, Li M, Liu G, Yu Y, Li Z, Li X, Du J, Wang X, Grueter CC, Li M, Zhou X. Correlated evolution of social organization and lifespan in mammals. Nat Commun 2023; 14:372. [PMID: 36720880 PMCID: PMC9889386 DOI: 10.1038/s41467-023-35869-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 01/05/2023] [Indexed: 02/02/2023] Open
Abstract
Discerning the relationship between sociality and longevity would permit a deeper understanding of how animal life history evolved. Here, we perform a phylogenetic comparative analysis of ~1000 mammalian species on three states of social organization (solitary, pair-living, and group-living) and longevity. We show that group-living species generally live longer than solitary species, and that the transition rate from a short-lived state to a long-lived state is higher in group-living than non-group-living species, altogether supporting the correlated evolution of social organization and longevity. The comparative brain transcriptomes of 94 mammalian species identify 31 genes, hormones and immunity-related pathways broadly involved in the association between social organization and longevity. Further selection features reveal twenty overlapping pathways under selection for both social organization and longevity. These results underscore a molecular basis for the influence of the social organization on longevity.
Collapse
Affiliation(s)
- Pingfen Zhu
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing, 100101, China
| | - Weiqiang Liu
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoxiao Zhang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meng Li
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing, 100101, China
| | - Gaoming Liu
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing, 100101, China
| | - Yang Yu
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing, 100101, China.,Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Zihao Li
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuanjing Li
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Juan Du
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao Wang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing, 100101, China
| | - Cyril C Grueter
- School of Human Sciences, The University of Western Australia, Perth, WA, 6009, Australia.,Centre for Evolutionary Biology, School of Biological Sciences, The University of Western Australia, Perth, WA, 6009, Australia.,International Center of Biodiversity and Primate Conservation, Dali University, Dali, Yunnan, 671003, China
| | - Ming Li
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing, 100101, China. .,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
| | - Xuming Zhou
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing, 100101, China.
| |
Collapse
|
15
|
Structure of the Sec14 domain of Kalirin reveals a distinct class of lipid-binding module in RhoGEFs. Nat Commun 2023; 14:96. [PMID: 36609407 PMCID: PMC9823006 DOI: 10.1038/s41467-022-35678-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 12/16/2022] [Indexed: 01/09/2023] Open
Abstract
Gated entry of lipophilic ligands into the enclosed hydrophobic pocket in stand-alone Sec14 domain proteins often links lipid metabolism to membrane trafficking. Similar domains occur in multidomain mammalian proteins that activate small GTPases and regulate actin dynamics. The neuronal RhoGEF Kalirin, a central regulator of cytoskeletal dynamics, contains a Sec14 domain (KalbSec14) followed by multiple spectrin-like repeats and catalytic domains. Previous studies demonstrated that Kalirin lacking its Sec14 domain fails to maintain cell morphology or dendritic spine length, yet whether and how KalbSec14 interacts with lipids remain unknown. Here, we report the structural and biochemical characterization of KalbSec14. KalbSec14 adopts a closed conformation, sealing off the canonical ligand entry site, and instead employs a surface groove to bind a limited set of lysophospholipids. The low-affinity interactions of KalbSec14 with lysolipids are expected to serve as a general model for the regulation of Rho signaling by other Sec14-containing Rho activators.
Collapse
|
16
|
Deletion in KARLN intron 5 and predictive relationship with bovine tuberculosis and brucellosis infection phenotype. Vet Res Commun 2022; 47:779-789. [DOI: 10.1007/s11259-022-10039-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/10/2022] [Indexed: 12/14/2022]
|
17
|
Liu S, Qi R, Zhang J, Zhang C, Chen L, Yao Z, Niu W. Kalirin mediates Rac1 activation downstream of calcium/calmodulin-dependent protein kinase II to stimulate glucose uptake during muscle contraction. FEBS Lett 2022; 596:3159-3175. [PMID: 35716086 DOI: 10.1002/1873-3468.14428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 04/14/2022] [Accepted: 05/16/2022] [Indexed: 01/14/2023]
Abstract
In this study, we investigated the role of calcium/calmodulin-dependent protein kinase II (CaMKII) in contraction-stimulated glucose uptake in skeletal muscle. C2C12 myotubes were contracted by electrical pulse stimulation (EPS), and treadmill running was used to exercise mice. The activities of CaMKII, the small G protein Rac1, and the Rac1 effector kinase PAK1 were elevated in muscle by running exercise or EPS, while they were lowered by the CaMKII inhibitor KN-93 and/or small interfering RNA (siRNA)-mediated knockdown. EPS induced the mRNA and protein expression of the Rac1-GEF Kalirin in a CaMKII-dependent manner. EPS-induced Rac1 activation was lowered by the Kalirin inhibitor ITX3 or siRNA-mediated Kalirin knockdown. KN-93, ITX3, and siRNA-mediated Kalirin knockdown reduced EPS-induced glucose uptake. These findings define a CaMKII-Kalirin-Rac1 signaling pathway that contributes to contraction-stimulated glucose uptake in skeletal muscle myotubes and tissue.
