1
|
Qin X, Fu L, Li C, Tan X, Yin X. Optimized inner ear organoids for efficient hair cell generation and ototoxicity response modeling. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-024-2803-1. [PMID: 39862345 DOI: 10.1007/s11427-024-2803-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/02/2024] [Indexed: 01/27/2025]
Abstract
Hair cells in the mammalian cochlea are highly vulnerable to damage from drug toxicity, noise exposure, aging, and genetic mutations, with no capacity for regeneration. Progress in hair cell protection research has been limited by the scarcity of cochlear tissue and suitable in vitro models. Here, we present a novel one-step, self-organizing inner ear organoid system optimized with small molecules, which bypasses the need for multi-step expansion and forced differentiation protocols. This approach efficiently generates hair cells and supporting cells that recapitulate the molecular, cellular, and structural characteristics of the inner ear. Single-cell RNA sequencing revealed the diversity and fidelity of cell populations within the organoids. Utilizing this platform, we validated the protective effects of candidate compounds against hair cell damage, highlighting its potential as a powerful tool for drug discovery and mechanistic studies of hair cell protection.
Collapse
Affiliation(s)
- Xuanhe Qin
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Liping Fu
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Chunying Li
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Xilin Tan
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Xiaolei Yin
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
2
|
Banti M, Garcia-Gil M, Guidotti L, Di Giuseppe G, Rapposelli S, Monti D, Tampucci S, De Leo M, Gado F, Nieri P, Manera C. Characterization and Otoprotective Effects of Polysaccharides from Arthrospira platensis. Molecules 2025; 30:224. [PMID: 39860094 PMCID: PMC11767895 DOI: 10.3390/molecules30020224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
Hearing loss is one of the most common sensory disorders in humans, and a large number of cases are due to ear cell damage caused by ototoxic drugs including anticancer agents, such as cisplatin. The recent literature reported that hearing loss is promoted by an excessive generation of reactive oxygen species (ROS) in cochlea cells, which causes oxidative stress. Recently, polysaccharides from the cyanobacterium Arthrospira platensis showed many biological activities, including antioxidant activity, suggesting their potential use to combat hearing loss. On these bases, this study describes the extraction, purification, and characterization of water-soluble polysaccharides from A. platensis (SPPs) and the investigation of their protective role against cisplatin toxicity on House Ear Institute-Organ of Corti (HEI-OC1) cells. The results showed that SPPs (5-80 µg/mL) induced a dose-dependent increase in viability, statistically significant at 40 µg/mL and 80 µg/mL. Moreover, SPPs, evaluated at 80 µg/mL, inhibited the cisplatin-induced ROS level increase in HEI-OC1. This evidence highlights the potential of SPPs as natural candidates to protect cochlear ear cells against ototoxic oxidative agents. Moreover, in view of the potential use of microalgal polysaccharides to realize hydrogels, SPPs could also represent a healthy carrier for other topically administered otoprotective agents.
Collapse
Affiliation(s)
- Matteo Banti
- Department of Pharmacy, University of Pisa, Via Bonanno, 6, 56126 Pisa, Italy; (M.B.); (S.R.); (D.M.); (S.T.); (M.D.L.)
| | - Mercedes Garcia-Gil
- Department of Biology, University of Pisa, Via Luca Ghini, 13, 56126 Pisa, Italy; (M.G.-G.); (L.G.); (G.D.G.)
- Interdepartmental Center of Marine Pharmacology (MarinePHARMA), University of Pisa, 56126 Pisa, Italy
- Center for Instrument Sharing of the University of Pisa (CISUP), University of Pisa, Lungarno Pacinotti, 43/44, 56126 Pisa, Italy
| | - Lorenzo Guidotti
- Department of Biology, University of Pisa, Via Luca Ghini, 13, 56126 Pisa, Italy; (M.G.-G.); (L.G.); (G.D.G.)
| | - Graziano Di Giuseppe
- Department of Biology, University of Pisa, Via Luca Ghini, 13, 56126 Pisa, Italy; (M.G.-G.); (L.G.); (G.D.G.)
- Interdepartmental Center of Marine Pharmacology (MarinePHARMA), University of Pisa, 56126 Pisa, Italy
- Center for Instrument Sharing of the University of Pisa (CISUP), University of Pisa, Lungarno Pacinotti, 43/44, 56126 Pisa, Italy
| | - Simona Rapposelli
- Department of Pharmacy, University of Pisa, Via Bonanno, 6, 56126 Pisa, Italy; (M.B.); (S.R.); (D.M.); (S.T.); (M.D.L.)
- Center for Instrument Sharing of the University of Pisa (CISUP), University of Pisa, Lungarno Pacinotti, 43/44, 56126 Pisa, Italy
| | - Daniela Monti
- Department of Pharmacy, University of Pisa, Via Bonanno, 6, 56126 Pisa, Italy; (M.B.); (S.R.); (D.M.); (S.T.); (M.D.L.)
- Interdepartmental Center of Marine Pharmacology (MarinePHARMA), University of Pisa, 56126 Pisa, Italy
- Center for Instrument Sharing of the University of Pisa (CISUP), University of Pisa, Lungarno Pacinotti, 43/44, 56126 Pisa, Italy
| | - Silvia Tampucci
- Department of Pharmacy, University of Pisa, Via Bonanno, 6, 56126 Pisa, Italy; (M.B.); (S.R.); (D.M.); (S.T.); (M.D.L.)
- Interdepartmental Center of Marine Pharmacology (MarinePHARMA), University of Pisa, 56126 Pisa, Italy
- Center for Instrument Sharing of the University of Pisa (CISUP), University of Pisa, Lungarno Pacinotti, 43/44, 56126 Pisa, Italy
| | - Marinella De Leo
- Department of Pharmacy, University of Pisa, Via Bonanno, 6, 56126 Pisa, Italy; (M.B.); (S.R.); (D.M.); (S.T.); (M.D.L.)
- Interdepartmental Center of Marine Pharmacology (MarinePHARMA), University of Pisa, 56126 Pisa, Italy
- Center for Instrument Sharing of the University of Pisa (CISUP), University of Pisa, Lungarno Pacinotti, 43/44, 56126 Pisa, Italy
| | - Francesca Gado
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy;
| | - Paola Nieri
- Department of Pharmacy, University of Pisa, Via Bonanno, 6, 56126 Pisa, Italy; (M.B.); (S.R.); (D.M.); (S.T.); (M.D.L.)
- Interdepartmental Center of Marine Pharmacology (MarinePHARMA), University of Pisa, 56126 Pisa, Italy
- Center for Instrument Sharing of the University of Pisa (CISUP), University of Pisa, Lungarno Pacinotti, 43/44, 56126 Pisa, Italy
| | - Clementina Manera
- Department of Pharmacy, University of Pisa, Via Bonanno, 6, 56126 Pisa, Italy; (M.B.); (S.R.); (D.M.); (S.T.); (M.D.L.)
- Interdepartmental Center of Marine Pharmacology (MarinePHARMA), University of Pisa, 56126 Pisa, Italy
- Center for Instrument Sharing of the University of Pisa (CISUP), University of Pisa, Lungarno Pacinotti, 43/44, 56126 Pisa, Italy
| |
Collapse
|
3
|
Sun Y, Zou S, Xu X, Xu S, Sun H, Tang M, Kong W, Chen X, He Z. Inhibition of the cGAS‑STING Pathway Reduces Cisplatin-Induced Inner Ear Hair Cell Damage. Neurosci Bull 2024:10.1007/s12264-024-01334-8. [PMID: 39676140 DOI: 10.1007/s12264-024-01334-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 09/13/2024] [Indexed: 12/17/2024] Open
Abstract
Although cisplatin is a widely used chemotherapeutic agent, it is severely toxic and causes irreversible hearing loss, restricting its application in clinical settings. This study aimed to determine the molecular mechanism underlying cisplatin-induced ototoxicity. Here, we established in vitro and in vivo ototoxicity models of cisplatin-induced hair cell loss, and our results showed that reducing STING levels decreased inflammatory factor expression and hair cell death. In addition, we found that cisplatin-induced mitochondrial dysfunction was accompanied by cytosolic DNA, which may act as a critical linker between the cyclic GMP-AMP synthesis-stimulator of interferon genes (cGAS-STING) pathway and the pathogenesis of cisplatin-induced hearing loss. H-151, a specific inhibitor of STING, reduced hair cell damage and ameliorated the hearing loss caused by cisplatin in vivo. This study underscores the role of cGAS-STING in cisplatin ototoxicity and presents H-151 as a promising therapeutic for hearing loss.
Collapse
Affiliation(s)
- Ying Sun
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Shengyu Zou
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Xiaoxiang Xu
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Shan Xu
- Department of Otolaryngology, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Haiying Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Mingliang Tang
- Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Suzhou Medical College of Soochow University, Soochow University, Suzhou, 215000, China
| | - Weijia Kong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiong Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Zuhong He
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
4
|
Hu Y, Luo X, Chen H, Ke J, Feng M, Yuan W. MiR-204-5p regulates SIRT1 to promote the endoplasmic reticulum stress-induced apoptosis of inner ear cells in C57BL/6 mice with hearing loss. PLoS One 2024; 19:e0309892. [PMID: 39531447 PMCID: PMC11556682 DOI: 10.1371/journal.pone.0309892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 08/20/2024] [Indexed: 11/16/2024] Open
Abstract
PURPOSE This study investigated the effect of miR-204-5p-mediated silencing of SIRT1 on the development of deafness in C57BL/6 mice and the roles of miR-204-5p and SIRT1 in deafness. METHODS Auditory brainstem response recordings, H&E staining, and immunohistochemistry were used to observe changes in hearing function and cochlear tissue morphology in 2-month-old and 15-month-old C57BL/6 mice. A senescence model was induced using H2O2 in inner ear cells (HEI-OC1). Changes in HEI-OC1 cell proliferation were detected using the CCK-8 assay, whereas flow cytometry was used to detect changes in apoptosis. MiR-204-5p expression was measured via RT‒qPCR. The SIRT1 agonist RSV and a miR-204-5p inhibitor were used to study changes in ER stress (ERS), proliferation, and apoptosis in HEI-OC1 cells. Western blotting was performed to detect changes in ATF4, CHOP, SIRT1, PERK, p-PERK, Bax, and Bcl-2 protein levels. A dual-luciferase reporter gene assay was carried out to assess the ability of miR-204-5p to target SIRT1. RESULTS Relative miR-204-5p expression levels in the cochleae of aged C57BL/6 mice increased, whereas SIRT1 expression levels decreased, and miR-204-5p and SIRT1 expression levels were negatively correlated. ERS and increased 8-OHDG levels were observed in aged C57BL/6 mice. In a model of inner ear cell aging, H2O2 treatment induced increases in miR-204-5p expression and ERS-mediated apoptosis. MiR-204-5p was found to target SIRT1 and inhibit its expression. SIRT1 activation and a miR-204-5p inhibitor promoted HEI-OC1 cell proliferation and reduced apoptosis. The miR-204-5p inhibitor regulated expression of the ERS proteins PERK, ATF4, and CHOP to upregulate Bcl-2 and downregulate Bax. CONCLUSION This study identified the roles of miR-204-5p and SIRT1 in deafness in C57BL/6 mice and investigated the loss of cochlear outer hair cells and the involvement of apoptosis and ERS in deafness.
