1
|
Kumar AA, Wong WSY, Zheng Y, Leow BHW, Low YL, Tan LF, Teo K, Nga VDW, Yeo TT, Lim MJR. Effect of psoas muscle index on early postoperative outcomes in surgically treated spinal tumours in an Asian population. J Clin Neurosci 2024; 126:214-220. [PMID: 38943906 DOI: 10.1016/j.jocn.2024.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/10/2024] [Accepted: 06/24/2024] [Indexed: 07/01/2024]
Abstract
BACKGROUND Sarcopenia has been purported to be a pre-operative risk factor that affects patient outcomes in oncological surgery, but no study as of yet has investigated the effect of sarcopenia in patients with spinal tumours. Psoas muscle measurements, including the psoas muscle index (PMI), are an objective way to determine sarcopenia. OBJECTIVES We investigated if PMI could predict post-operative outcomes (length of hospital stay and post-operative complications) in surgically treated spinal tumour patients in a multi-ethnic Asian population. METHODS We conducted a retrospective cohort study of patients with spinal tumours who underwent surgery at our tertiary institution from January 2016 to January 2020. PMI was measured on T2-weighted MRI sequences, at the middle of the L3 vertebral body and measurements were collected by 2 independent raters. The primary outcome was length of hospital stay (LOS), and the secondary outcome was post-operative complications. ROC curve was used to attain the cut-off value for PMI and the population was then stratified into 2 groups; sarcopenic if PMI was less than 1.22 and non-sarcopenic if the PMI value was more than or equal to 1.22. Multivariable linear regression was used for LOS, while multivariate logistic regression was used for complications. RESULTS 57 patients were included with a mean length of stay of 17.8 days (SD 25.1) and the total number of patients with complications were 20 (35.1 %). Mean LOS was significantly higher in the sarcopenic group compared to the non-sarcopenic group. Univariate analysis confirmed the association of lower psoas muscle index corresponding with longer lengths of stay and this was corroborated in a multivariable linear regression model. There were no significant associations between PMI and postoperative complications. CONCLUSIONS Lower PMI values were significantly associated with a longer LOS. PMI may be warranted for risk stratifying Asian spinal tumour patients undergoing surgery.
Collapse
Affiliation(s)
- A Aravin Kumar
- Division of Neurosurgery, Department of Surgery, National University Hospital, Singapore.
| | - Walter-Soon-Yaw Wong
- Division of Neurosurgery, Department of Surgery, National University Hospital, Singapore
| | - Yilong Zheng
- Yong Loo Lin School of Medicine, National University of Singapore
| | - Bryan H W Leow
- Yong Loo Lin School of Medicine, National University of Singapore
| | - Ying Liang Low
- Department of Diagnostic Imaging, National University Hospital, Singapore
| | - Li Feng Tan
- Healthy Ageing Programme, Alexandra Hospital, National University Health System, Singapore
| | - Kejia Teo
- Division of Neurosurgery, Department of Surgery, National University Hospital, Singapore; Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore
| | - Vincent D W Nga
- Division of Neurosurgery, Department of Surgery, National University Hospital, Singapore; Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore
| | - Tseng Tsai Yeo
- Division of Neurosurgery, Department of Surgery, National University Hospital, Singapore; Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore
| | - Mervyn J R Lim
- Division of Neurosurgery, Department of Surgery, National University Hospital, Singapore
| |
Collapse
|
2
|
Mu C, Gao M, Xu W, Sun X, Chen T, Xu H, Qiu H. Mechanisms of microRNA-132 in central neurodegenerative diseases: A comprehensive review. Biomed Pharmacother 2024; 170:116029. [PMID: 38128185 DOI: 10.1016/j.biopha.2023.116029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
MicroRNA-132 (miR-132) is a highly conserved molecule that plays a crucial regulatory role in central nervous system (CNS) disorders. The expression levels of miR-132 exhibit variability in various neurological disorders and have been closely linked to disease onset and progression. The expression level of miR-132 in the CNS is regulated by a diverse range of stimuli and signaling pathways, including neuronal migration and integration, dendritic outgrowth, and complexity, synaptogenesis, synaptic plasticity, as well as inflammation and apoptosis activation. The aberrant expression of miR-132 in various central neurodegenerative diseases has garnered widespread attention. Clinical studies have revealed altered miR-132 expression levels in both chronic and acute CNS diseases, positioning miR-132 as a potential biomarker or therapeutic target. An in-depth exploration of miR-132 holds the promise of enhancing our understanding of the mechanisms underlying CNS diseases, thereby offering novel insights and strategies for disease diagnosis and treatment. It is anticipated that this review will assist researchers in recognizing the potential value of miR-132 and in generating innovative ideas for clinical trials related to CNS degenerative diseases.
Collapse
Affiliation(s)
- Chenxi Mu
- Basic Medical College, Jiamusi University, Jiamusi 154007, Heilongjiang, China; Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China
| | - Meng Gao
- Basic Medical College, Jiamusi University, Jiamusi 154007, Heilongjiang, China; Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China
| | - Weijing Xu
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China; School of Public Health, Jiamusi University, Jiamusi 154007, Heilongjiang, China
| | - Xun Sun
- Basic Medical College, Jiamusi University, Jiamusi 154007, Heilongjiang, China; Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China
| | - Tianhao Chen
- Basic Medical College, Jiamusi University, Jiamusi 154007, Heilongjiang, China; Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China
| | - Hui Xu
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China.
| | - Hongbin Qiu
- School of Public Health, Jiamusi University, Jiamusi 154007, Heilongjiang, China.
| |
Collapse
|
3
|
Li Y, Chen X, Gong X, He D, Cheng X, Prabahar K, Hernández-Wolters B, Velu P, Du W. The effect of 17beta-estradiol plus norethisterone acetate on anthropometric indices: A systematic review and meta-analysis of randomized controlled trials. Eur J Obstet Gynecol Reprod Biol 2023; 287:176-185. [PMID: 37364427 DOI: 10.1016/j.ejogrb.2023.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/12/2023] [Accepted: 06/19/2023] [Indexed: 06/28/2023]
Abstract
OBJECTIVE Little evidence exists on the effect of 17beta-estradiol plus norethisterone acetate on all the anthropometric indices. Hence, this systematic review and meta-analysis of Randomized Controlled Trials was conducted to give an evidence-based report on the effect of 17beta-estradiol plus norethisterone acetate on anthropometric indices. METHODS The literature search was executed in databases including PubMed/Medline, Web of Science, Scopus, Embase, and Google Scholar to recognize clinical trials that examined the influence of 17beta-estradiol plus norethisterone acetate on obesity indices from database inception to Jan 2023. RESULTS Combined findings were generated from 20 eligible articles. The meta-analysis showed that body weight (Weighted Mean Difference (WMD): -0.47 kg, 95% CI: -1.32, 0.37, p = 0.274), body fat (WMD: 0.16 kg, 95% CI: -1.26, 1.59, p = 0.821), WHR (WMD: 0.001 kg, 95% CI: -0.006, 1.15, p = 0.872), and LBM (WMD: -0.02 kg, 95% CI: -1.19, 1.15, p = 0.970) were not modified in DHEA group compared to the control, but BMI levels were significantly reduced in 17beta-estradiol plus norethisterone acetate group (WMD: -0.15 kg/m2, 95% CI: -0.30, -0.008, p = 0.039). Moreover, based on intervention duration (months), a more significant reduction in BMI was found in trials that were performed on studies with ˃3 months duration (WMD: -0.176 kg/m2) than studies with ≤ 3 months (WMD: 0.05 kg/m2). CONCLUSION Administration of 17beta-estradiol plus norethisterone acetate for more than 3 months results in a decrease in BMI, which helps to reduce cardiovascular disease risk.
Collapse
Affiliation(s)
- Yushan Li
- Department of Emergency Internal Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000 Shandong, China
| | - Xiao Chen
- Department of Emergency Internal Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000 Shandong, China
| | - Xingji Gong
- Department of Emergency Internal Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000 Shandong, China
| | - Dongyong He
- Department of Emergency Internal Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000 Shandong, China
| | - Xi Cheng
- Clinical Research Center for Oral Diseases of Zhejiang Province, Cancer Center of Zhejiang University, School of Medicine, Zhejiang University, Hangzhou 310002, China.
| | - Kousalya Prabahar
- Department of Pharmacy Practice, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | | | - Periyannan Velu
- Department of Biotechnology and Biochemistry, Annamalai University, Chidambaram, Tamil Nadu, India
| | - Wenjie Du
- Department of Emergency Internal Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000 Shandong, China.
| |
Collapse
|
4
|
Ferrer M, Anthony TG, Ayres JS, Biffi G, Brown JC, Caan BJ, Cespedes Feliciano EM, Coll AP, Dunne RF, Goncalves MD, Grethlein J, Heymsfield SB, Hui S, Jamal-Hanjani M, Lam JM, Lewis DY, McCandlish D, Mustian KM, O'Rahilly S, Perrimon N, White EP, Janowitz T. Cachexia: A systemic consequence of progressive, unresolved disease. Cell 2023; 186:1824-1845. [PMID: 37116469 PMCID: PMC11059056 DOI: 10.1016/j.cell.2023.03.028] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/15/2023] [Accepted: 03/23/2023] [Indexed: 04/30/2023]
Abstract
Cachexia, a systemic wasting condition, is considered a late consequence of diseases, including cancer, organ failure, or infections, and contributes to significant morbidity and mortality. The induction process and mechanistic progression of cachexia are incompletely understood. Refocusing academic efforts away from advanced cachexia to the etiology of cachexia may enable discoveries of new therapeutic approaches. Here, we review drivers, mechanisms, organismal predispositions, evidence for multi-organ interaction, model systems, clinical research, trials, and care provision from early onset to late cachexia. Evidence is emerging that distinct inflammatory, metabolic, and neuro-modulatory drivers can initiate processes that ultimately converge on advanced cachexia.
