1
|
Agaimy A, Antonescu CR, Bell D, Breimer GE, Dermawan JK, Kester LA, Laco J, Rijken JA, Whaley RD, Stoehr R, Cramer T, Bishop JA. FGFR3::TACC3 fusions in head and neck carcinomas: a study of nine cases highlighting phenotypic heterogeneity, frequent HPV association, and a morphologically distinct subset in favor of a putative entity. Virchows Arch 2024:10.1007/s00428-024-03940-3. [PMID: 39387893 DOI: 10.1007/s00428-024-03940-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/23/2024] [Accepted: 10/01/2024] [Indexed: 10/15/2024]
Abstract
The FGFR3::TACC3 fusion has been reported in subsets of diverse cancers including urothelial and squamous cell carcinomas (SCC). However, the morphology of FGFR3::TACC3-positive head and neck carcinomas has not been well studied and it is unclear if this fusion represents a random event, or if it might characterize a morphologically distinct tumor type. We describe nine FGFR3::TACC3 fusion-positive head and neck carcinomas affecting six males and three females aged 38 to 89 years (median, 59). The tumors originated in the sinonasal tract (n = 4), parotid gland (n = 2), and one case each in the oropharynx, submandibular gland, and larynx. At last follow-up (9-21 months; median, 11), four patients developed local recurrence and/or distant metastases, two died of disease at 11 and 12 months, one died of other cause, one was alive with disease, and two were disease-free. Three of six tumors harbored high risk oncogenic HPV infection (HPV33, HPV18, one unspecified). Histologically, three tumors revealed non-keratinizing transitional cell-like or non-descript morphology with variable mixed inflammatory infiltrate reminiscent of mucoepidermoid or DEK::AFF2 carcinoma (all were HPV-negative), and three were HPV-associated (all sinonasal) with multiphenotypic (1) and non-intestinal adenocarcinoma (2) pattern, respectively. One salivary gland tumor showed poorly cohesive large epithelioid cells with prominent background inflammation and expressed AR and GATA3, in line with a possible salivary duct carcinoma variant. Two tumors were conventional SCC. Targeted RNA sequencing revealed an in-frame FGFR3::TACC3 fusion in all cases. This series highlights heterogeneity of head and neck carcinomas harboring FGFR3::TACC3 fusions, which segregates into three categories: (1) unclassified HPV-negative category, morphologically distinct from SCC and other entities; (2) heterogeneous group of HPV-associated carcinomas; and (3) conventional SCC. A driver role of the FGFR3::TACC3 fusion in the first category (as a potential distinct entity) remains to be further studied. In the light of available FGFR-targeting therapies, delineation of these tumors and enhanced recognition is recommended.
Collapse
Affiliation(s)
- Abbas Agaimy
- Institute of Pathology, Erlangen University Hospital, Friedrich Alexander University of Erlangen-Nuremberg, Krankenhausstrasse 8-10, 91054, Erlangen, Germany.
- Comprehensive Cancer Center, European Metropolitan Area Erlangen-Nuremberg (CCC ER-EMN), Friedrich Alexander University of Erlangen-Nuremberg, Erlangen, Germany.
| | - Cristina R Antonescu
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Diana Bell
- Head and Neck/Endocrine Pathology Center of Excellence, Division of Anatomic Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Gerben E Breimer
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Josephine K Dermawan
- Department of Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Lennart A Kester
- Department of Head and Neck Surgical Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jan Laco
- The Fingerland Department of Pathology, Charles University Faculty of Medicine in Hradec Kralove and University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Johannes A Rijken
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Rumeal D Whaley
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Robert Stoehr
- Institute of Pathology, Erlangen University Hospital, Friedrich Alexander University of Erlangen-Nuremberg, Krankenhausstrasse 8-10, 91054, Erlangen, Germany
- Comprehensive Cancer Center, European Metropolitan Area Erlangen-Nuremberg (CCC ER-EMN), Friedrich Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Thomas Cramer
- Department of Otorhinolaryngology, Head and Neck Surgery, Bundeswehrkrankenhaus Berlin, Berlin, Germany
| | - Justin A Bishop
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
2
|
Aziz AUR, Zhang J, Zhang C, Yu X, Wang D. The mutual interplay between NTRK fusion genes and human papillomavirus infection in cervical cancer progression (Review). Mol Clin Oncol 2024; 21:67. [PMID: 39091417 PMCID: PMC11289753 DOI: 10.3892/mco.2024.2765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/19/2024] [Indexed: 08/04/2024] Open
Abstract
Cervical cancer is a significant global health concern, with a substantial portion of cases attributed to human papillomavirus (HPV) infection. Recent advancements in molecular profiling have identified distinct subtypes of cervical cancer based on their genomic alterations. One such subgroup is neurotrophic tropomyosin receptor kinase (NTRK) fusion-positive cervical cancers, characterized by gene fusions involving the NTRK genes. Although both NTRK fusion genes and HPV infections are independently recognized as significant risk factors in cervical cancer, their interplay and mutual effects on cancer progression are not yet fully understood. The present review is the first of its kind to explore the potential interplay between NTRK fusion genes and HPV infections. It surveys in detail how their combined effect can influence the signaling pathways during cervical cancer development and progression. Moreover, the present study discussed the clinical features, histopathological examinations, treatment procedures and follow-up outcomes of NTRK-fusion gene-positive cervical cancer. The present review may help in the understanding of the management and treatment of such rare, lethal and resistant cervical cancers.
Collapse
Affiliation(s)
- Aziz Ur Rehman Aziz
- Key Laboratory for Early Diagnosis and Biotherapy of Malignant Tumors in Children and Women, Dalian Women and Children's Medical Group, Dalian, Liaoning 116012, P.R. China
| | - Jianing Zhang
- Key Laboratory for Early Diagnosis and Biotherapy of Malignant Tumors in Children and Women, Dalian Women and Children's Medical Group, Dalian, Liaoning 116012, P.R. China
| | - Chan Zhang
- Key Laboratory for Early Diagnosis and Biotherapy of Malignant Tumors in Children and Women, Dalian Women and Children's Medical Group, Dalian, Liaoning 116012, P.R. China
| | - Xiaohui Yu
- Key Laboratory for Early Diagnosis and Biotherapy of Malignant Tumors in Children and Women, Dalian Women and Children's Medical Group, Dalian, Liaoning 116012, P.R. China
| | - Daqing Wang
- Key Laboratory for Early Diagnosis and Biotherapy of Malignant Tumors in Children and Women, Dalian Women and Children's Medical Group, Dalian, Liaoning 116012, P.R. China
| |
Collapse
|
3
|
Chang Q, Zhou X, Mao H, Feng J, Wu X, Zhang Z, Hu Z. ALKBH5 promotes hepatocellular carcinoma cell proliferation, migration and invasion by regulating TTI1 expression. BIOMOLECULES & BIOMEDICINE 2024; 24:1216-1230. [PMID: 38501918 PMCID: PMC11379018 DOI: 10.17305/bb.2024.10247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/07/2024] [Accepted: 03/07/2024] [Indexed: 03/20/2024]
Abstract
The objective of this research was to investigate the potential mechanisms of AlkB homolog 5, RNA demethylase (ALKBH5) in hepatocellular carcinoma (HCC). We used The Cancer Genome Atlas (TCGA), Kruskal-Wallis method and Kaplan-Meier (KM) survival analysis to study the expression of ALKBH5 and its correlation with clinical factors in HCC. In vitro experiments verified the expression of ALKBH5 and its effect on HCC cell phenotype. We screened differentially expressed genes (DEGs) from HCC patients associated with ALKBH5. Through this screening we identified the downstream gene TTI1 which is associated with ALKBH5 and investigated its function using Gene Expression Profiling Interaction Analysis (GEPIA) along with univariate Cox proportional hazards regression analysis. Finally, we analyzed the functions of ALKBH5 and TTI1 in HCC cells. Across numerous pan-cancer types, we observed significant overexpression of ALKBH5. In vitro experiments confirmed ALKBH5 as an oncogene in HCC, with its knockdown leading to suppressed cell proliferation, migration, and invasion. Bioinformatics analyses also demonstrated a significant positive correlation between ALKBH5 and TTI1. TTI1, highly expressed in cells, showed promising prognostic ability for patients. Further experiments confirmed that suppressing TTI1 impeded cell growth and movement, with this effect partially offset by increased ALKBH5 expression. Conversely, promoting these cellular processes was observed with TTI1 overexpression, but was dampened by decreased ALKBH5 expression. In conclusion, our findings suggest that ALKBH5 may influence proliferation, migration and invasion of HCC by modulating TTI1 expression, providing a new direction for treating HCC.
Collapse
Affiliation(s)
- Qimeng Chang
- Department of Hepatobiliary-Pancreatic Surgery, Minhang Hospital, Fudan University, Shanghai, China
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - Xiang Zhou
- Department of Hepatobiliary-Pancreatic Surgery, Minhang Hospital, Fudan University, Shanghai, China
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - Huarong Mao
- Department of Hepatobiliary-Pancreatic Surgery, Minhang Hospital, Fudan University, Shanghai, China
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - Jinfeng Feng
- Department of Hepatobiliary-Pancreatic Surgery, Minhang Hospital, Fudan University, Shanghai, China
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - Xubo Wu
- Department of Hepatobiliary-Pancreatic Surgery, Minhang Hospital, Fudan University, Shanghai, China
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - Ziping Zhang
- Department of Hepatobiliary-Pancreatic Surgery, Minhang Hospital, Fudan University, Shanghai, China
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - Zhiqiu Hu
- Department of Hepatobiliary-Pancreatic Surgery, Minhang Hospital, Fudan University, Shanghai, China
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Bae H, Lee B, Hwang S, Lee J, Kim HS, Suh YL. Clinicopathological and Molecular Characteristics of IDH-Wildtype Glioblastoma with FGFR3::TACC3 Fusion. Biomedicines 2024; 12:150. [PMID: 38255255 PMCID: PMC10813214 DOI: 10.3390/biomedicines12010150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/07/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
The World Health Organization Classification of Tumors of the Central Nervous System recently incorporated histological features, immunophenotypes, and molecular characteristics to improve the accuracy of glioblastoma (GBM) diagnosis. FGFR3::TACC3 (F3T3) fusion has been identified as an oncogenic driver in IDH-wildtype GBMs. Recent studies have demonstrated the potential of using FGFR inhibitors in clinical trials and TACC3-targeting agents in preclinical models for GBM treatment. However, there is limited information on the clinicopathological and genetic features of IDH-wildtype GBMs with F3T3 fusion. The aim of this study was to comprehensively investigate the clinical manifestations, histological features, and mutational profiles of F3T3-positive GBMs. Between September 2017 and February 2023, 25 consecutive cases (5.0%) of F3T3-positive GBM were extracted from 504 cases of IDH-wildtype GBM. Clinicopathological information and targeted sequencing results obtained from 25 primary and 4 recurrent F3T3-positive GBMs were evaluated and compared with those from F3T3-negative GBMs. The provisional grades determined by histology only were distributed as follows: 4 (26/29; 89.7%), 3 (2/29; 6.9%), and 2 (1/29; 3.4%). Grade 2-3 tumors were ultimately diagnosed as grade 4 GBMs based on the identification of the TERT promoter mutation and the combined gain of chromosome 7 and loss of chromosome 10 (7+/10-). F3T3-positive GBMs predominantly affected women (2.6 females per male). The mean age of patients with an F3T3-positive GBM at initial diagnosis was 62 years. F3T3-positive GBMs occurred more frequently in the cortical locations compared to F3T3-negative GBMs. Imaging studies revealed that more than one-third (12/29; 41.4%) of F3T3-positive GBMs displayed a circumscribed tumor border. Seven of the seventeen patients (41.2%) whose follow-up periods exceeded 20 months died of the disease. Histologically, F3T3-positive GBMs more frequently showed curvilinear capillary proliferation, palisading nuclei, and calcification compared to F3T3-negative GBMs. Molecularly, the most common alterations observed in F3T3-positive GBMs were TERT promoter mutations and 7+/10-, whereas amplifications of EGFR, PDGFRA, and KIT were not detected at all. Other genetic alterations included CDKN2A/B deletion, PTEN mutation, TP53 mutation, CDK4 amplification, and MDM2 amplification. Our observations suggest that F3T3-positive GBM is a distinct molecular subgroup of the IDH-wildtype GBM. Both clinicians and pathologists should consider this rare entity in the differential diagnosis of diffuse astrocytic glioma to make an accurate diagnosis and to ensure appropriate therapeutic management.
Collapse
Affiliation(s)
- Hyunsik Bae
- Pathology Center, Seegene Medical Foundation, Seoul 04805, Republic of Korea;
| | - Boram Lee
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea; (B.L.); (S.H.)
| | - Soohyun Hwang
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea; (B.L.); (S.H.)
| | - Jiyeon Lee
- Department of Pathology, Guro Hospital, Korea University College of Medicine, Seoul 08308, Republic of Korea;
| | - Hyun-Soo Kim
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea; (B.L.); (S.H.)
| | - Yeon-Lim Suh
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea; (B.L.); (S.H.)
| |
Collapse
|
5
|
Gamallat Y, Afsharpad M, El Hallani S, Maher CA, Alimohamed N, Hyndman E, Bismar TA. Large, Nested Variant of Urothelial Carcinoma Is Enriched with Activating Mutations in Fibroblast Growth Factor Receptor-3 among Other Targetable Mutations. Cancers (Basel) 2023; 15:3167. [PMID: 37370778 DOI: 10.3390/cancers15123167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
The large, nested variant of urothelial carcinoma (LNVUC) is characterized by bland histomorphology mimicking that of benign von Brunn nests. In the current study, we aimed to investigate the Fibroblast Growth Factor Receptor-3 (FGFR-3) activation and missense mutation in 38 cases, including 6 cases diagnosed with LNVUC and 32 with metastatic invasive urothelial carcinoma (UC). Initially, six formalin-fixed paraffin-embedded (FFPE) tissue samples of the LNVUC were subjected to whole-exome sequencing (WES), and then we performed targeted sequencing on 32 cases of metastatic invasive UC of various morphological subtypes, which were interrogated for the FGFR3. Our results revealed 3/6 (50%) LNVUC cases evaluated by WES in our study showed an activating mutation in FGFR-3, 33% showed an activating mutation in PIK3CA, and 17% showed activating mutation in GNAS or MRE11. Additionally, 33% of cases showed a truncating mutation in CDKN1B. All LNVUC in our study that harbored the FGFR-3 mutation showed additional activating or truncating mutations in other genes. Overall, 6/32 (18.75%) cases of random metastatic invasive UC showed missense mutations of the FGFR-3 gene. The LNVUC variant showed the higher incidence of FGFR-3 mutations compared to other types of mutations. Additionally, all LNVUC cases show additional activating or truncating mutations in other genes, thus being amenable to novel targeted therapy.
