1
|
Neagu AN, Bruno P, Johnson KR, Ballestas G, Darie CC. Biological Basis of Breast Cancer-Related Disparities in Precision Oncology Era. Int J Mol Sci 2024; 25:4113. [PMID: 38612922 PMCID: PMC11012526 DOI: 10.3390/ijms25074113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024] Open
Abstract
Precision oncology is based on deep knowledge of the molecular profile of tumors, allowing for more accurate and personalized therapy for specific groups of patients who are different in disease susceptibility as well as treatment response. Thus, onco-breastomics is able to discover novel biomarkers that have been found to have racial and ethnic differences, among other types of disparities such as chronological or biological age-, sex/gender- or environmental-related ones. Usually, evidence suggests that breast cancer (BC) disparities are due to ethnicity, aging rate, socioeconomic position, environmental or chemical exposures, psycho-social stressors, comorbidities, Western lifestyle, poverty and rurality, or organizational and health care system factors or access. The aim of this review was to deepen the understanding of BC-related disparities, mainly from a biomedical perspective, which includes genomic-based differences, disparities in breast tumor biology and developmental biology, differences in breast tumors' immune and metabolic landscapes, ecological factors involved in these disparities as well as microbiomics- and metagenomics-based disparities in BC. We can conclude that onco-breastomics, in principle, based on genomics, proteomics, epigenomics, hormonomics, metabolomics and exposomics data, is able to characterize the multiple biological processes and molecular pathways involved in BC disparities, clarifying the differences in incidence, mortality and treatment response for different groups of BC patients.
Collapse
Affiliation(s)
- Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, "Alexandru Ioan Cuza" University of Iași, Carol I bvd. 20A, 700505 Iasi, Romania
| | - Pathea Bruno
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA
| | - Kaya R Johnson
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA
| | - Gabriella Ballestas
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA
| | - Costel C Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA
| |
Collapse
|
2
|
Chauhan S, Sen S, Irshad K, Kashyap S, Pushker N, Meel R, Sharma MC. Receptor tyrosine kinase gene expression profiling of orbital rhabdomyosarcoma unveils MET as a potential biomarker and therapeutic target. Hum Cell 2024; 37:297-309. [PMID: 37914903 DOI: 10.1007/s13577-023-00993-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 10/06/2023] [Indexed: 11/03/2023]
Abstract
Receptor tyrosine kinases (RTKs) serve as molecular targets for the development of novel personalized therapies in many malignancies. In the present study, expression pattern of receptor tyrosine kinases and its clinical significance in orbital RMS has been explored. Eighteen patients with histopathologically confirmed orbital RMS formed part of this study. Comprehensive q-PCR gene expression profiles of 19 RTKs were generated in the cases and controls. The patients were followed up for 59.53 ± 20.93 years. Clustering and statistical analysis tools were applied to identify the significant combination of RTKs associated with orbital rhabdomyosarcoma patients. mRNA overexpression of RTKs which included MET, AXL, EGFR was seen in 60-80% of cases; EGFR3, IGFR2, FGFR1, RET, PDGFR1, VEGFR2, PDGFR2 in 30-60% of cases; and EGFR4, FGFR3,VEGFR3 and ROS,IGFR1, EGFR1, FGFR2, VEGFR1 in 10-30% of cases. Immunoexpression of MET was seen in 89% of cases. A significant association was seen between MET mRNA and its protein expression. In all the cases MET gene expression was associated with worst overall survival (P = 0.03).There was a significant correlation of MET mRNA expression with RET, ROS, AXL, FGFR1, FGFR3, PDGFR1, IGFR1, VEGFR2, and EGFR3 genes. Association between MET gene and collective expression of RTKs was further evaluated by semi-supervised gene cluster analysis and Principal component analysis, which showed well-separated tumor clusters. MET gene overexpression could be a useful biomarker for identifying high risk orbital rhabdomyosarcoma patients. Well-separated tumor clusters confirmed the association between MET gene and collective expression of RTK genes. Therefore, the therapeutic potential of multi-kinase inhibitors targeting MET and the 9 other significant RTKs needs to be explored.
Collapse
Affiliation(s)
- Sheetal Chauhan
- Ocular Pathology, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, Ansari Nagar, Room No. 725, New Delhi, 110029, India
| | - Seema Sen
- Ocular Pathology, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, Ansari Nagar, Room No. 725, New Delhi, 110029, India.
| | - Khushboo Irshad
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Seema Kashyap
- Ocular Pathology, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, Ansari Nagar, Room No. 725, New Delhi, 110029, India
| | - Neelam Pushker
- Ophthalmoplasty Services, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Rachna Meel
- Ophthalmoplasty Services, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Mehar Chand Sharma
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, 110029, India
| |
Collapse
|
3
|
Rygiel K. Interface between obesity with dysfunctional metabolism and inflammation, and the triple-negative breast cancer in African American women. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2021; 2:602-616. [PMID: 36046117 PMCID: PMC9400742 DOI: 10.37349/etat.2021.00066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/30/2021] [Indexed: 11/19/2022] Open
Abstract
Obesity has dramatically increased over the past fifty years. In the last decade, it has been noted that augmented body mass, metabolic abnormalities, and the relevant "obese" tumor microenvironment (TME) are connected with signaling molecular networks, which in turn, may contribute to aggressive tumor biology in some patients with breast malignancies. This article presents the associations between obesity, metabolic derangements, inflammatory processes in the adipose tissue or TME, and aggressive behavior of triple-negative breast cancer (TNBC) in African American (AA) women. It also describes some abnormal molecular signaling patterns in the "obese" TME with relevance to TNBC biology. Ethnic disparities in TNBC can be due to a variety of biological features (e.g., genetic mutations and tumor heterogeneity), comorbidities (e.g., cardio-metabolic diseases, including diabetes mellitus), and reproductive factors (e.g., multiparty or short breastfeeding period). Such a constellation of biological variables potentially leads to the association between obesity, metabolic derangements, inflammatory processes in the adipose tissue or TME, and aggressive behavior of TNBC in AA women. Since the TNBC and its TME can display very aggressive behavior, it is crucial that the afflicted AA women make efforts to maintain healthy body weight, "flexible" metabolism, and a well-functioning immune system. Further studies are merited to explore the multi-disciplinary factors that can affect TNBC prevention, management, and outcomes to optimize treatment strategies and survival among AA women.
Collapse
Affiliation(s)
- Katarzyna Rygiel
- Department of Family Practice, Medical University of Silesia, 41-800 Katowice-Zabrze, Poland
| |
Collapse
|
4
|
Shastri AA, Lombardo J, Okere SC, Higgins S, Smith BC, DeAngelis T, Palagani A, Hines K, Monti DA, Volpe S, Mitchell EP, Simone NL. Personalized Nutrition as a Key Contributor to Improving Radiation Response in Breast Cancer. Int J Mol Sci 2021; 23:175. [PMID: 35008602 PMCID: PMC8745527 DOI: 10.3390/ijms23010175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 02/06/2023] Open
Abstract
Understanding metabolic and immune regulation inherent to patient populations is key to improving the radiation response for our patients. To date, radiation therapy regimens are prescribed based on tumor type and stage. Patient populations who are noted to have a poor response to radiation such as those of African American descent, those who have obesity or metabolic syndrome, or senior adult oncology patients, should be considered for concurrent therapies with radiation that will improve response. Here, we explore these populations of breast cancer patients, who frequently display radiation resistance and increased mortality rates, and identify the molecular underpinnings that are, in part, responsible for the radiation response and that result in an immune-suppressive tumor microenvironment. The resulting immune phenotype is discussed to understand how antitumor immunity could be improved. Correcting nutrient deficiencies observed in these populations should be considered as a means to improve the therapeutic index of radiation therapy.