Collapse
Affiliation(s)
- Miriam Ferrer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; MRC Cancer Unit, University of Cambridge, Hutchison Research Centre, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK
| | - Tracy G Anthony
- Department of Nutritional Sciences, Rutgers School of Environmental and Biological Sciences, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Janelle S Ayres
- Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Giulia Biffi
- University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge CB2 0RE, UK
| | - Justin C Brown
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | - Bette J Caan
- Kaiser Permanente Northern California Division of Research, Oakland, CA 94612, USA
| | | | - Anthony P Coll
- Wellcome Trust-MRC Institute of Metabolic Science and MRC Metabolic Diseases Unit, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Richard F Dunne
- University of Rochester Medical Center, University of Rochester, Rochester, NY 14642, USA
| | - Marcus D Goncalves
- Division of Endocrinology, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Jonas Grethlein
- Ruprecht Karl University of Heidelberg, Heidelberg 69117, Germany
| | - Steven B Heymsfield
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | - Sheng Hui
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| | - Mariam Jamal-Hanjani
- Department of Medical Oncology, University College London Hospitals, London WC1E 6DD, UK; Cancer Research UK Lung Cancer Centre of Excellence and Cancer Metastasis Laboratory, University College London Cancer Institute, London WC1E 6DD, UK
| | - Jie Min Lam
- Cancer Research UK Lung Cancer Centre of Excellence and Cancer Metastasis Laboratory, University College London Cancer Institute, London WC1E 6DD, UK
| | - David Y Lewis
- The Beatson Institute for Cancer Research, Cancer Research UK, Glasgow G61 1BD, UK
| | - David McCandlish
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Karen M Mustian
- University of Rochester Medical Center, University of Rochester, Rochester, NY 14642, USA
| | - Stephen O'Rahilly
- Wellcome Trust-MRC Institute of Metabolic Science and MRC Metabolic Diseases Unit, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Eileen P White
- Rutgers Cancer Institute of New Jersey, Department of Molecular Biology and Biochemistry, Rutgers University, The State University of New Jersey, New Brunswick, NJ 08901, USA; Ludwig Princeton Branch, Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ 08544, USA
| | - Tobias Janowitz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Northwell Health Cancer Institute, Northwell Health, New Hyde Park, NY 11042, USA.
| |
Collapse
|
5
|
Lee JH, Kang N. Altered Bimanual Kinetic and Kinematic Motor Control Capabilities in Older Women. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2153. [PMID: 36767520 PMCID: PMC9915092 DOI: 10.3390/ijerph20032153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Older women may experience critical neuromuscular impairments interfering with controlling successful bimanual motor actions. Our study aimed to investigate altered bimanual motor performances in older women compared with younger women by focusing on kinetic and kinematic motor properties. Twenty-two older women and 22 younger women performed bimanual kinetic and kinematic motor tasks. To estimate bimanual kinetic functions, we calculated bimanual maximal voluntary contractions (i.e., MVC) and force control capabilities (i.e., mean force, accuracy, variability, and regularity of the total force produced by two hands) during bimanual hand-grip submaximal force control tasks. For bimanual kinematic performances, we assessed the scores of the Purdue Pegboard Test (i.e., PPT) in both hands and assembly tasks, respectively. For the bimanual MVC and PPT, we conducted an independent t-test between two groups. The bimanual force control capabilities were analyzed using two-way mixed ANOVAs (Group × Force Level; 2 × 2). Our findings revealed that the older women showed less bimanual MVC (p = 0.046) and submaximal force outputs (p = 0.036) and greater changes in bimanual force control capabilities as indicated by a greater force variability (p = 0.017) and regularity (p = 0.014). Further, the older women revealed lower scores of PPT in both the hands condition (p < 0.001) and assembly task condition (p < 0.001). The additional correlation analyses for the older women showed that lower levels of skeletal muscle mass were related to less bimanual MVC (r = 0.591; p = 0.004). Furthermore, a higher age was related to lower scores in the bimanual PPT assembly task (r = -0.427; p = 0.048). These findings suggested that older women experience greater changes in bimanual motor functions compared with younger women.
Collapse
Affiliation(s)
- Joon Ho Lee
- Department of Human Movement Science, Incheon National University, Incheon 22012, Republic of Korea
- Neuromechanical Rehabilitation Research Laboratory, Incheon National University, Incheon 22012, Republic of Korea
| | - Nyeonju Kang
- Department of Human Movement Science, Incheon National University, Incheon 22012, Republic of Korea
- Neuromechanical Rehabilitation Research Laboratory, Incheon National University, Incheon 22012, Republic of Korea
- Division of Sport Science, Sport Science Institute, Incheon National University, Incheon 22012, Republic of Korea
| |
Collapse
|
6
|
Zhang M, Bian Z. Alzheimer's Disease and microRNA-132: A Widespread Pathological Factor and Potential Therapeutic Target. Front Neurosci 2021; 15:687973. [PMID: 34108863 PMCID: PMC8180577 DOI: 10.3389/fnins.2021.687973] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 04/30/2021] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disease in the elderly and is the most common type of dementia. AD is mostly gradual onset, and involves slow, progressive mental decline, accompanied by personality changes; the incidence of AD gradually increases with age. The etiology of AD is unknown, although it is currently believed to be related to abnormal deposition of amyloid β-protein (Aβ) in the brain, hyperphosphorylation of microtubule-associated protein tau, and the release of various cytokines, complements, activators and chemokines by cells. MicroRNAs (miRNAs) are a class of highly conserved non-coding RNAs that regulate gene expression at the post-transcriptional level, and manipulate the functions of intracellular proteins and physiological processes. Emerging studies have shown that miRNA plays an important role in regulating AD-related genes. MiR-132 is known as "NeurimmiR" due to its involvement in numerous neurophysiological and pathological processes. Accumulating pre-clinical results suggest that miR-132 may be involved in the progression of Aβ and tau pathology. Moreover, clinical studies have indicated that decreased circulating miR-132 levels could be used a potential diagnostic biomarker in AD. Here, we review the pathogenic role of miR-132 activity in AD, and the potential of targeting miR-132 for developing future therapeutic strategies.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhigang Bian
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
7
|
Exercise as a therapy for cancer-induced muscle wasting. SPORTS MEDICINE AND HEALTH SCIENCE 2020; 2:186-194. [PMID: 35782998 PMCID: PMC9219331 DOI: 10.1016/j.smhs.2020.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/12/2020] [Accepted: 11/17/2020] [Indexed: 12/17/2022] Open
Abstract
Cancer cachexia is a progressive disorder characterized by body weight, fat, and muscle loss. Cachexia induces metabolic disruptions that can be analogous and distinct from those observed in cancer, obscuring both diagnosis and treatment options. Inflammation, hypogonadism, and physical inactivity are widely investigated as systemic mediators of cancer-induced muscle wasting. At the cellular level, dysregulation of protein turnover and energy metabolism can negatively impact muscle mass and function. Exercise is well known for its anti-inflammatory effects and potent stimulation of anabolic signaling. Emerging evidence suggests the potential for exercise to rescue muscle's sensitivity to anabolic stimuli, reduce wasting through protein synthesis modulation, myokine release, and subsequent downregulation of proteolytic factors. To date, there is no recommendation for exercise in the management of cachexia. Given its complex nature, a multimodal approach incorporating exercise offers promising potential for cancer cachexia treatment. This review's primary objective is to summarize the growing body of research examining exercise regulation of cancer cachexia. Furthermore, we will provide evidence for exercise interactions with established systemic and cellular regulators of cancer-induced muscle wasting.
Collapse
|
8
|
Cho YJ, Lim YH, Yun JM, Yoon HJ, Park M. Sex- and age-specific effects of energy intake and physical activity on sarcopenia. Sci Rep 2020; 10:9822. [PMID: 32555196 PMCID: PMC7300112 DOI: 10.1038/s41598-020-66249-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 05/19/2020] [Indexed: 01/06/2023] Open
Abstract
Sarcopenia is a common health issue that is not limited to only elderly patients. However, many studies have reported factors to prevent sarcopenia only in susceptible groups. This study evaluates the relationship of the total energy intake to basal metabolic rate ratio (EI/BMR) and physical activity (PA) with sarcopenia. A second aim was to analyze the interaction between EI/BMR and PA by sex and age. We analyzed 16,313 subjects aged ≥ 19 years who had dual‒energy X-ray absorptiometry data. Sarcopenia was defined as appendicular lean mass/weight (%) that was 1 standard deviation below the sex-specific mean value for a young reference group. Multivariate logistic regression analysis was used to examine the interaction between EI/BMR and PA. In this study, as EI/BMR increased, the risk of sarcopenia decreased, particularly in the older groups. Both high PA and high EI/BMR were independently related to the reduced risk of sarcopenia and showed additive effects on reducing the risk in young male and older groups. However, high PA was associated with an increased risk of sarcopenia in the young female group with low energy intake. Our findings suggest that an adequate balance between energy intake and PA is related to a low risk of sarcopenia, especially in young females.
Collapse
Affiliation(s)
- Yu Jin Cho
- Department of Family Medicine, Seoul National University, College of Medicine, Seoul, Korea
| | - Youn-Hee Lim
- Institute of Environmental Medicine, Seoul National University Medical Research Center, Seoul, Korea
| | - Jae Moon Yun
- Department of Family Medicine, Seoul National University, College of Medicine, Seoul, Korea
| | - Hyung-Jin Yoon
- Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, Korea.,Bio-MAX Institute, Seoul National University, Seoul, Korea
| | - Minseon Park
- Department of Family Medicine, Seoul National University, College of Medicine, Seoul, Korea.
| |
Collapse
|
9
|
D'Lugos AC, Fry CS, Ormsby JC, Sweeney KR, Brightwell CR, Hale TM, Gonzales RJ, Angadi SS, Carroll CC, Dickinson JM. Chronic doxorubicin administration impacts satellite cell and capillary abundance in a muscle-specific manner. Physiol Rep 2019; 7:e14052. [PMID: 30963722 PMCID: PMC6453819 DOI: 10.14814/phy2.14052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/15/2019] [Accepted: 03/16/2019] [Indexed: 01/23/2023] Open
Abstract
Anthracycline chemotherapies are effective at reducing disease recurrence and mortality in cancer patients. However, these drugs also contribute to skeletal muscle wasting and dysfunction. The purpose of this study was to assess the impact of chronic doxorubicin (DOX) administration on satellite cell and capillary densities in different skeletal muscles. We hypothesized that DOX would reduce satellite cell and capillary densities of the soleus (SOL) and extensor digitorum longus (EDL) muscles, along with muscle fiber size. Ovariectomized female Sprague-Dawley rats were randomized to receive three bi-weekly intraperitoneal injections of DOX (4 mg∙kg-1 ; cumulative dose 12 mg∙kg-1 ) or vehicle (VEH; saline). Animals were euthanized 5d following the last injection and the SOL and EDL were dissected and prepared for immunohistochemical and RT-qPCR analyses. Relative to VEH, CSA of the SOL and EDL fibers were 26% and 33% smaller, respectively, in DOX (P < 0.05). In the SOL, satellite cell and capillary densities were 39% and 35% lower, respectively, in DOX (P < 0.05), whereas in the EDL satellite cell and capillary densities were unaffected by DOX administration (P > 0.05). Proliferating satellite cells were unaffected by DOX in the SOL (P > 0.05). In the SOL, MYF5 mRNA expression was increased in DOX (P < 0.05), while in the EDL MGF mRNA expression was reduced in DOX (P < 0.05). Chronic DOX administration is associated with reduced fiber size in the SOL and EDL; however, DOX appeared to reduce satellite cell and capillary densities only in the SOL. These findings highlight that therapeutic targets to protect skeletal muscle from DOX may vary across muscles.