Collapse
Affiliation(s)
- Yaser Gamallat
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Oncology, Biochemistry and Molecular Biology, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Mitra Afsharpad
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Soufiane El Hallani
- Alberta Precision Laboratory, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R7, Canada
| | - Christopher A Maher
- Division of Oncology, Department of Medicine, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nimira Alimohamed
- Department of Oncology, Tom Baker Cancer Centre, University of Calgary, Calgary, AB T2N 4N2, Canada
| | - Eric Hyndman
- Department of Surgery and Urology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 2T9, Canada
| | - Tarek A Bismar
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Oncology, Biochemistry and Molecular Biology, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Oncology, Tom Baker Cancer Centre, University of Calgary, Calgary, AB T2N 4N2, Canada
- Alberta Precision Laboratory, Rockyview General Hospital, Departments of Pathology and Laboratory Medicine, Calgary, AB T2V 1P9, Canada
| |
Collapse
|
6
|
Zhao W, Sun X, Shi L, Cai SZ, Ma ZR. Discovery of novel analogs of KHS101 as transforming acidic coiled coil containing protein 3 (TACC3) inhibitors for the treatment of glioblastoma. Eur J Med Chem 2022; 244:114874. [DOI: 10.1016/j.ejmech.2022.114874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/13/2022] [Accepted: 10/20/2022] [Indexed: 11/17/2022]
|
7
|
FGFR3-TACCs3 Fusions and Their Clinical Relevance in Human Glioblastoma. Int J Mol Sci 2022; 23:ijms23158675. [PMID: 35955806 PMCID: PMC9369421 DOI: 10.3390/ijms23158675] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/27/2022] [Accepted: 08/02/2022] [Indexed: 02/01/2023] Open
Abstract
Oncogenic fusion genes have emerged as successful targets in several malignancies, such as chronic myeloid leukemia and lung cancer. Fusion of the fibroblast growth receptor 3 and the transforming acidic coiled coil containing protein—FGFR3-TACC3 fusion—is prevalent in 3–4% of human glioblastoma. The fusion protein leads to the constitutively activated kinase signaling of FGFR3 and thereby promotes cell proliferation and tumor progression. The subgroup of FGFR3-TACC3 fusion-positive glioblastomas presents with recurrent clinical and histomolecular characteristics, defining a distinctive subtype of IDH-wildtype glioblastoma. This review aims to provide an overview of the available literature on FGFR3-TACC3 fusions in glioblastoma and possible implications for actual clinical practice.
Collapse
|
8
|
Zhang J, Guo ZY, Shao CL, Zhang XQ, Cheng F, Zou K, Chen JF. Nigrosporins B, a Potential Anti-Cervical Cancer Agent, Induces Apoptosis and Protective Autophagy in Human Cervical Cancer Ca Ski Cells Mediated by PI3K/AKT/mTOR Signaling Pathway. Molecules 2022; 27:2431. [PMID: 35458629 PMCID: PMC9033138 DOI: 10.3390/molecules27082431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/30/2022] [Accepted: 04/06/2022] [Indexed: 02/04/2023] Open
Abstract
Nigrosporins B, an anthraquinone derivative obtained from the secondary metabolites of marine fungus Nigrospora oryzae. In this study, we characterized the distinctive anti-cancer potential of Nigrosporins B in vitro and underlying molecular mechanisms in human cervical cancer Ca Ski cells for the first time. The results of MTT assay showed that Nigrosporins B significantly inhibited the proliferation of multiple tumor cells in a dose-dependent manner, especially for the Ca Ski cells with an IC50 of 1.24 µM. Nigrosporins B exerted an apoptosis induction effect on Ca Ski cells as confirmed by flow cytometry, AO/EB dual fluorescence staining, mitochondrial membrane potential analysis and western blot assay. In addition, Nigrosporins B induced obvious autophagy accompanied with the increase of autophagic vacuoles and the acceleration of autophagic flux as indicated by Cyto-ID staining, mRFP-GFP-LC3 adenovirus transfection and western blot analysis. Interestingly, the combination of Nigrosporins B with the three autophagy inhibitors all significantly enhanced the cytotoxicity of Nigrosporins B on Ca Ski cells, indicating that the autophagy induced by Nigrosporins B might protect Ca Ski cells from death. Furthermore, we found that Nigrosporins B inhibited the phosphorylation of PI3K, AKT, mTOR molecules and increased the protein expression levels of PTEN and p-AMPKα in a dose-dependent manner, suggesting that Nigrosporins B induced apoptosis and protective autophagy through the suppression of the PI3K/AKT/mTOR signaling pathway. Together, these findings revealed the anti-cervical cancer effect of Nigrosporins B and the underlying mechanism of action in Ca Ski cells, it might be as a promising alternative therapeutic agent for human cervical cancer.
Collapse
Affiliation(s)
- Jing Zhang
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China; (J.Z.); (Z.-Y.G.); (X.-Q.Z.); (F.C.); (K.Z.)
| | - Zhi-Yong Guo
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China; (J.Z.); (Z.-Y.G.); (X.-Q.Z.); (F.C.); (K.Z.)
| | - Chang-Lun Shao
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, Ocean University of China, Ministry of Education of China, Qingdao 266003, China;
| | - Xue-Qing Zhang
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China; (J.Z.); (Z.-Y.G.); (X.-Q.Z.); (F.C.); (K.Z.)
| | - Fan Cheng
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China; (J.Z.); (Z.-Y.G.); (X.-Q.Z.); (F.C.); (K.Z.)
| | - Kun Zou
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China; (J.Z.); (Z.-Y.G.); (X.-Q.Z.); (F.C.); (K.Z.)
| | - Jian-Feng Chen
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China; (J.Z.); (Z.-Y.G.); (X.-Q.Z.); (F.C.); (K.Z.)
| |
Collapse
|
9
|
Abstract
Purpose of Review This study assesses the current state of knowledge of head and neck squamous cell carcinomas (HNSCC), which are malignancies arising from the orifices and adjacent mucosae of the aerodigestive tracts. These contiguous anatomical areas are unique in that 2 important human oncoviruses, Epstein-Barr virus (EBV) and human papillomavirus (HPV), are causally associated with nasopharyngeal and oropharyngeal cancers, respectively. Mortality rates have remained high over the last 4 decades, and insufficient attention paid to the unique viral and clinical oncology of the different subgroups of HNSCC. Recent Findings We have compared and contrasted the 2 double-stranded DNA viruses and the relevant molecular oncogenesis of their respective cancers against other head and neck cancers. Tobacco and alcohol ingestion are also reviewed, as regard the genetic progression/mutation accumulation model of carcinogenesis. The importance of stringent stratification when searching for cancer mutations and biomarkers is discussed. Evidence is presented for a dysplastic/pre-invasive cancerous phase for HPV+ oropharyngeal cancers, and analogous with other HPV+ cancers. This raises the possibility of strategies for cancer screening as early diagnosis will undoubtedly save lives. Summary Staging and prognostication have changed to take into account the distinct biological and prognostic pathways for viral+ and viral− cancers. Diagnosis of pre-cancers and early stage cancers will reduce mortality rates. Multi-modal treatment options for HNSCC are reviewed, especially recent developments with immunotherapies and precision medicine strategies. Knowledge integration of the viral and molecular oncogenic pathways with sound planning, hypothesis generation, and clinical trials will continue to provide therapeutic options in the future.
Collapse
|
10
|
Shibata N, Cho N, Koyama H, Naito M. Development of a degrader against oncogenic fusion protein FGFR3-TACC3. Bioorg Med Chem Lett 2022; 60:128584. [PMID: 35085722 DOI: 10.1016/j.bmcl.2022.128584] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/13/2022] [Accepted: 01/19/2022] [Indexed: 11/02/2022]
Abstract
Fibroblast growth factor receptor 3-transforming acidic coiled-coil containing protein 3 (FGFR3-TACC3), which has been identified in many cancers such as glioblastoma and bladder cancer, is a potent oncogenic fusion protein that induces constitutive activation of FGFR signaling, resulting in uncontrolled cell proliferation. Although several tyrosine kinase inhibitors against FGFR are currently under development, resistance to such types of inhibitors in patients has become a concern. In this study, a chimeric molecule SNIPER(TACC3)-11 (5a) was developed and found to reduce FGFR3-TACC3 levels effectively. Compound 5a conjugated KHS108 (a TACC3 ligand) to an LCL161 derivative (11) (an inhibitor of apoptosis protein [IAP] ligand) with a PEG linker (n = 2). Mechanistical analysis showed that cellular IAP1 was required for the reduction of FGFR3-TACC3 levels. Consistent with the decrease in FGFR3-TACC3 levels, compound 5a suppressed the growth of FGFR3-TACC3 positive cells. Thus, compound 5a is a candidate therapeutic with a novel drug modality against cancers that exhibit FGFR3-TACC3-dependent proliferation and exerts pharmacological effects distinct from FGFR3 kinase inhibitors because it lacks substructures crucial for kinase inhibition.
Collapse
Affiliation(s)
- Norihito Shibata
- Division of Biochemistry, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-9501, Japan.
| | - Nobuo Cho
- Drug Discovery Chemistry Platform Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hiroo Koyama
- Drug Discovery Chemistry Platform Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Mikihiko Naito
- Social Cooperation Program of Targeted Protein Degradation, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
11
|
Mahmood HTNA, Tomas Bort E, Walker AJ, Grose RP, Chioni AM. FGF signalling facilitates cervical cancer progression. FEBS J 2021; 289:3440-3456. [PMID: 34951738 DOI: 10.1111/febs.16331] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/26/2021] [Accepted: 12/21/2021] [Indexed: 12/18/2022]
Abstract
Cervical cancer is one of the most frequently diagnosed cancers in women worldwide. While cervical cancer is caused by human papillomavirus (HPV), not all females infected with HPV develop the disease, suggesting that other factors might facilitate its progression. Growing evidence supports the involvement of the fibroblast growth factor receptor (FGFR) axis in several cancers, including gynecological. However, for cervical cancer, the molecular mechanisms that underpin the disease remain poorly understood, including the role of FGFR signaling. The aim of this study was to investigate FGF(R) signaling in cervical cancer through bioinformatic analysis of cell line and patient data and through detailed expression profiling, manipulation of the FGFR axis, and downstream phenotypic analysis in cell lines (HeLa, SiHa, and CaSki). Expression (protein and mRNA) analysis demonstrated that FGFR1b/c, FGFR2b/c, FGFR4, FGF2, FGF4, and FGF7 were expressed in all three lines. Interestingly, FGFR1 and 2 localized to the nucleus, supporting that nuclear FGFRs could act as transcription factors. Importantly, 2D and 3D cell cultures demonstrated that FGFR activation can facilitate cell functions correlated with invasive disease. Collectively, this study supports an association between FGFR signaling and cervical cancer progression, laying the foundations for the development of therapeutic approaches targeting FGFR in this disease.
Collapse
Affiliation(s)
| | - Elena Tomas Bort
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, UK
| | - Anthony J Walker
- School of Life Sciences Pharmacy and Chemistry, Kingston University, Kingston upon Thames, UK
| | - Richard P Grose
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, UK
| | - Athina-Myrto Chioni
- School of Life Sciences Pharmacy and Chemistry, Kingston University, Kingston upon Thames, UK
| |
Collapse
|
12
|
Sudhesh Dev S, Zainal Abidin SA, Farghadani R, Othman I, Naidu R. Receptor Tyrosine Kinases and Their Signaling Pathways as Therapeutic Targets of Curcumin in Cancer. Front Pharmacol 2021; 12:772510. [PMID: 34867402 PMCID: PMC8634471 DOI: 10.3389/fphar.2021.772510] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/01/2021] [Indexed: 12/20/2022] Open
Abstract
Receptor tyrosine kinases (RTKs) are transmembrane cell-surface proteins that act as signal transducers. They regulate essential cellular processes like proliferation, apoptosis, differentiation and metabolism. RTK alteration occurs in a broad spectrum of cancers, emphasising its crucial role in cancer progression and as a suitable therapeutic target. The use of small molecule RTK inhibitors however, has been crippled by the emergence of resistance, highlighting the need for a pleiotropic anti-cancer agent that can replace or be used in combination with existing pharmacological agents to enhance treatment efficacy. Curcumin is an attractive therapeutic agent mainly due to its potent anti-cancer effects, extensive range of targets and minimal toxicity. Out of the numerous documented targets of curcumin, RTKs appear to be one of the main nodes of curcumin-mediated inhibition. Many studies have found that curcumin influences RTK activation and their downstream signaling pathways resulting in increased apoptosis, decreased proliferation and decreased migration in cancer both in vitro and in vivo. This review focused on how curcumin exhibits anti-cancer effects through inhibition of RTKs and downstream signaling pathways like the MAPK, PI3K/Akt, JAK/STAT, and NF-κB pathways. Combination studies of curcumin and RTK inhibitors were also analysed with emphasis on their common molecular targets.
Collapse
Affiliation(s)
- Sareshma Sudhesh Dev
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Malaysia
| | - Syafiq Asnawi Zainal Abidin
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Malaysia
| | - Reyhaneh Farghadani
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Malaysia
| | - Iekhsan Othman
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Malaysia
| | - Rakesh Naidu
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Malaysia
| |
Collapse
|
13
|
Wen YL, Yan SM, Wei W, Yang X, Zhang SW, Yun JP, Liu LL, Luo RZ. Transforming acidic coiled-coil protein-3: a novel marker for differential diagnosis and prognosis prediction in endocervical adenocarcinoma. Mol Med 2021; 27:60. [PMID: 34134633 PMCID: PMC8210387 DOI: 10.1186/s10020-021-00298-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 03/29/2021] [Indexed: 12/25/2022] Open
Abstract
Background Endocervical adenocarcinoma (ECA) is further classified as human papillomavirus (HPV)-associated (HPVA) or non-HPVA (NHPVA), per the International Endocervical Adenocarcinoma Criteria and Classification (IECC). HPVA is a glandular tumor with stromal invasion and/or exophytic expansile-type invasion, associated with the typical molecular characteristics of high-risk HPV (HR-HPV) infection. Transforming acidic coiled-coil protein-3 (TACC3),an oncogene that is frequently abnormally expressed,represents a vital biomarker for multiple human malignancies. This study aimed to examine the role of TACC3 in the diagnosis and prognosis of ECA. Methods We analyzed 264 patients with ECA who underwent surgical resection, classifying their tumors into HPVA and NHPVA subtypes. The expression levels of TACC3, P16, MLH1, PMS2, MSH2, MSH6 and Ki-67 in tumors were evaluated by tissue microarray using immunohistochemistry (IHC). HPV subtypes were identified in formalin-fixed paraffin-embedded (FFPE) ECA tissues by the polymerase chain reaction (PCR). Results ECA samples showed increased TACC3 expression relative to adjacent non-carcinoma samples. TACC3 expression was higher in HPVA than in NHPA. In the HPVA subtype, high TACC3 expression was significantly correlated with P16-positive, Ki-67-high expression. Furthermore, TACC3 levels were significantly related to tumor histological type (P = 0.006), nerve invasion (P = 0.003), differentiation (P = 0.004), surgical margin (P = 0.012), parametrium invasion (P = 0.040), P16 expression (P < 0.001), and Ki-67 (P = 0.004). Additionally, Kaplan–Meier analysis showed that TACC3 upregulation was associated with poor overall survival (OS, P = 0.001), disease-free survival (DFS, P < 0.001), and recurrence survival (P < 0.001). Multivariate analysis indicated that elevated TACC3 expression served as a marker to independently predict ECA prognosis. ROC curve analyses indicated that TACC3, P16, and HPV subtypes showed similar utility for distinguishing HPVA from NHPVA, with areas under the ROC curves of 0.640, 0.649, and 0.675, respectively. The combination of TACC3 and HPV subtypes improved the diagnostic performance of ECA compared with TACC3, P16, and HPV subtypes alone. Conclusions Taken together, our findings identify that TACC3 is a promising complementary biomarker for diagnosis and prognosis for patients with ECA. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-021-00298-z.