Collapse
Affiliation(s)
- Sasa Liu
- School of Medical Laboratory, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), NHC Key Laboratory of Hormones and Development, Tianjin Medical University, China
| | - Rui Qi
- School of Medical Laboratory, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), NHC Key Laboratory of Hormones and Development, Tianjin Medical University, China
| | - Juan Zhang
- School of Medical Laboratory, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), NHC Key Laboratory of Hormones and Development, Tianjin Medical University, China
| | - Chang Zhang
- Department of Pharmacy, General Hospital, Tianjin Medical University, China
| | - Liming Chen
- School of Medical Laboratory, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), NHC Key Laboratory of Hormones and Development, Tianjin Medical University, China
| | - Zhi Yao
- School of Medical Laboratory, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), NHC Key Laboratory of Hormones and Development, Tianjin Medical University, China
| | - Wenyan Niu
- School of Medical Laboratory, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), NHC Key Laboratory of Hormones and Development, Tianjin Medical University, China
| |
Collapse
|
18
|
Parnell E, Voorn RA, Martin-de-Saavedra MD, Loizzo DD, Dos Santos M, Penzes P. A developmental delay linked missense mutation in Kalirin-7 disrupts protein function and neuronal morphology. Front Mol Neurosci 2022; 15:994513. [PMID: 36533124 PMCID: PMC9751355 DOI: 10.3389/fnmol.2022.994513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/28/2022] [Indexed: 07/30/2023] Open
Abstract
The Rac1 guanine exchange factor Kalirin-7 is a key regulator of dendritic spine morphology, LTP and dendritic arborization. Kalirin-7 dysfunction and genetic variation has been extensively linked to various neurodevelopmental and neurodegenerative disorders. Here we characterize a Kalirin-7 missense mutation, glu1577lys (E1577K), identified in a patient with severe developmental delay. The E1577K point mutation is located within the catalytic domain of Kalirin-7, and results in a robust reduction in Kalirin-7 Rac1 Guanosine exchange factor activity. In contrast to wild type Kalirin-7, the E1577K mutant failed to drive dendritic arborization, spine density, NMDAr targeting to, and activity within, spines. Together these results indicate that reduced Rac1-GEF activity as result of E1577K mutation impairs neuroarchitecture, connectivity and NMDAr activity, and is a likely contributor to impaired neurodevelopment in a patient with developmental delay.
Collapse
Affiliation(s)
- Euan Parnell
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Roos A. Voorn
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - M. Dolores Martin-de-Saavedra
- Department of Biochemistry and Molecular Biology, School of Pharmacy, Instituto Universitario de Investigación en Neuroquímica, Complutense University of Madrid, Madrid, Spain
| | - Daniel D. Loizzo
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Marc Dos Santos
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Peter Penzes
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Centre for Autism and Neurodevelopment, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
19
|
Whole-Exome Sequencing Revealed New Candidate Genes for Human Dilated Cardiomyopathy. Diagnostics (Basel) 2022; 12:diagnostics12102411. [PMID: 36292100 PMCID: PMC9600457 DOI: 10.3390/diagnostics12102411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/29/2022] [Accepted: 10/02/2022] [Indexed: 11/17/2022] Open
Abstract
Dilated cardiomyopathy (DCM) is a complex disease affecting young adults. It is a pathological condition impairing myocardium activity that leads to heart failure and, in the most severe cases, transplantation, which is currently the only possible therapy for the disease. DCM can be attributed to many genetic determinants interacting with environmental factors, resulting in a highly variable phenotype. Due to this complexity, the early identification of causative gene mutations is an important goal to provide a genetic diagnosis, implement pre-symptomatic interventions, and predict prognosis. The advent of next-generation sequencing (NGS) has opened a new path for mutation screening, and exome sequencing provides a promising approach for identifying causal variants in known genes and novel disease-associated candidates. We analyzed the whole-exome sequencing (WES) of 15 patients affected by DCM without overloading (hypertension, valvular, or congenital heart disease) or chronic ischemic conditions. We identified 70 pathogenic or likely pathogenic variants and 1240 variants of uncertain clinical significance. Gene ontology enrichment analysis was performed to assess the potential connections between affected genes and biological or molecular function, identifying genes directly related to extracellular matrix organization, transcellular movement through the solute carrier and ATP-binding cassette transporter, and vitamin B12 metabolism. We found variants in genes implicated to a different extent in cardiac function that may represent new players in the complex genetic scenario of DCM.