Collapse
Affiliation(s)
| | - Christopher S. Fry
- Department of Nutrition and MetabolismUniversity of Texas Medical BranchGalvestonTexas
| | - Jordan C. Ormsby
- College of Health SolutionsArizona State UniversityPhoenixArizona
| | | | - Camille R. Brightwell
- Department of Nutrition and MetabolismUniversity of Texas Medical BranchGalvestonTexas
| | - Taben M. Hale
- Department of Basic Medical SciencesCollege of Medicine‐PhoenixUniversity of ArizonaPhoenixArizona
| | - Rayna J. Gonzales
- Department of Basic Medical SciencesCollege of Medicine‐PhoenixUniversity of ArizonaPhoenixArizona
| | | | - Chad C. Carroll
- Department of PhysiologyMidwestern UniversityGlendaleArizona
- Department of Health and KinesiologyPurdue UniversityWest LafayetteIndiana
| | | |
Collapse
|
10
|
Greendale GA, Sternfeld B, Huang M, Han W, Karvonen-Gutierrez C, Ruppert K, Cauley JA, Finkelstein JS, Jiang SF, Karlamangla AS. Changes in body composition and weight during the menopause transition. JCI Insight 2019; 4:124865. [PMID: 30843880 DOI: 10.1172/jci.insight.124865] [Citation(s) in RCA: 207] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/25/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The relation between the menopause transition (MT) and changes in body composition or weight remains uncertain. We hypothesized that, independent of chronological aging, the MT would have a detrimental influence on body composition. METHODS Participants were from the longitudinal Study of Women's Health Across the Nation (SWAN) cohort. We assessed body composition by dual energy x-ray absorptiometry. Multivariable mixed effects regressions fitted piece-wise linear models to repeated measures of outcomes as a function of time before or after the final menstrual period (FMP). Covariates were age at FMP, race, study site, and hormone therapy. RESULTS Fat and lean mass increased prior to the MT. At the start of the MT, rate of fat gain doubled, and lean mass declined; gains and losses continued until 2 years after the FMP. After that, the trajectories of fat and lean mass decelerated to zero slope. Weight climbed linearly during premenopause without acceleration at the MT. Its trajectory became flat after the MT. CONCLUSION Accelerated gains in fat mass and losses of lean mass are MT-related phenomena. The rate of increase in the sum of fat mass and lean mass does not differ between premenopause and the MT; thus, there is no discernable change in rate of weight gain at the start of the MT. FUNDING NIH, Department of Health and Human Services (DHHS), through the National Institute on Aging, National Institute of Nursing Research, and NIH Office of Research on Women's Health (U01NR004061, U01AG012505, U01AG012535, U01AG012531, U01AG012539, U01AG012546, U01AG012553, U01AG012554, and U01AG012495).
Collapse
Affiliation(s)
- Gail A Greendale
- Department of Medicine, Division of Geriatrics, UCLA, Los Angeles, California, USA
| | | | - MeiHua Huang
- Department of Medicine, Division of Geriatrics, UCLA, Los Angeles, California, USA
| | - Weijuan Han
- Department of Medicine, Division of Geriatrics, UCLA, Los Angeles, California, USA
| | - Carrie Karvonen-Gutierrez
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Kristine Ruppert
- Graduate School of Public Health, Epidemiology Data Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jane A Cauley
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Joel S Finkelstein
- Department of Medicine, Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Sheng-Fang Jiang
- Division of Research, Kaiser Permanente, Oakland, California, USA
| | - Arun S Karlamangla
- Department of Medicine, Division of Geriatrics, UCLA, Los Angeles, California, USA
| |
Collapse
|
11
|
Greco EA, Pietschmann P, Migliaccio S. Osteoporosis and Sarcopenia Increase Frailty Syndrome in the Elderly. Front Endocrinol (Lausanne) 2019; 10:255. [PMID: 31068903 PMCID: PMC6491670 DOI: 10.3389/fendo.2019.00255] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 04/02/2019] [Indexed: 12/30/2022] Open
Abstract
Musculoskeletal aging is a major public health interesting and strain due to the significant demographic modifications in the population, and it is linked to high risk of falls, loss of autonomy in elderly individuals and institutionalization with small health outcomes. Thus, this pathological status is related to high morbidity and health care rates. Bone mass and muscle mass and strength increase during late adolescence and early adulthood but start to reduce noticeably from the fifth decade of life and are closely linked. Bone and muscle tissues were increasingly recognized, as endocrine target organs and endocrine organs themselves, interacting through paracrine and endocrine signals. During growth, bone mineral content closely correlates with muscle mass, and several evidences suggest that osteoporosis and sarcopenia present common pathophysiological factors and show the correlation between low bone mineral density and sarcopenia in both men and women. Then, sarcopenia and osteoporosis, typical features of aging, are often associated with each other and with the frailty syndrome. In particular, sarcopenia and osteoporosis are major contributors to disability and frailty and the common denominators are age-related chronic inflammation, changes in body composition and hormonal imbalance. Frailty syndrome is characterized by a reduced response to stress, triggering the decline of the physiological functioning of the various systems. Frailty syndrome, typical of the older people, is frequently associated with a reduction in the quality of life and mobility. Falls often are the basis of reduced mobility and ability to perform the common functions of daily life and the increase in the number of institutionalizations. Moreover, the reduction of muscle mass, associated with altered muscle composition, fat and fibrous infiltration and alterations in innervations, and the increase in fat mass, have a synergistic effect on the increase in cardiovascular risk. The aim of this review is to analyze the pathophysiological mechanisms underlying the frailty syndrome and its association with sarcopenia and osteoporosis, and investigate possible intervention measures.
Collapse
Affiliation(s)
- Emanuela A. Greco
- Section of Medical Pathophysiology, Endocrinology and Food Science, Department of Experimental Medicine, University of Rome Sapienza, Rome, Italy
| | - Peter Pietschmann
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, Vienna, Austria
| | - Silvia Migliaccio
- Unit of Endocrinology, Section of Health Sciences, Department of Movement, Human and Health Sciencies, University of Rome Foro Italico, Rome, Italy
- *Correspondence: Silvia Migliaccio
| |
Collapse
|
12
|
|
13
|
Montalvo RN, Counts BR, Carson JA. Understanding sex differences in the regulation of cancer-induced muscle wasting. Curr Opin Support Palliat Care 2018; 12:394-403. [PMID: 30102621 PMCID: PMC6239206 DOI: 10.1097/spc.0000000000000380] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW We highlight evidence for sexual dimorphism in preclinical and clinical studies investigating the cause and treatment of cancer cachexia. RECENT FINDINGS Cancer cachexia is unintended bodyweight loss occurring with cancer, and skeletal muscle wasting is a critical predictor of negative outcomes in the cancer patient. Skeletal muscle exhibits sexual dimorphism in fiber type, function, and regeneration capacity. Sex differences have been implicated in skeletal muscle metabolism, mitochondrial function, immune response to injury, and myogenic stem cell regulation. All of these processes have the potential to be involved in cancer-induced muscle wasting. Unfortunately, the vast majority of published studies examining cancer cachexia in preclinical models or cancer patients either have not accounted for sex in their design or have exclusively studied males. Preclinical studies have established that ovarian function and estradiol can affect skeletal muscle function, metabolism and mass; ovarian function has also been implicated in the sensitivity of circulating inflammatory cytokines and the progression of cachexia. SUMMARY Females and males have unique characteristics that effect skeletal muscle's microenvironment and intrinsic signaling. These differences provide a strong rationale for distinct causes for cancer cachexia development and treatment in males and females.
Collapse
Affiliation(s)
- Ryan N Montalvo
- Department of Exercise Science, University of South Carolina, Public Health Research Center, Columbia, USA
| | | | | |
Collapse
|
14
|
Duran-Ortiz S, Bell S, Kopchick JJ. Standardizing protocols dealing with growth hormone receptor gene disruption in mice using the Cre-lox system. Growth Horm IGF Res 2018; 42-43:52-57. [PMID: 30195091 PMCID: PMC9704043 DOI: 10.1016/j.ghir.2018.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/19/2018] [Accepted: 08/27/2018] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Mice and humans with reduced growth hormone (GH) action before birth are conferred positive health- and life-span advantages. However, little work has been performed to study the effect of conditional disruption of GH action in adult life. With this as our objective, we sought to elucidate a reproducible protocol that allows generation of adult mice with a global disruption of the GH receptor (Ghr) gene, using the tamoxifen (TAM)-inducible Cre-lox system, driven by the ROSA26 enhancer/promoter. Here we report the optimum conditions for the gene disruption. DESIGN Six month old mice, homozygous for the ROSA26-Cre and the Ghr-floxed gene, were injected, once daily for five days with four distinct TAM doses (from 0.08 to 0.32 mg of TAM/g of body weight). To evaluate the most effective TAM dose that leads to global disruption of the GHR, mRNA expression of the Ghr and insulin growth factor-1 (Igf1) genes were assessed in liver, adipose tissue, kidney, and skeletal and cardiac muscles of experimental and control mice. Additionally, serum GH and IGF-1 levels were evaluated one month after TAM injections in both, TAM-treated and TAM-untreated control mice. RESULTS A dose of 0.25 mg of TAM/g of body weight was sufficient to significantly reduce the Ghr and Igf1 expression levels in the liver, fat, kidney, and skeletal and cardiac muscle of six-month old mice that are homozygous for the Ghr floxed gene and Cre recombinase. The reduction of the Ghr mRNA levels of the TAM-treated mice was variable between tissues, with liver and adipose tissue showing the lowest and skeletal and cardiac muscle the highest levels of Ghr gene expression when compared to control mice. Moreover, liver tissue showed the 'best' Ghr gene disruption, resulting in decreased total circulating IGF-1 levels while GH levels were increased versus control mice. CONCLUSION The results show that in mice at six months of age, a total TAM dose of at least 0.25 mg of TAM/g of body weight is needed for a global downregulation of Ghr gene expression with a regimen of 100 μL intraperitoneal (ip) TAM injections, once daily for five consecutive days. Furthermore, we found that even though this system does not achieve an equivalent disruption of the Ghr between tissues, the circulating IGF-1 is >95% decreased. This work helped to create adult mice with a global GHR knockdown.