Collapse
Affiliation(s)
- Yaqin Hu
- Chongqing Medical University, Chongqing, China
- Department of Otolaryngology, Chongqing General Hospital, Chongqing, China
| | - Xiaoqin Luo
- Hospital of Traditional Chinese Medicine Affiliated to Southwest Medical University, Luzhou, China
| | - Hongjiang Chen
- Chongqing Medical University, Chongqing, China
- Department of Otolaryngology, Chongqing General Hospital, Chongqing, China
| | - Jing Ke
- Department of Otolaryngology, Chongqing General Hospital, Chongqing, China
| | - Menglong Feng
- Department of Otolaryngology, Chongqing General Hospital, Chongqing, China
| | - Wei Yuan
- Chongqing Medical University, Chongqing, China
- Department of Otolaryngology, Chongqing General Hospital, Chongqing, China
| |
Collapse
|
5
|
Lin YC, Ho YJ, Lin YY, Liao AH, Kuo CY, Chen HK, Chen HC, Wang CH, Shih CP. Notoginsenoside R1 Attenuates Cisplatin-Induced Ototoxicity by Inducing Heme Oxygenase-1 Expression and Suppressing Oxidative Stress. Int J Mol Sci 2024; 25:11444. [PMID: 39518996 PMCID: PMC11546915 DOI: 10.3390/ijms252111444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Cisplatin-induced ototoxicity occurs in approximately half of patients treated with cisplatin, and pediatric patients are more likely to be affected than adults. The oxidative stress elicited by cisplatin is a key contributor to the pathogenesis of ototoxicity. Notoginsenoside R1 (NGR1), the main bioactive compound of Panax notoginseng saponins, has antioxidant and antiapoptotic effects. This study investigated the ability of NGR1 to protect against cisplatin-induced damage in auditory HEI-OC1 cells and neonatal murine cochlear explants. The viability of HEI-OC1 cells treated with NGR1 and cisplatin was greater than that of cells treated with cisplatin alone. The results of Western blots and immunostaining for cleaved caspase-3 revealed that the level of cleaved caspase-3 in the cells treated with cisplatin was repressed by NGR1. NGR1 attenuated cisplatin-induced cytotoxicity in HEI-OC1 cells. Intracellular reactive oxygen species (ROS) were detected with a DCFDA assay and immunostaining for 4-HNE. The result revealed that its expression was induced by cisplatin and was significantly reduced by NGR1. Moreover, NGR1 can promote heme oxygenase-1 (HO-1) expression at both the mRNA and protein levels. ZNPPIX, an HO-1 inhibitor, was administered to cisplatin-treated cells to investigate the role of HO-1 in the protective effect of NGR1. The suppression of HO-1 activity by ZNPPIX markedly abolished the protective effect of NGR1 on cisplatin-treated cells. Therefore, NGR1 protects cells from cisplatin-induced damage by activating HO-1 and its antioxidative activity. In cochlear explants, NGR1 protects cochlear hair cells and attenuates cisplatin-induced ototoxicity by inhibiting ROS generation. In the group treated with cisplatin alone, prominent loss of outer hair cells and severe damage to the structure of the stereociliary bundles of inner and outer hair cells were observed. Compared with the group treated with cisplatin alone, less loss of outer hair cells (p = 0.009) and better preservation of the stereociliary bundles of hair cells were observed in the group treated with cisplatin and NGR1. In conclusion, these findings indicate that NGR1 can protect against cisplatin-induced ototoxicity by inducing HO-1 expression and suppressing oxidative stress.
Collapse
Affiliation(s)
- Yi-Chun Lin
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-C.L.); (Y.-Y.L.); (C.-Y.K.); (H.-K.C.); (H.-C.C.); (C.-H.W.)
| | - Yi-Jung Ho
- School of Pharmacy, National Defense Medical Center, Taipei 11490, Taiwan;
- Graduate Institute of Life Science, National Defense Medical Center, Taipei 11490, Taiwan
| | - Yuan-Yung Lin
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-C.L.); (Y.-Y.L.); (C.-Y.K.); (H.-K.C.); (H.-C.C.); (C.-H.W.)
| | - Ai-Ho Liao
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan;
| | - Chao-Yin Kuo
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-C.L.); (Y.-Y.L.); (C.-Y.K.); (H.-K.C.); (H.-C.C.); (C.-H.W.)
| | - Hang-Kang Chen
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-C.L.); (Y.-Y.L.); (C.-Y.K.); (H.-K.C.); (H.-C.C.); (C.-H.W.)
| | - Hsin-Chien Chen
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-C.L.); (Y.-Y.L.); (C.-Y.K.); (H.-K.C.); (H.-C.C.); (C.-H.W.)
| | - Chih-Hung Wang
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-C.L.); (Y.-Y.L.); (C.-Y.K.); (H.-K.C.); (H.-C.C.); (C.-H.W.)
- Department of Otolaryngology, Taipei City Hospital, Taipei 103212, Taiwan
| | - Cheng-Ping Shih
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-C.L.); (Y.-Y.L.); (C.-Y.K.); (H.-K.C.); (H.-C.C.); (C.-H.W.)
| |
Collapse
|
6
|
Abdelrasol H, Chopra A, Shvachiy L, Beutner D, Outeiro TF, Setz C. Stress granules formation in HEI-OC1 auditory cells and in H4 human neuroglioma cells secondary to cisplatin exposure. Cell Stress 2024; 8:83-98. [PMID: 39575153 PMCID: PMC11580520 DOI: 10.15698/cst2024.10.299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 08/27/2024] [Accepted: 09/04/2024] [Indexed: 11/24/2024] Open
Abstract
Stress granules (SGs) are highly dynamic micromolecular membraneless condensates that generate in cells subjected to stress. Formed from pools of untranslating messenger ribonucleoproteins (RNP), SGs dynamics constitute vital processes essential for cell survival. Here, we investigate whether established cytotoxic agents, such as the platinum-based chemotherapeutic agent cisplatin and the aminoglycoside antibiotic gentamicin, elicit SG formation in the House Ear Institute-Organ of Corti-1 (HEI-OC1) auditory cell line, H4 human neuroglioma cells and HEK-293T human embryonic kidney cells. Cells were treated with cisplatin or gentamicin for specific durations at designated concentrations. SG formation was assessed using immunocytochemistry and live cell imaging. Levels of essential proteins involved in SG assembly were evaluated using immunoblotting. We observed cisplatin-associated SG assembly in HEI-OC1 and H4 cells via confocal microscopy through antibody colabeling of G3BP1 with PABP or Caprin1. While maintaining an unchanged pattern of expression of main constituent SG proteins, cisplatin-related SGs in H4 cells persisted for at least 12 h after drug removal. Cells subjected to gentamicin exposure did not exhibit SGs. Our findings offer insights into subcellular mechanisms related to cisplatin-associated cytotoxicity, highlighting the need for future studies to further investigate this stress-response mechanism.
Collapse
Affiliation(s)
- Hebatallah Abdelrasol
- University Medical Center Göttingen, Department of Experimental Neurodegeneration, Center for Biostructural Imaging of NeurodegenerationGöttingenGermany
| | - Avika Chopra
- University Medical Center Göttingen, Department of Experimental Neurodegeneration, Center for Biostructural Imaging of NeurodegenerationGöttingenGermany
| | - Liana Shvachiy
- University Medical Center Göttingen, Department of Experimental Neurodegeneration, Center for Biostructural Imaging of NeurodegenerationGöttingenGermany
| | - Dirk Beutner
- University Medical Center Göttingen, Department of Otolaryngology-Head and Neck Surgery, InnerEarLabGöttingenGermany
| | - Tiago F Outeiro
- University Medical Center Göttingen, Department of Experimental Neurodegeneration, Center for Biostructural Imaging of NeurodegenerationGöttingenGermany
- Max Planck Institute for Multidisciplinary SciencesGöttingenGermany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle UniversityNewcastle upon TyneUnited Kingdom
- Scientific employee with an honorary contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) - German Center for Neurodegenerative Diseases, Göttingen, Germany.
| | - Cristian Setz
- University Medical Center Göttingen, Department of Experimental Neurodegeneration, Center for Biostructural Imaging of NeurodegenerationGöttingenGermany
- University Medical Center Göttingen, Department of Otolaryngology-Head and Neck Surgery, InnerEarLabGöttingenGermany
| |
Collapse
|
7
|
Dindelegan MG, Blebea CM, Perde-Schrepler M, Necula V, Maniu AA, Pascalau V, Popa C, Susman S, Gherman LM, Buzoianu AD. Hydrogel Matrix Containing Microcarriers for Dexamethasone Delivery to Protect Against Cisplatin-Induced Hearing Loss. Cureus 2024; 16:e71142. [PMID: 39386930 PMCID: PMC11463264 DOI: 10.7759/cureus.71142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2024] [Indexed: 10/12/2024] Open
Abstract
A functional hydrogel containing biopolymer microcarriers loaded with dexamethasone was developed to address the hearing loss that results from cisplatin ototoxicity. The drug delivery platform was tested both in vitro in the HEI-OC1 inner ear cell line and in vivo in a rat animal model. The newly described formula offered prolonged release of the contained dexamethasone for up to six days and transformed into a solid state at body temperature, thus counteracting its clearing through the Eustachian tube when injected into the middle ear. When tested in vitro, the inner ear cells exposed to cisplatin showed significantly higher viability at 48 hours when seeded on hydrogel containing dexamethasone-loaded microparticles than the cells treated with free dexamethasone. In the rat in vivo model, the ears of the rats treated with the hydrogel formulation presented better hearing thresholds after cisplatin administration than contralateral ears treated with free dexamethasone. The ears of the rats treated with microcarriers without inclusion in the functional hydrogel obtained better results than the dexamethasone treatment group but not as good as the hydrogel-containing microcarrier group. Histological assessment of the rats' inner ears showed better integrity of the structures and lower apoptosis in the microcarrier-treated groups than in the control group. Overall, the newly described microcarrier of dexamethasone offers better protection against cisplatin-induced hearing loss than free dexamethasone, especially when contained in a functional hydrogel formulation.