Collapse
Affiliation(s)
- Anuradha A. Shastri
- Department of Radiation Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; (A.A.S.); (J.L.); (S.C.O.); (S.H.); (B.C.S.); (T.D.); (A.P.); (K.H.)
| | - Joseph Lombardo
- Department of Radiation Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; (A.A.S.); (J.L.); (S.C.O.); (S.H.); (B.C.S.); (T.D.); (A.P.); (K.H.)
| | - Samantha C. Okere
- Department of Radiation Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; (A.A.S.); (J.L.); (S.C.O.); (S.H.); (B.C.S.); (T.D.); (A.P.); (K.H.)
| | - Stephanie Higgins
- Department of Radiation Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; (A.A.S.); (J.L.); (S.C.O.); (S.H.); (B.C.S.); (T.D.); (A.P.); (K.H.)
| | - Brittany C. Smith
- Department of Radiation Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; (A.A.S.); (J.L.); (S.C.O.); (S.H.); (B.C.S.); (T.D.); (A.P.); (K.H.)
| | - Tiziana DeAngelis
- Department of Radiation Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; (A.A.S.); (J.L.); (S.C.O.); (S.H.); (B.C.S.); (T.D.); (A.P.); (K.H.)
| | - Ajay Palagani
- Department of Radiation Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; (A.A.S.); (J.L.); (S.C.O.); (S.H.); (B.C.S.); (T.D.); (A.P.); (K.H.)
| | - Kamryn Hines
- Department of Radiation Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; (A.A.S.); (J.L.); (S.C.O.); (S.H.); (B.C.S.); (T.D.); (A.P.); (K.H.)
| | - Daniel A. Monti
- Department of Integrative Medicine and Nutritional Sciences, Marcus Institute of Integrative Health, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| | - Stella Volpe
- Department of Human Nutrition, Foods and Exercise, College of Agriculture and Life Sciences, Virginia Tech, Blacksburg, VA 24061, USA;
| | - Edith P. Mitchell
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| | - Nicole L. Simone
- Department of Radiation Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; (A.A.S.); (J.L.); (S.C.O.); (S.H.); (B.C.S.); (T.D.); (A.P.); (K.H.)
| |
Collapse
|
5
|
Yaghoobi V, Moutafi M, Aung TN, Pelekanou V, Yaghoubi S, Blenman K, Ibrahim E, Vathiotis IA, Shafi S, Sharma A, O'Meara T, Fernandez AI, Pusztai L, Rimm DL. Quantitative assessment of the immune microenvironment in African American Triple Negative Breast Cancer: a case-control study. Breast Cancer Res 2021; 23:113. [PMID: 34906209 PMCID: PMC8670126 DOI: 10.1186/s13058-021-01493-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 12/01/2021] [Indexed: 11/10/2022] Open
Abstract
PURPOSE Triple negative breast cancer (TNBC) is more common in African American (AA) than Non-AA (NAA) population. We hypothesize that tumor microenvironment (TME) contributes to this disparity. Here, we use multiplex quantitative immunofluorescence to characterize the expression of immunologic biomarkers in the TME in both populations. PATIENTS AND METHODS TNBC tumor resection specimen tissues from a 100-patient case: control cohort including 49 AA and 51 NAA were collected. TME markers including CD45, CD14, CD68, CD206, CD4, CD8, CD20, CD3, Ki67, GzB, Thy1, FAP, aSMA, CD34, Col4, VWF and PD-L1 we quantitatively assessed in every field of view. Mean expression levels were compared between cases and controls. RESULTS Although no significant differences were detected in individual lymphoid and myeloid markers, we found that infiltration with CD45+ immune cells (p = 0.0102) was higher in TNBC in AA population. AA TNBC tumors also had significantly higher level of lymphocytic infiltration defined as CD45+ CD14- cells (p = 0.0081). CD3+ T-cells in AA tumors expressed significantly higher levels of Ki67 (0.0066) compared to NAAs, indicating that a higher percentage of AA tumors contained activated T-cells. All other biomarkers showed no significant differences between the AA and NAA group. CONCLUSIONS While the TME in TNBC is rich in immune cells in both racial groups, there is a numerical increase in lymphoid infiltration in AA compared to NAA TNBC. Significantly, higher activated T cells seen in AA patients raises the possibility that there may be a subset of AA patients with improved response to immunotherapy.
Collapse
Affiliation(s)
- Vesal Yaghoobi
- Department of Pathology, Yale University School of Medicine, 310 Cedar Street, BML 116, P.O. Box 208023, New Haven, CT, 06520-8023, USA
| | - Myrto Moutafi
- Department of Pathology, Yale University School of Medicine, 310 Cedar Street, BML 116, P.O. Box 208023, New Haven, CT, 06520-8023, USA
| | - Thazin Nwe Aung
- Department of Pathology, Yale University School of Medicine, 310 Cedar Street, BML 116, P.O. Box 208023, New Haven, CT, 06520-8023, USA
| | - Vasiliki Pelekanou
- Department of Pathology, Yale University School of Medicine, 310 Cedar Street, BML 116, P.O. Box 208023, New Haven, CT, 06520-8023, USA
| | - Sanam Yaghoubi
- Genetics Branch, National Cancer Institute (NCI), National Institute of Health (NIH), Bethesda, MD, USA
| | - Kim Blenman
- Department of Internal Medicine, Section of Medical Oncology, Yale School of Medicine, New Haven, CT, USA
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| | - Eiman Ibrahim
- Department of Internal Medicine, Section of Medical Oncology, Yale School of Medicine, New Haven, CT, USA
| | - Ioannis A Vathiotis
- Department of Pathology, Yale University School of Medicine, 310 Cedar Street, BML 116, P.O. Box 208023, New Haven, CT, 06520-8023, USA
| | - Saba Shafi
- Department of Pathology, Yale University School of Medicine, 310 Cedar Street, BML 116, P.O. Box 208023, New Haven, CT, 06520-8023, USA
| | - Anup Sharma
- Department of Surgery, Yale School of Medicine, New Haven, CT, USA
| | - Tess O'Meara
- Department of Internal Medicine, Section of Medical Oncology, Yale School of Medicine, New Haven, CT, USA
| | - Aileen I Fernandez
- Department of Pathology, Yale University School of Medicine, 310 Cedar Street, BML 116, P.O. Box 208023, New Haven, CT, 06520-8023, USA
| | - Lajos Pusztai
- Department of Internal Medicine, Section of Medical Oncology, Yale School of Medicine, New Haven, CT, USA
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| | - David L Rimm
- Department of Pathology, Yale University School of Medicine, 310 Cedar Street, BML 116, P.O. Box 208023, New Haven, CT, 06520-8023, USA.
- Department of Internal Medicine, Section of Medical Oncology, Yale School of Medicine, New Haven, CT, USA.
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
6
|
Identification of a Resistance Mechanism to IGF-IR Targeting in Human Triple Negative MDA-MB-231 Breast Cancer Cells. Biomolecules 2021; 11:biom11040527. [PMID: 33916323 PMCID: PMC8065809 DOI: 10.3390/biom11040527] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/16/2021] [Accepted: 03/29/2021] [Indexed: 12/14/2022] Open
Abstract
Triple negative breast cancer (TNBC) is associated with unfavorable prognosis and high relapse rates following chemotherapy. There is an urgent need to develop effective targeted therapy for this BC subtype. The type I insulin-like growth factor receptor (IGF-IR) was identified as a potential target for BC management. We previously reported on the production of the IGF-Trap, a soluble IGF-1R fusion protein that reduces the bioavailability of circulating IGF-1 and IGF-2 to the cognate receptor, impeding signaling. In nude mice xenotransplanted with the human TNBC MDA-MB-231 cells, we found variable responses to this inhibitor. We used this model to investigate potential resistance mechanisms to IGF-targeted therapy. We show here that prolonged exposure of MDA-MB-231 cells to the IGF-Trap in vitro selected a resistant subpopulation that proliferated unhindered in the presence of the IGF-Trap. We identified in these cells increased fibroblast growth factor receptor 1 (FGFR1) activation levels that sensitized them to the FGFR1-specific tyrosine kinase inhibitor PD166866. Treatment with this inhibitor caused cell cycle arrest in both the parental and resistant cells, markedly increasing cell death in the latter. When combined with the IGF-Trap, an increase in cell cycle arrest was observed in the resistant cells. Moreover, FGFR1 silencing increased the sensitivity of these cells to IGF-Trap treatment in vivo. Our data identify increased FGFR1 signaling as a resistance mechanism to targeted inhibition of the IGF-IR and suggest that dual IGF-1R/FGFR1 blockade may be required to overcome TNBC cell resistance to IGF-axis inhibitors.
Collapse
|
7
|
Frankhauser DE, Jovanovic‐Talisman T, Lai L, Yee LD, Wang LV, Mahabal A, Geradts J, Rockne RC, Tomsic J, Jones V, Sistrunk C, Miranda‐Carboni G, Dietze EC, Erhunmwunsee L, Hyslop T, Seewaldt VL. Spatiotemporal strategies to identify aggressive biology in precancerous breast biopsies. WIREs Mech Dis 2021; 13:e1506. [PMID: 33001587 PMCID: PMC8544796 DOI: 10.1002/wsbm.1506] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 01/12/2023]
Abstract
Over 90% of breast cancer is cured; yet there remain highly aggressive breast cancers that develop rapidly and are extremely difficult to treat, much less prevent. Breast cancers that rapidly develop between breast image screening are called "interval cancers." The efforts of our team focus on identifying multiscale integrated strategies to identify biologically aggressive precancerous breast lesions. Our goal is to identify spatiotemporal changes that occur prior to development of interval breast cancers. To accomplish this requires integration of new technology. Our team has the ability to perform single cell in situ transcriptional profiling, noncontrast biological imaging, mathematical analysis, and nanoscale evaluation of receptor organization and signaling. These technological innovations allow us to start to identify multidimensional spatial and temporal relationships that drive the transition from biologically aggressive precancer to biologically aggressive interval breast cancer. This article is categorized under: Cancer > Computational Models Cancer > Molecular and Cellular Physiology Cancer > Genetics/Genomics/Epigenetics.