Collapse
Affiliation(s)
- Silvana Duran-Ortiz
- Edison Biotechnology Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, United States; Department of Biological Sciences, College of Arts and Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, United States; Molecular and Cellular Biology Program, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, United States.
| | - Stephen Bell
- Edison Biotechnology Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, United States.
| | - John J Kopchick
- Edison Biotechnology Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, United States; Molecular and Cellular Biology Program, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, United States; Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, United States.
| |
Collapse
|
15
|
Agostini D, Zeppa Donati S, Lucertini F, Annibalini G, Gervasi M, Ferri Marini C, Piccoli G, Stocchi V, Barbieri E, Sestili P. Muscle and Bone Health in Postmenopausal Women: Role of Protein and Vitamin D Supplementation Combined with Exercise Training. Nutrients 2018; 10:nu10081103. [PMID: 30115856 PMCID: PMC6116194 DOI: 10.3390/nu10081103] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/11/2018] [Accepted: 08/13/2018] [Indexed: 12/25/2022] Open
Abstract
Menopause is an age-dependent physiological condition associated with a natural decline in oestrogen levels, which causes a progressive decrease of muscle mass and strength and bone density. Sarcopenia and osteoporosis often coexist in elderly people, with a prevalence of the latter in elderly women. The profound interaction between muscle and bone induces a negative resonance between the two tissues affected by these disorders worsening the quality of life in the postmenopausal period. It has been estimated that at least 1 in 3 women over age 50 will experience osteoporotic fractures, often requiring hospitalisation and long-term care, causing a large financial burden to health insurance systems. Hormonal replacement therapy is effective in osteoporosis prevention, but concerns have been raised with regard to its safety. On the whole, the increase in life expectancy for postmenopausal women along with the need to improve their quality of life makes it necessary to develop specific and safe therapeutic strategies, alternative to hormonal replacement therapy, targeting both sarcopenia and osteoporosis progression. This review will examine the rationale and the effects of dietary protein, vitamin D and calcium supplementation combined with a specifically-designed exercise training prescription as a strategy to counteract these postmenopausal-associated disorders.
Collapse
Affiliation(s)
- Deborah Agostini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino 61029 (PU), Italy.
| | - Sabrina Zeppa Donati
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino 61029 (PU), Italy.
| | - Francesco Lucertini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino 61029 (PU), Italy.
| | - Giosuè Annibalini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino 61029 (PU), Italy.
| | - Marco Gervasi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino 61029 (PU), Italy.
| | - Carlo Ferri Marini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino 61029 (PU), Italy.
| | - Giovanni Piccoli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino 61029 (PU), Italy.
| | - Vilberto Stocchi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino 61029 (PU), Italy.
| | - Elena Barbieri
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino 61029 (PU), Italy.
- Interuniversity Institute of Myology (IIM), University of Urbino Carlo Bo, Urbino 61029 (PU), Italy.
| | - Piero Sestili
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino 61029 (PU), Italy.
| |
Collapse
|
16
|
Kumagai H, Tobina T, Ichinoseki-Sekine N, Kakigi R, Tsuzuki T, Zempo H, Shiose K, Yoshimura E, Kumahara H, Ayabe M, Higaki Y, Yamada R, Kobayashi H, Kiyonaga A, Naito H, Tanaka H, Fuku N. Role of selected polymorphisms in determining muscle fiber composition in Japanese men and women. J Appl Physiol (1985) 2018; 124:1377-1384. [PMID: 29345962 PMCID: PMC6008072 DOI: 10.1152/japplphysiol.00953.2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Genetic polymorphisms and sex differences are suggested to affect muscle fiber composition; however, no study has investigated the effects of genetic polymorphisms on muscle fiber composition with respect to sex differences. Therefore, the present study examined the effects of genetic polymorphisms on muscle fiber composition with respect to sex differences in the Japanese population. The present study included 211 healthy Japanese individuals (102 men and 109 women). Muscle biopsies were obtained from the vastus lateralis to determine the proportion of myosin heavy chain (MHC) isoforms (MHC-I, MHC-IIa, and MHC-IIx). Moreover, we analyzed polymorphisms in α-actinin-3 gene (ACTN3; rs1815739), angiotensin-converting enzyme gene (ACE; rs4341), hypoxia-inducible factor 1 α gene (rs11549465), vascular endothelial growth factor receptor 2 gene (rs1870377), and angiotensin II receptor, type 2 gene (rs11091046), by TaqMan single-nucleotide polymorphism genotyping assays. The proportion of MHC-I was 9.8% lower in men than in women, whereas the proportion of MHC-IIa and MHC-IIx was higher in men than in women (5.0 and 4.6%, respectively). Men with the ACTN3 RR + RX genotype had a 4.8% higher proportion of MHC-IIx than those with the ACTN3 XX genotype. Moreover, men with the ACE ID + DD genotype had a 4.7% higher proportion of MHC-I than those with the ACE II genotype. Furthermore, a combined genotype of ACTN3 R577X and ACE insertion/deletion (I/D) was significantly correlated with the proportion of MHC-I (r = −0.23) and MHC-IIx (r = 0.27) in men. In contrast, no significant correlation was observed between the examined polymorphisms and muscle fiber composition in women. These results suggest that the ACTN3 R577X and ACE I/D polymorphisms independently affect the proportion of human skeletal muscle fibers MHC-I and MHC-IIx in men but not in women. NEW & NOTEWORTHY In men, the RR + RX genotype of the α-actinin-3 gene (ACTN3) R577X polymorphism was associated with a higher proportion of myosin heavy chain (MHC)-IIx. The ID + DD genotype of the angiotensin-converting enzyme gene (ACE) insertion/deletion (I/D) polymorphism, in contrast to a previous finding, was associated with a higher proportion of MHC-I in men. In addition, the combined genotype of these polymorphisms was correlated with the proportion of MHC-I and MHC-IIx in men. Thus ACTN3 R577X and ACE I/D polymorphisms influence the muscle fiber composition in Japanese men.
Collapse
Affiliation(s)
- Hiroshi Kumagai
- Graduate School of Health and Sports Science, Juntendo University , Chiba , Japan.,Japanese Society for the Promotion of Science , Tokyo , Japan
| | - Takuro Tobina
- Faculty of Nursing and Nutrition, University of Nagasaki , Nagasaki , Japan
| | - Noriko Ichinoseki-Sekine
- Graduate School of Health and Sports Science, Juntendo University , Chiba , Japan.,Faculty of Liberal Arts, The Open University of Japan , Chiba , Japan
| | - Ryo Kakigi
- Faculty of Medicine, Juntendo University , Tokyo , Japan
| | - Takamasa Tsuzuki
- Graduate School of Health and Sports Science, Juntendo University , Chiba , Japan
| | - Hirofumi Zempo
- Faculty of Health and Nutrition, Tokyo Seiei College , Tokyo , Japan
| | - Keisuke Shiose
- Japan Institute of Sports Science , Tokyo , Japan.,Faculty of Sports and Health Science, Fukuoka University , Fukuoka , Japan
| | - Eiichi Yoshimura
- Department of Food and Health Sciences, Prefectural University of Kumamoto , Kumamoto , Japan
| | - Hideaki Kumahara
- Faculty of Nutritional Sciences, Nakamura Gakuen University , Fukuoka , Japan
| | - Makoto Ayabe
- Faculty of Computer Science and Systems Engineering, Okayama Prefectural University , Okayama , Japan
| | - Yasuki Higaki
- Faculty of Sports and Health Science, Fukuoka University , Fukuoka , Japan
| | - Ryo Yamada
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine , Kyoto , Japan
| | - Hiroyuki Kobayashi
- Department of General Medicine, Mito Medical Center, Tsukuba University Hospital , Ibaraki , Japan
| | - Akira Kiyonaga
- Faculty of Sports and Health Science, Fukuoka University , Fukuoka , Japan
| | - Hisashi Naito
- Graduate School of Health and Sports Science, Juntendo University , Chiba , Japan
| | - Hiroaki Tanaka
- Faculty of Sports and Health Science, Fukuoka University , Fukuoka , Japan
| | - Noriyuki Fuku
- Graduate School of Health and Sports Science, Juntendo University , Chiba , Japan
| |
Collapse
|
17
|
The Role of Dehydroepiandrosterone (DHEA) in Skeletal Muscle. DEHYDROEPIANDROSTERONE 2018; 108:205-221. [DOI: 10.1016/bs.vh.2018.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Abstract
With aging and other muscle wasting diseases, men and women undergo similar pathological changes in skeletal muscle: increased inflammation, enhanced oxidative stress, mitochondrial dysfunction, satellite cell senescence, elevated apoptosis and proteasome activity, and suppressed protein synthesis and myocyte regeneration. Decreased food intake and physical activity also indirectly contribute to muscle wasting. Sex hormones also play important roles in maintaining skeletal muscle homeostasis. Testosterone is a potent anabolic factor promoting muscle protein synthesis and muscular regeneration. Estrogens have a protective effect on skeletal muscle by attenuating inflammation; however, the mechanisms of estrogen action in skeletal muscle are less well characterized than those of testosterone. Age- and/or disease-induced alterations in sex hormones are major contributors to muscle wasting. Hence, men and women may respond differently to catabolic conditions because of their hormonal profiles. Here we review the similarities and differences between men and women with common wasting conditions including sarcopenia and cachexia due to cancer, end-stage renal disease/chronic kidney disease, liver disease, chronic heart failure, and chronic obstructive pulmonary disease based on the literature in clinical studies. In addition, the responses in men and women to the commonly used therapeutic agents and their efficacy to improve muscle mass and function are also reviewed.