Collapse
Affiliation(s)
- Maximilian G Dindelegan
- Department of Clinical Pharmacology, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca, ROU
- Department of Surgery - Practical Abilities, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca, ROU
- Department of Otolaryngology, Head and Neck Surgery, Institute of Oncology "Prof. Dr. Ion Chiricuță", Cluj-Napoca, ROU
| | - Cristina M Blebea
- Department of Otorhinolaringology, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca, ROU
| | - Maria Perde-Schrepler
- Department of Otorhinolaringology, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca, ROU
- Department of Radiobiology and Tumoral Biology, Institute of Oncology "Prof. Dr. Ion Chiricuță", Cluj-Napoca, ROU
| | - Violeta Necula
- Department of Otorhinolaringology, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca, ROU
| | - Alma A Maniu
- Department of Otorhinolaringology, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca, ROU
| | - Violeta Pascalau
- Department of Materials Science and Engineering, Technical University of Cluj-Napoca, Cluj-Napoca, ROU
| | - Catalin Popa
- Department of Materials Science and Engineering, Technical University of Cluj-Napoca, Cluj-Napoca, ROU
| | - Sergiu Susman
- Department of Morphological Sciences, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca, ROU
- Department of Pathology, IMOGEN Research Center, Cluj-Napoca, ROU
| | - Luciana M Gherman
- Laboratory Animal Facility - Centre for Experimental Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca, ROU
| | - Anca D Buzoianu
- Department of Clinical Pharmacology, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca, ROU
| |
Collapse
|
8
|
Choi SJ, Lee SJ, Lee D, Im GJ, Jung HH, Lee SU, Park E. Protective Effect of Memantine on Cisplatin-Induced Ototoxicity: An In Vitro Study. Otol Neurotol 2024; 45:998-1005. [PMID: 39186064 DOI: 10.1097/mao.0000000000004317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
HYPOTHESIS Memantine, an N -methyl- d -aspartate receptor antagonist, is widely used to treat Alzheimer's disease and has been found to have potential neuroprotective effects. In this study, we evaluated the protective effects of memantine against cisplatin-induced ototoxicity. BACKGROUND Cisplatin is a widely used anticancer drug for various cancers; however, its use is limited by its side effects, including ototoxicity. Several drugs have been developed to reduce cisplatin toxicity. In this study, we treated cisplatin-damaged cochlear hair cells with memantine and evaluated its protective effects. METHOD House Ear Institute Organ of Corti 1 (HEI-OC1) cells and cochlear explants were treated with cisplatin or memantine. Cell viability, apoptotic patterns, reactive oxygen species (ROS) production, Bcl-2/caspase-3 activity, and cell numbers were measured to evaluate the anti-apoptotic and antioxidative effects of memantine. RESULT Memantine treatment significantly improved cell viability and reduced cisplatin-induced apoptosis in auditory cells. Bcl-2/caspase-3 activity was also significantly increased, suggesting anti-apoptotic effects against cisplatin-induced ototoxicity. CONCLUSION Our results suggest that memantine protects against cisplatin-induced ototoxicity in vitro, providing a potential new strategy for preventing hearing loss in patients undergoing cisplatin chemotherapy.
Collapse
Affiliation(s)
- Soo Jeong Choi
- Department of Otolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, Republic of Korea
| | - Soo Jin Lee
- Department of Otolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, Republic of Korea
| | - Dabin Lee
- Department of Otolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, Republic of Korea
| | - Gi Jung Im
- Department of Otolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hak Hyun Jung
- Department of Otolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, Republic of Korea
| | | | | |
Collapse
|
9
|
Nassauer L, Schott JW, Harre J, Warnecke A, Morgan M, Galla M, Schambach A. The caspase-inhibitor Emricasan efficiently counteracts cisplatin- and neomycin-induced cytotoxicity in cochlear cells. J Mol Med (Berl) 2024; 102:1163-1174. [PMID: 39110182 PMCID: PMC11358181 DOI: 10.1007/s00109-024-02472-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/07/2024] [Accepted: 07/25/2024] [Indexed: 08/30/2024]
Abstract
Cisplatin is a chemotherapeutic agent widely used to treat solid tumors. However, it can also be highly ototoxic, resulting in high-frequency hearing loss. Cisplatin causes degeneration of hair cells (HCs) and spiral ganglion neurons (SGNs) in the inner ear, which are essential components of the hearing process and cannot be regenerated in mammals. As the affected cells primarily die by apoptosis, we tested several anti-apoptotic small molecules to protect these cells from drug-induced toxicity. We found that the general caspase inhibitor Emricasan could significantly counteract the toxic effects of cisplatin in House Ear Institute-Organ of Corti 1 (HEI-OC1) cells, phoenix auditory cells, and primary SGNs. Importantly, the anti-cytotoxic effect in neuronal cells was even more pronounced than the effect of sodium thiosulfate (STS), which is currently the only approved prevention option for cisplatin-induced ototoxicity. Finally, we tested the protective effect of Emricasan treatment in the context of another ototoxic drug, i.e., the aminoglycoside antibiotic neomycin, and again found a significant increase in cell viability when the cultures were co-treated with Emricasan. These results suggest a promising strategy to prevent ototoxicity in patients by temporarily blocking the apoptotic pathway when applying cisplatin or aminoglycoside antibiotics. KEY MESSAGES: Anti-apoptotic small molecules can reduce cisplatin-induced toxicity. Emricasan can effectively exert its anti-apoptotic effect on cochlear cells. Strong protection from cisplatin- and neomycin-induced cytotoxicity with Emricasan. Sodium thiosulfate and Emricasan provide similar protective effects to cisplatin-treated cells. Emricasan is more potent than sodium thiosulfate in reducing neomycin-induced cytotoxicity.
Collapse
Affiliation(s)
- Larissa Nassauer
- Institute of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Strasse 1, D-30625, Hannover, Germany
| | - Juliane W Schott
- Institute of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Strasse 1, D-30625, Hannover, Germany
| | - Jennifer Harre
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, 30625, Hannover, Germany
- Cluster of Excellence "Hearing4all", Hannover Medical School, 30625, Hannover, Germany
| | - Athanasia Warnecke
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, 30625, Hannover, Germany
- Cluster of Excellence "Hearing4all", Hannover Medical School, 30625, Hannover, Germany
| | - Michael Morgan
- Institute of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Strasse 1, D-30625, Hannover, Germany
| | - Melanie Galla
- Institute of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Strasse 1, D-30625, Hannover, Germany.
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Strasse 1, D-30625, Hannover, Germany.
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
10
|
Suzuki Y, Hayashi K, Goto F, Nomura Y, Fujimoto C, Makishima M. Premature senescence is regulated by crosstalk among TFEB, the autophagy lysosomal pathway and ROS derived from damaged mitochondria in NaAsO 2-exposed auditory cells. Cell Death Discov 2024; 10:382. [PMID: 39191766 DOI: 10.1038/s41420-024-02139-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 07/13/2024] [Accepted: 08/08/2024] [Indexed: 08/29/2024] Open
Abstract
Age-related hearing loss (ARHL) is one of the most prevalent types of sensory decline in a superaging society. Although various studies have focused on the effect of oxidative stress on the inner ear as an inducer of ARHL, there are no effective preventive approaches for ARHL. Recent studies have suggested that oxidative stress-induced DNA damage responses (oxidative DDRs) drive cochlear cell senescence and contribute to accelerated ARHL, and autophagy could function as a defense mechanism against cellular senescence in auditory cells. However, the underlying mechanism remains unclear. Sodium arsenite (NaAsO2) is a unique oxidative stress inducer associated with reactive oxygen species (ROS) that causes high-tone hearing loss similar to ARHL. Transcription factor EB (TFEB) functions as a master regulator of the autophagy‒lysosome pathway (ALP), which is a potential target during aging and the pathogenesis of various age-related diseases. Here, we focused on the function of TFEB and the impact of intracellular ROS as a potential target for ARHL treatment in a NaAsO2-induced auditory premature senescence model. Our results suggested that short exposure to NaAsO2 leads to DNA damage, lysosomal damage and mitochondrial damage in auditory cells, triggering temporary signals for TFEB transport into the nucleus and, as a result, causing insufficient autophagic flux and declines in lysosomal function and biogenesis and mitochondrial quality. Then, intracellular ROS derived from damaged mitochondria play a role as a second messenger to induce premature senescence in auditory cells. These findings suggest that TFEB activation via transport into the nucleus contributes to anti-senescence activity in auditory cells and represents a new therapeutic target for ARHL. We have revealed the potential function of TFEB as a master regulator of the induction of oxidative stress-induced premature senescence and the senescence-associated secretion phenotype (SASP) in auditory cells, which regulates ALP and controls mitochondrial quality through ROS production.
Collapse
Affiliation(s)
- Yuna Suzuki
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, Tokyo, Japan
| | - Ken Hayashi
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, Tokyo, Japan.
- Department of Otolaryngology, Sakura Koedo Clinic, Saitama, Japan.
- Department of Otolaryngology-Head and Neck Surgery, Keio University, Tokyo, Japan.