Collapse
Affiliation(s)
- David E. Frankhauser
- Department of Population SciencesCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | | | - Lily Lai
- Department of Population SciencesCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Lisa D. Yee
- Department of Population SciencesCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Lihong V. Wang
- Department of Medical EngineeringCalifornia Institute of TechnologyPasadena, CaliforniaUSA
| | - Ashish Mahabal
- Center for Data Driven DiscoveryCalifornia Institute of TechnologyPasadena, CaliforniaUSA
| | - Joseph Geradts
- Department of PathologyDuke UniversityDurhamNorth CarolinaUSA
| | - Russell C. Rockne
- Department of Population SciencesCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Jerneja Tomsic
- Department of Population SciencesCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Veronica Jones
- Department of Population SciencesCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Christopher Sistrunk
- Department of Population SciencesCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | | | - Eric C. Dietze
- Department of Population SciencesCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Loretta Erhunmwunsee
- Department of Population SciencesCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Terry Hyslop
- Department of BiostatisticsDuke UniversityDurhamNorth CarolinaUSA
| | - Victoria L. Seewaldt
- Department of Population SciencesCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| |
Collapse
|
8
|
Radhakrishnan VK, Ravichandran K, Eke C, Ortiz-Vicil A, Tan Q, León MD, León DDD. Methylation of a newly identified region of the INS-IGF2 gene determines IGF2 expression in breast cancer tumors and in breast cancer cells. Oncotarget 2020; 11:3904-3920. [PMID: 33216823 PMCID: PMC7646830 DOI: 10.18632/oncotarget.27655] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 06/01/2020] [Indexed: 11/25/2022] Open
Abstract
IGF2 is essential in breast differentiation, lactation, tumor growth, and in breast cancer (BC) development and progression. This growth factor also inhibits apoptosis and promotes metastasis and chemoresistance, contributing to more aggressive tumors. We previously demonstrated that IGF2 protein levels are higher in BC tissues from African American women than in Caucasian women. We also showed that high IGF2 protein levels are expressed in normal breast tissues of African American women while little or no IGF2 was detected in tissues from Caucasian women. Others showed that decreased DNA methylation of the IGF2 gene leads to different BC clinical features. Thus, we designed this study to determine if differentially methylated regions of the IGF2 gene correspond to IGF2 protein expression in paired (Normal/Tumor) breast tissues and in BC cell lines. Methylation analysis was performed using Sodium Bisulphite Analysis and Methylation Sensitive Restriction Enzyme digestion methods. Our results show that a unique site in the INS-IGF2 region is hypermethylated in normal breast and hypomethylated in breast cancer. We designated this region the DVDMR. Furthermore, the methylation levels in the DVDMR significantly correlated with IGF2 protein levels. This novel DMR consists of 257bp localized in the INS-IGF2 gene. We propose that methylation of DVDMR represents a novel epigenetic biomarker that determines the levels of IGF2 protein expression in breast cancer. Since IGF2 promotes metastasis and chemoresistance, we propose that IGF2 levels contribute to BC aggressiveness. Validation of IGF2 as a biomarker will improve diagnosis and treatment of BC patients.
Collapse
Affiliation(s)
- Vinodh Kumar Radhakrishnan
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Kameswaran Ravichandran
- Division of Renal Diseases and Hypertension, University of Colorado at Denver, Aurora, CO 80045, USA
| | - Chibuzo Eke
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Amanda Ortiz-Vicil
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Qianwei Tan
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Marino De León
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Daisy D De León
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| |
Collapse
|
9
|
Saeui CT, Cho KC, Dharmarha V, Nairn AV, Galizzi M, Shah SR, Gowda P, Park M, Austin M, Clarke A, Cai E, Buettner MJ, Ariss R, Moremen KW, Zhang H, Yarema KJ. Cell Line-, Protein-, and Sialoglycosite-Specific Control of Flux-Based Sialylation in Human Breast Cells: Implications for Cancer Progression. Front Chem 2020; 8:13. [PMID: 32117864 PMCID: PMC7013041 DOI: 10.3389/fchem.2020.00013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/07/2020] [Indexed: 12/11/2022] Open
Abstract
Sialylation, a post-translational modification that impacts the structure, activity, and longevity of glycoproteins has been thought to be controlled primarily by the expression of sialyltransferases (STs). In this report we explore the complementary impact of metabolic flux on sialylation using a glycoengineering approach. Specifically, we treated three human breast cell lines (MCF10A, T-47D, and MDA-MB-231) with 1,3,4-O-Bu3ManNAc, a "high flux" metabolic precursor for the sialic acid biosynthetic pathway. We then analyzed N-glycan sialylation using solid phase extraction of glycopeptides (SPEG) mass spectrometry-based proteomics under conditions that selectively captured sialic acid-containing glycopeptides, referred to as "sialoglycosites." Gene ontology (GO) analysis showed that flux-based changes to sialylation were broadly distributed across classes of proteins in 1,3,4-O-Bu3ManNAc-treated cells. Only three categories of proteins, however, were "highly responsive" to flux (defined as two or more sialylation changes of 10-fold or greater). Two of these categories were cell signaling and cell adhesion, which reflect well-known roles of sialic acid in oncogenesis. A third category-protein folding chaperones-was unexpected because little precedent exists for the role of glycosylation in the activity of these proteins. The highly flux-responsive proteins were all linked to cancer but sometimes as tumor suppressors, other times as proto-oncogenes, or sometimes both depending on sialylation status. A notable aspect of our analysis of metabolically glycoengineered breast cells was decreased sialylation of a subset of glycosites, which was unexpected because of the increased intracellular levels of sialometabolite "building blocks" in the 1,3,4-O-Bu3ManNAc-treated cells. Sites of decreased sialylation were minor in the MCF10A (<25% of all glycosites) and T-47D (<15%) cells but dominated in the MDA-MB-231 line (~60%) suggesting that excess sialic acid could be detrimental in advanced cancer and cancer cells can evolve mechanisms to guard against hypersialylation. In summary, flux-driven changes to sialylation offer an intriguing and novel mechanism to switch between context-dependent pro- or anti-cancer activities of the several oncoproteins identified in this study. These findings illustrate how metabolic glycoengineering can uncover novel roles of sialic acid in oncogenesis.
Collapse
Affiliation(s)
- Christopher T Saeui
- Department of Biomedical Engineering, Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, MD, United States
| | - Kyung-Cho Cho
- Department of Pathology, The Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Vrinda Dharmarha
- Department of Biomedical Engineering, Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, MD, United States
| | - Alison V Nairn
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
| | - Melina Galizzi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
| | - Sagar R Shah
- Department of Biomedical Engineering, Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, MD, United States
| | - Prateek Gowda
- Department of Biomedical Engineering, Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, MD, United States
| | - Marian Park
- Department of Biomedical Engineering, Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, MD, United States
| | - Melissa Austin
- Department of Biomedical Engineering, Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, MD, United States
| | - Amelia Clarke
- Department of Biomedical Engineering, Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, MD, United States
| | - Edward Cai
- Department of Biomedical Engineering, Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, MD, United States
| | - Matthew J Buettner
- Department of Biomedical Engineering, Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, MD, United States
| | - Ryan Ariss
- Department of Biomedical Engineering, Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, MD, United States
| | - Kelley W Moremen
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
| | - Hui Zhang
- Department of Pathology, The Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Kevin J Yarema
- Department of Biomedical Engineering, Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, MD, United States.,Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD, United States.,Department of Oncology, The Johns Hopkins School of Medicine, Baltimore, MD, United States
| |
Collapse
|
10
|
Estrogen receptor-beta is a potential target for triple negative breast cancer treatment. Oncotarget 2018; 9:33912-33930. [PMID: 30338035 PMCID: PMC6188058 DOI: 10.18632/oncotarget.26089] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 07/12/2018] [Indexed: 12/31/2022] Open
Abstract
Triple Negative breast cancer (TNBC) is a subtype of breast cancer that lacks the expression of estrogen receptor (ER), progesterone receptor, and human epidermal growth factor receptor 2. TNBC accounts for 15-20% of all breast cancer cases but accounts for over 50% of mortality. We propose that Estrogen receptor-beta (ERβ) and IGF2 play a significant role in the pathogenesis of TNBCs, and could be important targets for future therapy. Tissue microarrays (TMAs) from over 250 TNBC patients' were analyzed for ERβ and IGF2 expression by immunohistochemistry. Expression was correlated with clinical outcomes. In addition, TNBC cell lines Caucasians (CA): MB-231/BT549 and African Americans (AAs): MB-468/HCC70/HCC1806 were used to investigate the effect of hormonal and growth factor regulation on cell proliferation. TMAs from AAs had higher expression of ERβ and IGF2 expression when compared to CA. ERβ and IGF2 were found to be upregulated in our TNBC cell lines when compared to other cell types. TNBC cells treated with ERβ agonist displayed significant increase in cell proliferation and migration when compared to controls. AA tissue samples from TNBC patients had higher expression of ERβ. African-American breast cancer TNBC tissue samples from TNBC patients have higher expression of ERβ. In addition, TNBC cell lines were also found to express high levels of ERβ. IGF2 increased transcription of ERβ in TNBC cells. Understanding the mechanisms of IGF2/ERβ axis in TNBC tumors could provide an opportunity to target this aggressive subtype of breast cancer.