Collapse
|
19
|
Heitzer M, Kaiser S, Kanagaratnam M, Zendedel A, Hartmann P, Beyer C, Johann S. Administration of 17β-Estradiol Improves Motoneuron Survival and Down-regulates Inflammasome Activation in Male SOD1(G93A) ALS Mice. Mol Neurobiol 2016; 54:8429-8443. [PMID: 27957680 DOI: 10.1007/s12035-016-0322-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 11/29/2016] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease manifested by the progressive loss of upper and lower motoneurons. The pathomechanism of ALS is complex and not yet fully understood. Neuroinflammation is believed to significantly contribute to disease progression. Inflammasome activation was recently shown in the spinal cord of human sporadic ALS patients and in the SOD1(G93A) mouse model for ALS. In the present study, we investigated the neuroprotective and anti-inflammatory effects of 17β-estradiol (E2) treatment in pre-symptomatic and symptomatic male SOD1(G93A) mice. Symptomatic mice with E2 substitution exhibited improved motor performance correlating with an increased survival of motoneurons in the lumbar spinal cord. Expression of NLRP3 inflammasome proteins and levels of activated caspase 1 and mature interleukin 1 beta were significantly reduced in SOD1(G93A) mice supplemented with E2.
Collapse
Affiliation(s)
- Marius Heitzer
- Institute of Neuroanatomy, Faculty of Medicine, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Sarah Kaiser
- Institute of Neuroanatomy, Faculty of Medicine, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Mithila Kanagaratnam
- Institute of Neuroanatomy, Faculty of Medicine, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Adib Zendedel
- Institute of Neuroanatomy, Faculty of Medicine, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany.,Department of Anatomical Sciences, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Philipp Hartmann
- Institute of Neuroanatomy, Faculty of Medicine, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Cordian Beyer
- Institute of Neuroanatomy, Faculty of Medicine, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany.,JARA-BRAIN, 52074, Aachen, Germany
| | - Sonja Johann
- Institute of Neuroanatomy, Faculty of Medicine, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany.
| |
Collapse
|
20
|
Kim YJ, Tamadon A, Park HT, Kim H, Ku SY. The role of sex steroid hormones in the pathophysiology and treatment of sarcopenia. Osteoporos Sarcopenia 2016; 2:140-155. [PMID: 30775480 PMCID: PMC6372754 DOI: 10.1016/j.afos.2016.06.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/09/2016] [Accepted: 06/17/2016] [Indexed: 12/18/2022] Open
Abstract
Sex steroids influence the maintenance and growth of muscles. Decline in androgens, estrogens and progesterone by aging leads to the loss of muscular function and mass, sarcopenia. These steroid hormones can interact with different signaling pathways through their receptors. To date, sex steroid hormone receptors and their exact roles are not completely defined in skeletal and smooth muscles. Although numerous studies focused on the effects of sex steroid hormones on different types of cells, still many unexplained molecular mechanisms in both skeletal and smooth muscle cells remain to be investigated. In this paper, many different molecular mechanisms that are activated or inhibited by sex steroids and those that influence the growth, proliferation, and differentiation of skeletal and smooth muscle cells are reviewed. Also, the similarities of cellular and molecular pathways of androgens, estrogens and progesterone in both skeletal and smooth muscle cells are highlighted. The reviewed signaling pathways and participating molecules can be targeted in the future development of novel therapeutics.
Collapse
Affiliation(s)
- Yong Jin Kim
- Department of Obstetrics and Gynecology, Korea University Guro Hospital, South Korea
| | - Amin Tamadon
- Department of Obstetrics and Gynecology, College of Medicine, Seoul National University, Seoul, South Korea
| | - Hyun Tae Park
- Department of Obstetrics and Gynecology, Korea University Anam Hospital, Korea University College of Medicine, South Korea
| | - Hoon Kim
- Department of Obstetrics and Gynecology, College of Medicine, Seoul National University, Seoul, South Korea
| | - Seung-Yup Ku
- Department of Obstetrics and Gynecology, College of Medicine, Seoul National University, Seoul, South Korea
| |
Collapse
|
21
|
Haizlip KM, Harrison BC, Leinwand LA. Sex-based differences in skeletal muscle kinetics and fiber-type composition. Physiology (Bethesda) 2015; 30:30-9. [PMID: 25559153 DOI: 10.1152/physiol.00024.2014] [Citation(s) in RCA: 242] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Previous studies have identified over 3,000 genes that are differentially expressed in male and female skeletal muscle. Here, we review the sex-based differences in skeletal muscle fiber composition, myosin heavy chain expression, contractile function, and the regulation of these physiological differences by thyroid hormone, estrogen, and testosterone. The findings presented lay the basis for the continued work needed to fully understand the skeletal muscle differences between males and females.
Collapse
Affiliation(s)
- K M Haizlip
- Department of Molecular, Cellular, and Developmental Biology, BioFrontiers Institute, University of Colorado at Boulder, Boulder, Colorado
| | - B C Harrison
- Department of Molecular, Cellular, and Developmental Biology, BioFrontiers Institute, University of Colorado at Boulder, Boulder, Colorado
| | - L A Leinwand
- Department of Molecular, Cellular, and Developmental Biology, BioFrontiers Institute, University of Colorado at Boulder, Boulder, Colorado
| |
Collapse
|
22
|
Meng Y, Wu H, Yang Y, Du H, Xia Y, Guo X, Liu X, Li C, Niu K. Relationship of anabolic and catabolic biomarkers with muscle strength and physical performance in older adults: a population-based cross-sectional study. BMC Musculoskelet Disord 2015; 16:202. [PMID: 26286594 PMCID: PMC4545782 DOI: 10.1186/s12891-015-0654-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 07/30/2015] [Indexed: 11/24/2022] Open
Abstract
Background Previous studies have found inflammation, growth factors, and androgen signaling pathways all contribute to sarcopenia. However, few studies simultaneously have investigated the association between these potential risk factors and sarcopenia among older people. The aim of the study was to investigate whether elevated levels of inflammatory cytokines combined with low levels of anabolic hormone have a synergy effect on muscle strength and functional decline in older people. Methods We designed a cross-sectional study of 1,131 subjects aged 60 years and older. Concentrations of serum C-reactive protein, insulin-like growth factor 1 and dehydroepiandrosteronesulphate were assessed using chemiluminescent immunoassays. Handgrip strength was measured using a dynamometer, and physical performance was assessed using a four-meter gait speed and Timed Up and Go test. We defined poor physical performance as a 4-m gait speed <0.8 m/s or Timed Up and Go test ≥13.5 s. Results After adjustment for potential confounding factors, in multiple linear regression analysis, C-reactive protein levels are inversely related to handgrip strength (P <0.01), and in multiple logistic regression analysis, C-reactive protein levels are inversely related to poor physical performance (P for trend <0.05) in males, but not in females. After combining three biomarkers, no significant results were observed between biomarker scores and muscle strength or physical performance. Conclusions In older males, higher serum C-reactive protein levels, but not insulin-like growth factor 1 and dehydroepiandrosteronesulphate levels, are independently related to lower muscle strength and poor physical performance. In this study we did not observe that a combination of higher catabolic biomarkers and lower anabolic biomarkers were better predictors for muscle strength and physical performance.
Collapse
Affiliation(s)
- Yongxia Meng
- Chinese People's Liberation Army 254 Hospital, Tianjin, China.
| | - Hongmei Wu
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China.
| | - Yi Yang
- Tianjin Centers for Disease Control and Prevention, Tianjin, China.
| | - Huanmin Du
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China.
| | - Yang Xia
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China.
| | - Xiaoyan Guo
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China.
| | - Xing Liu
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China.
| | - Chunlei Li
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China.
| | - Kaijun Niu
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
23
|
Cleveland BM, Weber GM. Effects of sex steroids on expression of genes regulating growth-related mechanisms in rainbow trout (Oncorhynchus mykiss). Gen Comp Endocrinol 2015; 216:103-15. [PMID: 25482545 DOI: 10.1016/j.ygcen.2014.11.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 11/12/2014] [Accepted: 11/24/2014] [Indexed: 12/17/2022]
Abstract
Effects of a single injection of 17β-estradiol (E2), testosterone (T), or 5β-dihydrotestosterone (DHT) on expression of genes central to the growth hormone (GH)/insulin-like growth factor (IGF) axis, muscle-regulatory factors, transforming growth factor-beta (TGFβ) superfamily signaling cascade, and estrogen receptors were determined in rainbow trout (Oncorhynchus mykiss) liver and white muscle tissue. In liver in addition to regulating GH sensitivity and IGF production, sex steroids also affected expression of IGF binding proteins, as E2, T, and DHT increased expression of igfbp2b and E2 also increased expression of igfbp2 and igfbp4. Regulation of this system also occurred in white muscle in which E2 increased expression of igf1, igf2, and igfbp5b1, suggesting anabolic capacity may be maintained in white muscle in the presence of E2. In contrast, DHT decreased expression of igfbp5b1. DHT and T decreased expression of myogenin, while other muscle regulatory factors were either not affected or responded similarly for all steroid treatments. Genes within the TGFβ superfamily signaling cascade responded to steroid treatment in both liver and muscle, suggesting a regulatory role for sex steroids in the ability to transmit signals initiated by TGFβ superfamily ligands, with a greater number of genes responding in liver than in muscle. Estrogen receptors were also regulated by sex steroids, with era1 expression increasing for all treatments in muscle, but only E2- and T-treatment in liver. E2 reduced expression of erb2 in liver. Collectively, these data identify how physiological mechanisms are regulated by sex steroids in a manner that promotes the disparate effects of androgens and estrogens on growth in salmonids.