| | - Fumiyuki Goto
- Department of Otolaryngology-Head and Neck Surgery, Tokai University, Kanagawa, Japan
| | - Yasuyuki Nomura
- Department of Otolaryngology-Head and Neck Surgery, Nihon University, Tokyo, Japan
| | - Chisato Fujimoto
- Department of Otolaryngology and Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Makoto Makishima
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
11
|
Zallocchi M, Vijayakumar S, Fleegel J, Batalkina L, Brunette KE, Shukal D, Chen Z, Devuyst O, Liu H, He DZZ, Imami AS, Hamoud ARA, McCullumsmith R, Conda-Sheridan M, De Campos LJ, Zuo J. Piplartine attenuates aminoglycoside-induced TRPV1 activity and protects from hearing loss in mice. Sci Transl Med 2024; 16:eadn2140. [PMID: 39110778 PMCID: PMC11392653 DOI: 10.1126/scitranslmed.adn2140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/17/2024] [Accepted: 06/28/2024] [Indexed: 09/15/2024]
Abstract
Hearing loss is a major health concern in our society, affecting more than 400 million people worldwide. Among the causes, aminoglycoside therapy can result in permanent hearing loss in 40% to 60% of patients receiving treatment, and despite these high numbers, no drug for preventing or treating this type of hearing loss has yet been approved by the US Food and Drug Administration. We have previously conducted high-throughput screenings of bioactive compounds, using zebrafish as our discovery platform, and identified piplartine as a potential therapeutic molecule. In the present study, we expanded this work and characterized piplartine's physicochemical and therapeutic properties. We showed that piplartine had a wide therapeutic window and neither induced nephrotoxicity in vivo in zebrafish nor interfered with aminoglycoside antibacterial activity. In addition, a fluorescence-based assay demonstrated that piplartine did not inhibit cytochrome C activity in microsomes. Coadministration of piplartine protected from kanamycin-induced hair cell loss in zebrafish and protected hearing function, outer hair cells, and presynaptic ribbons in a mouse model of kanamycin ototoxicity. Last, we investigated piplartine's mechanism of action by phospho-omics, immunoblotting, immunohistochemistry, and molecular dynamics experiments. We found an up-regulation of AKT1 signaling in the cochleas of mice cotreated with piplartine. Piplartine treatment normalized kanamycin-induced up-regulation of TRPV1 expression and modulated the gating properties of this receptor. Because aminoglycoside entrance to the inner ear is, in part, mediated by TRPV1, these results suggested that by regulating TRPV1 expression, piplartine blocked aminoglycoside's entrance, thereby preventing the long-term deleterious effects of aminoglycoside accumulation in the inner ear compartment.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhiyong Chen
- Institute of Physiology, University of Zürich, Zürich CH-8057, Switzerland
| | - Olivier Devuyst
- Institute of Physiology, University of Zürich, Zürich CH-8057, Switzerland
| | - Huizhan Liu
- Creighton University School of Medicine, Omaha, NE 68178, USA
| | - David Z Z He
- Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Ali Sajid Imami
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, USA
| | | | - Robert McCullumsmith
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, USA
- Neurosciences Institute, ProMedica, Toledo, OH 43614, USA
| | | | | | - Jian Zuo
- Creighton University School of Medicine, Omaha, NE 68178, USA
- Ting Therapeutics LLC, La Jolla, CA 92037, USA
| |
Collapse
|
12
|
Ionescu CM, Kovacevic B, Jones MA, Wagle SR, Foster T, Mikov M, Mooranian A, Al-Salami H. Probucol-Ursodeoxycholic Acid Otic Formulations: Stability and In Vitro Assessments for Hearing Loss Treatment. J Pharm Sci 2024; 113:2595-2604. [PMID: 38734207 DOI: 10.1016/j.xphs.2024.04.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
Targeted drug delivery is an ongoing aspect of scientific research that is expanding through the design of micro- and nanoparticles. In this paper, we focus on spray dried microparticles as carriers for a repurposed lipophilic antioxidant (probucol). We characterise the microparticles and quantify probucol prior to assessing cytotoxicity on both control and cisplatin treated hair cells (known as House Ear Institute-Organ of Corti 1; HEI-OC1). The addition of water-soluble polymers to 2% β-cyclodextrin resulted in a stable probucol formulation. Ursodeoxycholic acid (UDCA) used as formulation excipient increases probucol miscibility and microparticle drug content. Formulation characterisations reveals spray drying results in spherical UDCA-drug microparticles with a mean size distribution of ∼5-12 μm. Probucol microparticles show stable short-term storage conditions accounting for only ∼10% loss over seven days. By mimicking cell culture conditions, both UDCA-probucol (67%) and probucol only (82%) microparticles show drug release in the initial two hours. Furthermore, probucol formulations with or without UDCA preserve cell viability and reduce cisplatin-induced oxidative stress. Mitochondrial bioenergetics results in lower basal respiration and non-mitochondrial respiration, with higher maximal respiration, spare capacity, ATP production and proton leak within cisplatin challenged UDCA-probucol groups. Overall, we present a facile method for incorporating lipophilic antioxidant carriers in polymer-based particles that are tolerated by HEI-OC1 cells and show stable drug release, sufficient in reducing cisplatin-induced reactive oxygen species accumulation.
Collapse
Affiliation(s)
- Corina M Ionescu
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, Western Australia, Australia
| | - Bozica Kovacevic
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, Western Australia, Australia
| | - Melissa A Jones
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, Western Australia, Australia
| | - Susbin R Wagle
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, Western Australia, Australia
| | - Thomas Foster
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, Western Australia, Australia
| | - Momir Mikov
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Armin Mooranian
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, Western Australia, Australia; School of Pharmacy, University of Otago, Dunedin, Otago, New Zealand.
| | - Hani Al-Salami
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, Western Australia, Australia; Medical School, University of Western Australia, Perth, Western Australia, Australia.
| |
Collapse
|
13
|
Berger E, Brandes G, Kaiser O, Reifenrath J, Lenarz T, Wissel K, Durisin M. Induction of cell death by sodium hexachloroplatinate (IV) in the HEI-OC1 cell line, primary rat spiral ganglion cells and rat organ of Corti explants. PLoS One 2024; 19:e0307973. [PMID: 39058727 PMCID: PMC11280268 DOI: 10.1371/journal.pone.0307973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Although cochlear implants have become a well-established method for patients with sensory neural hearing loss, clinical results indicate that in some cases, corrosion of electrode contacts leads to high impedance that interferes with successful stimulation of the auditory nerve. As it is unclear whether corrosion products induce cell damage, we focused on cell culture models of the organ of Corti cell line (HEI-OC1), rat spiral ganglion cells (SGC) and rat organ of Corti explant (OCex) cultivated from neonatal rat cochleae to characterize the cytotoxicity of sodium hexachloroplatinate (IV) (Na2(PtCl6)). The oxidative activity in HEI-OC1 cells decreased with increasing Na2(PtCl6) concentrations between 8 and 16 ng/μl, and live cell staining with Calcein acetoxymethyl/Ethidium homodimer III revealed an increasing number of cells with disrupted membranes. Ultrastructural evidence of mitophagy followed by necroptosis was detected. Additionally, exposure of the SGC to 15-35 ng/μl Na2(PtCl6) dose-dependently reduced neuronal survival and neuritogenesis, as determined by neurofilament antigen staining. In parallel, staining glial cells and fibroblasts with specific antibodies confirmed the dose-dependent induction of cell death by Na2(PtCl6). Exposure of the OCex to 25-45 ng/μl Na2(PtCl6) resulted in severe concentration-dependent hair cell loss. Our data show for the first time that Na2(PtCl6) induces cell death in a concentration-dependent manner in inner ear cell types and tissues.
Collapse
Affiliation(s)
- Elisabeth Berger
- Department of Otorhinolaryngology, Hannover Medical School, Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Hannover, Germany
| | - Gudrun Brandes
- Hannover Medical School, Institute of Neuroanatomy and Cell Biology, Hannover, Germany
| | - Odett Kaiser
- Department of Otorhinolaryngology, Hannover Medical School, Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Hannover, Germany
| | - Janin Reifenrath
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Hannover, Germany
- Clinic for Orthopaedic Surgery, Hannover Medical School, Hannover, Germany
| | - Thomas Lenarz
- Department of Otorhinolaryngology, Hannover Medical School, Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Hannover, Germany
| | - Kirsten Wissel
- Department of Otorhinolaryngology, Hannover Medical School, Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Hannover, Germany
| | - Martin Durisin
- Department of Otorhinolaryngology, Hannover Medical School, Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Hannover, Germany
- University Clinic of Otolaryngology, Head and Neck Surgery, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| |
Collapse
|
14
|
Durant KM, Whitesell A, Dasse KD. A review of fetal cell lines used during drug development: Focus on COVID-19 vaccines, transplant medications, and biologics. Am J Health Syst Pharm 2024; 81:e336-e344. [PMID: 38347743 DOI: 10.1093/ajhp/zxae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024] Open
Abstract
PURPOSE The recent coronavirus disease 2019 (COVID-19) pandemic and vaccine mandates have increased the number of patient questions related to how fetal cell lines are used during drug development and final manufacturing. This article describes our literature search and review of COVID-19 vaccines, transplant medications, and biologics whose development included use of fetal cell lines. SUMMARY A detailed literature search was conducted to identify the common fetal cell lines used in COVID-19 vaccine development; the two most prevalent fetal cell lines identified were HEK-293 and PER.C6. Subsequent literatures searches were conducted to identify transplant medications and biologics whose development included use of the HEK-293 or PER.C6 cell lines. For the COVID-19 vaccines, only the viral vector vaccine by Janssen was found to contain proteins produced by PER.C6 in the final preparation administered to patients, and Novavax is the only vaccine for which fetal cell lines were not directly involved in any portion of drug development. For transplant medications, many medications were studied in fetal cell lines in postmarketing studies after Food and Drug Administration approval; however, none of these medications contained fetal cells or would expose a patient to a fetal cell line. Many new biologics and cellular therapies for genetic diseases and malignancies have been directly developed from HEK-293 fetal cells or contain proteins produced directly from fetal cell lines. CONCLUSION There were very few drugs reviewed that were found to contain HEK-293 or PER.C6 fetal cells or proteins derived directly from fetal cell lines; however, use of fetal cell lines in biologics and gene therapies will continue to increase. Healthcare providers should be mindful of patients' beliefs while also correcting common misconceptions about how these fetal cell lines are used throughout drug development and manufacturing.
Collapse
Affiliation(s)
- Karin M Durant
- Department of Pharmacy Services, Michigan Medicine, University of Michigan Health, Ann Arbor, MI
- University of Michigan College of Pharmacy, Ann Arbor, MI, USA
| | - Ashlyn Whitesell
- Department of Pharmacy Services, Michigan Medicine, University of Michigan Health, Ann Arbor, MI
- University of Michigan College of Pharmacy, Ann Arbor, MI, USA
| | - Kathy D Dasse
- Department of Pharmacy Services, Michigan Medicine, University of Michigan Health, Ann Arbor, MI
- University of Michigan College of Pharmacy, Ann Arbor, MI, USA
| |
Collapse
|
15
|
Amiri M, Kaviari MA, Rostaminasab G, Barimani A, Rezakhani L. A novel cell-free therapy using exosomes in the inner ear regeneration. Tissue Cell 2024; 88:102373. [PMID: 38640600 DOI: 10.1016/j.tice.2024.102373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/01/2024] [Accepted: 04/03/2024] [Indexed: 04/21/2024]
Abstract
Cellular and molecular alterations associated with hearing loss are now better understood with advances in molecular biology. These changes indicate the participation of distinct damage and stress pathways that are unlikely to be fully addressed by conventional pharmaceutical treatment. Sensorineural hearing loss is a common and debilitating condition for which comprehensive pharmacologic intervention is not available. The complex and diverse molecular pathology that underlies hearing loss currently limits our ability to intervene with small molecules. The present review focuses on the potential for the use of extracellular vesicles in otology. It examines a variety of inner ear diseases and hearing loss that may be treatable using exosomes (EXOs). The role of EXOs as carriers for the treatment of diseases related to the inner ear as well as EXOs as biomarkers for the recognition of diseases related to the ear is discussed.