Collapse
|
11
|
Christopoulos PF, Corthay A, Koutsilieris M. Aiming for the Insulin-like Growth Factor-1 system in breast cancer therapeutics. Cancer Treat Rev 2017; 63:79-95. [PMID: 29253837 DOI: 10.1016/j.ctrv.2017.11.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 11/29/2017] [Accepted: 11/30/2017] [Indexed: 12/23/2022]
Abstract
Despite the major discoveries occurred in oncology the recent years, breast malignancies remain one of the most common causes of cancer-related deaths for women in developed countries. Development of HER2-targeting drugs has been considered a breakthrough in anti-cancer approaches and alluded to the potential of targeting growth factors in breast cancer (BrCa) therapeutics. More than twenty-five years have passed since the Insulin-like Growth Factor-1 (IGF-1) system was initially recognized as a potential target candidate in BrCa therapy. To date, a growing body of studies have implicated the IGF-1 signaling with the BrCa biology. Despite the promising experimental evidence, the impression from clinical trials is rather disappointing. Several reasons may account for this and the last word regarding the efficacy of this system as a target candidate in BrCa therapeutics is probably not written yet. Herein, we provide the theoretical basis, as well as, a comprehensive overview of the current literature, regarding the different strategies targeting the various components of the IGF-1/IGF-1R axis in several pathophysiological aspects of BrCa, including the tumor micro-environment and cancer stemness. In addition, we review the rationale for targeting the IGF-1 system in the different BrCa molecular subtypes and in treatment resistant breast tumors with a focus on both the molecular mechanisms and on the clinical perspectives of such approaches in specific population subgroups. We also discuss the future challenges, as well as, the development of novel molecules and strategies targeting the system and suggest potential improvements in the field.
Collapse
Affiliation(s)
- Panagiotis F Christopoulos
- Department of Experimental Physiology, Medical School, National & Kapodistrian University of Athens, Athens, Greece; Tumor Immunology Lab, Department of Pathology, Rikshospitalet, Oslo University Hospital and University of Oslo, Oslo, Norway; Department of Medical Biology, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway.
| | - Alexandre Corthay
- Tumor Immunology Lab, Department of Pathology, Rikshospitalet, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Michael Koutsilieris
- Department of Experimental Physiology, Medical School, National & Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
12
|
Gupta V, Haque I, Chakraborty J, Graff S, Banerjee S, Banerjee SK. Racial disparity in breast cancer: can it be mattered for prognosis and therapy. J Cell Commun Signal 2017; 12:119-132. [PMID: 29188479 DOI: 10.1007/s12079-017-0416-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 10/10/2017] [Indexed: 01/01/2023] Open
Abstract
Breast cancer (BC) has emerged as a deadly disease that affects the lives of millions of women worldwide. It is the second leading cause of cancer-related deaths in the United States. Advancements in BC screening, preventive measures and treatment have resulted in significant decline in BC related deaths. However, unacceptable levels of racial disparity have been consistently reported, especially in African-American (AA) women compared to European American (EA). AA women go through worse prognosis, shorter survival time and higher mortality rates, despite higher cancer incidence reported in EA. These disparities are independent of socioeconomic status, access to healthcare or age, or even the stage of BC. Recent race-specific genetic and epigenetic studies have reported biological causes, which form the crux of this review. However, the developments are just the tip of the iceberg. Prioritizing primary research towards studying race-specific tumor microenvironment and biological composition of the host system in delineating the cause of these disparities is utmost necessary to ameliorate the disparity and design appropriate diagnosis/treatment regimen for AA women suffering from BC. In this review article, we discuss emerging trends and exciting discoveries that reveal how genetic/epigenetic circuitry contributed to racial disparity and discussed the strategies that may help in future therapeutic development.
Collapse
Affiliation(s)
- Vijayalaxmi Gupta
- Cancer Research Unit, Research Division 151, VA Medical Center, 4801 Linwood Boulevard, Kansas City, MO, 64128, USA.,Department of Pathology and Integrative Science, University of Kansas Medical Center, Kansas City, KS, USA
| | - Inamul Haque
- Cancer Research Unit, Research Division 151, VA Medical Center, 4801 Linwood Boulevard, Kansas City, MO, 64128, USA.,Department of Pathology and Integrative Science, University of Kansas Medical Center, Kansas City, KS, USA
| | - Jinia Chakraborty
- Cancer Research Unit, Research Division 151, VA Medical Center, 4801 Linwood Boulevard, Kansas City, MO, 64128, USA.,Blue Valley West High School, Overland Park, KS, USA
| | - Stephanie Graff
- Sarah Cannon Cancer Center at HCA Midwest Health, Kansas City, MO, USA
| | - Snigdha Banerjee
- Cancer Research Unit, Research Division 151, VA Medical Center, 4801 Linwood Boulevard, Kansas City, MO, 64128, USA. .,Department of Pathology and Integrative Science, University of Kansas Medical Center, Kansas City, KS, USA.
| | - Sushanta K Banerjee
- Cancer Research Unit, Research Division 151, VA Medical Center, 4801 Linwood Boulevard, Kansas City, MO, 64128, USA. .,Department of Pathology and Integrative Science, University of Kansas Medical Center, Kansas City, KS, USA. .,Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
13
|
Monzavi-Karbassi B, Siegel ER, Medarametla S, Makhoul I, Kieber-Emmons T. Breast cancer survival disparity between African American and Caucasian women in Arkansas: A race-by-grade analysis. Oncol Lett 2016; 12:1337-1342. [PMID: 27446434 PMCID: PMC4950488 DOI: 10.3892/ol.2016.4804] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 05/19/2016] [Indexed: 01/25/2023] Open
Abstract
Despite progress in breast cancer treatment, disparity persists in survival time between African American (AA) and Caucasian women in the US. Tumor stage and tumor grade are the major prognostic factors that define tumor aggressiveness and contribute to racial disparity between AA and Caucasian women. Studying the interaction of race with tumor grade or stage may provide further insights into the role of intrinsic biological aggressiveness in disecting the AA-Caucasian survival disparity. Therefore, the current study was performed to evaluate the interaction of race with tumor grade and stage at diagnosis regarding survival in a cohort of patients treated at the Winthrop P. Rockefeller Cancer Institute of the University of Arkansas for Medical Sciences (Little Rock, AR, USA). The cohort included 1,077 patients, 208 (19.3%) AA and 869 (80.7%) Caucasian, diagnosed with breast cancer between January 1997 and December 2005. Kaplan-Meier survival plots were generated and Cox regressions were performed to analyze the associations of race with breast cancer-specific survival time. Over a mean follow-up time of 1.5 years, AA women displayed increased mortality risk due to breast cancer-specific causes [hazard ratio (HR), 1.74; 95% confidence interval (CI), 1.23–2.46]. The magnitude of racial disparity varied strongly with tumor grade (race-x-grade interaction; P<0.001). No significant interaction was observed between race and tumor stage or race and age at diagnosis. Among women diagnosed with grade I tumors, the race disparity in survival time after controlling for tumor stage and age was strong (HR, 9.07; 95% CI, 2.11–38.95), but no significant AA-Caucasian disparity was observed among women with higher-grade tumors. The data suggest that, when diagnosed with grade I breast cancer, AA may experience poorer survival outcomes compared with Caucasian patients, regardless of tumor stage or age. The findings potentially provide significant clinical and public health implications and justify further investigation.