Collapse
Affiliation(s)
- Beth M Cleveland
- National Center for Cool and Cold Water Aquaculture, USDA/ARS, 11861 Leetown Rd, Kearneysville, WV 25427, USA.
| | - Gregory M Weber
- National Center for Cool and Cold Water Aquaculture, USDA/ARS, 11861 Leetown Rd, Kearneysville, WV 25427, USA
| |
Collapse
|
24
|
Mangan G, Iqbal S, Hubbard A, Hamilton V, Bombardier E, Tiidus PM. Delay in post-ovariectomy estrogen replacement negates estrogen-induced augmentation of post-exercise muscle satellite cell proliferation. Can J Physiol Pharmacol 2015; 93:945-51. [PMID: 26406298 DOI: 10.1139/cjpp-2015-0106] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study examined the effects of a delay in post-ovariectomy replacement of 17β-estradiol (estrogen) on the post-exercise proliferation of muscle satellite cells. Nine-week-old, ovariectomized, female Sprague-Dawley rats (n = 64) were distributed among 8 groups based on estrogen status (0.25 mg estrogen pellet or sham), exercise status (90 min run at 17 m·min(-1) and a grade of -13.5° or unexercised), and estrogen replacement ("proximal", estrogen replacement within 2 weeks; or "delayed", estrogen replacement at 11 weeks following ovariectomy). Significant increases in satellite cells were found in the soleus and white gastrocnemius muscle (immunofluorescent colocalization of nuclei with Pax7) 72 h following eccentric exercise (p < 0.05) in all exercised groups. Proximal E2 replacement resulted in a further augmentation of muscle satellite cells in exercised rats (p < 0.05) relative to the delayed estrogen replacement group. Expression of PI3K was unaltered and phosphorylation of Akt relative to total Akt increased following estrogen supplementation and exercise. Exercise alone did not alter the expression levels of Akt. An 11 week delay in post-ovariectomy estrogen replacement negated the augmenting influence seen with proximal (2 week delay) post-ovariectomy estrogen replacement on post-exercise muscle satellite cell proliferation. This effect appears to be independent of the PI3K-Akt signaling pathway.
Collapse
Affiliation(s)
- Gary Mangan
- a Departments of Kinesiology & Physical Education and Health Sciences, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada
| | - Sobia Iqbal
- a Departments of Kinesiology & Physical Education and Health Sciences, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada
| | - Andrew Hubbard
- a Departments of Kinesiology & Physical Education and Health Sciences, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada
| | - Victoria Hamilton
- a Departments of Kinesiology & Physical Education and Health Sciences, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada
| | - Eric Bombardier
- b Department of Kinesiology, University of Waterloo, Waterloo, ON N2L 3C5, Canada
| | - Peter M Tiidus
- a Departments of Kinesiology & Physical Education and Health Sciences, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada
| |
Collapse
|
25
|
Bradbury KE, Balkwill A, Tipper SJ, Crowe FL, Reeves GK, Green J, Beral V, Key TJ. The association of plasma IGF-I with dietary, lifestyle, anthropometric, and early life factors in postmenopausal women. Growth Horm IGF Res 2015; 25:90-5. [PMID: 25641638 DOI: 10.1016/j.ghir.2015.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 09/01/2014] [Accepted: 01/06/2015] [Indexed: 01/28/2023]
Abstract
OBJECTIVE Higher circulating concentrations of insulin like growth factor (IGF-I) are associated with an increased risk of breast cancer. The objective of this study was to investigate associations between circulating IGF-I concentrations and dietary factors (intakes of protein, dairy protein, and alcohol), lifestyle factors (smoking and HT use), anthropometric indices (height and adiposity) and factors in early life (birth weight, having been breastfed, body size at age 10, and at age 20) in postmenopausal women in the UK. DESIGN An analysis of plasma IGF-I concentrations (measured by immunoassay) in 1883 postmenopausal women. Multivariate analysis was used to examine correlates of plasma IGF-I concentrations. RESULTS Women in the highest quintile of total protein and dairy protein intakes had, respectively, 7.6% and 5.5% higher plasma IGF-I concentrations than women in the lowest quintile (p trend <0.05 for both). Other factors significantly (p<0.05) associated with reduced IGF-I concentrations were: consuming 14 or more vs 3-7 alcoholic drinks per week (8.8% lower IGF-I); current vs non-current HT users (9.9% lower IGF-I); current use of oestrogen alone vs oestrogen+progestagen (16.9% lower IGF-I); obese vs overweight (6.8% lower IGF-I); and women who reported wearing larger vs smaller clothes sizes at age 20 (4.9% lower IGF-I). CONCLUSIONS This study in post-menopausal women identified several potentially modifiable determinants of circulating IGF-I concentrations. There is now strong evidence from this and other studies that IGF-I concentrations are associated with dietary protein intakes.
Collapse
Affiliation(s)
- Kathryn E Bradbury
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK.
| | - Angela Balkwill
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - Sarah J Tipper
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - Francesca L Crowe
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - Gillian K Reeves
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - Jane Green
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - Valerie Beral
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - Timothy J Key
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| |
Collapse
|
26
|
Sipilä S, Finni T, Kovanen V. Estrogen influences on neuromuscular function in postmenopausal women. Calcif Tissue Int 2015; 96:222-33. [PMID: 25359124 DOI: 10.1007/s00223-014-9924-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 10/18/2014] [Indexed: 02/07/2023]
Abstract
Exposure to ovarian sex steroids during different life phases has long-term effects on women's health and wellbeing. Menopause is characterized by rapid decline in ovarian sex steroids already during mid-life, between the ages of 46 and 52. Due to the menopause-related hormonal changes, women in most western countries live more than one-third of their lives in postmenopausal status. The role of ovarian steroids on neuromuscular function in middle-aged and older women has been investigated since the 1980s with increasing volume of research during the last decades. This review considers how different components of the neuromuscular system may be influenced by estrogens and so affects neuromuscular function in postmenopausal women. The main focus is on muscle strength and power, which are closely associated with mobility and functional capacity among older populations. In the end of the review, we summarize recent findings on the underlying biological mechanisms in skeletal muscle that could explain the association between hormone replacement therapy and neuromuscular function among postmenopausal women.
Collapse
Affiliation(s)
- S Sipilä
- Department of Health Sciences, Gerontology Research Center, University of Jyväskylä, Jyväskylä, Finland,
| | | | | |
Collapse
|
27
|
Kangas R, Pöllänen E, Rippo MR, Lanzarini C, Prattichizzo F, Niskala P, Jylhävä J, Sipilä S, Kaprio J, Procopio AD, Capri M, Franceschi C, Olivieri F, Kovanen V. Circulating miR-21, miR-146a and Fas ligand respond to postmenopausal estrogen-based hormone replacement therapy--a study with monozygotic twin pairs. Mech Ageing Dev 2014; 143-144:1-8. [PMID: 25448133 DOI: 10.1016/j.mad.2014.11.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 10/11/2014] [Accepted: 11/26/2014] [Indexed: 12/21/2022]
Abstract
Biological aging is associated with physiological deteriorations, which are partly due to changes in the hormonal profile. MicroRNAs regulate various processes associated with cell senescence; differentiation, replication and apoptosis. Serum microRNAs have potential to serve as noninvasive markers for diagnostics/prognostics and therapeutic targets. We analysed the association of estrogen-based hormone replacement therapy (HRT) with selected microRNAs and inflammation markers from the serum, leukocytes and muscle biopsy samples from 54 to 62 year-old postmenopausal monozygotic twins (n=11 pairs) discordant for HRT usage. Premenopausal 30-35 year-old women (n=8) were used as young controls. We focused on the hormonal aging and on the interaction between HRT use and the modulation of miR-21, miR-146a and classical inflammation markers. Fas-ligand was analysed since it functions in both apoptosis and inflammation. The inflammatory profile was healthier among the premenopausal women compared to the postmenopausal twins. Serum miR-21 and miR-146a levels and FasL concentrations were lower in HRT users compared to their non-using co-twins, demonstrating their responsiveness to HRT. Based on the pairwise FasL analysis, FasL concentration is likely to be genetically controlled. Overall, we suggest that postmenopausal estrogen deficiency sustains the development of "inflamm-aging". Estrogen sensitive, specific circulating microRNAs could be potential, early biomarkers for age-associated physiological deteriorations.
Collapse
Affiliation(s)
- Reeta Kangas
- Gerontology Research Center, University of Jyväskylä, Finland; Department of Health Sciences, University of Jyväskylä, Finland.
| | - Eija Pöllänen
- Gerontology Research Center, University of Jyväskylä, Finland; Department of Health Sciences, University of Jyväskylä, Finland
| | - Maria Rita Rippo
- Department of Clinical and Molecular Sciences, Division of Experimental Pathology, Università Politecnica delle Marche, Ancona, Italy
| | - Catia Lanzarini
- Department of Experimental, Diagnostic and Specialty Medicine, Via S. Giacomo, 12, University of Bologna, Bologna, Italy; Interdepartmental Center Galvani "CIG", Via Selmi, 3, University of Bologna, Bologna, Italy
| | - Francesco Prattichizzo
- Department of Clinical and Molecular Sciences, Division of Experimental Pathology, Università Politecnica delle Marche, Ancona, Italy
| | - Paula Niskala
- Department of Health Sciences, University of Jyväskylä, Finland
| | - Juulia Jylhävä
- Department of Microbiology and Immunology, School of Medicine, University of Tampere, Finland; Gerontology Research Center, University of Tampere, Finland
| | - Sarianna Sipilä
- Gerontology Research Center, University of Jyväskylä, Finland; Department of Health Sciences, University of Jyväskylä, Finland
| | - Jaakko Kaprio
- Institute for Molecular Medicine, University of Helsinki, Finland; National Institute for Health and Welfare, Helsinki, Finland
| | - Antonio Domenico Procopio
- Department of Clinical and Molecular Sciences, Division of Experimental Pathology, Università Politecnica delle Marche, Ancona, Italy; Department of Clinical Pathology and Innovative Therapy, Advanced Technology Center for Aging Research, INRCA-IRCCS, Ancona, Italy
| | - Miriam Capri
- Department of Experimental, Diagnostic and Specialty Medicine, Via S. Giacomo, 12, University of Bologna, Bologna, Italy; Interdepartmental Center Galvani "CIG", Via Selmi, 3, University of Bologna, Bologna, Italy
| | - Claudio Franceschi
- Department of Experimental, Diagnostic and Specialty Medicine, Via S. Giacomo, 12, University of Bologna, Bologna, Italy; Interdepartmental Center Galvani "CIG", Via Selmi, 3, University of Bologna, Bologna, Italy
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences, Division of Experimental Pathology, Università Politecnica delle Marche, Ancona, Italy; Department of Clinical Pathology and Innovative Therapy, Advanced Technology Center for Aging Research, INRCA-IRCCS, Ancona, Italy
| | - Vuokko Kovanen
- Gerontology Research Center, University of Jyväskylä, Finland; Department of Health Sciences, University of Jyväskylä, Finland
| |
Collapse
|
28
|
Increased body fat mass and tissue lipotoxicity associated with ovariectomy or high-fat diet differentially affects bone and skeletal muscle metabolism in rats. Eur J Nutr 2014; 54:1139-49. [PMID: 25370302 DOI: 10.1007/s00394-014-0790-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 10/22/2014] [Indexed: 12/21/2022]
|
29
|
Olivieri F, Ahtiainen M, Lazzarini R, Pöllänen E, Capri M, Lorenzi M, Fulgenzi G, Albertini MC, Salvioli S, Alen MJ, Kujala UM, Borghetti G, Babini L, Kaprio J, Sipilä S, Franceschi C, Kovanen V, Procopio AD. Hormone replacement therapy enhances IGF-1 signaling in skeletal muscle by diminishing miR-182 and miR-223 expressions: a study on postmenopausal monozygotic twin pairs. Aging Cell 2014; 13:850-61. [PMID: 25040542 PMCID: PMC4331762 DOI: 10.1111/acel.12245] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2014] [Indexed: 01/06/2023] Open
Abstract
MiRNAs are fine-tuning modifiers of skeletal muscle regulation, but knowledge of their hormonal control is lacking. We used a co-twin case–control study design, that is, monozygotic postmenopausal twin pairs discordant for estrogen-based hormone replacement therapy (HRT) to explore estrogen-dependent skeletal muscle regulation via miRNAs. MiRNA profiles were determined from vastus lateralis muscle of nine healthy 54–62-years-old monozygotic female twin pairs discordant for HRT (median 7 years). MCF-7 cells, human myoblast cultures and mouse muscle experiments were used to confirm estrogen’s causal role on the expression of specific miRNAs, their target mRNAs and proteins and finally the activation of related signaling pathway. Of the 230 miRNAs expressed at detectable levels in muscle samples, qPCR confirmed significantly lower miR-182, miR-223 and miR-142-3p expressions in HRT using than in their nonusing co-twins. Insulin/IGF-1 signaling emerged one common pathway targeted by these miRNAs. IGF-1R and FOXO3A mRNA and protein were more abundantly expressed in muscle samples of HRT users than nonusers. In vitro assays confirmed effective targeting of miR-182 and miR-223 on IGF-1R and FOXO3A mRNA as well as a dose-dependent miR-182 and miR-223 down-regulations concomitantly with up-regulation of FOXO3A and IGF-1R expression. Novel finding is the postmenopausal HRT-reduced miRs-182, miR-223 and miR-142-3p expression in female skeletal muscle. The observed miRNA-mediated enhancement of the target genes’ IGF-1R and FOXO3A expression as well as the activation of insulin/IGF-1 pathway signaling via phosphorylation of AKT and mTOR is an important mechanism for positive estrogen impact on skeletal muscle of postmenopausal women.