Collapse
Affiliation(s)
- Masoumeh Amiri
- Faculty of Medicine, Kermanshah University of Medical Science, Kermanshah, Iran
| | - Mohammad Amin Kaviari
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran; Universal Scientific Education and Research Network (USERN) Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Gelavizh Rostaminasab
- Clinical Research Development Center, Imam Khomeini and Mohammad Kermanshahi and Farabi Hospitals, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amir Barimani
- Clinical Research Development Center, Imam Khomeini and Mohammad Kermanshahi and Farabi Hospitals, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Leila Rezakhani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
16
|
Pasdelou MP, Byelyayeva L, Malmström S, Pucheu S, Peytavy M, Laullier H, Hodges DB, Tzafriri AR, Naert G. Ototoxicity: a high risk to auditory function that needs to be monitored in drug development. Front Mol Neurosci 2024; 17:1379743. [PMID: 38756707 PMCID: PMC11096496 DOI: 10.3389/fnmol.2024.1379743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/15/2024] [Indexed: 05/18/2024] Open
Abstract
Hearing loss constitutes a major global health concern impacting approximately 1.5 billion people worldwide. Its incidence is undergoing a substantial surge with some projecting that by 2050, a quarter of the global population will experience varying degrees of hearing deficiency. Environmental factors such as aging, exposure to loud noise, and the intake of ototoxic medications are implicated in the onset of acquired hearing loss. Ototoxicity resulting in inner ear damage is a leading cause of acquired hearing loss worldwide. This could be minimized or avoided by early testing of hearing functions in the preclinical phase of drug development. While the assessment of ototoxicity is well defined for drug candidates in the hearing field - required for drugs that are administered by the otic route and expected to reach the middle or inner ear during clinical use - ototoxicity testing is not required for all other therapeutic areas. Unfortunately, this has resulted in more than 200 ototoxic marketed medications. The aim of this publication is to raise awareness of drug-induced ototoxicity and to formulate some recommendations based on available guidelines and own experience. Ototoxicity testing programs should be adapted to the type of therapy, its indication (targeting the ear or part of other medications classes being potentially ototoxic), and the number of assets to test. For multiple molecules and/or multiple doses, screening options are available: in vitro (otic cell assays), ex vivo (cochlear explant), and in vivo (in zebrafish). In assessing the ototoxicity of a candidate drug, it is good practice to compare its ototoxicity to that of a well-known control drug of a similar class. Screening assays provide a streamlined and rapid method to know whether a drug is generally safe for inner ear structures. Mammalian animal models provide a more detailed characterization of drug ototoxicity, with a possibility to localize and quantify the damage using functional, behavioral, and morphological read-outs. Complementary histological measures are routinely conducted notably to quantify hair cells loss with cochleogram. Ototoxicity studies can be performed in rodents (mice, rats), guinea pigs and large species. However, in undertaking, or at the very least attempting, all preclinical investigations within the same species, is crucial. This encompasses starting with pharmacokinetics and pharmacology efficacy studies and extending through to toxicity studies. In life read-outs include Auditory Brainstem Response (ABR) and Distortion Product OtoAcoustic Emissions (DPOAE) measurements that assess the activity and integrity of sensory cells and the auditory nerve, reflecting sensorineural hearing loss. Accurate, reproducible, and high throughput ABR measures are fundamental to the quality and success of these preclinical trials. As in humans, in vivo otoscopic evaluations are routinely carried out to observe the tympanic membrane and auditory canal. This is often done to detect signs of inflammation. The cochlea is a tonotopic structure. Hair cell responsiveness is position and frequency dependent, with hair cells located close to the cochlea apex transducing low frequencies and those at the base transducing high frequencies. The cochleogram aims to quantify hair cells all along the cochlea and consequently determine hair cell loss related to specific frequencies. This measure is then correlated with the ABR & DPOAE results. Ototoxicity assessments evaluate the impact of drug candidates on the auditory and vestibular systems, de-risk hearing loss and balance disorders, define a safe dose, and optimize therapeutic benefits. These types of studies can be initiated during early development of a therapeutic solution, with ABR and otoscopic evaluations. Depending on the mechanism of action of the compound, studies can include DPOAE and cochleogram. Later in the development, a GLP (Good Laboratory Practice) ototoxicity study may be required based on otic related route of administration, target, or known potential otic toxicity.
Collapse
|
17
|
Nassauer L, Staecker H, Huang P, Renslo B, Goblet M, Harre J, Warnecke A, Schott JW, Morgan M, Galla M, Schambach A. Protection from cisplatin-induced hearing loss with lentiviral vector-mediated ectopic expression of the anti-apoptotic protein BCL-XL. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102157. [PMID: 38450280 PMCID: PMC10915631 DOI: 10.1016/j.omtn.2024.102157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 02/15/2024] [Indexed: 03/08/2024]
Abstract
Cisplatin is a highly effective chemotherapeutic agent, but it can cause sensorineural hearing loss (SNHL) in patients. Cisplatin-induced ototoxicity is closely related to the accumulation of reactive oxygen species (ROS) and subsequent death of hair cells (HCs) and spiral ganglion neurons (SGNs). Despite various strategies to combat ototoxicity, only one therapeutic agent has thus far been clinically approved. Therefore, we have developed a gene therapy concept to protect cochlear cells from cisplatin-induced toxicity. Self-inactivating lentiviral (LV) vectors were used to ectopically express various antioxidant enzymes or anti-apoptotic proteins to enhance the cellular ROS scavenging or prevent apoptosis in affected cell types. In direct comparison, anti-apoptotic proteins mediated a stronger reduction in cytotoxicity than antioxidant enzymes. Importantly, overexpression of the most promising candidate, Bcl-xl, achieved an up to 2.5-fold reduction in cisplatin-induced cytotoxicity in HEI-OC1 cells, phoenix auditory neurons, and primary SGN cultures. BCL-XL protected against cisplatin-mediated tissue destruction in cochlear explants. Strikingly, in vivo application of the LV BCL-XL vector improved hearing and increased HC survival in cisplatin-treated mice. In conclusion, we have established a preclinical gene therapy approach to protect mice from cisplatin-induced ototoxicity that has the potential to be translated to clinical use in cancer patients.
Collapse
Affiliation(s)
- Larissa Nassauer
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Hinrich Staecker
- Department of Otolaryngology-Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, KS 66160, USA
| | - Peixin Huang
- Department of Otolaryngology-Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, KS 66160, USA
| | - Bryan Renslo
- Department of Otolaryngology-Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, KS 66160, USA
| | - Madeleine Goblet
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, 30625 Hannover, Germany
- Cluster of Excellence “Hearing4all”, Hannover Medical School, 30625 Hannover, Germany
| | - Jennifer Harre
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, 30625 Hannover, Germany
- Cluster of Excellence “Hearing4all”, Hannover Medical School, 30625 Hannover, Germany
| | - Athanasia Warnecke
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, 30625 Hannover, Germany
- Cluster of Excellence “Hearing4all”, Hannover Medical School, 30625 Hannover, Germany
| | - Juliane W. Schott
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Michael Morgan
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Melanie Galla
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
18
|
Wu Y, Li L, Tang L, Peijnenburg W, Zhang H, Xie D, Geng R, Zheng T, Bi L, Wei X, Chae HJ, Wang L, Zhao L, Li B, Zheng Q. Ototoxicity of polystyrene nanoplastics in mice, HEI-OC1 cells and zebrafish. Front Mol Neurosci 2024; 17:1345536. [PMID: 38440220 PMCID: PMC10909942 DOI: 10.3389/fnmol.2024.1345536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/17/2024] [Indexed: 03/06/2024] Open
Abstract
Polystyrene nanoplastics are a novel class of pollutants. They are easily absorbed by living organisms, and their potential toxicity has raised concerns. However, the impact of polystyrene nanoplastics on auditory organs remains unknown. Here, our results showed that polystyrene nanoplastics entered the cochlea of mice, HEI-OC1 cells, and lateral line hair cells of zebrafish, causing cellular injury and increasing apoptosis. Additionally, we found that exposure to polystyrene nanoplastics resulted in a significant elevation in the auditory brainstem response thresholds, a loss of auditory sensory hair cells, stereocilia degeneration and a decrease in expression of Claudin-5 and Occludin proteins at the blood-lymphatic barrier in mice. We also observed a significant decrease in the acoustic alarm response of zebrafish after exposure to polystyrene nanoplastics. Mechanistic analysis revealed that polystyrene nanoplastics induced up-regulation of the Nrf2/HO-1 pathway, increased levels of malondialdehyde, and decreased superoxide dismutase and catalase levels in cochlea and HEI-OC1 cells. Furthermore, we observed that the expression of ferroptosis-related indicators GPX4 and SLC7A11 decreased as well as increased expression of ACLS4 in cochlea and HEI-OC1 cells. This study also revealed that polystyrene nanoplastics exposure led to increased expression of the inflammatory factors TNF-α, IL-1β and COX2 in cochlea and HEI-OC1 cells. Further research found that the cell apoptosis, ferroptosis and inflammatory reactions induced by polystyrene nanoplastics in HEI-OC1 cells was reversed through the pretreatment with N-acetylcysteine, a reactive oxygen species inhibitor. Overall, our study first discovered and systematically revealed the ototoxicity of polystyrene nanoplastics and its underlying mechanism.
Collapse
Affiliation(s)
- Yuancheng Wu
- Hearing and Speech Rehabilitation Institute, Binzhou Medical University, Yantai, China
| | - Lianzhen Li
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao, China
| | - Lihuan Tang
- Hearing and Speech Rehabilitation Institute, Binzhou Medical University, Yantai, China
| | - Willie Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, Leiden, Netherlands
- National Institute of Public Health and the Environment (RIVM), Center for Safety of Substances and Products, Bilthoven, Netherlands
| | - Huangruici Zhang
- Hearing and Speech Rehabilitation Institute, Binzhou Medical University, Yantai, China
| | - Daoli Xie
- Hearing and Speech Rehabilitation Institute, Binzhou Medical University, Yantai, China
| | - Ruishuang Geng
- Hearing and Speech Rehabilitation Institute, Binzhou Medical University, Yantai, China
| | - Tihua Zheng
- Hearing and Speech Rehabilitation Institute, Binzhou Medical University, Yantai, China
| | - Liyan Bi
- Hearing and Speech Rehabilitation Institute, Binzhou Medical University, Yantai, China
| | - Xiaodan Wei
- Department of Pathology, School of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Han-jung Chae
- School of Pharmacy, Jeonbuk National University, Jeonju, Republic of Korea
| | - Lan Wang
- Hearing and Speech Rehabilitation Institute, Binzhou Medical University, Yantai, China
| | - Li Zhao
- Hearing and Speech Rehabilitation Institute, Binzhou Medical University, Yantai, China
| | - Bo Li
- Hearing and Speech Rehabilitation Institute, Binzhou Medical University, Yantai, China
| | - Qingyin Zheng
- Department of Otolaryngology-Head and Neck Surgery, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
19
|
Wu K, Wang B, Cao B, Ma W, Zhang Y, Cheng Y, Hu J, Gao Y. Protective role of pyrroloquinoline quinone against gentamicin induced cochlear hair cell ototoxicity. J Appl Toxicol 2024; 44:235-244. [PMID: 37650462 DOI: 10.1002/jat.4535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/01/2023] [Accepted: 08/14/2023] [Indexed: 09/01/2023]
Abstract
Gentamicin (GM) is one of the commonly used antibiotics in the aminoglycoside class but is ototoxic, which constantly impacts the quality of human life. Pyrroloquinoline quinone (PQQ) as a redox cofactor produced by bacteria was found in soil and foods that exert an antioxidant and redox modulator. It is well documented that the PQQ can alleviate inflammatory responses and cytotoxicity. However, our understanding of PQQ in ototoxicity remains unclear. We reported that PQQ could protect against GM-induced ototoxicity in House Ear Institute-Organ of Corti 1 (HEI-OC1) cells in vitro. To evaluate reactive oxygen species (ROS) production and mitochondrial function, ROS and JC-1 staining, oxygen consumption rate (OCR), and extracellular acidification rate (ECAR) measurements in living cells, mitochondrial dynamics analysis was performed. GM-mediated damage was performed by reducing the production of ROS and inhibiting mitochondria biogenesis and dynamics. PQQ ameliorated the cellular oxidative stress and recovered mitochondrial membrane potential, facilitating the recovery of mitochondrial biogenesis and dynamics. Our in vitro findings improve our understanding of the GM-induced ototoxicity with therapeutic implications for PQQ.