Collapse
|
20
|
Imbriani P, Martella G, Bonsi P, Pisani A. Oxidative stress and synaptic dysfunction in rodent models of Parkinson's disease. Neurobiol Dis 2022; 173:105851. [PMID: 36007757 DOI: 10.1016/j.nbd.2022.105851] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 08/02/2022] [Accepted: 08/20/2022] [Indexed: 11/26/2022] Open
Abstract
Parkinson's disease (PD) is a multifactorial disorder involving a complex interplay between a variety of genetic and environmental factors. In this scenario, mitochondrial impairment and oxidative stress are widely accepted as crucial neuropathogenic mechanisms, as also evidenced by the identification of PD-associated genes that are directly involved in mitochondrial function. The concept of mitochondrial dysfunction is closely linked to that of synaptic dysfunction. Indeed, compelling evidence supports the role of mitochondria in synaptic transmission and plasticity, although many aspects have not yet been fully elucidated. Here, we will provide a brief overview of the most relevant evidence obtained in different neurotoxin-based and genetic rodent models of PD, focusing on mitochondrial impairment and synaptopathy, an early central event preceding overt nigrostriatal neurodegeneration. The identification of early deficits occurring in PD pathogenesis is crucial in view of the development of potential disease-modifying therapeutic strategies.
Collapse
Affiliation(s)
- Paola Imbriani
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Giuseppina Martella
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Paola Bonsi
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Antonio Pisani
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; IRCCS Mondino Foundation, Pavia, Italy.
| |
Collapse
|
21
|
Moore MG, Thompson CH, Reimers MA, Purcell EK. Differential Co-Expression Analysis of RNA-Seq Data Reveals Novel Potential Biomarkers of Device-Tissue Interaction. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:3072-3076. [PMID: 36085767 PMCID: PMC9724584 DOI: 10.1109/embc48229.2022.9871437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The biological response to electrodes implanted in the brain has been a long-standing barrier to achieving a stable tissue device-interface. Understanding the mechanisms underlying this response could explain phenomena including recording instability and loss, shifting stimulation thresholds, off-target effects of neuromodulation, and stimulation-induced depression of neural excitability. Our prior work detected differential expression in hundreds of genes following device implantation. Here, we extend upon that work by providing new analyses using differential co-expression analysis, which identifies changes in the correlation structure between groups of genes detected at the interface in comparison to control tissues. We used an "eigengene" approach to identify hub genes associated with each module. Our work adds to a growing body of literature which applies new techniques in molecular biology and computational analysis to long-standing issues surrounding electrode integration with the brain.
Collapse
|
22
|
Fish Hydrolysate Supplementation Prevents Stress-Induced Dysregulation of Hippocampal Proteins Relative to Mitochondrial Metabolism and the Neuronal Network in Mice. Foods 2022; 11:foods11111591. [PMID: 35681342 PMCID: PMC9180483 DOI: 10.3390/foods11111591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 12/10/2022] Open
Abstract
Over the past several decades, stress has dramatically increased in occidental societies. The use of natural resources, such as fish hydrolysates, may be an attractive strategy to improve stress management. Our previous study demonstrated the anxiolytic effects of fish hydrolysate supplementation in mice exposed to acute mild stress by limiting stress-induced corticosterone release and modulating the expression of a number of stress-responsive genes. Here, we explore hippocampal protein modulation induced by fish hydrolysate supplementation in mice submitted to acute mild stress, with the aim of better elucidating the underlying mechanisms. Hippocampi from the same cohort of Balb/c mice supplemented with fish hydrolysate (300 mg·kg−1 body weight) or vehicle daily for seven days before being submitted or not to an acute mild stress protocol (four groups, n = 8/group) were subjected to label-free quantitative proteomics analysis combined with gene ontology data mining. Our results show that fish hydrolysate supplementation prevented the observed stress-induced dysregulation of proteins relative to mitochondrial pathways and the neuronal network. These findings suggest that fish hydrolysate represents an innovative strategy to prevent the adverse effects of stress and participate in stress management.