Collapse
Affiliation(s)
- Yan-Lin Wen
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China.,Department of Pathology, Sun Yat-Sen University Cancer Center, 651# Dong Feng Road East, Guangzhou, 510060, Guangdong, China
| | - Shu-Mei Yan
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China.,Department of Pathology, Sun Yat-Sen University Cancer Center, 651# Dong Feng Road East, Guangzhou, 510060, Guangdong, China
| | - Wei Wei
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China.,Department of Gynecological Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Xia Yang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China.,Department of Pathology, Sun Yat-Sen University Cancer Center, 651# Dong Feng Road East, Guangzhou, 510060, Guangdong, China
| | - Shi-Wen Zhang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China.,Department of Pathology, Sun Yat-Sen University Cancer Center, 651# Dong Feng Road East, Guangzhou, 510060, Guangdong, China
| | - Jing-Ping Yun
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China.,Department of Pathology, Sun Yat-Sen University Cancer Center, 651# Dong Feng Road East, Guangzhou, 510060, Guangdong, China
| | - Li-Li Liu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China. .,Department of Pathology, Sun Yat-Sen University Cancer Center, 651# Dong Feng Road East, Guangzhou, 510060, Guangdong, China.
| | - Rong-Zhen Luo
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China. .,Department of Pathology, Sun Yat-Sen University Cancer Center, 651# Dong Feng Road East, Guangzhou, 510060, Guangdong, China.
| |
Collapse
|
14
|
Nita A, Abraham SP, Krejci P, Bosakova M. Oncogenic FGFR Fusions Produce Centrosome and Cilia Defects by Ectopic Signaling. Cells 2021; 10:1445. [PMID: 34207779 PMCID: PMC8227969 DOI: 10.3390/cells10061445] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/27/2021] [Accepted: 06/07/2021] [Indexed: 12/12/2022] Open
Abstract
A single primary cilium projects from most vertebrate cells to guide cell fate decisions. A growing list of signaling molecules is found to function through cilia and control ciliogenesis, including the fibroblast growth factor receptors (FGFR). Aberrant FGFR activity produces abnormal cilia with deregulated signaling, which contributes to pathogenesis of the FGFR-mediated genetic disorders. FGFR lesions are also found in cancer, raising a possibility of cilia involvement in the neoplastic transformation and tumor progression. Here, we focus on FGFR gene fusions, and discuss the possible mechanisms by which they function as oncogenic drivers. We show that a substantial portion of the FGFR fusion partners are proteins associated with the centrosome cycle, including organization of the mitotic spindle and ciliogenesis. The functions of centrosome proteins are often lost with the gene fusion, leading to haploinsufficiency that induces cilia loss and deregulated cell division. We speculate that this complements the ectopic FGFR activity and drives the FGFR fusion cancers.
Collapse
Affiliation(s)
- Alexandru Nita
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic; (A.N.); (S.P.A.); (P.K.)
| | - Sara P. Abraham
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic; (A.N.); (S.P.A.); (P.K.)
| | - Pavel Krejci
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic; (A.N.); (S.P.A.); (P.K.)
- Institute of Animal Physiology and Genetics of the CAS, 60200 Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, 65691 Brno, Czech Republic
| | - Michaela Bosakova
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic; (A.N.); (S.P.A.); (P.K.)
- Institute of Animal Physiology and Genetics of the CAS, 60200 Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, 65691 Brno, Czech Republic
| |
Collapse
|
15
|
Ferguson HR, Smith MP, Francavilla C. Fibroblast Growth Factor Receptors (FGFRs) and Noncanonical Partners in Cancer Signaling. Cells 2021; 10:1201. [PMID: 34068954 PMCID: PMC8156822 DOI: 10.3390/cells10051201] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/06/2021] [Accepted: 05/09/2021] [Indexed: 02/07/2023] Open
Abstract
Increasing evidence indicates that success of targeted therapies in the treatment of cancer is context-dependent and is influenced by a complex crosstalk between signaling pathways and between cell types in the tumor. The Fibroblast Growth Factor (FGF)/FGF receptor (FGFR) signaling axis highlights the importance of such context-dependent signaling in cancer. Aberrant FGFR signaling has been characterized in almost all cancer types, most commonly non-small cell lung cancer (NSCLC), breast cancer, glioblastoma, prostate cancer and gastrointestinal cancer. This occurs primarily through amplification and over-expression of FGFR1 and FGFR2 resulting in ligand-independent activation. Mutations and translocations of FGFR1-4 are also identified in cancer. Canonical FGF-FGFR signaling is tightly regulated by ligand-receptor combinations as well as direct interactions with the FGFR coreceptors heparan sulfate proteoglycans (HSPGs) and Klotho. Noncanonical FGFR signaling partners have been implicated in differential regulation of FGFR signaling. FGFR directly interacts with cell adhesion molecules (CAMs) and extracellular matrix (ECM) proteins, contributing to invasive and migratory properties of cancer cells, whereas interactions with other receptor tyrosine kinases (RTKs) regulate angiogenic, resistance to therapy, and metastatic potential of cancer cells. The diversity in FGFR signaling partners supports a role for FGFR signaling in cancer, independent of genetic aberration.
Collapse
Affiliation(s)
- Harriet R. Ferguson
- Division of Molecular and Cellular Function, School of Biological Science, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, Manchester M13 9PT, UK;
| | - Michael P. Smith
- Division of Molecular and Cellular Function, School of Biological Science, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, Manchester M13 9PT, UK;
| | - Chiara Francavilla
- Division of Molecular and Cellular Function, School of Biological Science, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, Manchester M13 9PT, UK;
- Manchester Breast Centre, Manchester Cancer Research Centre, The University of Manchester, Manchester M20 4GJ, UK
| |
Collapse
|
16
|
Di Stefano AL, Picca A, Saragoussi E, Bielle F, Ducray F, Villa C, Eoli M, Paterra R, Bellu L, Mathon B, Capelle L, Bourg V, Gloaguen A, Philippe C, Frouin V, Schmitt Y, Lerond J, Leclerc J, Lasorella A, Iavarone A, Mokhtari K, Savatovsky J, Alentorn A, Sanson M. Clinical, molecular, and radiomic profile of gliomas with FGFR3-TACC3 fusions. Neuro Oncol 2021; 22:1614-1624. [PMID: 32413119 DOI: 10.1093/neuonc/noaa121] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Actionable fibroblast growth factor receptor 3 (FGFR3)-transforming acidic coiled-coil protein 3 fusions (F3T3) are found in approximately 3% of gliomas, but their characteristics and prognostic significance are still poorly defined. Our goal was to characterize the clinical, radiological, and molecular profile of F3T3 positive diffuse gliomas. METHODS We screened F3T3 fusion by real-time (RT)-PCR and FGFR3 immunohistochemistry in a large series of gliomas, characterized for main genetic alterations, histology, and clinical evolution. We performed a radiological and radiomic case control study, using an exploratory and a validation cohort. RESULTS We screened 1162 diffuse gliomas (951 unselected cases and 211 preselected for FGFR3 protein immunopositivity), identifying 80 F3T3 positive gliomas. F3T3 was mutually exclusive with IDH mutation (P < 0.001) and EGFR amplification (P = 0.01), defining a distinct molecular cluster associated with CDK4 (P = 0.04) and MDM2 amplification (P = 0.03). F3T3 fusion was associated with longer survival for the whole series and for glioblastomas (median overall survival was 31.1 vs 19.9 mo, P = 0.02) and was an independent predictor of better outcome on multivariate analysis.F3T3 positive gliomas had specific MRI features, affecting preferentially insula and temporal lobe, and with poorly defined tumor margins. F3T3 fusion was correctly predicted by radiomics analysis on both the exploratory (area under the curve [AUC] = 0.87) and the validation MRI (AUC = 0.75) cohort. Using Cox proportional hazards models, radiomics predicted survival with a high C-index (0.75, SD 0.04), while the model combining clinical, genetic, and radiomic data showed the highest C-index (0.81, SD 0.04). CONCLUSION F3T3 positive gliomas have distinct molecular and radiological features, and better outcome.
Collapse
Affiliation(s)
- Anna Luisa Di Stefano
- Inserm Unit 1127, Sorbonne University, Institute of the Brain and Spinal Cord, Paris, France.,SiRIC CURAMUS, LNCC (équipe labellisée).,Department of Neuropathology 2, Pitié-Salpêtrière Hospital,Paris, France.,Department of Neurology, Foch Hospital, Suresnes, France
| | - Alberto Picca
- C. Mondino Foundation, Pavia, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Edouard Saragoussi
- Department of Radiology, Adolphe de Rothschild Ophthalmological Foundation, Paris, France
| | - Franck Bielle
- Department of Neuropathology, Pitié Salpêtrière-Charles Foix, Paris, France
| | - Francois Ducray
- Department of Neuro-Oncology, Civil Hospice of Lyon, University Claude Bernard Lyon 1, Department of Cancer Cell Plasticity, Cancer Research Center of Lyon, Lyon, France.,POLA Network
| | - Chiara Villa
- Department of Pathology, Foch Hospital, Suresnes, France
| | - Marica Eoli
- Unit of Molecular Neuro-Oncology, Carlo Besta Neurological Institute, Milan, Italy
| | - Rosina Paterra
- Unit of Molecular Neuro-Oncology, Carlo Besta Neurological Institute, Milan, Italy
| | - Luisa Bellu
- Department of Neuropathology 2, Pitié-Salpêtrière Hospital,Paris, France
| | - Bertrand Mathon
- Department of Neurosurgery, Pitié-Salpêtrière Hospital, Paris, France
| | - Laurent Capelle
- Department of Neurosurgery, Pitié-Salpêtrière Hospital, Paris, France
| | - Véronique Bourg
- Department of Neurology, Pasteur 2 Hospital, Nice Côte D'Azur University, Nice, France
| | - Arnaud Gloaguen
- Signals and Systems Laboratory, Paris-Saclay University, Gif-sur-Yvette, France.,Neurospin, French Atomic Energy Commission, Paris-Saclay University, Gif-sur-Yvette, France
| | - Cathy Philippe
- Neurospin, French Atomic Energy Commission, Paris-Saclay University, Gif-sur-Yvette, France
| | - Vincent Frouin
- Neurospin, French Atomic Energy Commission, Paris-Saclay University, Gif-sur-Yvette, France
| | - Yohann Schmitt
- Inserm Unit 1127, Sorbonne University, Institute of the Brain and Spinal Cord, Paris, France.,SiRIC CURAMUS, LNCC (équipe labellisée)
| | - Julie Lerond
- Inserm Unit 1127, Sorbonne University, Institute of the Brain and Spinal Cord, Paris, France.,SiRIC CURAMUS, LNCC (équipe labellisée).,Department of Neuropathology, Pitié Salpêtrière-Charles Foix, Paris, France
| | - Julie Leclerc
- Inserm Unit 1127, Sorbonne University, Institute of the Brain and Spinal Cord, Paris, France.,SiRIC CURAMUS, LNCC (équipe labellisée).,Department of Neuropathology, Pitié Salpêtrière-Charles Foix, Paris, France
| | - Anna Lasorella
- Institute for Cancer Genetics, Columbia University, New York, New York, USA.,Department of Pathology and Cell Biology, Columbia University, New York, New York, USA.,Department of Pediatrics, Columbia University, New York, New York, USA
| | - Antonio Iavarone
- Institute for Cancer Genetics, Columbia University, New York, New York, USA.,Department of Pathology and Cell Biology, Columbia University, New York, New York, USA.,Department of Neurology, Columbia University, New York, New York, USA
| | - Karima Mokhtari
- Department of Neuropathology, Pitié Salpêtrière-Charles Foix, Paris, France
| | - Julien Savatovsky
- Department of Radiology, Adolphe de Rothschild Ophthalmological Foundation, Paris, France
| | - Agusti Alentorn
- Inserm Unit 1127, Sorbonne University, Institute of the Brain and Spinal Cord, Paris, France.,SiRIC CURAMUS, LNCC (équipe labellisée).,Department of Neuropathology 2, Pitié-Salpêtrière Hospital,Paris, France
| | - Marc Sanson
- Inserm Unit 1127, Sorbonne University, Institute of the Brain and Spinal Cord, Paris, France.,SiRIC CURAMUS, LNCC (équipe labellisée).,Department of Neuropathology 2, Pitié-Salpêtrière Hospital,Paris, France.,OncoNeuroTek, Institute of the Brain and Spinal Cord, Paris, France
| | | |
Collapse
|
17
|
Adiga D, Eswaran S, Pandey D, Sharan K, Kabekkodu SP. Molecular landscape of recurrent cervical cancer. Crit Rev Oncol Hematol 2020; 157:103178. [PMID: 33279812 DOI: 10.1016/j.critrevonc.2020.103178] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023] Open
Abstract
Cervical cancer (CC) is a major gynecological problem in developing and underdeveloped countries. Despite the significant advancement in early detection and treatment modalities, several patients recur. Moreover, the molecular mechanisms responsible for CC recurrence remains obscure. The patients with CC recurrence often show poor prognosis and significantly high mortality rates. The clinical management of recurrent CC depends on treatment history, site, and extent of the recurrence. Owing to poor prognosis and limited treatment options, recurrent CC often presents a challenge to the clinicians. Several in vitro, in vivo, and patient studies have led to the identification of the critical molecular changes responsible for CC recurrence. Both aberrant genetic and epigenetic modifications leading to altered cell signaling pathways have been reported to impact CC recurrence. Researchers are currently trying to dissect the molecular pathways in CC and translate these findings for better management of disease. This article attempts to review the existing knowledge of disease relapse, accompanying challenges, and associated molecular players in CC.
Collapse
Affiliation(s)
- Divya Adiga
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sangavi Eswaran
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Deeksha Pandey
- Department of OBGYN, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Krishna Sharan
- Department of Radiotherapy and Oncology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
18
|
Gill CM, Orfanelli T, Yoxtheimer L, Roy-McMahon C, Suhner J, Tomita S, Kalir T, Liu Y, Houldsworth J, Kolev V. Histology-specific FGFR2 alterations and FGFR2-TACC2 fusion in mixed adenoid cystic and neuroendocrine small cell carcinoma of the uterine cervix. Gynecol Oncol Rep 2020; 34:100668. [PMID: 33241100 PMCID: PMC7672274 DOI: 10.1016/j.gore.2020.100668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 01/28/2023] Open
Abstract
Neuroendocrine small cell carcinoma of the uterine cervix portends a dismal prognosis with limited treatment options. Rarely, tumors of mixed-lineage appear in gynecologic malignancies. Here, we report a 77-year-old woman who presented with complete uterine prolapse and 4-month history of vaginal bleeding. Histopathologic evaluation revealed a mixed adenoid cystic carcinoma and neuroendocrine small cell carcinoma of the uterine cervix. The tumor was PD-L1 and HPV 35 positive. The patient was treated with up-front surgery and adjuvant radiation. Independent, histology-specific alterations in FGFR2 and a FGFR2-TACC2 fusion were identified. Progression of disease occurred within 6 months for which she received chemotherapy and immunotherapy. However, the patient expired within a year. We comprehensively review how screening for and targeting of FGFR alterations in recurrent and metastatic cervical cancer might serve as a touchstone for future treatment regimens.