Collapse
Affiliation(s)
- Kunyi Wu
- Core Research Laboratory, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Botao Wang
- Department of Otolaryngology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Bo Cao
- Core Research Laboratory, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Weijun Ma
- Department of Otolaryngology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yan Zhang
- Department of Otolaryngology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ying Cheng
- Department of Otolaryngology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Juan Hu
- Department of Otolaryngology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ying Gao
- Department of Otolaryngology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
20
|
Tan F, Li X, Li X, Xu M, Shahzad KA, Hou L. GelMA/PEDOT:PSS Composite Conductive Hydrogel-Based Generation and Protection of Cochlear Hair Cells through Multiple Signaling Pathways. Biomolecules 2024; 14:95. [PMID: 38254695 PMCID: PMC10812993 DOI: 10.3390/biom14010095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/18/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Recent advances in cochlear implantology are exemplified by novel functional strategies such as bimodal electroacoustic stimulation, in which the patient has intact low-frequency hearing and profound high-frequency hearing pre-operatively. Therefore, the synergistic restoration of dysfunctional cochlear hair cells and the protection of hair cells from ototoxic insults have become a persistent target pursued for this hybrid system. In this study, we developed a composite GelMA/PEDOT:PSS conductive hydrogel that is suitable as a coating for the cochlear implant electrode for the potential local delivery of otoregenerative and otoprotective drugs. Various material characterization methods (e.g., 1H NMR spectroscopy, FT-IR, EIS, and SEM), experimental models (e.g., murine cochlear organoid and aminoglycoside-induced ototoxic HEI-OC1 cellular model), and biological analyses (e.g., confocal laser scanning microscopy, real time qPCR, flow cytometry, and bioinformatic sequencing) were used. The results demonstrated decent material properties of the hydrogel, such as mechanical (e.g., high tensile stress and Young's modulus), electrochemical (e.g., low impedance and high conductivity), biocompatibility (e.g., satisfactory cochlear cell interaction and free of systemic toxicity), and biosafety (e.g., minimal hemolysis and cell death) features. In addition, the CDR medicinal cocktail sustainably released by the hydrogel not only promoted the expansion of the cochlear stem cells but also boosted the trans-differentiation from cochlear supporting cells into hair cells. Furthermore, hydrogel-based drug delivery protected the hair cells from oxidative stress and various forms of programmed cell death (e.g., apoptosis and ferroptosis). Finally, using large-scale sequencing, we enriched a complex network of signaling pathways that are potentially downstream to various metabolic processes and abundant metabolites. In conclusion, we present a conductive hydrogel-based local delivery of bifunctional drug cocktails, thereby serving as a potential solution to intracochlear therapy of bimodal auditory rehabilitation and diseases beyond.
Collapse
Affiliation(s)
- Fei Tan
- Department of ORL-HNS, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200070, China; (X.L.); (M.X.); (K.A.S.)
- Plasma Medicine and Surgical Implants Center, School of Medicine, Tongji University, Shanghai 200070, China
- Department of ORL-HNS, The Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
- Department of ORL-HNS, The Royal College of Surgeons of England, London WC2A 3PE, UK
| | - Xuran Li
- Department of ORL-HNS, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200070, China; (X.L.); (M.X.); (K.A.S.)
- Plasma Medicine and Surgical Implants Center, School of Medicine, Tongji University, Shanghai 200070, China
| | - Xiao Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology & Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 200051, China; (X.L.); (L.H.)
| | - Maoxiang Xu
- Department of ORL-HNS, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200070, China; (X.L.); (M.X.); (K.A.S.)
- Plasma Medicine and Surgical Implants Center, School of Medicine, Tongji University, Shanghai 200070, China
| | - Khawar Ali Shahzad
- Department of ORL-HNS, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200070, China; (X.L.); (M.X.); (K.A.S.)
- Plasma Medicine and Surgical Implants Center, School of Medicine, Tongji University, Shanghai 200070, China
| | - Lei Hou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology & Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 200051, China; (X.L.); (L.H.)
| |
Collapse
|
21
|
Liao Y, Mao H, Gao X, Lin H, Li W, Chen Y, Li H. Drug screening identifies aldose reductase as a novel target for treating cisplatin-induced hearing loss. Free Radic Biol Med 2024; 210:430-447. [PMID: 38056576 DOI: 10.1016/j.freeradbiomed.2023.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/08/2023] [Accepted: 11/24/2023] [Indexed: 12/08/2023]
Abstract
Cisplatin is a frequently used chemotherapeutic medicine for cancer treatment. Permanent hearing loss is one of the most serious side effects of cisplatin, but there are few FDA-approved medicines to prevent it. We applied high-through screening and target fishing and identified aldose reductase, a key enzyme of the polyol pathway, as a novel target for treating cisplatin ototoxicity. Cisplatin treatment significantly increased the expression level and enzyme activity of aldose reductase in the cochlear sensory epithelium. Genetic knockdown or pharmacological inhibition of aldose reductase showed a significant protective effect on cochlear hair cells. Cisplatin-induced overactivation of aldose reductase led to the decrease of NADPH/NADP+ and GSH/GSSG ratios, as well as the increase of oxidative stress, and contributed to hair cell death. Results of target prediction, molecular docking, and enzyme activity detection further identified that Tiliroside was an effective inhibitor of aldose reductase. Tiliroside was proven to inhibit the enzymatic activity of aldose reductase via competitively interfering with the substrate-binding region. Both Tiliroside and another clinically approved aldose reductase inhibitor, Epalrestat, inhibited cisplatin-induced oxidative stress and subsequent cell death and thus protected hearing function. These findings discovered the role of aldose reductase in the pathogenesis of cisplatin-induced deafness and identified aldose reductase as a new target for the prevention and treatment of hearing loss.
Collapse
Affiliation(s)
- Yaqi Liao
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230031, PR China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, PR China; ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031, PR China
| | - Huanyu Mao
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230031, PR China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, PR China; ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031, PR China
| | - Xian Gao
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230031, PR China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, PR China; ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031, PR China
| | - Hailiang Lin
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230031, PR China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, PR China; ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031, PR China
| | - Wenyan Li
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230031, PR China; Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, PR China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, PR China; The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, PR China; ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031, PR China.
| | - Yan Chen
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230031, PR China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, PR China; ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031, PR China.
| | - Huawei Li
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230031, PR China; Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, PR China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, PR China; The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, PR China; ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031, PR China.
| |
Collapse
|
22
|
Lin X, Li L, Luo J, Chen D, Tan J, Li P. Cobalt-induced apoptosis of cochlear organotypic cultures and HEI-OC1 cells is mediated by Dicer. Neurotoxicology 2024; 100:85-99. [PMID: 38101458 DOI: 10.1016/j.neuro.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023]
Abstract
Cobalt is widely used in the medical industry, mainly including cobalt alloy joint implants and cobalt-chromium porcelain crowns. However, unexplained ototoxicity and neurotoxicity often occur in the clinical use of cobalt agents at present, which limits the development of the cobalt industry. In this study, based on the clinical problem of cobalt ototoxicity, we first conducted an extensive search and collation of related theories, and on this basis, prepared an HEI-OC1 cell model and basilar membrane organotypic cultures after cobalt treatment. We used immunofluorescence staining, western blot, CCK8, and si-RNA to investigate the mechanism of cobalt ototoxicity, to discover its potential therapeutic targets. After comparing the reactive oxygen species, mitochondrial transmembrane potential, apoptosis-related protein expression, and cell viability of different treatment groups, the following conclusions were drawn: cobalt causes oxidative stress in the inner ear, which leads to apoptosis of inner ear cells; inhibition of oxidative stress and apoptosis can alleviate the damage of cobalt on inner ear cells; and the Dicer protein plays a role in the mechanism of inner ear damage and is a potential target for the treatment of cobalt-induced inner ear damage. Taken together, these results suggest that cobalt-induced ototoxicity triggered by oxidative stress activates a cascade of apoptotic events where cCaspase-3 decreases Dicer levels and amplifies this apoptotic pathway. It may be possible to prevent and treat cobalt ototoxicity by targeting this mechanism.
Collapse
Affiliation(s)
- Xuexin Lin
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Liling Li
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jia Luo
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Dan Chen
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jingqian Tan
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Peng Li
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
23
|
Guo F, Guo Y, Zhang D, Fu Z, Han S, Wan Y, Guan G. Luteolin inhibits the JAK/STAT pathway to alleviate auditory cell apoptosis of acquired sensorineural hearing loss based on network pharmacology, molecular docking, molecular dynamics simulation, and experiments in vitro. Toxicol Appl Pharmacol 2024; 482:116790. [PMID: 38103742 DOI: 10.1016/j.taap.2023.116790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/04/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
PURPOSE The study aimed to explore the mechanisms of luteolin in acquired sensorineural hearing loss (SNHL) through network pharmacology, molecular docking, molecular dynamics simulation, and experimental verification. METHODS First, the practices of network pharmacology were used to obtain the intersecting targets of luteolin and acquired SNHL, construct the PPI (Protein-Protein Interaction) network, conduct GO and KEGG enrichments, and establish luteolin-acquired SNHL-target-pathway network, aiming to gain the core targets and pathways. Then, the affinity between the core targets and luteolin was verified by molecular docking. Moreover, molecular dynamics (MD) simulation was applied to simulate the binding between targets and luteolin. Finally, with the HEI-OC1 cell line, some molecular biology techniques were adopted to verify the pharmacological actions of luteolin and the significance of the pathway from KEGG enrichment in luteolin-protecting auditory cell damage related to acquired SNHL. RESULTS 14 intersecting targets were obtained, and the 10 core targets were further verified through molecular docking and MD simulation to get 5 core targets. The JAK/STAT was selected as the critical pathway through KEGG enrichment. Luteolin could dose-dependently alleviate auditory cell apoptosis by inhibiting the JAK/STAT pathway, confirmed by a series of experiments in vitro. CONCLUSION This study manifested that luteolin could reduce acquired SNHL-related auditory cell apoptosis through the JAK/STAT pathway, which provided a new idea for acquired SNHL pharmacological treatment.