Collapse
Affiliation(s)
- Behjatolah Monzavi-Karbassi
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Eric R Siegel
- Division of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Srikanth Medarametla
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Issam Makhoul
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; Division of Hematology/Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Thomas Kieber-Emmons
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
14
|
Gelfand R, Vernet D, Bruhn K, Vadgama J, Gonzalez-Cadavid NF. Long-term exposure of MCF-12A normal human breast epithelial cells to ethanol induces epithelial mesenchymal transition and oncogenic features. Int J Oncol 2016; 48:2399-414. [PMID: 27035792 PMCID: PMC4864041 DOI: 10.3892/ijo.2016.3461] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 02/24/2016] [Indexed: 12/12/2022] Open
Abstract
Alcoholism is associated with breast cancer incidence and progression, and moderate chronic consumption of ethanol is a risk factor. The mechanisms involved in alcohol's oncogenic effects are unknown, but it has been speculated that they may be mediated by acetaldehyde. We used the immortalized normal human epithelial breast cell line MCF-12A to determine whether short- or long-term exposure to ethanol or to acetaldehyde, using in vivo compatible ethanol concentrations, induces their oncogenic transformation and/or the acquisition of epithelial mesenchymal transition (EMT). Cultures of MCF-12A cells were incubated with 25 mM ethanol or 2.5 mM acetaldehyde for 1 week, or with lower concentrations (1.0–2.5 mM for ethanol, 1.0 mM for acetaldehyde) for 4 weeks. In the 4-week incubation, cells were also tested for anchorage-independence, including isolation of soft agar selected cells (SASC) from the 2.5 mM ethanol incubations. Cells were analyzed by immunocytofluorescence, flow cytometry, western blotting, DNA microarrays, RT/PCR, and assays for miRs. We found that short-term exposure to ethanol, but not, in general, to acetaldehyde, was associated with transcriptional upregulation of the metallothionein family genes, alcohol metabolism genes, and genes suggesting the initiation of EMT, but without related phenotypic changes. Long-term exposure to the lower concentrations of ethanol or acetaldehyde induced frank EMT changes in the monolayer cultures and in SASC as demonstrated by changes in cellular phenotype, mRNA expression, and microRNA expression. This suggests that low concentrations of ethanol, with little or no mediation by acetaldehyde, induce EMT and some traits of oncogenic transformation such as anchorage-independence in normal breast epithelial cells.
Collapse
Affiliation(s)
- Robert Gelfand
- Department of Medicine, Charles Drew University (CDU), Los Angeles, CA, USA
| | - Dolores Vernet
- Department of Medicine, Charles Drew University (CDU), Los Angeles, CA, USA
| | - Kevin Bruhn
- Department of Surgery, Los Angeles Biomedical Research Institute (LABioMed) at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Jaydutt Vadgama
- Department of Medicine, Charles Drew University (CDU), Los Angeles, CA, USA
| | | |
Collapse
|
15
|
Biologic roles of estrogen receptor-β and insulin-like growth factor-2 in triple-negative breast cancer. BIOMED RESEARCH INTERNATIONAL 2015; 2015:925703. [PMID: 25874233 PMCID: PMC4385615 DOI: 10.1155/2015/925703] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 12/10/2014] [Accepted: 12/16/2014] [Indexed: 11/18/2022]
Abstract
Triple-negative breast cancer (TNBC) occurs in 10–15% of patients yet accounts for almost half of all breast cancer deaths. TNBCs lack expression of estrogen and progesterone receptors and HER-2 overexpression and cannot be treated
with current targeted therapies. TNBCs often occur in African American and younger women. Although initially responsive to some chemotherapies, TNBCs tend to relapse and metastasize. Thus, it is critical to find new therapeutic targets. A second ER gene product, termed ERβ, in the absence of ERα may be such a target. Using human TNBC specimens with known clinical outcomes to assess ERβ expression, we find that ERβ1 associates with significantly worse 5-year overall survival. Further, a panel of TNBC cell lines exhibit significant levels of ERβ protein. To assess ERβ effects on proliferation, ERβ expression in TNBC cells was silenced using shRNA, resulting in a significant reduction in TNBC proliferation. ERβ-specific antagonists similarly suppressed TNBC growth. Growth-stimulating effects of ERβ may be due in part to downstream actions that promote VEGF, amphiregulin, and Wnt-10b secretion, other factors associated with tumor promotion. In vivo, insulin-like growth factor-2 (IGF-2), along with ERβ1, is significantly expressed in TNBC and stimulates high ERβ mRNA in TNBC cells. This work may help elucidate the interplay of metabolic and growth factors in TNBC.
Collapse
|
16
|
Bao PP, Zhao ZG, Gao YT, Zheng Y, Zhang B, Cai H, Zheng W, Shu XO, Lu W. Association of type 2 diabetes genetic variants with breast cancer survival among Chinese women. PLoS One 2015; 10:e0117419. [PMID: 25679392 PMCID: PMC4332504 DOI: 10.1371/journal.pone.0117419] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 12/23/2014] [Indexed: 01/01/2023] Open
Abstract
Objective To evaluate whether the genetic susceptibility of T2D was associated with overall survival (OS) and disease-free survival (DFS) outcomes for breast cancer (BC). Methods Included in the study were 6346 BC patients who participated in three population-based epidemiological studies of BC and were genotyped with either GWAS or Exome-chip. We constructed a genetic risk score (GRS) for diabetes using risk variants identified from the GWAS catalog (http://genome.gov/gwastudies) that were associated with T2D risk at a minimum significance level of P ≤ 5.0E-8 among Asian population and evaluated its associations with BC outcomes with Cox proportional hazards models. Results During a median follow-up of 8.08 years (range, 0.01–16.95 years), 1208 deaths were documented in 6346 BC patients. Overall, the diabetes GRS was not associated with OS and DFS. Analyses stratified by estrogen receptor status (ER) showed that the diabetes GRS was inversely associated with OS among women with ER- but not in women with ER+ breast cancer; the multivariable adjusted HR was 1.38 (95% CI: 1.05–1.82) when comparing the highest to the lowest GRS quartiles. The association of diabetes GRS with OS varied by diabetes status (P for interaction <0.01). In women with history of diabetes, higher diabetes GRS was significantly associated with worse OS, with HR of 2.22 (95% CI: 1.28–3.88) for the highest vs. lowest quartile, particularly among women with an ER- breast cancer, with corresponding HR being 4.59 (95% CI: 1.04–20.28). No significant association between the diabetes GRS and OS was observed across different BMI and PR groups. Conclusions Our study suggested that genetic susceptibility of T2D was positively associated with total mortality among women with ER- breast cancer, particularly among subjects with a history of diabetes. Additional studies are warranted to verify the associations and elucidate the underlying biological mechanism.
Collapse
Affiliation(s)
- Ping-Ping Bao
- Shanghai Municipal Center for Disease Prevention & Control, 1380 Zhongshan Road West, Shanghai, China
| | - Zhi-Guo Zhao
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Institute for Medicine and Public Health, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 2525 West End Avenue, Suite 600, Nashville, Tennessee, United States of America
| | - Yu-Tang Gao
- Department of Epidemiology, Shanghai Cancer Institute, 2200/25 Xie Tu Road, Shanghai, China
| | - Ying Zheng
- Shanghai Municipal Center for Disease Prevention & Control, 1380 Zhongshan Road West, Shanghai, China
| | - Ben Zhang
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Institute for Medicine and Public Health, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 2525 West End Avenue, Suite 600, Nashville, Tennessee, United States of America
| | - Hui Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Institute for Medicine and Public Health, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 2525 West End Avenue, Suite 600, Nashville, Tennessee, United States of America
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Institute for Medicine and Public Health, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 2525 West End Avenue, Suite 600, Nashville, Tennessee, United States of America
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Institute for Medicine and Public Health, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 2525 West End Avenue, Suite 600, Nashville, Tennessee, United States of America
| | - Wei Lu
- Shanghai Municipal Center for Disease Prevention & Control, 1380 Zhongshan Road West, Shanghai, China
- * E-mail:
| |
Collapse
|
17
|
Sun WY, Yun HY, Song YJ, Kim H, Lee OJ, Nam SJ, Koo JS. Insulin-like growth factor 1 receptor expression in breast cancer tissue and mammographic density. Mol Clin Oncol 2015; 3:572-580. [PMID: 26137269 DOI: 10.3892/mco.2015.497] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 01/16/2015] [Indexed: 12/14/2022] Open
Abstract
The aim of this study was to evaluate the association between insulin-like growth factor 1 receptor (IGF-1R) expression in breast cancer tissue and mammographic density and the clinical significance of IGF-1R overexpression. A total of 167 patients with primary invasive breast cancer were analyzed. Mammographic breast density and IGF-1R overexpression were correlated with clinicopathological parameters and analyzed by overall survival (OS) and disease-free survival (DFS). Increased breast tissue density was significantly associated with age, body mass index, menopausal status, histological grade and IGF-1R overexpression in the univariate analysis and with age (P=0.001), histological grade (P=0.045) and IGF-1R overexpression (P=0.021) in the multivariate analysis. IGF-1R overexpression was significantly associated with dense breast tissue in patients aged >40 years (P=0.002). IGF-1R overexpression in breast cancer in premenopausal women was associated with human epidermal growth factor receptor 2 (HER-2) positivity (P=0.016) and worse DFS (P=0.0414). There was no significant difference in OS and DFS between dense and non-dense breast tissue. IGF-1R expression in breast cancer tissue was significantly associated with mammographic breast tissue density in patients aged >40 years. It appears that IGF-1R expression in breast cancer tissue plays an important role in breast cancer in patients with dense breast tissue. In premenopausal women, IGF-1R overexpression in breast cancer tissue was significantly associated with HER-2 positivity and poor DFS.