Collapse
Affiliation(s)
- Corey M Gill
- Department of Obstetrics and Gynecology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Theofano Orfanelli
- Department of Obstetrics and Gynecology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lorene Yoxtheimer
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Christine Roy-McMahon
- Department of Obstetrics and Gynecology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jessa Suhner
- Department of Obstetrics and Gynecology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Shannon Tomita
- Department of Obstetrics and Gynecology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Tamara Kalir
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yuxin Liu
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jane Houldsworth
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Valentin Kolev
- Department of Obstetrics and Gynecology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
19
|
Sun Y, Li G, Zhu W, He Q, Liu Y, Chen X, Liu J, Lin J, Han-Zhang H, Yang Z, Lizaso A, Xiang J, Mao X, Liu H, Gao Y. A comprehensive pan-cancer study of fibroblast growth factor receptor aberrations in Chinese cancer patients. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1290. [PMID: 33209870 PMCID: PMC7661893 DOI: 10.21037/atm-20-5118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Background The prevalence and types of fibroblast growth factor receptor (FGFR) mutations vary significantly among different ethnic groups. The optimal application of FGFR inhibitors depends on these variations being comprehensively understood. However, such an analysis has yet to be conducted in Chinese patients. Methods We retrospectively screened the genomic profiling results of 10,582 Chinese cancer patients across 16 cancer types to investigate the frequency and distribution of FGFR aberrations. Results FGFR aberrations were identified in 745 patients, equating to an overall prevalence of 7.0%. A majority of the aberrations occurred on FGFR1 (56.8%), which was followed by FGFR3 (17.7%), FGFR2 (14.4%), and FGFR4 (2.8%). Further, 8.5% of patients had aberrations of more than 1 FGFR gene. The most common types of aberrations were amplification (53.7%), other mutations (38.8%), and fusions (5.6%). FGFR fusion and amplification occurred concurrently in 1.9% of the patients. FGFR aberrations were detected in 12 of the 16 cancers, with the highest prevalence belonging to colorectal cancer (CRC) (31%). Other FGFR-aberrant cancer types included stomach (16.8%), breast (14.3%), and esophageal (12.7%) cancer. Breast tumors were also more likely than other cancer types to have concurrent FGFR rearrangements and amplifications (P<0.001). In comparison with the public dataset, our cohort had a significantly higher number of FGFR aberrations in colorectal (P<0.001) and breast cancer (P=0.05). Conclusions Among the Chinese cancer patients in our study, the overall prevalence of FGFR aberrations was 7.0%. FGFR1 amplification was the most common genetic alteration in CRC, breast cancer, and lung cancer; while FGFR2 amplification was more commonly observed in gastric cancer than in other cancers in our cohort. Our study advances the understanding of the distribution of FGFR aberrations in various cancer types in the Chinese population, which will facilitate the further development of FGFR inhibitors.
Collapse
Affiliation(s)
- Yi Sun
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Gao Li
- Department of Thoracic Surgery, Hainan General Hospital, Haikou, China
| | - Wei Zhu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Qiuyan He
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Yongchang Liu
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xianshan Chen
- Department of Thoracic Surgery, Hainan General Hospital, Haikou, China
| | - Juan Liu
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital; Nanjing, China
| | - Jing Lin
- Burning Rock Biotech, Guangzhou, China
| | | | - Zheng Yang
- Department of Pathology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | | | | | - Xinru Mao
- Burning Rock Biotech, Guangzhou, China
| | - Hao Liu
- Burning Rock Biotech, Guangzhou, China
| | - Yang Gao
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
20
|
De Luca A, Esposito Abate R, Rachiglio AM, Maiello MR, Esposito C, Schettino C, Izzo F, Nasti G, Normanno N. FGFR Fusions in Cancer: From Diagnostic Approaches to Therapeutic Intervention. Int J Mol Sci 2020; 21:E6856. [PMID: 32962091 PMCID: PMC7555921 DOI: 10.3390/ijms21186856] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/15/2020] [Accepted: 09/15/2020] [Indexed: 12/11/2022] Open
Abstract
Fibroblast growth factor receptors (FGFRs) are tyrosine kinase receptors involved in many biological processes. Deregulated FGFR signaling plays an important role in tumor development and progression in different cancer types. FGFR genomic alterations, including FGFR gene fusions that originate by chromosomal rearrangements, represent a promising therapeutic target. Next-generation-sequencing (NGS) approaches have significantly improved the discovery of FGFR gene fusions and their detection in clinical samples. A variety of FGFR inhibitors have been developed, and several studies are trying to evaluate the efficacy of these agents in molecularly selected patients carrying FGFR genomic alterations. In this review, we describe the most frequent FGFR aberrations in human cancer. We also discuss the different approaches employed for the detection of FGFR fusions and the potential role of these genomic alterations as prognostic/predictive biomarkers.
Collapse
Affiliation(s)
- Antonella De Luca
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (A.D.L.); (R.E.A.); (A.M.R.); (M.R.M.); (C.E.)
| | - Riziero Esposito Abate
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (A.D.L.); (R.E.A.); (A.M.R.); (M.R.M.); (C.E.)
| | - Anna Maria Rachiglio
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (A.D.L.); (R.E.A.); (A.M.R.); (M.R.M.); (C.E.)
| | - Monica Rosaria Maiello
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (A.D.L.); (R.E.A.); (A.M.R.); (M.R.M.); (C.E.)
| | - Claudia Esposito
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (A.D.L.); (R.E.A.); (A.M.R.); (M.R.M.); (C.E.)
| | - Clorinda Schettino
- Clinical Trials Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy;
| | - Francesco Izzo
- Division of Surgical Oncology, Hepatobiliary Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy;
| | - Guglielmo Nasti
- SSD Innovative Therapies for Abdominal Cancers, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy;
| | - Nicola Normanno
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (A.D.L.); (R.E.A.); (A.M.R.); (M.R.M.); (C.E.)
| |
Collapse
|
21
|
Calabrese C, Davidson NR, Demircioğlu D, Fonseca NA, He Y, Kahles A, Lehmann KV, Liu F, Shiraishi Y, Soulette CM, Urban L, Greger L, Li S, Liu D, Perry MD, Xiang Q, Zhang F, Zhang J, Bailey P, Erkek S, Hoadley KA, Hou Y, Huska MR, Kilpinen H, Korbel JO, Marin MG, Markowski J, Nandi T, Pan-Hammarström Q, Pedamallu CS, Siebert R, Stark SG, Su H, Tan P, Waszak SM, Yung C, Zhu S, Awadalla P, Creighton CJ, Meyerson M, Ouellette BFF, Wu K, Yang H, Brazma A, Brooks AN, Göke J, Rätsch G, Schwarz RF, Stegle O, Zhang Z. Genomic basis for RNA alterations in cancer. Nature 2020; 578:129-136. [PMID: 32025019 PMCID: PMC7054216 DOI: 10.1038/s41586-020-1970-0] [Citation(s) in RCA: 257] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 12/11/2019] [Indexed: 01/27/2023]
Abstract
Transcript alterations often result from somatic changes in cancer genomes1. Various forms of RNA alterations have been described in cancer, including overexpression2, altered splicing3 and gene fusions4; however, it is difficult to attribute these to underlying genomic changes owing to heterogeneity among patients and tumour types, and the relatively small cohorts of patients for whom samples have been analysed by both transcriptome and whole-genome sequencing. Here we present, to our knowledge, the most comprehensive catalogue of cancer-associated gene alterations to date, obtained by characterizing tumour transcriptomes from 1,188 donors of the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA)5. Using matched whole-genome sequencing data, we associated several categories of RNA alterations with germline and somatic DNA alterations, and identified probable genetic mechanisms. Somatic copy-number alterations were the major drivers of variations in total gene and allele-specific expression. We identified 649 associations of somatic single-nucleotide variants with gene expression in cis, of which 68.4% involved associations with flanking non-coding regions of the gene. We found 1,900 splicing alterations associated with somatic mutations, including the formation of exons within introns in proximity to Alu elements. In addition, 82% of gene fusions were associated with structural variants, including 75 of a new class, termed 'bridged' fusions, in which a third genomic location bridges two genes. We observed transcriptomic alteration signatures that differ between cancer types and have associations with variations in DNA mutational signatures. This compendium of RNA alterations in the genomic context provides a rich resource for identifying genes and mechanisms that are functionally implicated in cancer.
Collapse
Affiliation(s)
| | - Claudia Calabrese
- 0000 0000 9709 7726grid.225360.0European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | - Natalie R. Davidson
- 0000 0001 2156 2780grid.5801.cETH Zurich, Zurich, Switzerland ,0000 0001 2171 9952grid.51462.34Memorial Sloan Kettering Cancer Center, New York, NY USA ,000000041936877Xgrid.5386.8Weill Cornell Medical College, New York, NY USA ,0000 0001 2223 3006grid.419765.8SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland ,0000 0004 0478 9977grid.412004.3University Hospital Zurich, Zurich, Switzerland
| | - Deniz Demircioğlu
- 0000 0001 2180 6431grid.4280.eNational University of Singapore, Singapore, Singapore ,0000 0004 0620 715Xgrid.418377.eGenome Institute of Singapore, Singapore, Singapore
| | - Nuno A. Fonseca
- 0000 0000 9709 7726grid.225360.0European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | - Yao He
- 0000 0001 2256 9319grid.11135.37Peking University, Beijing, China
| | - André Kahles
- 0000 0001 2156 2780grid.5801.cETH Zurich, Zurich, Switzerland ,0000 0001 2171 9952grid.51462.34Memorial Sloan Kettering Cancer Center, New York, NY USA ,0000 0001 2223 3006grid.419765.8SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland ,0000 0004 0478 9977grid.412004.3University Hospital Zurich, Zurich, Switzerland
| | - Kjong-Van Lehmann
- 0000 0001 2156 2780grid.5801.cETH Zurich, Zurich, Switzerland ,0000 0001 2171 9952grid.51462.34Memorial Sloan Kettering Cancer Center, New York, NY USA ,0000 0001 2223 3006grid.419765.8SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland ,0000 0004 0478 9977grid.412004.3University Hospital Zurich, Zurich, Switzerland
| | - Fenglin Liu
- 0000 0001 2256 9319grid.11135.37Peking University, Beijing, China
| | - Yuichi Shiraishi
- 0000 0001 2151 536Xgrid.26999.3dThe University of Tokyo, Minato-ku, Japan
| | - Cameron M. Soulette
- 0000 0001 0740 6917grid.205975.cUniversity of California, Santa Cruz, Santa Cruz, CA USA
| | - Lara Urban
- 0000 0000 9709 7726grid.225360.0European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | - Liliana Greger
- 0000 0000 9709 7726grid.225360.0European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | - Siliang Li
- 0000 0001 2034 1839grid.21155.32BGI-Shenzhen, Shenzhen, China ,China National GeneBank-Shenzhen, Shenzhen, China
| | - Dongbing Liu
- 0000 0001 2034 1839grid.21155.32BGI-Shenzhen, Shenzhen, China ,China National GeneBank-Shenzhen, Shenzhen, China
| | - Marc D. Perry
- 0000 0004 0626 690Xgrid.419890.dOntario Institute for Cancer Research, Toronto, Ontario, Canada ,0000 0001 2297 6811grid.266102.1University of California, San Francisco, San Francisco, CA USA
| | - Qian Xiang
- 0000 0004 0626 690Xgrid.419890.dOntario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Fan Zhang
- 0000 0001 2256 9319grid.11135.37Peking University, Beijing, China
| | - Junjun Zhang
- 0000 0004 0626 690Xgrid.419890.dOntario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Peter Bailey
- 0000 0001 2193 314Xgrid.8756.cUniversity of Glasgow, Glasgow, UK
| | - Serap Erkek
- 0000 0004 0495 846Xgrid.4709.aEuropean Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Katherine A. Hoadley
- 0000000122483208grid.10698.36The University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Yong Hou
- 0000 0001 2034 1839grid.21155.32BGI-Shenzhen, Shenzhen, China ,China National GeneBank-Shenzhen, Shenzhen, China
| | - Matthew R. Huska
- 0000 0001 1014 0849grid.419491.0Berlin Institute for Medical Systems Biology, Max Delbruck Center for Molecular Medicine, Berlin, Germany
| | - Helena Kilpinen
- 0000000121901201grid.83440.3bUniversity College London, London, UK
| | - Jan O. Korbel
- 0000 0004 0495 846Xgrid.4709.aEuropean Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Maximillian G. Marin
- 0000 0001 0740 6917grid.205975.cUniversity of California, Santa Cruz, Santa Cruz, CA USA
| | - Julia Markowski
- 0000 0001 1014 0849grid.419491.0Berlin Institute for Medical Systems Biology, Max Delbruck Center for Molecular Medicine, Berlin, Germany
| | - Tannistha Nandi
- 0000 0004 0620 715Xgrid.418377.eGenome Institute of Singapore, Singapore, Singapore
| | - Qiang Pan-Hammarström
- 0000 0001 2034 1839grid.21155.32BGI-Shenzhen, Shenzhen, China ,0000 0004 1937 0626grid.4714.6Karolinska Institutet, Stockholm, Sweden
| | - Chandra Sekhar Pedamallu
- grid.66859.34Broad Institute, Cambridge, MA USA ,0000 0001 2106 9910grid.65499.37Dana-Farber Cancer Institute, Boston, MA USA ,000000041936754Xgrid.38142.3cHarvard Medical School, Boston, MA USA
| | - Reiner Siebert
- grid.410712.1Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Stefan G. Stark
- 0000 0001 2156 2780grid.5801.cETH Zurich, Zurich, Switzerland ,0000 0001 2171 9952grid.51462.34Memorial Sloan Kettering Cancer Center, New York, NY USA ,0000 0001 2223 3006grid.419765.8SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland ,0000 0004 0478 9977grid.412004.3University Hospital Zurich, Zurich, Switzerland
| | - Hong Su
- 0000 0001 2034 1839grid.21155.32BGI-Shenzhen, Shenzhen, China ,China National GeneBank-Shenzhen, Shenzhen, China
| | - Patrick Tan
- 0000 0004 0620 715Xgrid.418377.eGenome Institute of Singapore, Singapore, Singapore ,0000 0004 0385 0924grid.428397.3Duke-NUS Medical School, Singapore, Singapore
| | - Sebastian M. Waszak
- 0000 0004 0495 846Xgrid.4709.aEuropean Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Christina Yung
- 0000 0004 0626 690Xgrid.419890.dOntario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Shida Zhu
- 0000 0001 2034 1839grid.21155.32BGI-Shenzhen, Shenzhen, China ,China National GeneBank-Shenzhen, Shenzhen, China
| | - Philip Awadalla
- 0000 0004 0626 690Xgrid.419890.dOntario Institute for Cancer Research, Toronto, Ontario, Canada ,0000 0001 2157 2938grid.17063.33University of Toronto, Toronto, Ontario Canada
| | - Chad J. Creighton
- 0000 0001 2160 926Xgrid.39382.33Baylor College of Medicine, Houston, TX USA
| | - Matthew Meyerson
- grid.66859.34Broad Institute, Cambridge, MA USA ,0000 0001 2106 9910grid.65499.37Dana-Farber Cancer Institute, Boston, MA USA ,000000041936754Xgrid.38142.3cHarvard Medical School, Boston, MA USA
| | | | - Kui Wu
- 0000 0001 2034 1839grid.21155.32BGI-Shenzhen, Shenzhen, China ,China National GeneBank-Shenzhen, Shenzhen, China
| | - Huanming Yang
- 0000 0001 2034 1839grid.21155.32BGI-Shenzhen, Shenzhen, China
| | | | - Alvis Brazma
- 0000 0000 9709 7726grid.225360.0European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | - Angela N. Brooks
- 0000 0001 0740 6917grid.205975.cUniversity of California, Santa Cruz, Santa Cruz, CA USA ,grid.66859.34Broad Institute, Cambridge, MA USA ,0000 0001 2106 9910grid.65499.37Dana-Farber Cancer Institute, Boston, MA USA
| | - Jonathan Göke
- 0000 0004 0620 715Xgrid.418377.eGenome Institute of Singapore, Singapore, Singapore ,0000 0004 0620 9745grid.410724.4National Cancer Centre Singapore, Singapore, Singapore
| | - Gunnar Rätsch
- 0000 0001 2156 2780grid.5801.cETH Zurich, Zurich, Switzerland ,0000 0001 2171 9952grid.51462.34Memorial Sloan Kettering Cancer Center, New York, NY USA ,000000041936877Xgrid.5386.8Weill Cornell Medical College, New York, NY USA ,0000 0001 2223 3006grid.419765.8SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland ,0000 0004 0478 9977grid.412004.3University Hospital Zurich, Zurich, Switzerland
| | - Roland F. Schwarz
- 0000 0000 9709 7726grid.225360.0European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK ,0000 0001 1014 0849grid.419491.0Berlin Institute for Medical Systems Biology, Max Delbruck Center for Molecular Medicine, Berlin, Germany ,0000 0004 0492 0584grid.7497.dGerman Cancer Consortium (DKTK), partner site Berlin, Germany ,0000 0004 0492 0584grid.7497.dGerman Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Oliver Stegle
- 0000 0000 9709 7726grid.225360.0European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK ,0000 0004 0495 846Xgrid.4709.aEuropean Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany ,0000 0004 0492 0584grid.7497.dGerman Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Zemin Zhang
- 0000 0001 2256 9319grid.11135.37Peking University, Beijing, China
| | | |
Collapse
|
22
|
Sumdani H, Shahbuddin Z, Harper G, Hamilton L. Case Report of Rarely Described Polymorphous Low-Grade Neuroepithelial Tumor of the Young and Comparison with Oligodendroglioma. World Neurosurg 2019; 127:47-51. [DOI: 10.1016/j.wneu.2019.03.181] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/17/2019] [Accepted: 03/18/2019] [Indexed: 11/29/2022]
|
23
|
Shi X, Wang J, Lei Y, Cong C, Tan D, Zhou X. Research progress on the PI3K/AKT signaling pathway in gynecological cancer (Review). Mol Med Rep 2019; 19:4529-4535. [PMID: 30942405 PMCID: PMC6522820 DOI: 10.3892/mmr.2019.10121] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 02/21/2019] [Indexed: 02/06/2023] Open
Abstract
The phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway is involved in the regulation of multiple cellular physiological processes by activating downstream corresponding effector molecules, which serve an important role in the cell cycle, growth and proliferation. This is a common phenomenon; overactivation of the pathway is present in human malignancies and has been implicated in cancer progression, hence one of the important approaches to the treatment of tumors is rational drug design using molecular targets in the PI3K/AKT signaling pathway. In brief, the present review analyzed the effects of the PI3K/AKT signaling pathway on certain gynecological cancer types.