Collapse
Affiliation(s)
- Fang Guo
- Department of Otolaryngology-Head and Neck Surgery, The Second Hospital, Jilin University, Changchun, China.
| | - Yingyuan Guo
- Department of Otolaryngology-Head and Neck Surgery, The Second Hospital, Jilin University, Changchun, China
| | - Dejun Zhang
- Department of Otolaryngology-Head and Neck Surgery, The Second Hospital, Jilin University, Changchun, China.
| | - Zeming Fu
- Department of Otolaryngology-Head and Neck Surgery, The Second Hospital, Jilin University, Changchun, China.
| | - Shuang Han
- Department of Otolaryngology-Head and Neck Surgery, The Second Hospital, Jilin University, Changchun, China.
| | - Yining Wan
- Department of Otolaryngology-Head and Neck Surgery, The Second Hospital, Jilin University, Changchun, China.
| | - Guofang Guan
- Department of Otolaryngology-Head and Neck Surgery, The Second Hospital, Jilin University, Changchun, China.
| |
Collapse
|
24
|
Choi JS, Ahn YJ, Lee S, Park DJ, Park J, Ha SM, Seo YJ. Role of Kir4.1 Channels in Aminoglycoside-Induced Ototoxicity of Hair Cells. BIOMED RESEARCH INTERNATIONAL 2023; 2023:4191999. [PMID: 38143588 PMCID: PMC10748730 DOI: 10.1155/2023/4191999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/27/2023] [Accepted: 11/14/2023] [Indexed: 12/26/2023]
Abstract
The Kir4.1 channel, an inwardly rectifying potassium ion (K+) channel, is located in the hair cells of the organ of Corti as well as the intermediate cells of the stria vascularis. The Kir4.1 channel has a crucial role in the generation of endolymphatic potential and maintenance of the resting membrane potential. However, the role and functions of the Kir4.1 channel in the progenitor remain undescribed. To observe the role of Kir4.1 in the progenitor treated with the one-shot ototoxic drugs (kanamycin and furosemide), we set the proper condition in culturing Immortomouse-derived HEI-OC1 cells to express the potassium-related channels well. And also, that was reproduced in mice experiments to show the important role of Kir4.1 in the survival of hair cells after treating the ototoxicity drugs. In our results, when kanamycin and furosemide drugs were cotreated with HEI-OC1 cells, the Kir4.1 channel did not change, but the expression levels of the NKCC1 cotransporter and KCNQ4 channel are decreased. This shows that inward and outward channels were blocked by the two drugs (kanamycin and furosemide). However, noteworthy here is that the expression level of Kir4.1 channel increased when kanamycin was treated alone. This shows that Kir4.1, an inwardly rectifying potassium channel, acts as an outward channel in place of the corresponding channel when the KCNQ4 channel, an outward channel, is blocked. These results suggest that the Kir4.1 channel has a role in maintaining K+ homeostasis in supporting cells, with K+ concentration compensator when the NKCC1 cotransporter and Kv7.4 (KCNQ4) channels are deficient.
Collapse
Affiliation(s)
- Jin Sil Choi
- Research Institute of Hearing Enhancement, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
- Department of Otorhinolaryngology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Ye Ji Ahn
- Research Institute of Hearing Enhancement, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
- Department of Otorhinolaryngology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - SuHoon Lee
- Research Institute of Hearing Enhancement, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
- Department of Otorhinolaryngology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Dong Jun Park
- Research Institute of Hearing Enhancement, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
- Department of Otorhinolaryngology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - JeongEun Park
- Research Institute of Hearing Enhancement, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
- Department of Otorhinolaryngology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Sun Mok Ha
- Research Institute of Hearing Enhancement, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
- Department of Otorhinolaryngology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Young Joon Seo
- Research Institute of Hearing Enhancement, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
- Department of Otorhinolaryngology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| |
Collapse
|
25
|
Guidotti L, Tomassi E, Marracci S, Lai M, Lapi D, Pesi R, Pucci L, Novellino E, Albi E, Garcia-Gil M. Effects of Nutraceuticals on Cisplatin-Induced Cytotoxicity in HEI-OC1 Cells. Int J Mol Sci 2023; 24:17416. [PMID: 38139245 PMCID: PMC10743635 DOI: 10.3390/ijms242417416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Cisplatin is a chemotherapeutic drug for the treatment of several solid tumors, whose use is limited by its nephrotoxicity, neurotoxicity, ototoxicity, and development of resistance. The toxicity is caused by DNA cross-linking, increase in reactive oxygen species and/or depletion of cell antioxidant defenses. The aim of the work was to study the effect of antioxidant compounds (Lisosan G, Taurisolo®) or hydrogen sulfide (H2S)-releasing compounds (erucin) in the auditory HEI-OC1 cell line treated with cisplatin. Cell viability was determined using the MTT assay. Caspase and sphingomyelinase activities were measured by fluorometric and colorimetric methods, respectively. Expression of transcription factors, apoptosis hallmarks and genes codifying for antioxidant response proteins were measured by Western blot and/or RT-qPCR. Lisosan G, Taurisolo® and erucin did not show protective effects. Sodium hydrosulfide (NaHS), a donor of H2S, increased the viability of cisplatin-treated cells and the transcription of heme oxygenase 1, superoxide dismutase 2, NAD(P)H quinone dehydrogenase type 1 and the catalytic subunit of glutamate-cysteine ligase and decreased reactive oxygen species (ROS), the Bax/Bcl2 ratio, caspase-3, caspase-8 and acid sphingomyelinase activity. Therefore, NaHS might counteract the cytotoxic effect of cisplatin by increasing the antioxidant response and by reducing ROS levels and caspase and acid sphingomyelinase activity.
Collapse
Affiliation(s)
- Lorenzo Guidotti
- General Physiology Unit, Department of Biology, University of Pisa, Via San Zeno 31, 56127 Pisa, Italy; (L.G.); (S.M.); (D.L.)
| | - Elena Tomassi
- Institute of Agricultural Biology and Biotechnology, Italian National Research Council, Via Moruzzi 1, 56124 Pisa, Italy; (E.T.); (L.P.)
| | - Silvia Marracci
- General Physiology Unit, Department of Biology, University of Pisa, Via San Zeno 31, 56127 Pisa, Italy; (L.G.); (S.M.); (D.L.)
| | - Michele Lai
- Retrovirus Centre, Department of Translational Medicine and New Technologies in Medicine and Surgery, University of Pisa, Strada Statale del Brennero 2, 56127 Pisa, Italy;
| | - Dominga Lapi
- General Physiology Unit, Department of Biology, University of Pisa, Via San Zeno 31, 56127 Pisa, Italy; (L.G.); (S.M.); (D.L.)
| | - Rossana Pesi
- Biochemistry Unit, Department of Biology, University of Pisa, Via San Zeno 31, 56127 Pisa, Italy;
| | - Laura Pucci
- Institute of Agricultural Biology and Biotechnology, Italian National Research Council, Via Moruzzi 1, 56124 Pisa, Italy; (E.T.); (L.P.)
| | - Ettore Novellino
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy;
| | - Elisabetta Albi
- Department of Pharmaceutical Sciences, Interno Orto Botanico, University of Perugia, Via Romana, 06126 Perugia, Italy;
| | - Mercedes Garcia-Gil
- General Physiology Unit, Department of Biology, University of Pisa, Via San Zeno 31, 56127 Pisa, Italy; (L.G.); (S.M.); (D.L.)
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, 56124 Pisa, Italy
| |
Collapse
|
26
|
Luo X, Hu Y, Zhou X, Zhang C, Feng M, Yang T, Yuan W. Potential roles for lncRNA Mirg/Foxp1 in an ARHL model created using C57BL/6J mice. Hear Res 2023; 438:108859. [PMID: 37579646 DOI: 10.1016/j.heares.2023.108859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 07/21/2023] [Accepted: 08/07/2023] [Indexed: 08/16/2023]
Abstract
Age-related hearing loss (ARHL) is associated with hair cell apoptosis, but the underlying mechanism of hair cell apoptosis remains unclear. Here, we investigated the expression profiles of long noncoding RNAs (lncRNAs) and mRNAs in an ARHL model created with C57BL/6 J mice using RNA sequencing and found that the expression of several lncRNAs was significantly correlated with apoptosis-associated mRNAs in the cochlear tissues of old mice compared to young mice. We found that lncRNA Mirg was upregulated in the cochlear tissues of old mice compared to young mice and its overexpression promoted apoptosis in House Ear Institute-Organ of Corti 1 (HEI-OC1). H2O2-induced oxidative stress increased HEI-OC1 cell apoptosis by upregulating lncRNA Mirg. Furthermore, the expression of lncRNA Mirg and Foxp1 showed the highest correlation coefficient in the cochlear tissues of old mice, and lncRNA Mirg promoted HEI-OC1 cell apoptosis by increasing Foxp1 expression. In conclusion, our findings suggest that lncRNA Mirg expression correlates with cell apoptosis-associated mRNAs in the ARHL model created using C57BL/6 J mice and that oxidative stress-induced lncRNA Mirg promotes HEI-OC1 cell apoptosis by increasing Foxp1 expression. These data suggest the potential therapeutic significance of targeting lncRNA Mirg/Foxp1 signaling in ARHL.
Collapse
Affiliation(s)
- Xiaoqin Luo
- Department of Otolaryngology, Chongqing Medical University, Chongqing, 400042, China; Chongqing Institute of Green and Intelligent Technology, University of Chinese Academy of Sciences, Chongqing 400714, China; Department of Otolaryngology, Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China; Department of Otolaryngology, Chongqing General Hospital, Chongqing 400014, China
| | - Yaqin Hu
- Department of Otolaryngology, Chongqing Medical University, Chongqing, 400042, China; Chongqing Institute of Green and Intelligent Technology, University of Chinese Academy of Sciences, Chongqing 400714, China; Department of Otolaryngology, Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China; Department of Otolaryngology, Chongqing General Hospital, Chongqing 400014, China
| | - Xiaoqing Zhou
- Department of Otolaryngology, Chongqing Medical University, Chongqing, 400042, China; Chongqing Institute of Green and Intelligent Technology, University of Chinese Academy of Sciences, Chongqing 400714, China; Department of Otolaryngology, Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China; Department of Otolaryngology, Chongqing General Hospital, Chongqing 400014, China
| | - Chanyuan Zhang
- Department of Otolaryngology, Chongqing Medical University, Chongqing, 400042, China; Chongqing Institute of Green and Intelligent Technology, University of Chinese Academy of Sciences, Chongqing 400714, China; Department of Otolaryngology, Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China; Department of Otolaryngology, Chongqing General Hospital, Chongqing 400014, China
| | - Menglong Feng
- Department of Otolaryngology, Chongqing Medical University, Chongqing, 400042, China; Chongqing Institute of Green and Intelligent Technology, University of Chinese Academy of Sciences, Chongqing 400714, China; Department of Otolaryngology, Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China; Department of Otolaryngology, Chongqing General Hospital, Chongqing 400014, China
| | - Ting Yang
- Department of Otolaryngology, Chongqing Medical University, Chongqing, 400042, China; Chongqing Institute of Green and Intelligent Technology, University of Chinese Academy of Sciences, Chongqing 400714, China; Department of Otolaryngology, Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China; Department of Otolaryngology, Chongqing General Hospital, Chongqing 400014, China
| | - Wei Yuan
- Department of Otolaryngology, Chongqing Medical University, Chongqing, 400042, China; Chongqing Institute of Green and Intelligent Technology, University of Chinese Academy of Sciences, Chongqing 400714, China; Department of Otolaryngology, Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China; Department of Otolaryngology, Chongqing General Hospital, Chongqing 400014, China.