Collapse
Affiliation(s)
- Fabiola Olivieri
- Department of Clinical and Molecular Sciences; Division of Pathology; Università Politecnica delle Marche; Ancona Italy
- Department of Clinical Pathology and Innovative Therapy; Advanced Technology Center for Aging Research; INRCA-IRCCS; Ancona Italy
| | - Maarit Ahtiainen
- Department of Health Sciences; University of Jyväskylä; Jyväskylä Finland
- Gerontology Research Center; University of Jyväskylä; Jyväskylä Finland
| | - Raffaella Lazzarini
- Department of Clinical and Molecular Sciences; Division of Pathology; Università Politecnica delle Marche; Ancona Italy
| | - Eija Pöllänen
- Gerontology Research Center; University of Jyväskylä; Jyväskylä Finland
- Department of Health Sciences; University of Jyväskylä; Jyväskylä Finland
| | - Miriam Capri
- Department of Experimental Pathology; University of Bologna; Bologna Italy
| | - Maria Lorenzi
- Department of Experimental and Clinical Medicine; Division of Neuroscience and Cell Biology; School of Medicine; Università Politecnica delle Marche; Ancona Italy
| | - Gianluca Fulgenzi
- Department of Clinical and Molecular Sciences; Division of Pathology; Università Politecnica delle Marche; Ancona Italy
| | - Maria C. Albertini
- Dipartimento di Scienze Biomolecolari; Sezione di Biochimica e Biologia molecolare; Università degli Studi di Urbino “Carlo Bo”; Urbino Italy
| | - Stefano Salvioli
- Department of Experimental Pathology; University of Bologna; Bologna Italy
| | - Markku J. Alen
- Department of Medical Rehabilitation; Oulu University Hospital and Institute of Health Sciences; University of Oulu; Oulu Finland
| | - Urho M. Kujala
- Department of Health Sciences; University of Jyväskylä; Jyväskylä Finland
| | - Giulia Borghetti
- Department of Clinical and Molecular Sciences; Division of Pathology; Università Politecnica delle Marche; Ancona Italy
| | - Lucia Babini
- Department of Clinical and Molecular Sciences; Division of Pathology; Università Politecnica delle Marche; Ancona Italy
| | - Jaakko Kaprio
- Department of Public Health; University of Helsinki; Helsinki Finland
- Institute for Molecular Medicine; University of Helsinki; Helsinki Finland
- National Institute for Health and Welfare; Helsinki Finland
| | - Sarianna Sipilä
- Department of Health Sciences; University of Jyväskylä; Jyväskylä Finland
- Gerontology Research Center; University of Jyväskylä; Jyväskylä Finland
| | - Claudio Franceschi
- Department of Experimental Pathology; University of Bologna; Bologna Italy
| | - Vuokko Kovanen
- Department of Health Sciences; University of Jyväskylä; Jyväskylä Finland
- Gerontology Research Center; University of Jyväskylä; Jyväskylä Finland
| | - Antonio D. Procopio
- Department of Clinical and Molecular Sciences; Division of Pathology; Università Politecnica delle Marche; Ancona Italy
- Department of Clinical Pathology and Innovative Therapy; Advanced Technology Center for Aging Research; INRCA-IRCCS; Ancona Italy
| |
Collapse
|
30
|
Sato K, Iemitsu M, Matsutani K, Kurihara T, Hamaoka T, Fujita S. Resistance training restores muscle sex steroid hormone steroidogenesis in older men. FASEB J 2014; 28:1891-7. [DOI: 10.1096/fj.13-245480] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Koji Sato
- Faculty of Sport and Health ScienceRitsumeikan UniversityKusatsuShigaJapan
| | - Motoyuki Iemitsu
- Faculty of Sport and Health ScienceRitsumeikan UniversityKusatsuShigaJapan
| | - Kenji Matsutani
- Faculty of Sport and Health ScienceRitsumeikan UniversityKusatsuShigaJapan
| | - Toshiyuki Kurihara
- Faculty of Sport and Health ScienceRitsumeikan UniversityKusatsuShigaJapan
| | - Takafumi Hamaoka
- Faculty of Sport and Health ScienceRitsumeikan UniversityKusatsuShigaJapan
| | - Satoshi Fujita
- Faculty of Sport and Health ScienceRitsumeikan UniversityKusatsuShigaJapan
| |
Collapse
|
31
|
Tiidus PM, Lowe DA, Brown M. Estrogen replacement and skeletal muscle: mechanisms and population health. J Appl Physiol (1985) 2013; 115:569-78. [PMID: 23869062 DOI: 10.1152/japplphysiol.00629.2013] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
There is a growing body of information supporting the beneficial effects of estrogen and estrogen-based hormone therapy (HT) on maintenance and enhancement of muscle mass, strength, and connective tissue. These effects are also evident in enhanced recovery from muscle atrophy or damage and have significant implications particularly for the muscular health of postmenopausal women. Evidence suggests that HT will also help maintain or increase muscle mass, improve postatrophy muscle recovery, and enhance muscle strength in aged females. This is important because this population, in particular, is at risk for a rapid onset of frailty. The potential benefits of estrogen and HT relative to skeletal muscle function and composition combined with other health-related enhancements associated with reduced risk of cardiovascular events, overall mortality, and metabolic dysfunction, as well as enhanced cognition and bone health cumulate in a strong argument for more widespread and prolonged consideration of HT if started proximal to menopausal onset in most women. Earlier reports of increased health risks with HT use in postmenopausal women has led to a decline in HT use. However, recent reevaluation regarding the health effects of HT indicates a general lack of risks and a number of significant health benefits of HT use when initiated at the onset of menopause. Although further research is still needed to fully delineate its mechanisms of action, the general use of HT by postmenopausal women, to enhance muscle mass and strength, as well as overall health, with initiation soon after the onset of menopause should be considered.
Collapse
Affiliation(s)
- Peter M Tiidus
- Department of Kinesology and Physical Education, Wilfrid Laurier University, Waterloo Ontario, Canada
| | | | | |
Collapse
|
32
|
Sipilä S, Narici M, Kjaer M, Pöllänen E, Atkinson RA, Hansen M, Kovanen V. Sex hormones and skeletal muscle weakness. Biogerontology 2013; 14:231-45. [DOI: 10.1007/s10522-013-9425-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 04/17/2013] [Indexed: 01/09/2023]
|
33
|
Oberbauer AM. The Regulation of IGF-1 Gene Transcription and Splicing during Development and Aging. Front Endocrinol (Lausanne) 2013; 4:39. [PMID: 23533068 PMCID: PMC3607797 DOI: 10.3389/fendo.2013.00039] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 03/12/2013] [Indexed: 12/17/2022] Open
Abstract
It is commonly known that the insulin-like growth factor-I gene contains six exons that can be differentially spliced to create multiple transcript variants. Further, there are two mutually exclusive leader exons each having multiple promoter sites that are variably used. The mature IGF-I protein derived from the multiplicity of transcripts does not differ suggesting a regulatory role for the various transcript isoforms. The variant forms possess different stabilities, binding partners, and activity indicating a pivotal role for the isoforms. Research has demonstrated differential expression of the IGF-I mRNA transcripts in response to steroids, growth hormone, and developmental cues. Many studies of different tissues have focused on assessing the presence, or putative action, of the transcript isoforms with little consideration of the transcriptional mechanisms that generate the variants or the translational use of the transcript isoforms. Control points for the latter include epigenetic regulation of splicing and promoter usage in response to development or injury, RNA binding proteins and microRNA effects on transcript stability, and preferential use of two leader exons by GH and other hormones. This review will detail the current knowledge of the mechanical, hormonal, and developmental stimuli regulating IGF-1 promoter usage and splicing machinery used to create the variants.