Collapse
|
23
|
Balasundaram A, Udhaya Kumar S, George Priya Doss C. A computational model revealing the immune-related hub genes and key pathways involved in rheumatoid arthritis (RA). ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 129:247-273. [PMID: 35305721 DOI: 10.1016/bs.apcsb.2021.11.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Rheumatoid arthritis (RA) has one of the highest disability rates among inflammatory joint disorders. However, the reason and possible molecular events are still unclear. There are various treatment options available, but no complete cure. To obtain early diagnosis and successful medication in RA, it is necessary to explore gene susceptibility and pathogenic factors. The main intend of our work is to explore the immune-related hub genes with similar functions that are differentially expressed in RA patients. Three datasets such as GSE21959, GSE55457, and GSE77298, were taken to analyze the differently expressed genes (DEGs) among 55 RA and 33 control samples. We obtained 331 upregulated and 275 downregulated DEGs from three Gene Expression Omnibus (GEO) datasets using the R package. Furthermore, a protein-protein interaction network was built for upregulated and downregulated DEGs using Cytoscape. Subsequently, MCODE analysis was performed and obtained the top two modules in each DEG's upregulated and downregulated protein-protein interactions (PPIs) network. CytoNCA and cytoHubba were performed and identified overlapping DEGs. In addition, we narrowed down DEGs by filtering with immune-related genes and identified DE-IRGs. Gene ontology (GO) and KEGG pathway analysis in upregulated and downregulated DEGs were executed with the DAVID platform. Our study obtained the nine most significant DE-IRGs in RA such as CXCR4, CDK1, BUB1, BIRC5, AGTR1, EGFR, EDNRB, KALRN, and GHSR. Among them, CXCR4, CDK1, BUB1, and BIRC5 are overexpressed in RA and may contribute to the pathophysiology of the disease. Similarly, AGTR1, EGFR, EDNRB, KALRN, and GHSR are all low expressed in RA and may have a contribution to pathogenesis. GO, KEGG functional enrichment, and GeneMANIA showed that the dysregulated process of DE-IRGs causes RA development and progression. These findings may be helpful in future studies in RA diagnosis and therapy.
Collapse
Affiliation(s)
- Ambritha Balasundaram
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, TN, India
| | - S Udhaya Kumar
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, TN, India
| | - C George Priya Doss
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, TN, India.
| |
Collapse
|
24
|
Abstract
The cognitive dysfunction experienced by patients with schizophrenia represents a major unmet clinical need. We believe that enhancing synaptic function and plasticity by targeting kalirin may provide a novel means to remediate these symptoms. Karilin (a protein encoded by the KALRN gene) has multiple functional domains, including two Dbl homology (DH) guanine exchange factor (GEF) domains, which act to enhance the activity of the Rho family guanosine triphosphate (GTP)-ases. Here, we provide an overview of kalirin's roles in brain function and its therapeutic potential in schizophrenia. We outline how it mediates diverse effects via a suite of distinct isoforms that couple to members of the Rho GTPase family to regulate synapse formation and stabilisation, and how genomic and post-mortem data implicate it in schizophrenia. We then review the current state of knowledge about the influence of kalirin on brain function at a systems level, based largely on evidence from transgenic mouse models, which support its proposed role in regulating dendritic spine function and plasticity. We demonstrate that, whilst the GTPases are classically considered to be 'undruggable', targeting kalirin and other Rho GEFs provides a means to indirectly modulate their activity. Finally, we integrate across the information presented to assess the therapeutic potential of kalirin for schizophrenia and highlight the key outstanding questions required to advance it in this capacity; namely, the need for more information about the diversity and function of its isoforms, how these change across neurodevelopment, and how they affect brain function in vivo.
Collapse
|