Collapse
Affiliation(s)
- Xiang Shi
- Department of Pathology, Qianjiang Central Hospital, Qianjiang, Hubei 433100, P.R. China
| | - Jingjing Wang
- Department of Pathology, Qianjiang Central Hospital, Qianjiang, Hubei 433100, P.R. China
| | - Yu Lei
- Department of Pathology, Qianjiang Central Hospital, Qianjiang, Hubei 433100, P.R. China
| | - Caofan Cong
- Department of Pathology, Qianjiang Central Hospital, Qianjiang, Hubei 433100, P.R. China
| | - Dailin Tan
- Department of Clinical Laboratory, Qianjiang Central Hospital, Qianjiang, Hubei 433100, P.R. China
| | - Xianrong Zhou
- Department of Pathology, Qianjiang Central Hospital, Qianjiang, Hubei 433100, P.R. China
| |
Collapse
|
24
|
Jiang W, Ji M. Receptor tyrosine kinases in PI3K signaling: The therapeutic targets in cancer. Semin Cancer Biol 2019; 59:3-22. [PMID: 30943434 DOI: 10.1016/j.semcancer.2019.03.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 03/09/2019] [Accepted: 03/28/2019] [Indexed: 12/17/2022]
Abstract
The phosphoinositide 3-kinase (PI3K) pathway, one of the most commonly activated signaling pathways in human cancers, plays a crucial role in the regulation of cell proliferation, differentiation, and survival. This pathway is usually activated by receptor tyrosine kinases (RTKs), whose constitutive and aberrant activation is via gain-of-function mutations, chromosomal rearrangement, gene amplification and autocrine. Blockage of PI3K pathway by targeted therapy on RTKs with tyrosine kinases inhibitors (TKIs) and monoclonal antibodies (mAbs) has achieved great progress in past decades; however, there still remain big challenges during their clinical application. In this review, we provide an overview about the most frequently encountered alterations in RTKs and focus on current therapeutic agents developed to counteract their aberrant functions, accompanied with discussions of two major challenges to the RTKs-targeted therapy in cancer - resistance and toxicity.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China; Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Meiju Ji
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China; Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China.
| |
Collapse
|
25
|
Nelson KN, Meyer AN, Wang CG, Donoghue DJ. Oncogenic driver FGFR3-TACC3 is dependent on membrane trafficking and ERK signaling. Oncotarget 2018; 9:34306-34319. [PMID: 30344944 PMCID: PMC6188140 DOI: 10.18632/oncotarget.26142] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 09/08/2018] [Indexed: 12/30/2022] Open
Abstract
Fusion proteins resulting from chromosomal translocations have been identified as oncogenic drivers in many cancers, allowing them to serve as potential drug targets in clinical practice. The genes encoding FGFRs, Fibroblast Growth Factor Receptors, are commonly involved in such translocations, with the FGFR3-TACC3 fusion protein frequently identified in many cancers, including glioblastoma, cervical cancer, bladder cancer, nasopharyngeal carcinoma, and lung adenocarcinoma among others. FGFR3-TACC3 retains the entire extracellular domain and most of the kinase domain of FGFR3, with its C-terminal domain fused to TACC3. We examine here the effects of targeting FGFR3-TACC3 to different subcellular localizations by appending either a nuclear localization signal (NLS) or a myristylation signal, or by deletion of the normal signal sequence. We demonstrate that the oncogenic effects of FGFR3-TACC3 require either entrance to the secretory pathway or plasma membrane localization, leading to overactivation of canonical MAPK/ERK pathways. We also examined the effects of different translocation breakpoints in FGFR3-TACC3, comparing fusion at TACC3 exon 11 with fusion at exon 8. Transformation resulting from FGFR3-TACC3 was not affected by association with the canonical TACC3-interacting proteins Aurora-A, clathrin, and ch-TOG. We have shown that kinase inhibitors for MEK (Trametinib) and FGFR (BGJ398) are effective in blocking cell transformation and MAPK pathway upregulation. The development of personalized medicines will be essential in treating patients who harbor oncogenic drivers such as FGFR3-TACC3.
Collapse
Affiliation(s)
- Katelyn N Nelson
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, USA
| | - April N Meyer
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, USA
| | - Clark G Wang
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, USA
| | - Daniel J Donoghue
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, USA.,UCSD Moores Cancer Center and University of California San Diego, La Jolla, California, USA
| |
Collapse
|
26
|
Best SA, Harapas CR, Kersbergen A, Rathi V, Asselin-Labat ML, Sutherland KD. FGFR3-TACC3 is an oncogenic fusion protein in respiratory epithelium. Oncogene 2018; 37:6096-6104. [PMID: 29991799 PMCID: PMC6215478 DOI: 10.1038/s41388-018-0399-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 05/24/2018] [Accepted: 06/08/2018] [Indexed: 11/25/2022]
Abstract
Structural rearrangements of the genome can drive lung tumorigenesis
through the generation of fusion genes with oncogenic properties. Advanced
genomic approaches have identified the presence of a genetic fusion between
fibroblast growth factor receptor 3
(FGFR3) and transforming acidic coiled-coil 3
(TACC3) in non-small cell lung cancer (NSCLC), providing a
novel target for FGFR inhibition. To interrogate the functional consequences of
the FGFR3-TACC3 fusion in the transformation of lung epithelial cells, we
generated a novel transgenic mouse model that expresses FGFR3-TACC3 concomitant
with loss of the p53 tumor suppressor gene. Intra-nasal
delivery of an Ad5-CMV-Cre virus promoted seromucinous glandular transformation
of olfactory cells lining the nasal cavities of FGFR3-TACC3
(LSL-F3T3) mice, which was further
accelerated upon loss of p53
(LSL-F3T3/p53).
Surprisingly, lung tumors failed to develop in intra-nasally infected
LSL-F3T3 and
LSL-F3T3/p53 mice. In
line with these observations, we demonstrated that intra-nasal delivery of
Ad5-CMV-Cre induces widespread Cre-mediated recombination in the olfactory
epithelium. Intra-tracheal delivery of Ad5-CMV-Cre into the lungs of
LSL-F3T3 and
LSL-F3T3/p53 mice
however, resulted in the development of lung adenocarcinomas. Taken together,
these findings provide in vivo evidence for an oncogenic
function of FGFR3-TACC3 in respiratory epithelium.
Collapse
Affiliation(s)
- Sarah A Best
- ACRF Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Cassandra R Harapas
- ACRF Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Ariena Kersbergen
- ACRF Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Vivek Rathi
- Department of Anatomical Pathology, St Vincent's Hospital, University of Melbourne, Fitzroy, VIC, 3065, Australia
| | - Marie-Liesse Asselin-Labat
- ACRF Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Kate D Sutherland
- ACRF Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia. .,Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
27
|
Nassar AH, Lundgren K, Pomerantz M, Van Allen E, Harshman L, Choudhury AD, Preston MA, Steele GS, Mouw KW, Wei XX, McGregor BA, Choueiri TK, Bellmunt J, Kwiatkowski DJ, Sonpavde GP. Enrichment of FGFR3-TACC3 Fusions in Patients With Bladder Cancer Who Are Young, Asian, or Have Never Smoked. JCO Precis Oncol 2018; 2:1800013. [PMID: 33604498 DOI: 10.1200/po.18.00013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Purpose FGFR3-TACC3 (fibroblast growth factor receptor 3-transforming acidic coiled coil-containing protein 3) fusions have recently been identified as driver mutations that lead to the activation of FGFR3 in bladder cancer and other tumor types and are associated with sensitivity to tyrosine kinase inhibitors. We examined the clinical and molecular characteristics of patients with FGFR3-TACC3 fusions and hypothesized that they are enriched in a subset of patients with bladder cancer. Materials and Methods We correlated somatic FGFR3-TACC3 fusions with clinical and molecular features in two cohorts of patients with bladder cancer. The first cohort consisted of the muscle-invasive bladder cancer (MIBC) data set (n = 412) from The Cancer Genome Atlas. The second cohort consisted of patients with MIBC or high-grade non-MIBC at the Dana-Farber Cancer Institute that had targeted capture sequencing of a selected panel of cancer genes (n = 356). All statistical tests were two sided. The clinical response of one patient with FGFR3-TACC3 bladder cancer to an FGFR3 inhibitor was investigated. Results Overall, 751 patients with high-grade bladder cancer without FGFR3-TACC3 fusions and 17 with FGFR3-TACC3 fusions were identified in the pooled analysis of the data sets from The Cancer Genome Atlas and the Dana-Farber Cancer Institute. FGFR3-TACC3 fusions were enriched in patients age ≤ 50 years versus age 51 to 65 years versus those older than 65 years (pooled, P = .002), and were observed in four (12%) of 33 patients age ≤ 50 years in the pooled analysis. Similarly, FGFR3-TACC3 fusions were significantly more common in Asians (13%) compared with African Americans (4%) and whites (2%; pooled, P < .001), as well as in never smokers (5.6%) compared with ever smokers (1.1%; pooled, P < .001). One patient with the fusion who was treated with an FGFR3 inhibitor achieved complete remission for 10 months. Conclusion Clinical testing to identify FGFR3 fusions should be prioritized for patients with bladder cancer who are younger, never smokers, and/or Asian.
Collapse
Affiliation(s)
- Amin H Nassar
- , , , and , Brigham and Women's Hospital, Harvard Medical School; and , , , , , , , , , , and , Dana-Farber Cancer Institute, Boston, MA
| | - Kevin Lundgren
- , , , and , Brigham and Women's Hospital, Harvard Medical School; and , , , , , , , , , , and , Dana-Farber Cancer Institute, Boston, MA
| | - Mark Pomerantz
- , , , and , Brigham and Women's Hospital, Harvard Medical School; and , , , , , , , , , , and , Dana-Farber Cancer Institute, Boston, MA
| | - Eliezer Van Allen
- , , , and , Brigham and Women's Hospital, Harvard Medical School; and , , , , , , , , , , and , Dana-Farber Cancer Institute, Boston, MA
| | - Lauren Harshman
- , , , and , Brigham and Women's Hospital, Harvard Medical School; and , , , , , , , , , , and , Dana-Farber Cancer Institute, Boston, MA
| | - Atish D Choudhury
- , , , and , Brigham and Women's Hospital, Harvard Medical School; and , , , , , , , , , , and , Dana-Farber Cancer Institute, Boston, MA
| | - Mark A Preston
- , , , and , Brigham and Women's Hospital, Harvard Medical School; and , , , , , , , , , , and , Dana-Farber Cancer Institute, Boston, MA
| | - Graeme S Steele
- , , , and , Brigham and Women's Hospital, Harvard Medical School; and , , , , , , , , , , and , Dana-Farber Cancer Institute, Boston, MA
| | - Kent W Mouw
- , , , and , Brigham and Women's Hospital, Harvard Medical School; and , , , , , , , , , , and , Dana-Farber Cancer Institute, Boston, MA
| | - Xiao X Wei
- , , , and , Brigham and Women's Hospital, Harvard Medical School; and , , , , , , , , , , and , Dana-Farber Cancer Institute, Boston, MA
| | - Bradley A McGregor
- , , , and , Brigham and Women's Hospital, Harvard Medical School; and , , , , , , , , , , and , Dana-Farber Cancer Institute, Boston, MA
| | - Toni K Choueiri
- , , , and , Brigham and Women's Hospital, Harvard Medical School; and , , , , , , , , , , and , Dana-Farber Cancer Institute, Boston, MA
| | - Joaquim Bellmunt
- , , , and , Brigham and Women's Hospital, Harvard Medical School; and , , , , , , , , , , and , Dana-Farber Cancer Institute, Boston, MA
| | - David J Kwiatkowski
- , , , and , Brigham and Women's Hospital, Harvard Medical School; and , , , , , , , , , , and , Dana-Farber Cancer Institute, Boston, MA
| | - Guru P Sonpavde
- , , , and , Brigham and Women's Hospital, Harvard Medical School; and , , , , , , , , , , and , Dana-Farber Cancer Institute, Boston, MA
| |
Collapse
|
28
|
miR-24-3p/FGFR3 Signaling as a Novel Axis Is Involved in Epithelial-Mesenchymal Transition and Regulates Lung Adenocarcinoma Progression. J Immunol Res 2018; 2018:2834109. [PMID: 29850625 PMCID: PMC5933034 DOI: 10.1155/2018/2834109] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 02/05/2018] [Indexed: 12/27/2022] Open
Abstract
Our previous studies showed that Fibroblast growth factor receptor 3 (FGFR3) contributed to cell growth in lung cancer. However, the correlation between FGFR3 and tumor progression, coupled with the underlying mechanisms, are not fully understood. The clinical significance of FGFR3 was determined in two cohorts of clinical samples (n = 22, n = 78). A panel of biochemical assays and functional experiments was utilized to elucidate the underlying mechanisms and effects of FGFR3 and miR-24-3p on lung adenocarcinoma progression. Upregulated FGFR3 expression indicated an adverse prognosis for lung adenocarcinoma individuals and promoted metastatic potential of lung adenocarcinoma cells. Owing to the direct regulation towards FGFR3, miR-24-3p could interfere with the potential of proliferation, migration, and invasion in lung adenocarcinoma, following variations of EMT-related protein expression. As a significant marker of EMT, E-cadherin was negatively correlated with FGFR3, of which ectopic overexpression could neutralize the antitumour effects of miR-24-3p and reverse its regulatory effects on EMT markers. Taken together, these findings define a novel insight into the miR-24-3p/FGFR3 signaling axis in regulating lung adenocarcinoma progression and suggest that targeting the miR-24-3p/FGFR3 axis could be an effective and efficient way to prevent tumor progression.