Collapse
Affiliation(s)
- Woo-Young Sun
- Department of Surgery, Daejeon St. Mary's Hospital, The Catholic University of Korea College of Medicine, Daejeon 301-723, Republic of Korea
| | - Hyo-Young Yun
- Department of Surgery, College of Medicine and Medical Research Institute, Cheongju, Chungcheong 361-763, Republic of Korea
| | - Young-Jin Song
- Department of Surgery, College of Medicine and Medical Research Institute, Cheongju, Chungcheong 361-763, Republic of Korea
| | - Heon Kim
- Department of Preventive Medicine, College of Medicine and Medical Research Institute, Cheongju, Chungcheong 361-763, Republic of Korea
| | - Ok-Jun Lee
- Department of Pathology, Chungbuk National University, College of Medicine and Medical Research Institute, Cheongju, Chungcheong 361-763, Republic of Korea
| | - Seok-Jin Nam
- Department of Surgery, Samsung Medical Center, Seoul 135-710, Republic of Korea
| | - Ja-Seung Koo
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| |
Collapse
|
18
|
Farabaugh SM, Boone DN, Lee AV. Role of IGF1R in Breast Cancer Subtypes, Stemness, and Lineage Differentiation. Front Endocrinol (Lausanne) 2015; 6:59. [PMID: 25964777 PMCID: PMC4408912 DOI: 10.3389/fendo.2015.00059] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 04/07/2015] [Indexed: 12/22/2022] Open
Abstract
Insulin-like growth factor (IGF) signaling is fundamental for growth and survival. A large body of evidence (laboratory, epidemiological, and clinical) implicates the exploitation of this pathway in cancer. Up to 50% of breast tumors express the activated form of the type 1 insulin-like growth factor receptor (IGF1R). Breast cancers are categorized into subtypes based upon hormone and ERRB2 receptor expression and/or gene expression profiling. Even though IGF1R influences tumorigenic phenotypes and drug resistance across all breast cancer subtypes, it has specific expression and function in each. In some subtypes, IGF1R levels correlate with a favorable prognosis, while in others it is associated with recurrence and poor prognosis, suggesting different actions based upon cellular and molecular contexts. In this review, we examine IGF1R expression and function as it relates to breast cancer subtype and therapy-acquired resistance. Additionally, we discuss the role of IGF1R in stem cell maintenance and lineage differentiation and how these cell fate influences may alter the differentiation potential and cellular composition of breast tumors.
Collapse
Affiliation(s)
- Susan M. Farabaugh
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Women’s Cancer Research Center, Magee-Womens Research Institute, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - David N. Boone
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Women’s Cancer Research Center, Magee-Womens Research Institute, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Adrian V. Lee
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Women’s Cancer Research Center, Magee-Womens Research Institute, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
- *Correspondence: Adrian V. Lee, Magee-Womens Research Institute, University of Pittsburgh Cancer Institute, 204 Craft Avenue, Room A412, Pittsburgh, PA 15213, USA
| |
Collapse
|
19
|
Radhakrishnan VK, Hernandez LC, Anderson K, Tan Q, De León M, De León DD. Expression of Intratumoral IGF-II Is Regulated by the Gene Imprinting Status in Triple Negative Breast Cancer from Vietnamese Patients. Int J Endocrinol 2015; 2015:401851. [PMID: 26448747 PMCID: PMC4581569 DOI: 10.1155/2015/401851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 08/23/2015] [Indexed: 12/23/2022] Open
Abstract
African American women suffer higher incidence and mortality of triple negative breast cancer (TNBC) than Caucasian women. TNBC is very aggressive, causing the worst clinical outcome. We previously demonstrated that tumors from these patients express high IGF-II and exhibit high activation of the IGF signaling pathways. IGF-II gene expression is imprinted (monoallelic), promotes tumor progression, and metastasis and regulates Survivin, a TNBC prognostic marker. Since BC mortality has increased among young Vietnamese women, we analyzed 48 (paired) TNBC samples from Vietnamese patients to assess IGF-II expression. We analyzed all samples by qrtPCR for identification of IGF-II heterozygosity and to determine allelic expression of the IGF-II gene. We also analyzed the tissues for proIGF-II and Survivin by RT-PCR and Western blotting. A total of 28 samples displayed IGF-II heterozygosity of which 78% were biallelic. Tumors with biallelic IGF-II gene expression exhibited the highest levels of proIGF-II and Survivin. Although 100% of these tissues corresponding normal samples were biallelic, they expressed significantly lower levels of or no proIGF-II and Survivin. Thus, IGF-II biallelic gene expression is differentially regulated in normal versus tumor tissues. We propose that intratumoral proIGF-II is dependent on the IGF-II gene imprinting status and it will promote a more aggressive TNBC.
Collapse
Affiliation(s)
- Vinodh Kumar Radhakrishnan
- Center for Health Disparities and Molecular Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Lorraine Christine Hernandez
- Center for Health Disparities and Molecular Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Kendra Anderson
- Center for Health Disparities and Molecular Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Qianwei Tan
- Center for Health Disparities and Molecular Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Marino De León
- Center for Health Disparities and Molecular Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Daisy D. De León
- Center for Health Disparities and Molecular Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
- *Daisy D. De León:
| |
Collapse
|
20
|
Ou JM, Lian WS, Qiu MK, Dai YX, Dong Q, Shen J, Dong P, Wang XF, Liu YB, Quan ZW, Fei ZW. Knockdown of IGF2R suppresses proliferation and induces apoptosis in hemangioma cells in vitro and in vivo. Int J Oncol 2014; 45:1241-9. [PMID: 24968760 DOI: 10.3892/ijo.2014.2512] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 05/26/2014] [Indexed: 01/18/2023] Open
Abstract
Insulin-like growth factor-II (IGF-II)/IGF2R signaling plays a pivotal role in cell growth, migration and differentiation in many malignancies. An individual with high IGF-II expression levels has a high risk of developing cancer, but IGF2R is often considered to be a tumor suppressor. To date, little has been reported about the role of IGF-II/IGF2R signaling in hemangiomas (HAs). Thus, uncovering the mechanisms of IGF-II/IGF2R signaling is very important to understanding the development of HAs. In the present study, the expression of IGF-II and IGF2R was investigated in 27 cases of HAs of different phases by immunohistochemistry. Through lentivirus-mediated IGF2R siRNA (Lv-siIGF2R) in HA-derived endothelial cells (HDECs), we observed the effects of IGF2R knockdown on the biological behavior of HA cells. We found that the expression of IGF-II and IGF2R was significantly increased in proliferating phase HAs, but decreased in involuting phase HAs. Furthermore, knockdown of IGF2R in vitro significantly diminished the proliferative activity and induced apoptosis and cycle arrest with decreased expression of PCNA, Ki-67, Bcl-2, Cyclin D1 and E and increased the expression of Bax in the proliferative phase HAs (HDEC and CRL-2586 EOMA cells). In addition, the tumor volumes in a subcutaneous HDEC nude mouse model treated with Lv-siIGF2R were significantly smaller than those of the control group. Taken together, our findings indicate that the expression of IGF-II and IGF2R is increased in proliferating phase HAs, and knockdown of IGF2R suppresses proliferation and induces apoptosis in HA cells in vitro and in vivo, suggesting that IGF2R may represent a novel therapeutic target for the treatment of human HAs.