Collapse
Affiliation(s)
- A. M. Oberbauer
- Department of Animal Science, University of CaliforniaDavis, CA, USA
- *Correspondence: A. M. Oberbauer, Department of Animal Science, University of California, One Shields Avenue, Davis, CA 95688, USA. e-mail:
| |
Collapse
|
34
|
Kamanga-Sollo E, White ME, Weber WJ, Dayton WR. Role of estrogen receptor-α (ESR1) and the type 1 insulin-like growth factor receptor (IGFR1) in estradiol-stimulated proliferation of cultured bovine satellite cells. Domest Anim Endocrinol 2013; 44:36-45. [PMID: 23036864 DOI: 10.1016/j.domaniend.2012.08.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 08/23/2012] [Accepted: 08/28/2012] [Indexed: 10/27/2022]
Abstract
Although the exact mechanism(s) by which estradiol (E(2)) enhances muscle growth in a number of species, including humans and cattle, is not known, E(2) treatment has been shown to stimulate proliferation of cultured bovine satellite cells (BSCs). This is particularly significant because satellite cells are the source of nuclei needed to support postnatal muscle fiber hypertrophy and are thus crucial in determining the rate and extent of muscle growth. The objective of this study was to assess the role of estrogen receptor-α (ESR1) and the type 1 insulin-like growth factor receptor (IGFR1) in E(2)-stimulated proliferation of cultured BSCs. To accomplish this, we have used small interfering RNA (siRNA) to silence expression of ESR1 or IGFR1 and assessed the effects on E(2)-stimulated proliferation in BSC cultures. In BSCs treated with nonspecific siRNA, E(2) significantly (P < 0.05) stimulates proliferation under conditions in which neither IGF-1 nor IGF-2 expression is increased; however, treatment of ESR1- or IGFR1-silenced cells with E(2) does not significantly stimulate proliferation. These results indicate that both ESR1 and IGFR1 are required for E(2) to stimulate proliferation in BSC cultures. The fact that this occurs under culture conditions in which neither IGF-1 nor IGF-2 mRNA expression is increased strongly suggests that E(2) activates IGFR1 via a mechanism that does not involve increased IGF-1 or IGF-2 binding to the receptor.
Collapse
MESH Headings
- Animals
- Blotting, Western/veterinary
- Cattle
- Cell Proliferation/drug effects
- Estradiol/pharmacology
- Estrogen Receptor alpha/genetics
- Estrogen Receptor alpha/metabolism
- Least-Squares Analysis
- Male
- Muscle, Skeletal/cytology
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Small Interfering/pharmacology
- Receptor, IGF Type 1/genetics
- Receptor, IGF Type 1/metabolism
- Reverse Transcriptase Polymerase Chain Reaction/veterinary
- Satellite Cells, Skeletal Muscle/cytology
- Satellite Cells, Skeletal Muscle/drug effects
- Satellite Cells, Skeletal Muscle/metabolism
Collapse
Affiliation(s)
- E Kamanga-Sollo
- Department of Animal Science, University of Minnesota, St Paul, MN 55108, USA
| | | | | | | |
Collapse
|
35
|
Ahtiainen M, Pöllänen E, Ronkainen PHA, Alen M, Puolakka J, Kaprio J, Sipilä S, Kovanen V. Age and estrogen-based hormone therapy affect systemic and local IL-6 and IGF-1 pathways in women. AGE (DORDRECHT, NETHERLANDS) 2012; 34:1249-1260. [PMID: 21845403 PMCID: PMC3448994 DOI: 10.1007/s11357-011-9298-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 07/25/2011] [Indexed: 05/31/2023]
Abstract
A thorough understanding of the role of estrogens on aging-related muscle weakness is lacking. To clarify the molecular mechanisms underlying the effects of hormone replacement therapy (HRT) on skeletal muscle, we analyzed systemic protein and local mRNA levels of factors related to interleukin 6 (IL-6) and insulin-like growth factor 1 (IGF-1) pathways in 30- to 35-year-old (n = 14) women (without hormonal contraceptives) and in 54- to 62-year-old monozygotic female twin pairs discordant for HRT (n = 11 pairs, mean duration of HRT 7.3 ± 3.7 years). Biopsies were taken from vastus lateralis muscle and from abdominal adipose tissue. We found, first, that the systemic levels of IL-6 receptors sIL-6R and sgp130 are sensitive to both age and HRT concomitant with the changes in body composition. The serum levels of sgp130 and sIL-6R were 16% and 52% (p ≤ 0.001 for both variables) higher in postmenopausal women than in premenopausal women, and 10% and 9% lower (p = 0.033 and p < 0.001, respectively) in the HRT using than in their non using co-twins. After adjustment for body fat amount, the differences were no more significant. Second, the transcript analyses emphasize the impact of adipose tissue on systemic levels of IL-6, sgp130 and sIL6R, both at pre- and postmenopausal age. In muscle, the most notable changes were 28% lower gene expression of IGF-1 splice variant Ea (IGF-1Ea) and 40% lower expression of splice variant Ec (IGF-1Ec) in the postmenopausal non-users than in premenopausal women (p = 0.016 and 0.019, respectively), and 28% higher expression of IGF1-receptor in HRT users than in non-users (p = 0.060). The results tend to demonstrate that HRT has positive anti-catabolic effect on aging skeletal muscle.
Collapse
Affiliation(s)
- Maarit Ahtiainen
- Gerontology Research Center, Department of Health Sciences, University of Jyväskylä, Jyväskylä, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Current World Literature. Curr Opin Nephrol Hypertens 2012; 21:106-18. [DOI: 10.1097/mnh.0b013e32834ee42b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Cleveland BM, Weber GM. Effects of sex steroids on indices of protein turnover in rainbow trout (Oncorhynchusmykiss) white muscle. Gen Comp Endocrinol 2011; 174:132-42. [PMID: 21878334 DOI: 10.1016/j.ygcen.2011.08.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 08/12/2011] [Accepted: 08/15/2011] [Indexed: 01/26/2023]
Abstract
Effects of 17β-estradiol (E2), testosterone, and 5α-dihydrotestosterone (DHT) on protein turnover and proteolytic gene expression were determined in rainbow trout (Oncorhynchus mykiss) primary myocytes and white muscle tissue. E2 reduced rates of protein synthesis and increased rates of protein degradation in primary myocytes by 45% and 27%, respectively. DHT reduced rates of protein synthesis by 27%. Testosterone did not affect protein synthesis and neither testosterone nor DHT affected rates of protein degradation. Single injections of E2 increased expression of ubiquitin ligase genes fbxo32, fbxo25, and murf1, and the proteasome subunit psmd6 by 24h after injection. Within the cathepsin-lysosome pathway, E2 increased expression of cathepsins ctsd and ctsl, as well as autophagy-related genes atg4b and lc3b. Additionally, E2 injection up-regulated the expression of casp3 and casp9 caspase genes. Incubation of primary myocytes with E2 also increased expression of ubiquitin ligase genes. Therefore, catabolic effects of E2 on protein turnover result in part from E2-induced increases in proteolytic gene expression directly in muscle. Injection of testosterone increased milli-calpain (capn2) and casp3 expression, and DHT increased ctsd expression in vivo, whereas both androgens up-regulated fbxo32 expression in primary myocytes. These results suggest that effects of androgens on protein turnover in muscle are not driven primarily by direct effects of these hormones in this tissue.
Collapse
Affiliation(s)
- Beth M Cleveland
- United States Department of Agriculture, Agricultural Research Service, National Center for Cool and Cold Water Aquaculture, 11861 Leetown Rd., Kearneysville, WV 25430, USA.
| | | |
Collapse
|
38
|
Pöllänen E, Sipilä S, Alen M, Ronkainen PHA, Ankarberg-Lindgren C, Puolakka J, Suominen H, Hämäläinen E, Turpeinen U, Konttinen YT, Kovanen V. Differential influence of peripheral and systemic sex steroids on skeletal muscle quality in pre- and postmenopausal women. Aging Cell 2011; 10:650-60. [PMID: 21388496 DOI: 10.1111/j.1474-9726.2011.00701.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Aging is associated with gradual decline of skeletal muscle strength and mass often leading to diminished muscle quality. This phenomenon is known as sarcopenia and affects about 30% of the over 60-year-old population. Androgens act as anabolic agents regulating muscle mass and improving muscle performance. The role of female sex steroids as well as the ability of skeletal muscle tissue to locally produce sex steroids has been less extensively studied. We show that despite the extensive systemic deficit of sex steroid hormones in postmenopausal compared to premenopausal women, the hormone content of skeletal muscle does not follow the same trend. In contrast to the systemic levels, muscle tissue of post- and premenopausal women had similar concentrations of dehydroepiandrosterone and androstenedione, while the concentrations of estradiol and testosterone were significantly higher in muscle of the postmenopausal women. The presence of steroidogenetic enzymes in muscle tissue indicates that the elevated postmenopausal steroid levels in skeletal muscle are because of local steroidogenesis. The circulating sex steroids were associated with better muscle quality while the muscle concentrations reflected the amount of infiltrated fat within muscle tissue. We conclude that systemically delivered and peripherally produced sex steroids have distinct roles in the regulation of neuromuscular characteristics during aging.
Collapse
Affiliation(s)
- Eija Pöllänen
- Gerontology Research Center, Department of Health Sciences, University of Jyväskylä, FIN-40014 Jyväskylä, Finland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Tiidus PM. Benefits of estrogen replacement for skeletal muscle mass and function in post-menopausal females: evidence from human and animal studies. Eurasian J Med 2011; 43:109-14. [PMID: 25610174 PMCID: PMC4261347 DOI: 10.5152/eajm.2011.24] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 06/24/2011] [Indexed: 12/21/2022] Open
Abstract
Age related loss of skeletal muscle mass and strength accelerates with the onset of menopause in women. Recent evidence from human and animal studies provides compelling evidence for the role of estrogen based hormone replacement therapy (HRT) in maintaining and enhancing muscle mass and strength and protecting against muscle damage. The physiological mechanisms by which estrogen can positively influence skeletal muscle mass and strength and protect against post-damage inflammation and disruption are also beginning to emerge. These less well known benefits of estrogen for skeletal muscle coupled with other benefits of estrogen to bone and metabolic health in older females provide further incentives for HRT use to enhance overall health in post-menopausal women. New research also attests to the safety of shorter term HRT in younger post-menopausal females. Overall the benefits of HRT to muscle health and function could assist in offsetting age related loss of muscle mass and function and delay age related morbidity and their use for overall health benefits in aging females should continue to be evaluated.
Collapse
Affiliation(s)
- Peter M. Tiidus
- Department of Kinesiology and Physical Education, Faculty of Science, Wilfrid Laurier University, Waterloo, ON, Canada
| |
Collapse
|