Collapse
|
29
|
Dhami J, Hirshfield KM, Ganesan S, Hellmann M, Rojas V, Amorosa JK, Riedlinger GM, Zhong H, Ali SM, Pavlick D, Elvin JA, Rodriguez-Rodriguez L. Comprehensive genomic profiling aids in treatment of a metastatic endometrial cancer. Cold Spring Harb Mol Case Stud 2018; 4:a002089. [PMID: 29588307 PMCID: PMC5880253 DOI: 10.1101/mcs.a002089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 02/07/2018] [Indexed: 12/13/2022] Open
Abstract
FGFR-TACC fusions, including FGFR3-TACC3, have been identified as potential oncogenic drivers and actionable alterations in a number of different cancer types. The clinical relevance of FGFR3-TACC3 fusions in endometrial cancer has not yet been described. Formalin-fixed, paraffin-embedded metastatic endometrial carcinoma from the spleen and peritoneum were sent for comprehensive genomic profiling (CGP) using the FoundationOne platform as part of a prospective tumor genomic profiling protocol. We report the identification of an FGFR3-TACC3 fusion in a case of metastatic endometrioid endometrial cancer. Other potentially actionable alterations detected in this specimen included PIK3CA T1025S and an uncharacterized rearrangement involving TSC2 The patient initially received an FGFR inhibitor as an investigational agent and experienced stable disease with complete resolution of a pelvic nodule; however, treatment had to be discontinued because of intolerable side effects. A PET/CT scan nearly 3 mo after discontinuation showed disease progression. She subsequently received the mTOR inhibitor, temsirolimus, later accompanied by letrozole, and achieved stable disease. Clinical benefit was attributed to the mTOR inhibitor as tumor stained negative for estrogen receptor. Temsirolimus was discontinued after >17 mo because of disease progression. FGFR inhibitors may have clinical benefit in the treatment of endometrial carcinoma with FGFR3-TACC3 fusions. Additionally, clinical benefit from an mTOR inhibitor may reflect a response to targeting the alteration in PIK3CA or TSC2 More research is needed to understand the activity of FGFR3-TACC3 fusions on tumors and to discover additional therapeutic options for endometrial carcinoma patients with this gene fusion.
Collapse
Affiliation(s)
- Jatinder Dhami
- Department of Medicine, Division of Medical Oncology, Rutgers Cancer Institute of New Jersey/Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey 08901, USA
| | - Kim M Hirshfield
- Department of Medicine, Division of Medical Oncology, Rutgers Cancer Institute of New Jersey/Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey 08901, USA
| | - Shridar Ganesan
- Department of Medicine, Division of Medical Oncology, Rutgers Cancer Institute of New Jersey/Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey 08901, USA
| | - Mira Hellmann
- Department of Obstetrics and Gynecology, Hackensack University Medical Center-Hackensack Meridian Health, John Theurer Cancer Center, Hackensack, New Jersey 07601, USA
| | - Veronica Rojas
- Department of Obstetrics and Gynecology, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey 08901, USA
| | - Judith K Amorosa
- Department of Radiology, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey 08901, USA
| | - Gregory M Riedlinger
- Department of Pathology, Monmouth Medical Center, Long Branch, New Jersey 07740, USA
| | - Hua Zhong
- Department of Pathology, Monmouth Medical Center, Long Branch, New Jersey 07740, USA
| | - Siraj M Ali
- Foundation Medicine, Inc. Cambridge, Massachusetts 02141, USA
| | - Dean Pavlick
- Foundation Medicine, Inc. Cambridge, Massachusetts 02141, USA
| | - Julia A Elvin
- Foundation Medicine, Inc. Cambridge, Massachusetts 02141, USA
| | - Lorna Rodriguez-Rodriguez
- Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Gynecologic Oncology, Rutgers Cancer Institute of New Jersey/Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey 08901, USA
| |
Collapse
|
30
|
Yuan Y, Yost SE, Yim J, Yuan YC, Solomon NM, Mambetsariev I, Pal S, Frankel P, Salgia R, Neuhausen SL, Mortimer J. Genomic mutation-driven metastatic breast cancer therapy: a single center experience. Oncotarget 2018; 8:26414-26423. [PMID: 28061482 PMCID: PMC5432268 DOI: 10.18632/oncotarget.14476] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 12/26/2016] [Indexed: 11/25/2022] Open
Abstract
Background Next-Generation Sequencing (NGS) has made genomic mutation-driven therapy feasible for metastatic breast cancer (MBC) patients. We frequently submit tumor tissue from MBC patients for targeted NGS of tumor using the Illumina HiSeq 2000 platform (FoundationOne®, Foundation Medicine, MA). Herein, we report the results and clinical impact of this test in MBC patients. Patients and Methods We identified patients with MBC treated at City of Hope from January 2014 to May 2016 who underwent NGS. Patients’ clinical characteristics, response to treatment (clinical assessment of tumor regression), and genomic mutation profiles were reviewed. Results Forty-four patients with MBC underwent NGS: 24 triple negative breast cancer, 16 estrogen receptor positive, and 4 human epidermal growth factor receptor 2 positive patients. Twenty-three patients received more than three lines of chemotherapy prior to NGS. Actionable mutations (potentially responsive to targeted therapies that are on the market or in registered clinical trials) were identified in almost all patients (42/44; 95%) and over half of these 42 patients with actionable mutations (23/42; 55%) initiated mutation-driven targeted therapies. Of these 23 patients, 16/23 (70%) had assessable responses, and 7/23 (30%) were not assessable for response due to short exposure (<2 weeks) or hospice transition. The remaining 19/42 (45%) patients did not initiate targeted therapy. Conclusion NGS can identify effective targeted therapy options for MBC patients based on actionable mutations that were not previously offered based on pathology type. NGS should be performed early in patients with good performance status and preferably in clinical settings where genomic mutation-driven therapeutic trials are available.
Collapse
Affiliation(s)
- Yuan Yuan
- Department of Medical Oncology & Molecular Therapeutics, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA, USA
| | - Susan E Yost
- Department of Medical Oncology & Molecular Therapeutics, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA, USA
| | | | - Yate-Ching Yuan
- Bioinformatics Core Facility, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA, USA
| | - Nicola M Solomon
- Department of Medical Oncology & Molecular Therapeutics, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA, USA
| | - Isa Mambetsariev
- Department of Medical Oncology & Molecular Therapeutics, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA, USA
| | - Sumanta Pal
- Department of Medical Oncology & Molecular Therapeutics, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA, USA
| | - Paul Frankel
- Department of Biostatistics, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA, USA
| | - Ravi Salgia
- Department of Medical Oncology & Molecular Therapeutics, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA, USA
| | - Susan L Neuhausen
- Department of Population Sciences, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA, USA
| | - Joanne Mortimer
- Department of Medical Oncology & Molecular Therapeutics, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA, USA
| |
Collapse
|
31
|
Lombardi B, Ashford P, Moya-Garcia AA, Rust A, Crawford M, Williams SV, Knowles MA, Katan M, Orengo C, Godovac-Zimmermann J. Unique signalling connectivity of FGFR3-TACC3 oncoprotein revealed by quantitative phosphoproteomics and differential network analysis. Oncotarget 2017; 8:102898-102911. [PMID: 29262532 PMCID: PMC5732698 DOI: 10.18632/oncotarget.22048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 10/03/2017] [Indexed: 12/14/2022] Open
Abstract
The FGFR3-TACC3 fusion is an oncogenic driver in diverse malignancies, including bladder cancer, characterized by upregulated tyrosine kinase activity. To gain insights into distinct properties of FGFR3-TACC3 down-stream signalling, we utilised telomerase-immortalised normal human urothelial cell lines expressing either the fusion or wild-type FGFR3 (isoform IIIb) for subsequent quantitative proteomics and network analysis. Cellular lysates were chemically labelled with isobaric tandem mass tag reagents and, after phosphopeptide enrichment, liquid chromatography-high mass accuracy tandem mass spectrometry (LC-MS/MS) was used for peptide identification and quantification. Comparison of data from the two cell lines under non-stimulated and FGF1 stimulated conditions and of data representing physiological stimulation of FGFR3 identified about 200 regulated phosphosites. The identified phosphoproteins and quantified phosphosites were further analysed in the context of functional biological networks by inferring kinase-substrate interactions, mapping these to a comprehensive human signalling interaction network, filtering based on tissue-expression profiles and applying disease module detection and pathway enrichment methods. Analysis of our phosphoproteomics data using these bioinformatics methods combined into a new protocol-Disease Relevant Analysis of Genes On Networks (DRAGON)-allowed us to tease apart pathways differentially involved in FGFR3-TACC3 signalling in comparison to wild-type FGFR3 and to investigate their local phospho-signalling context. We highlight 9 pathways significantly regulated only in the cell line expressing FGFR3-TACC3 fusion and 5 pathways regulated only by stimulation of the wild-type FGFR3. Pathways differentially linked to FGFR3-TACC3 fusion include those related to chaperone activation and stress response and to regulation of TP53 expression and degradation that could contribute to development and maintenance of the cancer phenotype.
Collapse
Affiliation(s)
- Benedetta Lombardi
- Proteomics and Molecular Cell Dynamics, Center for Nephrology, School of Life and Medical Sciences, University College London, London NW3 2PF, United Kingdom
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, United Kingdom
| | - Paul Ashford
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, United Kingdom
| | - Aurelio A. Moya-Garcia
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, United Kingdom
| | - Aleksander Rust
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, United Kingdom
| | - Mark Crawford
- Proteomics and Molecular Cell Dynamics, Center for Nephrology, School of Life and Medical Sciences, University College London, London NW3 2PF, United Kingdom
| | - Sarah V. Williams
- Section of Molecular Oncology, Leeds Institute of Molecular Medicine, St James’s University Hospital, Leeds LS9 7TF, United Kingdom
| | - Margaret A. Knowles
- Section of Molecular Oncology, Leeds Institute of Molecular Medicine, St James’s University Hospital, Leeds LS9 7TF, United Kingdom
| | - Matilda Katan
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, United Kingdom
| | - Christine Orengo
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, United Kingdom
| | - Jasminka Godovac-Zimmermann
- Proteomics and Molecular Cell Dynamics, Center for Nephrology, School of Life and Medical Sciences, University College London, London NW3 2PF, United Kingdom
| |
Collapse
|
32
|
Li H, Sun G, Liu C, Wang J, Jing R, Wang J, Zhao X, Xu X, Yang Y. PBX3 is associated with proliferation and poor prognosis in patients with cervical cancer. Onco Targets Ther 2017; 10:5685-5694. [PMID: 29225475 PMCID: PMC5709993 DOI: 10.2147/ott.s150139] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Pre-B-cell leukemia homeobox 3 (PBX3) is upregulated in various malignancies; however, the role of PBX3 in cervical cancer (CC) is unknown. The purpose of this study was to explore the expression characteristics, clinicopathological significance, and molecular biological function of PBX3 in CC. The expression levels of PBX3 were analyzed in CC cell lines and tumor specimens by real-time polymerase chain reaction (RT-PCR), Western blotting, and immunohistochemical staining. The clinicopathological characteristics associated with PBX3 expression were evaluated. An RNA interference approach was employed to suppress PBX3 expression in CC in vitro and in vivo, determine its role in cell proliferation and analyze its molecular function. We found that PBX3 expression was significantly upregulated in CC cell lines and clinical specimens compared with normal cells and adjacent nontumorous cervical tissues. PBX3 was an independent predictive factor of poor prognosis, and its expression was correlated with tumor diameter, pathological grading, lymph node metastasis, invasion depth, vascular invasion, and clinical stage of CC. Multivariate analysis suggested that PBX3 expression may represent an independent prognostic indicator of the survival of CC patients. CC patients with high PBX3 expression exhibited reduced overall survival compared with those with low PBX3 expression. Additionally, stable downregulation of PBX3 expression in CC cell lines suppressed cell proliferation and decreased p-AKT protein expression levels in vitro. Similarly, in vivo assays demonstrated that PBX3 downregulation in CC cells markedly inhibited tumor size and weight. Overall, we demonstrated that PBX3 can promote CC cell proliferation via the AKT signaling pathway and that it may serve as a prognostic marker. Our data indicate that inactivation of PBX3 may be an effective clinical treatment for CC.