Collapse
Affiliation(s)
- J-M Ou
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| | - W-S Lian
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| | - M-K Qiu
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| | - Y-X Dai
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| | - Q Dong
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| | - J Shen
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| | - P Dong
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| | - X-F Wang
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| | - Y-B Liu
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| | - Z-W Quan
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| | - Z-W Fei
- Department of General Surgery, Xinhua Hospital (Chong Ming) Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 202150, P.R. China
| |
Collapse
|
21
|
Wang H, Tsang P, D'Cruz C, Clarke K. Follow-up of breast papillary lesion on core needle biopsy: experience in African-American population. Diagn Pathol 2014; 9:86. [PMID: 24762090 PMCID: PMC4039081 DOI: 10.1186/1746-1596-9-86] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 04/02/2014] [Indexed: 12/04/2022] Open
Abstract
Background The optimal course of clinical follow-up after a diagnosis of breast papillary lesion on a core needle biopsy (CNB) remains elusive. In particular, no reports in literature have addressed this question in African-American population. We describe our experience with breast papillary lesions in a primarily African-American population. Methods A search of our database for breast papillary lesions diagnosed on CNB between September 2002 and September 2012 was conducted. Cases were categorized into benign, atypical, and malignant. CK5/6 and CK903 stains were performed when necessary. Results A total of 64 breast papillary lesions were diagnosed on CNB, including 55 (86%) benign papillary lesions, 6 (9%) atypical lesions, and 3 (5%) intraductal papillary carcinomas. Of these 64 patients, 29 patients (25 African-Americans, 3 Hispanics, 1 Asian American) underwent lumpectomy within 6 months after CNB. Pathology of the lumpectomy showed: five of the 25 (20%) benign papillary lesions on needle biopsy were upgraded to intraductal or invasive papillary carcinoma; 2 of the 3 atypical papillary lesion cases on core biopsy were upgraded (67%), one into intraductal papillary carcinoma, the other invasive papillary carcinoma; the only case of malignant papillary lesion on CNB remained as intraductal papillary carcinoma on lumpectomy. The rate of upgrade in lumpectomy/mastectomy was 25%. CK5/6 and CK903 immunostains were performed on all seven core needle biopsies that were later upgraded. Conclusions In our predominantly African-American urban population, 25% of benign or atypical papillary lesions diagnosed on CNB was upgraded in the final excisional examination. Early excision of all papillary lesions diagnosed on CNB may be justified in this patient population. Virtual Slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/7950117821177201
Collapse
Affiliation(s)
- He Wang
- Department of Pathology and Lab Medicine, Temple University School of Medicine, 3401 North Broad Street, Room 350, Philadelphia, PA 19140, USA.
| | | | | | | |
Collapse
|
22
|
Emond JA, Pierce JP, Natarajan L, Gapuz LR, Nguyen J, Parker BA, Varki NM, Patterson RE. Risk of breast cancer recurrence associated with carbohydrate intake and tissue expression of IGFI receptor. Cancer Epidemiol Biomarkers Prev 2014; 23:1273-9. [PMID: 24755714 DOI: 10.1158/1055-9965.epi-13-1218] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The insulin-like growth factor-I (IGFI) receptor is a potential target for breast cancer treatment and may be influenced by dietary intake. METHODS Nested, case-control study of 265 postmenopausal breast cancer survivors; primary breast cancer tissue was stained to determine IGFI receptor status. Change in carbohydrate intake from baseline to year 1 of study was estimated from 24-hour dietary recalls. Breast cancer recurrence cases (91) were matched to two controls (n = 174) on disease and study characteristics and counter matched on change in carbohydrate intake. Weighted conditional logistic regression models fit the risk of recurrence on IGFI receptor status and dietary change. RESULTS Half of the tumors were IGFI receptor positive. Increased risk of recurrence was associated with IGFI receptor-positive status [HR 1.7; 95% confidence interval (CI), 1.2-2.5] and, separately, with a stable/increased intake of carbohydrates (HR 2.0; 95% CI, 1.3-5.0). There was a borderline significant interaction between those two variables (P = 0.11). Specifically, carbohydrate intake had no significant impact on risk of recurrence among women who were receptor negative, yet increased the risk of recurrence by more than 5-fold among women who were receptor positive (HR 5.5; 95% CI, 1.8-16.3). CONCLUSIONS Among women whose tumor tissue is positive for the IGFI receptor, reducing carbohydrate intake after diagnosis could reduce the risk of breast cancer recurrence. These findings need replication in a larger sample. IMPACT This is the first study to suggest that it may be possible to personalize dietary recommendations for breast cancer survivors based on molecular characteristics of their primary tumor tissue. .
Collapse
Affiliation(s)
- Jennifer A Emond
- Authors' Affiliations: Cancer Prevention and Control Program, Moores UCSD Cancer Center, Department of Family and Preventive Medicine; and
| | - John P Pierce
- Authors' Affiliations: Cancer Prevention and Control Program, Moores UCSD Cancer Center, Department of Family and Preventive Medicine; and
| | - Loki Natarajan
- Authors' Affiliations: Cancer Prevention and Control Program, Moores UCSD Cancer Center, Department of Family and Preventive Medicine; and
| | - Laarni R Gapuz
- Authors' Affiliations: Cancer Prevention and Control Program, Moores UCSD Cancer Center, Department of Family and Preventive Medicine; and
| | - John Nguyen
- Authors' Affiliations: Cancer Prevention and Control Program, Moores UCSD Cancer Center, Department of Family and Preventive Medicine; and
| | - Barbara A Parker
- Authors' Affiliations: Cancer Prevention and Control Program, Moores UCSD Cancer Center, Department of Family and Preventive Medicine; and
| | - Nissi M Varki
- Department of Pathology, University of California, San Diego, La Jolla, California
| | - Ruth E Patterson
- Authors' Affiliations: Cancer Prevention and Control Program, Moores UCSD Cancer Center, Department of Family and Preventive Medicine; and
| |
Collapse
|
23
|
Abstract
Insulin-like growth factor 2 (IGF2) is a 7.5 kDa mitogenic peptide hormone expressed by liver and many other tissues. It is three times more abundant in serum than IGF1, but our understanding of its physiological and pathological roles has lagged behind that of IGF1. Expression of the IGF2 gene is strictly regulated. Over-expression occurs in many cancers and is associated with a poor prognosis. Elevated serum IGF2 is also associated with increased risk of developing various cancers including colorectal, breast, prostate and lung. There is established clinical utility for IGF2 measurement in the diagnosis of non-islet cell tumour hypoglycaemia, a condition characterised by a molar IGF2:IGF1 ratio >10. Recent advances in understanding of the pathophysiology of IGF2 in cancer have suggested much novel clinical utility for its measurement. Measurement of IGF2 in blood and genetic and epigenetic tests of the IGF2 gene may help assess cancer risk and prognosis. Further studies will determine whether these tests enter clinical practice. New therapeutic approaches are being developed to target IGF2 action. This review provides a clinical perspective on IGF2 and an update on recent research findings.
Collapse
Affiliation(s)
- Callum Livingstone
- Peptide Hormones Supraregional Assay Service (SAS), Clinical Biochemistry Department, Royal Surrey County Hospital NHS Trust, Guildford, Surrey GU2 7XX, UK Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 5XH, UK
| |
Collapse
|
24
|
Cunningham JE, Walters CA, Hill EG, Ford ME, Barker-Elamin T, Bennett CL. Mind the gap: racial differences in breast cancer incidence and biologic phenotype, but not stage, among low-income women participating in a government-funded screening program. Breast Cancer Res Treat 2012; 137:589-98. [PMID: 23239148 DOI: 10.1007/s10549-012-2305-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 10/15/2012] [Indexed: 12/19/2022]
Abstract
Breast cancer mortality rates in South Carolina (SC) are 40 % higher among African-American (AA) than European-American (EA) women. Proposed reasons include race-associated variations in care and/or tumor characteristics, which may be subject to income effects. We evaluated race-associated differences in tumor biologic phenotype and stage among low-income participants in a government-funded screening program. Best Chance Network (BCN) data were linked with the SC Central Cancer Registry. Characteristics of breast cancers diagnosed in BCN participants aged 47-64 years during 1996-2006 were abstracted. Race-specific case proportions and incidence rates based on estrogen receptor (ER) status and histologic grade were estimated. Among 33,880 low-income women accessing BCN services, repeat breast cancer screening utilization was poor, especially among EAs. Proportionally, stage at diagnosis did not differ by race (607 cancers, 53 % among AAs), with about 40 % advanced stage. Compared to EAs, invasive tumors in AAs were 67 % more likely (proportions) to be of poor-prognosis phenotype (both ER-negative and high-grade); this was more a result of the 46 % lesser AA incidence (rates) of better-prognosis (ER+ lower-grade) cancer than the 32 % greater incidence of poor-prognosis disease (p values <0.01). When compared to the general SC population, racial disparities in poor-prognostic features within the BCN population were attenuated; this was due to more frequent adverse tumor features in EAs rather than improvements for AAs. Among low-income women in SC, closing the breast cancer racial and income mortality gaps will require improved early diagnosis, addressing causes of racial differences in tumor biology, and improved care for cancers of poor-prognosis biology.