Collapse
Affiliation(s)
- Hongfang Li
- Department of Obstetrics and Gynecology, The First People's Hospital of Lanzhou City.,Department of Gynecology, The First Hospital of Lanzhou University, Lanzhou
| | - Gaogao Sun
- Department of Obstetrics and Gynecology, The First People's Hospital of Lanzhou City
| | - Chang Liu
- Department of Gynecology, The First Hospital of Lanzhou University, Lanzhou
| | - Jing Wang
- Department of Gynecology, Longhua District People's Hospital of Shenzhen City, Shenzhen.,Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou
| | - Rong Jing
- Department of Gynecology, Tianjin Fifth Central Hospital, Tianjin, People's Republic of China
| | - Jie Wang
- Department of Gynecology, Longhua District People's Hospital of Shenzhen City, Shenzhen.,Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou
| | - Xiaohuan Zhao
- Department of Obstetrics and Gynecology, The First People's Hospital of Lanzhou City
| | - Xiaoyan Xu
- Department of Obstetrics and Gynecology, The First People's Hospital of Lanzhou City
| | - Yongxiu Yang
- Department of Obstetrics and Gynecology, The First People's Hospital of Lanzhou City.,Department of Gynecology, The First Hospital of Lanzhou University, Lanzhou
| |
Collapse
|
33
|
Hsieh G, Bierman R, Szabo L, Lee AG, Freeman DE, Watson N, Sweet-Cordero EA, Salzman J. Statistical algorithms improve accuracy of gene fusion detection. Nucleic Acids Res 2017; 45:e126. [PMID: 28541529 PMCID: PMC5737606 DOI: 10.1093/nar/gkx453] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 05/22/2017] [Indexed: 11/14/2022] Open
Abstract
Gene fusions are known to play critical roles in tumor pathogenesis. Yet, sensitive and specific algorithms to detect gene fusions in cancer do not currently exist. In this paper, we present a new statistical algorithm, MACHETE (Mismatched Alignment CHimEra Tracking Engine), which achieves highly sensitive and specific detection of gene fusions from RNA-Seq data, including the highest Positive Predictive Value (PPV) compared to the current state-of-the-art, as assessed in simulated data. We show that the best performing published algorithms either find large numbers of fusions in negative control data or suffer from low sensitivity detecting known driving fusions in gold standard settings, such as EWSR1-FLI1. As proof of principle that MACHETE discovers novel gene fusions with high accuracy in vivo, we mined public data to discover and subsequently PCR validate novel gene fusions missed by other algorithms in the ovarian cancer cell line OVCAR3. These results highlight the gains in accuracy achieved by introducing statistical models into fusion detection, and pave the way for unbiased discovery of potentially driving and druggable gene fusions in primary tumors.
Collapse
Affiliation(s)
- Gillian Hsieh
- Stanford University, Department of Biochemistry, 279 Campus Drive, Stanford, CA 94305, USA
| | - Rob Bierman
- Stanford University, Department of Biochemistry, 279 Campus Drive, Stanford, CA 94305, USA
| | - Linda Szabo
- Stanford University, Biomedical Informatics, 1265 Welch Road, MSOB, X-215, MC 5479, Stanford, CA 94305-5479, USA
| | - Alex Gia Lee
- Stanford University, Cancer Biology, 265 Campus Drive, Suite G2103, Stanford, CA 94305-5456, USA
| | - Donald E Freeman
- Stanford University, Department of Biochemistry, 279 Campus Drive, Stanford, CA 94305, USA
| | - Nathaniel Watson
- Stanford University, Department of Biochemistry, 279 Campus Drive, Stanford, CA 94305, USA
| | | | - Julia Salzman
- Stanford University, Department of Biochemistry, 279 Campus Drive, Stanford, CA 94305, USA.,Stanford University, Department of Biomedical Data Science, Stanford, CA 94305-5456, USA
| |
Collapse
|
34
|
Klinghammer K, Keller J, George J, Hoffmann J, Chan EL, Hayman MJ. A phosphoarray platform is capable of personalizing kinase inhibitor therapy in head and neck cancers. Int J Cancer 2017; 142:156-164. [PMID: 28906000 DOI: 10.1002/ijc.31045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 08/06/2017] [Accepted: 08/22/2017] [Indexed: 01/07/2023]
Abstract
Tyrosine kinase inhibitors are effective treatments for cancers. Knowing the specific kinase mutants that drive the underlying cancers predict therapeutic response to these inhibitors. Thus, the current protocol for personalized cancer therapy involves genotyping tumors in search of various driver mutations and subsequently individualizing the tyrosine kinase inhibitor to the patients whose tumors express the corresponding driver mutant. While this approach works when known driver mutations are found, its limitation is the dependence on driver mutations as predictors for response. To complement the genotype approach, we hypothesize that a phosphoarray platform is equally capable of personalizing kinase inhibitor therapy. We selected head and neck squamous cell carcinoma as the cancer model to test our hypothesis. Using the receptor tyrosine kinase phosphoarray, we identified the phosphorylation profiles of 49 different tyrosine kinase receptors in five different head and neck cancer cell lines. Based on these results, we tested the cell line response to the corresponding kinase inhibitor therapy. We found that this phosphoarray accurately informed the kinase inhibitor response profile of the cell lines. Next, we determined the phosphorylation profiles of 39 head and neck cancer patient derived xenografts. We found that absent phosphorylated EGFR signal predicted primary resistance to cetuximab treatment in the xenografts without phosphorylated ErbB2. Meanwhile, absent ErbB2 signaling in the xenografts with phosphorylated EGFR is associated with a higher likelihood of response to cetuximab. In summary, the phosphoarray technology has the potential to become a new diagnostic platform for personalized cancer therapy.
Collapse
Affiliation(s)
- Konrad Klinghammer
- Department of Hematology and Oncology, Charite University Medicine, Berlin, Germany
| | - James Keller
- Department of Microbiology and Molecular Genetics, Stony Brook University, Stony Brook, NY, 11794
| | - Jonathan George
- Department of Microbiology and Molecular Genetics, Stony Brook University, Stony Brook, NY, 11794
| | - Jens Hoffmann
- EPO-Experimental Pharmacology and Oncology GmbH, Berlin, Germany
| | - Edward L Chan
- Department of Microbiology and Molecular Genetics, Stony Brook University, Stony Brook, NY, 11794.,Division of Pediatric Hematology/Oncology
| | - Michael J Hayman
- Department of Microbiology and Molecular Genetics, Stony Brook University, Stony Brook, NY, 11794
| |
Collapse
|
35
|
Wang J, Du S, Fan W, Wang P, Yang W, Yu M. TACC3 as an independent prognostic marker for solid tumors: a systematic review and meta-analysis. Oncotarget 2017; 8:75516-75527. [PMID: 29088887 PMCID: PMC5650442 DOI: 10.18632/oncotarget.20466] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/26/2017] [Indexed: 12/21/2022] Open
Abstract
Recent studies have showed that the transforming acidic coiled coil 3 (TACC3), was aberrantly up-regulated in various solid tumors and was reported to be correlated with unfavorable prognosis in cancer patients. This study aimed to examine the relationship between TACC3 and relevant clinical outcomes. Pubmed, Web of Science, Embase and Cochrane Library were systematically searched to obtain all eligible articles. Pooled hazard ratios (HRs) and 95% confidence intervals (CIs) were calculated to evaluate the influence of TACC3 expression on overall survival (OS) and disease-free survival (DFS) in solid tumors patients. A total of 1943 patients from 11 articles were included. The result indicated that a significantly shorter OS was observed in patients with high expression level of TACC3 (HR=1.90, 95% CI=1.63-2.23). In the subgroup analysis, the association was also observed in patients with cancers of digestive system (HR=1.85, 95% CI=1.53-2.24). Statistical significance was also observed in subgroup meta-analysis stratified by the cancer type, analysis type and sample size. Furthermore, poorer DFS was observed in patients with high expression level of TACC3 (HR=2.67, 95% CI=2.10-3.40). Additionally, the pooled odds ratios (ORs) showed that increased TACC3 expression was also related to positive lymph node metastasis (OR=1.68, 95% CI=1.26-2.25), tumor differentiation (OR=1.90, 95% CI=1.25-2.88) and TNM stage (OR=1.66, 95% CI=1.25-2.20). In conclusion, the increased expression level of TACC3 was associated with unfavorable prognosis, suggesting that it was a valuable prognosis biomarker or a promising therapeutic target of solid tumors. Further studies should be conducted to confirm the clinical utility of TACC3 in human solid tumors.
Collapse
Affiliation(s)
- June Wang
- Department of Clinical Laboratory & Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
| | - Shenlin Du
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
| | - Wei Fan
- Department of Clinical Laboratory & Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Ping Wang
- Department of Clinical Laboratory & Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Weiqing Yang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
| | - Mingxia Yu
- Department of Clinical Laboratory & Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| |
Collapse
|
36
|
Association between the TACC3 rs798766 Polymorphism and Risk of Urinary Bladder Cancer: A Synthesis Based on Current Evidence. DISEASE MARKERS 2017; 2017:7850708. [PMID: 28655970 PMCID: PMC5474538 DOI: 10.1155/2017/7850708] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/30/2017] [Indexed: 01/11/2023]
Abstract
Background A possible association between the TACC3 rs798766 polymorphism and urinary bladder cancer risk has been indicated in published literature. We performed this meta-analysis as a synthesis of all relevant data to summarize currently available evidence and to provide estimation with increased precision. Methods EMBASE, PubMed, Google Scholar, and Wanfang Data were searched. “rs798766” and “urinary bladder cancer” were used as the search terms. A total of 6 eligible studies were identified, in which 8194 cases and 50,165 controls were investigated. Meta-analysis was performed using extracted data. Subgroup analysis by ethnicity was also performed. Population attributable risk (PAR) was calculated. Results We found a significant association between rs798766[T] and increased risk of bladder cancer, allelic[T] OR = 1.27, 95%CI = 1.20–1.33. Subgroup analysis by ethnicity revealed similar results, allelic[T] OR = 1.24, 95%CI = 1.17–1.32 in Caucasian subjects and allelic[T] OR = 1.33, 95%CI = 1.21–1.46 in Asian subjects. PAR based on pooled allelic ORs and the frequency of the risk allele in control subjects was 4.63% in the overall population and 3.92% in Asians and 4.36% in Caucasians. Conclusion rs798766 is associated with increased risk of bladder cancer, and no ethnic difference was found.
Collapse
|
37
|
Lasorella A, Sanson M, Iavarone A. FGFR-TACC gene fusions in human glioma. Neuro Oncol 2017; 19:475-483. [PMID: 27852792 PMCID: PMC5464372 DOI: 10.1093/neuonc/now240] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 08/12/2016] [Indexed: 12/30/2022] Open
Abstract
Chromosomal translocations joining in-frame members of the fibroblast growth factor receptor-transforming acidic coiled-coil gene families (the FGFR-TACC gene fusions) were first discovered in human glioblastoma multiforme (GBM) and later in many other cancer types. Here, we review this rapidly expanding field of research and discuss the unique biological and clinical features conferred to isocitrate dehydrogenase wild-type glioma cells by FGFR-TACC fusions. FGFR-TACC fusions generate powerful oncogenes that combine growth-promoting effects with aneuploidy through the activation of as yet unclear intracellular signaling mechanisms. FGFR-TACC fusions appear to be clonal tumor-initiating events that confer strong sensitivity to FGFR tyrosine kinase inhibitors. Screening assays have recently been reported for the accurate identification of FGFR-TACC fusion variants in human cancer, and early clinical data have shown promising effects in cancer patients harboring FGFR-TACC fusions and treated with FGFR inhibitors. Thus, FGFR-TACC gene fusions provide a "low-hanging fruit" model for the validation of precision medicine paradigms in human GBM.
Collapse
Affiliation(s)
- Anna Lasorella
- Institute for Cancer Genetics, Department of Pediatrics and Pathology, Columbia University Medical Center, New York, New York, USA
| | - Marc Sanson
- Sorbonne Universités UPMC Univ Paris 06, INSERM CNRS, U1127, UMR 7225, ICM, F-75013,Groupe Hospitalier Pitié-Salpêtrière, Service de Neurologie 2, Paris, France
| | - Antonio Iavarone
- Institute for Cancer Genetics, Department of Neurology and Pathology, Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
38
|
Li Q, Ye L, Guo W, Wang M, Huang S, Peng X. Overexpression of TACC3 is correlated with tumor aggressiveness and poor prognosis in prostate cancer. Biochem Biophys Res Commun 2017; 486:872-878. [PMID: 28336437 DOI: 10.1016/j.bbrc.2017.03.090] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 03/18/2017] [Indexed: 12/20/2022]
Abstract
Transforming acidic coiled-coil (TACC3), a member of the TACC family, has been shown to be deregulated in various cancers and involved in tumor progression. However, its biological role and molecular mechanism in prostate cancer (PCa) have not been elucidated. Herein, we reported that TACC3 was markedly upregulated in metastatic PCa. The upregulation of TACC3 was significantly associated with the metastasis status, tumor stage, total prostate-specific antigen (PSA) level, and Gleason score in patients with PCa. Moreover, a Kaplan-Meier survival analysis showed that patients with PCa who had high TACC3 expression experienced shorter disease-free survival than patients with a low TACC3 expression. In addition, the knockdown of TACC3 dramatically reduced the migratory speed and invasiveness of PCa cells. Furthermore, silencing TACC3 markedly suppressed the Wnt/β-catenin signaling pathway. Taken together, these findings uncover a supportive role for TACC3 in PCa metastasis, which is mediated by the activation of the Wnt/β-catenin signaling pathway, suggesting that TACC3 may serve as a prognostic marker in patients with metastatic PCa.
Collapse
Affiliation(s)
- Qiji Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou, Guangdong Province, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, 510080, Guangzhou, Guangdong Province, China
| | - Liping Ye
- Department of Experimental Research, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, 510060, Guangzhou, Guangdong Province, China
| | - Wei Guo
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou, Guangdong Province, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, 510080, Guangzhou, Guangdong Province, China
| | - Min Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou, Guangdong Province, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, 510080, Guangzhou, Guangdong Province, China
| | - Shuai Huang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou, Guangdong Province, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, 510080, Guangzhou, Guangdong Province, China
| | - Xinsheng Peng
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou, Guangdong Province, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, 510080, Guangzhou, Guangdong Province, China.
| |
Collapse
|
39
|
Chae YK, Ranganath K, Hammerman PS, Vaklavas C, Mohindra N, Kalyan A, Matsangou M, Costa R, Carneiro B, Villaflor VM, Cristofanilli M, Giles FJ. Inhibition of the fibroblast growth factor receptor (FGFR) pathway: the current landscape and barriers to clinical application. Oncotarget 2017; 8:16052-16074. [PMID: 28030802 PMCID: PMC5362545 DOI: 10.18632/oncotarget.14109] [Citation(s) in RCA: 231] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 11/22/2016] [Indexed: 12/19/2022] Open
Abstract
The fibroblast growth factor/fibroblast growth factor receptor (FGF/FGFR) is a tyrosine kinase signaling pathway that has a fundamental role in many biologic processes including embryonic development, tissue regeneration, and angiogenesis. Increasing evidence indicates that this pathway plays a critical role in oncogenesis via gene amplification, activating mutations, or translocation in tumors of various histologies. With multiplex sequencing technology, the detection of FGFR aberrations has become more common and is tied to cancer cell proliferation, resistance to anticancer therapies, and neoangiogenesis. Inhibition of FGFR signaling appears promising in preclinical studies, suggesting a pathway of clinical interest in the development of targeted therapy. Phase I trials have demonstrated a manageable toxicity profile. Currently, there are multiple FGFR inhibitors under study with many non-selective (multi-kinase) inhibitors demonstrating limited clinical responses. As we progress from the first generation of non-selective drugs to the second generation of selective FGFR inhibitors, it is clear that FGFR aberrations do not behave uniformly across cancer types; thus, a deeper understanding of biomarker strategies is undoubtedly warranted. This review aims to consolidate data from recent clinical trials with a focus on selective FGFR inhibitors. As Phase II clinical trials emerge, concentration on patient selection as it pertains to predicting response to therapy, feasible methods for overcoming toxicity, and the likelihood of combination therapies should be utilized. We will also discuss qualities that may be desirable in future generations of FGFR inhibitors, with the hope that overcoming these current barriers will expedite the availability of this novel class of medications.
Collapse
Affiliation(s)
- Young Kwang Chae
- Developmental Therapeutics Program of the Division of Hematology Oncology, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Keerthi Ranganath
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Christos Vaklavas
- Division of Hematology Oncology, University of Alabama Birmingham, Birmingham, AL, USA
| | - Nisha Mohindra
- Developmental Therapeutics Program of the Division of Hematology Oncology, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Aparna Kalyan
- Developmental Therapeutics Program of the Division of Hematology Oncology, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Maria Matsangou
- Developmental Therapeutics Program of the Division of Hematology Oncology, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ricardo Costa
- Developmental Therapeutics Program of the Division of Hematology Oncology, Chicago, IL, USA
| | - Benedito Carneiro
- Developmental Therapeutics Program of the Division of Hematology Oncology, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Victoria M. Villaflor
- Developmental Therapeutics Program of the Division of Hematology Oncology, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Massimo Cristofanilli
- Developmental Therapeutics Program of the Division of Hematology Oncology, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Francis J. Giles
- Developmental Therapeutics Program of the Division of Hematology Oncology, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
40
|
Dupain C, Harttrampf AC, Urbinati G, Geoerger B, Massaad-Massade L. Relevance of Fusion Genes in Pediatric Cancers: Toward Precision Medicine. MOLECULAR THERAPY-NUCLEIC ACIDS 2017; 6:315-326. [PMID: 28325298 PMCID: PMC5363511 DOI: 10.1016/j.omtn.2017.01.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/24/2017] [Accepted: 01/24/2017] [Indexed: 12/19/2022]
Abstract
Pediatric cancers differ from adult tumors, especially by their very low mutational rate. Therefore, their etiology could be explained in part by other oncogenic mechanisms such as chromosomal rearrangements, supporting the possible implication of fusion genes in the development of pediatric cancers. Fusion genes result from chromosomal rearrangements leading to the juxtaposition of two genes. Consequently, an abnormal activation of one or both genes is observed. The detection of fusion genes has generated great interest in basic cancer research and in the clinical setting, since these genes can lead to better comprehension of the biological mechanisms of tumorigenesis and they can also be used as therapeutic targets and diagnostic or prognostic biomarkers. In this review, we discuss the molecular mechanisms of fusion genes and their particularities in pediatric cancers, as well as their relevance in murine models and in the clinical setting. We also point out the difficulties encountered in the discovery of fusion genes. Finally, we discuss future perspectives and priorities for finding new innovative therapies in childhood cancer.
Collapse
Affiliation(s)
- Célia Dupain
- Vectorology and Anticancer Therapies, UMR 8203 CNRS, University Paris-Sud, Gustave Roussy, Université Paris-Saclay, 94805 Villejuif, France
| | - Anne Catherine Harttrampf
- Vectorology and Anticancer Therapies, UMR 8203 CNRS, University Paris-Sud, Gustave Roussy, Université Paris-Saclay, 94805 Villejuif, France
| | - Giorgia Urbinati
- Vectorology and Anticancer Therapies, UMR 8203 CNRS, University Paris-Sud, Gustave Roussy, Université Paris-Saclay, 94805 Villejuif, France
| | - Birgit Geoerger
- Vectorology and Anticancer Therapies, UMR 8203 CNRS, University Paris-Sud, Gustave Roussy, Université Paris-Saclay, 94805 Villejuif, France
| | - Liliane Massaad-Massade
- Vectorology and Anticancer Therapies, UMR 8203 CNRS, University Paris-Sud, Gustave Roussy, Université Paris-Saclay, 94805 Villejuif, France.
| |
Collapse
|
41
|
Genomic profiling of gynecologic cancers and implications for clinical practice. Curr Opin Obstet Gynecol 2016; 29:18-25. [PMID: 27984344 DOI: 10.1097/gco.0000000000000335] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
PURPOSE OF REVIEW This article summarizes advances in the application of next-generation sequencing (NGS) to the personalized treatment of gynecologic malignancies. RECENT FINDINGS Many recurrent genomic alterations (GA) in gynecologic malignancies have been identified by studies applying NGS to tumor tissue, which can provide insights into tumor biology, diagnostic or prognostic information, and potential targeted therapy options. NGS can be used to assay single genes, portions of multiple genes ("hot-spot" panels), or the complete coding sequence of a broad range of cancer-associated genes [i.e. comprehensive genomic profiling (CGP)]. CGP of a patient's tumor reveals to practitioners clinically relevant GA (CRGA) and associated biomarker-matched treatments, with a goal of improving therapeutic response while limiting cumulative chemotherapeutic toxicities. Although the use of precision medicine for gynecologic cancers holds much promise, the data detailing impact on survival and quality of life is still accumulating, lagging behind other areas of oncology. Enrolling gynecologic oncology patients in genotype-matched trials remains challenging and highlights the need for more molecular-based basket trials for reproductive tract malignancies. SUMMARY Identification of molecular subsets with distinct clinical attributes, prognostic significance, and targeted therapy directed options is now feasible in clinical gynecologic oncology practice.
Collapse
|
42
|
Development of RNA-FISH Assay for Detection of Oncogenic FGFR3-TACC3 Fusion Genes in FFPE Samples. PLoS One 2016; 11:e0165109. [PMID: 27930669 PMCID: PMC5145148 DOI: 10.1371/journal.pone.0165109] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 10/06/2016] [Indexed: 12/03/2022] Open
Abstract
Introduction and Objectives Oncogenic FGFR3-TACC3 fusions and FGFR3 mutations are target candidates for small molecule inhibitors in bladder cancer (BC). Because FGFR3 and TACC3 genes are located very closely on chromosome 4p16.3, detection of the fusion by DNA-FISH (fluorescent in situ hybridization) is not a feasible option. In this study, we developed a novel RNA-FISH assay using branched DNA probe to detect FGFR3-TACC3 fusions in formaldehyde-fixed paraffin-embedded (FFPE) human BC samples. Materials and Methods The RNA-FISH assay was developed and validated using a mouse xenograft model with human BC cell lines. Next, we assessed the consistency of the RNA-FISH assay using 104 human BC samples. In this study, primary BC tissues were stored as frozen and FFPE tissues. FGFR3-TACC3 fusions were independently detected in FFPE sections by the RNA-FISH assay and in frozen tissues by RT-PCR. We also analyzed the presence of FGFR3 mutations by targeted sequencing of genomic DNA extracted from deparaffinized FFPE sections. Results FGFR3-TACC3 fusion transcripts were identified by RNA-FISH and RT-PCR in mouse xenograft FFPE tissues using the human BC cell lines RT112 and RT4. These cell lines have been reported to be fusion-positive. Signals for FGFR3-TACC3 fusions by RNA-FISH were positive in 2/60 (3%) of non-muscle-invasive BC (NMIBC) and 2/44 (5%) muscle-invasive BC (MIBC) patients. The results of RT-PCR of all 104 patients were identical to those of RNA-FISH. FGFR3 mutations were detected in 27/60 (45%) NMIBC and 8/44 (18%) MIBC patients. Except for one NMIBC patient, FGFR3 mutation and FGFR3-TACC3 fusion were mutually exclusive. Conclusions We developed an RNA-FISH assay for detection of the FGFR3-TACC3 fusion in FFPE samples of human BC tissues. Screening for not only FGFR3 mutations, but also for FGFR3-TACC3 fusion transcripts has the potential to identify additional patients that can be treated with FGFR inhibitors.
Collapse
|
43
|
Kojima T, Kawai K, Miyazaki J, Nishiyama H. Biomarkers for precision medicine in bladder cancer. Int J Clin Oncol 2016; 22:207-213. [PMID: 27896485 DOI: 10.1007/s10147-016-1068-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 11/15/2016] [Indexed: 01/12/2023]
Abstract
Bladder cancer (BC) is classified as non-muscle-invasive BC (NMIBC) or muscle-invasive BC (MIBC). Because the recurrence and mortality rates of BC are high, suitable biomarkers for early detection, evaluation of prognosis, and surveillance of drug responses are needed. Urinary markers simplify surveillance schedules and improve early detection of tumors, especially in NMIBC. Various markers have been identified at DNA, RNA, and protein levels with different sensitivities and specificities. Several biomarkers show a higher sensitivity than urinary cytology, but they are not accurate enough to replace it. In terms of prediction of clinical outcome and treatment response of BC, conventional clinical and pathological parameters are widely used, but the predictive ability of these parameters is limited; therefore, molecular biomarkers in this field are strongly desired. Molecular profiling using fluid and tissue is becoming more feasible with recent developments in next-generation sequencing technologies. Currently, these profiling methods are beginning to be used for early detection, prediction of prognosis, and drug sensitivity. Furthermore, several groups used transcriptome profiling to classify MIBC into various distinct subtypes, showing distinct clinical behaviors and responses to chemotherapy and immune checkpoint inhibitors. The aim of this review is to provide a summary of the most relevant biomarkers that have been investigated as diagnostic and prognostic indicators of BC.
Collapse
Affiliation(s)
- Takahiro Kojima
- Department of Urology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Koji Kawai
- Department of Urology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Jun Miyazaki
- Department of Urology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Hiroyuki Nishiyama
- Department of Urology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
| |
Collapse
|
44
|
Rutherford EL, Lowery LA. Exploring the developmental mechanisms underlying Wolf-Hirschhorn Syndrome: Evidence for defects in neural crest cell migration. Dev Biol 2016; 420:1-10. [PMID: 27777068 PMCID: PMC5193094 DOI: 10.1016/j.ydbio.2016.10.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/03/2016] [Accepted: 10/18/2016] [Indexed: 01/20/2023]
Abstract
Wolf-Hirschhorn Syndrome (WHS) is a neurodevelopmental disorder characterized by mental retardation, craniofacial malformation, and defects in skeletal and heart development. The syndrome is associated with irregularities on the short arm of chromosome 4, including deletions of varying sizes and microduplications. Many of these genotypic aberrations in humans have been correlated with the classic WHS phenotype, and animal models have provided a context for mapping these genetic irregularities to specific phenotypes; however, there remains a significant knowledge gap concerning the cell biological mechanisms underlying these phenotypes. This review summarizes literature that has made recent contributions to this topic, drawing from the vast body of knowledge detailing the genetic particularities of the disorder and the more limited pool of information on its cell biology. Finally, we propose a novel characterization for WHS as a pathophysiology owing in part to defects in neural crest cell motility and migration during development.
Collapse
Affiliation(s)
- Erin L Rutherford
- Boston College, Department of Biology, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, United States
| | - Laura Anne Lowery
- Boston College, Department of Biology, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, United States.
| |
Collapse
|
45
|
Costa R, Carneiro BA, Taxter T, Tavora FA, Kalyan A, Pai SA, Chae YK, Giles FJ. FGFR3-TACC3 fusion in solid tumors: mini review. Oncotarget 2016; 7:55924-55938. [PMID: 27409839 PMCID: PMC5342462 DOI: 10.18632/oncotarget.10482] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 06/09/2016] [Indexed: 01/29/2023] Open
Abstract
Fibroblast growth factor receptors (FGFR) are transmembrane kinase proteins with growing importance in cancer biology given the frequency of molecular alterations and vast interface with multiple other signaling pathways. Furthermore, numerous FGFR inhibitors in clinical development demonstrate the expanding therapeutic relevance of this pathway. Indeed, results from early phase clinical trials already indicate that a subset of patients with advanced tumors derive benefit from FGFR targeted therapies. FGFR gene aberrations and FGFR gene rearrangements are relatively rare in solid malignancies. The recently described FGFR3-TACC3 fusion protein has a constitutively active tyrosine kinase domain and promotes aneuploidy. We summarize the prevalence data on FGFR3-TACC3 fusions among different histological tumor types and the preliminary evidence that this rearrangement represents a targetable molecular aberration in some patients with solid tumors.
Collapse
Affiliation(s)
- Ricardo Costa
- Developmental Therapeutics Program, Division of Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois, USA
| | - Benedito A. Carneiro
- Developmental Therapeutics Program, Division of Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois, USA
| | - Timothy Taxter
- Developmental Therapeutics Program, Division of Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Fabio A. Tavora
- Department of Pathology, Messejana Heart and Lung Hospital, Fortaleza, Brazil
| | - Aparna Kalyan
- Developmental Therapeutics Program, Division of Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois, USA
| | - Sachin A. Pai
- Developmental Therapeutics Program, Division of Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois, USA
| | - Young Kwang Chae
- Developmental Therapeutics Program, Division of Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois, USA
| | - Francis J. Giles
- Developmental Therapeutics Program, Division of Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
46
|
Tanner Y, Grose RP. Dysregulated FGF signalling in neoplastic disorders. Semin Cell Dev Biol 2016; 53:126-35. [DOI: 10.1016/j.semcdb.2015.10.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 10/08/2015] [Indexed: 12/31/2022]
|
47
|
Nelson KN, Meyer AN, Siari A, Campos AR, Motamedchaboki K, Donoghue DJ. Oncogenic Gene Fusion FGFR3-TACC3 Is Regulated by Tyrosine Phosphorylation. Mol Cancer Res 2016; 14:458-69. [DOI: 10.1158/1541-7786.mcr-15-0497] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/03/2016] [Indexed: 11/16/2022]
|
48
|
Paratala BS, Dolfi SC, Khiabanian H, Rodriguez-Rodriguez L, Ganesan S, Hirshfield KM. Emerging Role of Genomic Rearrangements in Breast Cancer: Applying Knowledge from Other Cancers. BIOMARKERS IN CANCER 2016; 8:1-14. [PMID: 26917980 PMCID: PMC4756769 DOI: 10.4137/bic.s34417] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 12/28/2015] [Accepted: 12/31/2015] [Indexed: 12/16/2022]
Abstract
Significant advances in our knowledge of cancer genomes are rapidly changing the way we think about tumor biology and the heterogeneity of cancer. Recent successes in genomically-guided treatment approaches accompanied by more sophisticated sequencing techniques have paved the way for deeper investigation into the landscape of genomic rearrangements in cancer. While considerable research on solid tumors has focused on point mutations that directly alter the coding sequence of key genes, far less is known about the role of somatic rearrangements. With many recurring alterations observed across tumor types, there is an obvious need for functional characterization of these genomic biomarkers in order to understand their relevance to tumor biology, therapy, and prognosis. As personalized therapy approaches are turning toward genomic alterations for answers, these biomarkers will become increasingly relevant to the practice of precision medicine. This review discusses the emerging role of genomic rearrangements in breast cancer, with a particular focus on fusion genes. In addition, it raises several key questions on the therapeutic value of such rearrangements and provides a framework to evaluate their significance as predictive and prognostic biomarkers.
Collapse
Affiliation(s)
- Bhavna S. Paratala
- Department of Medicine, Division of Medical Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- Department of Cellular and Molecular Pharmacology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Sonia C. Dolfi
- Department of Medicine, Division of Medical Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Hossein Khiabanian
- Department of Pathology, Division of Medical Informatics, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Lorna Rodriguez-Rodriguez
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Shridar Ganesan
- Department of Medicine, Division of Medical Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Kim M. Hirshfield
- Department of Medicine, Division of Medical Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| |
Collapse
|