Collapse
Affiliation(s)
- Joan E Cunningham
- Division of Biostatistics and Epidemiology, Department of Medicine, College of Medicine, Medical University of South Carolina, and Hollings Cancer Center, 135 Cannon Street, Suite 300, Charleston, SC 29425, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Harrington SC, Weroha SJ, Reynolds C, Suman VJ, Lingle WL, Haluska P. Quantifying insulin receptor isoform expression in FFPE breast tumors. Growth Horm IGF Res 2012; 22:108-115. [PMID: 22551578 PMCID: PMC3392524 DOI: 10.1016/j.ghir.2012.04.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 03/17/2012] [Accepted: 04/02/2012] [Indexed: 12/21/2022]
Abstract
BACKGROUND The development of predictive biomarkers for IGF targeted anti-cancer therapeutics remains a critical unmet need. The insulin receptor A isoform (InsR-A) has been identified as a possible biomarker candidate but quantification of InsR-A in widely available formalin fixed paraffin embedded (FFPE) tissues is complicated by its similarities with the metabolic signaling insulin receptor isoform B (InsR-B). In the present study, qPCR based assays specific for InsR-A, InsR-B and IGF-1R were developed for use in FFPE tissues and tested for feasible use in clinical archived FFPE estrogen receptor (ER)+and ER- breast cancer tumors. DESIGN FFPE compatible primer sets were designed with amplicon sizes of less than 60 base pairs and validated for target specificity, assay repeatability and amplification efficiency. FFPE tumors from ER+ (n=83) and ER-(n=64) primary untreated breast cancers, and ER+ hormone refractory (HR ER+) (n=61) breast cancers were identified for feasibility testing. The feasible use of InsR-A and InsR-B qPCRs were tested using all tumor groups and the feasibility of IGF-1R qPCR was determined using HR ER+ tumors. RESULTS All qPCR assays were highly reproducible with amplification efficiencies between 96-104% over a 6 log range with limits of detection of 4 or 5 copies per reaction. Greater than 90% of samples were successfully amplified using InsR-A, InsR-B or IGF-1R qPCR primer sets and greater than 88% of samples tested amplified both InsR isoforms or both isoforms and IGF-1R. InsR-A was the predominant isoform in 82% ER+, 68% ER- and 100% HR ER+ breast cancer. Exploratory analyses demonstrated significantly more InsR-A expression in ER+ and HR ER+ groups compared to InsR-B (ER+ p<0.05, HR ER+ p<0.0005) and both groups had greater InsR-A expression when compared to ER- tumors (ER+ p<0.0005, HR ER+ p<0.05). IGF-1R expression of HR ER+ tumors was lower than InsR-A (p<0.0005) but higher than InsR-B (p<0.0005). The InsR-B expression of HR ER+ tumors was significantly reduced compared other tumor subgroups (ER+ and ER-, p<0.0005) and lead to a significant elevation of HR ER+ InsR-A: InsR-B ratios (ER+ and ER-, p<0.0005). CONCLUSIONS The validated, highly sensitive InsR-A and InsR-B qPCR based assays presented here are the first to demonstrate the feasible amplification of InsR isoforms in FFPE tissues. Quantification data generated from this feasibility study indicating InsR-A is more predominant than InsR-B in breast cancer support the use of these assays for further investigation of InsR-A and InsR-B as predictive biomarkers for IGF targeted therapeutics.
Collapse
Affiliation(s)
| | - S. John Weroha
- Department of Oncology, Mayo Clinic, Rochester, MN 55905
| | - Carol Reynolds
- Division of Anatomical Pathology, Mayo Clinic, Rochester, MN 55905
| | - Vera J. Suman
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN 55905
| | - Wilma L. Lingle
- Division of Experimental Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN 55905
| | - Paul Haluska
- Department of Oncology, Mayo Clinic, Rochester, MN 55905
| |
Collapse
|
26
|
Ojima Y, Hongo A, Liu Y, Zhu L, Kusumoto T, Nakamura K, Seki N, Hiramatsu Y. Antitumor effects of novel shorter truncated insulin-like growth factor I receptors. Cancer Biol Ther 2012; 13:559-66. [PMID: 22406993 DOI: 10.4161/cbt.19609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We generated novel truncated insulin-like growth factor I receptors (IGF-IRs) designated as 126/STOP, 223/STOP and 325/STOP in order to establish shorter soluble IGF-IRs than previously reported 486/STOP without abrogating the same antitumor effects. Stable transfection of 223/STOP and 325/STOP, but not 126/STOP caused inhibition of anchorage-independent growth of CaOV-3 ovarian cancer cells in vitro. This antitumor effect was reproduced when we used recombinant proteins of these constructs, suggesting a bystander effect of these shorter truncated IGF-IRs. Tumorigenesis in vivo of CaOV-3 cells tranfected with 223/STOP or 325/STOP was strictly inhibited, and inoculation of these cells in nude mice caused massive apoptosis exclusively in vivo. Phosphorylations of IGF-IR and Akt, but not Erk were attenuated in 223/STOP- or 325/STOP-transfected CaOV-3 cells, and downregulations of IGF-IR and Akt phosphorylation seemed to play at least a partial role in the anti-tumor effect of these novel truncated IGF-IRs. Since 223/STOP and 325/STOP are smaller in size than previously reported 486/STOP, and they retain the same antitumor effects, they could be good candidates for clinical application in the future.
Collapse
Affiliation(s)
- Yojiro Ojima
- Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Kalla Singh S, Brito C, Tan QW, De León M, De León D. Differential expression and signaling activation of insulin receptor isoforms A and B: A link between breast cancer and diabetes. Growth Factors 2011; 29:278-89. [PMID: 21913804 PMCID: PMC3205219 DOI: 10.3109/08977194.2011.616200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We showed that when insulin-like growth factor II (IGF-II) is highly expressed in breast tissues and cell lines, the IGF-I receptor signaling pathway is highly activated. Since IGF-II activates the insulin receptor (INSR), we propose that the INSR signaling is also activated in this system. We examined the expression of both INSR isoforms, insulin receptor A (INSR-A) and insulin receptor B (INSR-B), and the downstream signaling pathways in breast cancer (BC) cells and in paired (normal/tumor) breast tissues from 100 patients. Analysis was performed by real-time PCR, Western blot, immunohistochemistry, and phospho-ELISA techniques. Tumor tissues and cell lines from African-American patients expressed higher levels of INSR-A, but lower levels of INSR-B. Accordingly, insulin receptor substrate 1 and focal adhesion kinase activation were significantly increased in these women. We conclude that higher INSR-A and lower INSR-B contribute to higher proliferation and lower metabolic response. Thus, differential expression of INSR isoforms represents a potential biological link between BC and diabetes.
Collapse
Affiliation(s)
- S Kalla Singh
- Breast Cancer Laboratory, Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, CA 92350, USA
| | | | | | | | | |
Collapse
|
28
|
Abstract
In recent years, the influence of the IGF system and insulin on cancer growth has been widely studied. Observational human studies have reported increased cancer mortality in those with obesity and type 2 diabetes, which may be attributable to hyperinsulinemia, elevated IGF-I, or potentially both factors. Conversely, those with low insulin, IGF-I and IGF-II levels appear to be relatively protected from cancer development. Initial attention focused on the role of IGF-I in tumor development. The results of these investigations allowed for the development of therapies targeting the IGF-I receptor signaling pathway. However, after in vitro and in vivo studies demonstrating that insulin may also play a significant and independent role in tumorigenesis, insulin is now receiving more attention in this regard. Some studies suggest that targeting insulin receptor signaling may be an important alternative or adjunct to targeting IGF-I receptor signaling. In this minireview, we discuss some of the recent in vitro, animal, and clinical studies that have elaborated our understanding of the influence of IGF and insulin on tumorigenesis. These studies have shed more light on the interaction between insulin and IGF signaling in cancer cells. They have made possible the development of novel targeted therapies and highlighted some of the potential future directions for research and therapeutics.
Collapse
Affiliation(s)
- Emily J Gallagher
- Division of Endocrinology, Diabetes and Bone Disease, Samuel Bronfman Department of Medicine, Mount Sinai School of Medicine, Box 1055, One Gustave L. Levy Place, New York, New York 10029, USA
| | | |
Collapse
|
29
|
Insulin-Like Growth Factor Pathway–Targeted Therapy in Breast Cancer. CURRENT BREAST CANCER REPORTS 2011. [DOI: 10.1007/s12609-010-0030-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|