| |
Collapse
|
27
|
Kang BC, Yi J, Kim SH, Pak JH, Chung JW. Dexamethasone treatment of murine auditory hair cells and cochlear explants attenuates tumor necrosis factor-α-initiated apoptotic damage. PLoS One 2023; 18:e0291780. [PMID: 37733709 PMCID: PMC10513268 DOI: 10.1371/journal.pone.0291780] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/05/2023] [Indexed: 09/23/2023] Open
Abstract
The most common cause of sensorineural hearing loss is damage of auditory hair cells. Tumor necrosis factor-alpha (TNF-α) is closely associated with sensorineural hearing loss. The present study examined the preconditioning effect of dexamethasone (DEX) on TNF-α-induced ototoxicity in mouse auditory hair cells (HEI-OC1) and cochlear explants. Treatment of HEI-OC1 with 10 ng/ml TNF-α for 24 h decreased cell viability, increased the accumulation of reactive oxygen species (ROS), and induced caspase-mediated apoptotic signaling pathways. Pretreatment with 10 nM DEX for 6 h before TNF-α exposure restored cell viability, decreased ROS accumulation, and attenuated apoptotic signaling activation induced by TNF-α. Incubation of cochlear explants with 20 ng/ml TNF-α for 24 h resulted in significant loss of both inner hair cells (IHCs) and outer hair cells (OHCs) and an increase in apoptotic activation accessed by annexin V staining. The cochlear explants pre-incubated with 10 nM DEX attenuated TNF-α ototoxicity in both IHCs and OHCs and apoptotic cell death. These results indicated that DEX plays a protective role in ototoxicity induced by TNF-α through attenuation of caspase-dependent apoptosis signaling pathway and ROS accumulation.
Collapse
Affiliation(s)
- Byung Chul Kang
- Department of Otorhinolaryngology-Head and Neck Surgery, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | - Junyeong Yi
- Department of Otorhinolaryngology-Head and Neck Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Song Hee Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | - Jhang Ho Pak
- Department of Convergence Medicine, University of Ulsan College of Medicine and Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea
| | - Jong Woo Chung
- Department of Otorhinolaryngology-Head and Neck Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
28
|
Huang M, Zou M, Mao S, Xu W, Hong Y, Wang H, Gui F, Yang L, Lian F, Chen R. 3,5,6-Trichloro-2-pyridinol confirms ototoxicity in mouse cochlear organotypic cultures and induces cytotoxicity in HEI-OC1 cells. Toxicol Appl Pharmacol 2023; 475:116612. [PMID: 37463651 DOI: 10.1016/j.taap.2023.116612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/12/2023] [Accepted: 06/30/2023] [Indexed: 07/20/2023]
Abstract
The metabolite of organophosphate pesticide chlorpyrifos (CPF), 3,5,6-Trichloro-2-pyridinol (TCP), is persistent and mobile toxic substance in soil and water environments, exhibiting cytotoxic, genotoxic, and neurotoxic properties. However, little is known about its effects on the peripheral auditory system. Herein, we investigated the effects of TCP exposure on mouse postnatal day 3 (P3) cochlear culture and an auditory cell line HEI-OC1 to elucidate the underlying molecular mechanisms of ototoxicity. The damage of TCP to outer hair cells (OHC) and support cells (SC) was observed in a dose and time-dependent manner. OHC and SC were a significant loss from basal to apical turn of the cochlea under exposure over 800 μM TCP for 96 h. As TCP concentrations increased, cell viability was reduced whereas reactive oxygen species (ROS) generation, apoptotic cells, and the extent of DNA damage were increased, accordingly. TCP-induced phosphorylation of the p38 and JNK MAPK are the downstream effectors of ROS. The antioxidant agent, N-acetylcysteine (NAC), could reverse TCP-mediated intracellular ROS generation, inhibit the expressive level of cleaved-caspase 3 and block phosphorylation of p38/JNK. Overall, this is the first demonstration of TCP damaging to peripheral sensory HCs and SC in organotypic cultures from the postnatal cochlea. Data also showed that TCP exposure induced oxidase stress, cell apoptosis and DNA damage in the HEI-OC1 cells. These findings serve as an important reference for assessing the risk of TCP exposure.
Collapse
Affiliation(s)
- Mao Huang
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Mingshan Zou
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Shuangshuang Mao
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Wenqi Xu
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yu Hong
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Haiyan Wang
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Fei Gui
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Lei Yang
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Fuzhi Lian
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Rong Chen
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| |
Collapse
|
29
|
Du K, Liao P, Yang S, von Trentini D, Sharma K, Shi X, Murray CB, Li D, Dmochowski IJ. Chelate-functionalized magnetic micelles for sequestration of cisplatin. NANOSCALE ADVANCES 2023; 5:3955-3963. [PMID: 37496616 PMCID: PMC10367963 DOI: 10.1039/d3na00290j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/02/2023] [Indexed: 07/28/2023]
Abstract
Many cancer patients suffer permanent hearing loss due to accumulation of ototoxic cisplatin in the inner ear. In this study, two types of 100 nm magnetic micelles were developed to sequester cisplatin from aqueous solutions, with the goal of eliminating cochlear ototoxins via magnetic microsurgery. The micellar surface was quantitatively functionalized with anionic S-rich ligands and the micelle core encapsulated superparamagnetic iron oxide nanoparticles. Exceptionally effective sequestration is demonstrated, with removal of greater than 95 and 50% of solution Pt, by means of centrifugal filtration and magnetic extraction. Attraction between negatively charged micellar surfaces and cationic Pt-species played a critical role and was only partially screened by physiologic salt solution. Importantly, magnetic micelles introduce negligible impact on the integrity of inner ear hair cells, demonstrating excellent biocompatibility. This study showcases successful magnetic sequestration of Pt-based ototoxins using highly applicable nano-micellar materials. More generally, these examples highlight features of the micelle-water interfacial environment that are important in developing nanomaterials for metallo-medicinal applications.
Collapse
Affiliation(s)
- Kang Du
- Department of Chemistry, University of Pennsylvania Philadelphia PA 19104 USA
| | - Pan Liao
- Department of Otorhinolaryngology, University of Pennsylvania Philadelphia PA 19104 USA
| | - Shengsong Yang
- Department of Chemistry, University of Pennsylvania Philadelphia PA 19104 USA
| | - Dora von Trentini
- Department of Chemistry, University of Pennsylvania Philadelphia PA 19104 USA
| | - Kushal Sharma
- Department of Otolaryngology/Head & Neck Surgery, Oregon Health & Science University Portland OR 97239 USA
| | - Xiaorui Shi
- Department of Otolaryngology/Head & Neck Surgery, Oregon Health & Science University Portland OR 97239 USA
| | - Christopher B Murray
- Department of Chemistry, University of Pennsylvania Philadelphia PA 19104 USA
- Department of Materials Science and Engineering, University of Pennsylvania Philadelphia PA 19104 USA
| | - Daqing Li
- Department of Otorhinolaryngology, University of Pennsylvania Philadelphia PA 19104 USA
| | - Ivan J Dmochowski
- Department of Chemistry, University of Pennsylvania Philadelphia PA 19104 USA
| |
Collapse
|
30
|
Li N, Yan X, Huang W, Chu M, Dong Y, Song H, Peng Y, Shi J, Liu Q. Curcumin protects against the age-related hearing loss by attenuating apoptosis and senescence via activating Nrf2 signaling in cochlear hair cells. Biochem Pharmacol 2023; 212:115575. [PMID: 37334787 DOI: 10.1016/j.bcp.2023.115575] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/08/2023] [Accepted: 04/24/2023] [Indexed: 06/21/2023]
Abstract
Age-related hearing loss (ARHL) is a most widespread neurodegenerative disease affecting the elderly population, but effective pharmacological treatments remain limited. Curcumin is a bioactive compound of Curcuma longa with antioxidant properties. Herein, we looked into the effects of curcumin on the H2O2-induced oxidative stress in cochlear hair cells and hearing function in an ARHL animal model (C57BL/6J mice). We found that pretreatment of curcumin could attenuate H2O2-induced apoptosis and cell senescence in auditory hair cells and prevent mitochondrial function dysfunction. More specifically, Western blot and luciferase activity assay showed that curcumin activated the nuclear translocation of Nrf2, which in turn triggered the activation of its downstream target gene Heme Oxygenase1 (HO-1). The enhanced Nrf2 and HO-1 activity by curcumin was blocked by the AKT inhibitor LY294002, indicating the protective effect of curcumin was mainly achieved by activating Nrf2/HO-1 through the AKT pathway. Furthermore, the knockdown of Nrf2 with siRNA diminished the protective effects of Nrf2 against apoptosis and senescence, consolidating the pivotal role of Nrf2 in the protective effect of curcumin on auditory hair cells. More importantly, curcumin (10 mg/kg/d) could attenuate progressive hearing loss in C57BL/6J mice, as evident from the reduced threshold of auditory nerve brainstem response. Administration of curcumin also elevated the expression of Nrf2 and reduced the expression of cleaved-caspase-3, p21, and γ-H2AX in cochlear. This study is the first to demonstrate that curcumin can prevent oxidative stress-induced auditory hair cell degeneration through Nrf2 activation, highlighting its potential therapeutic value in preventing ARHL.
Collapse
Affiliation(s)
- Ning Li
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xirui Yan
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weiling Huang
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Min Chu
- Experimental Teaching Center, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yang Dong
- Experimental Teaching Center, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Haiyan Song
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yinting Peng
- Experimental Teaching Center, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianrong Shi
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qing Liu
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
31
|
Jeon H, Song IS, Park JG, Lee H, Han E, Park S, Lee Y, Song CM, Hur W, Lee IG, Choi J. Protective effects of esomeprazole against cisplatin-induced ototoxicity: an in vitro and in vivo study. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 260:106573. [PMID: 37210931 DOI: 10.1016/j.aquatox.2023.106573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/06/2023] [Accepted: 05/11/2023] [Indexed: 05/23/2023]
Abstract
In this study, we aimed to identify novel compounds that could afford protection against cisplatin-induced ototoxicity by employing both cell- and zebrafish (Danio rerio)-based screening platforms. We screened 923 US Food and Drug Administration-approved drugs to identify potential compounds exhibiting protective effects against cisplatin-induced ototoxicity in HEI-OC1 cells (auditory hair cell line). The screening strategy identified esomeprazole and dexlansoprazole as the primary hit compounds. Subsequently, we examined the effects of these compounds on cell viability and apoptosis. Our results revealed that esomeprazole and dexlansoprazole inhibited organic cation transporter 2 (OCT2), thus providing in vitro evidence that these compounds could ameliorate cisplatin-induced ototoxicity by directly inhibiting OCT2-mediated cisplatin transport. In vivo, the protective effects were validated using zebrafish; esomeprazole was found to decrease cisplatin-induced hair cell damage in neuromasts. Furthermore, the esomeprazole-treated group showed a significantly lower number of TUNEL-positive cells than the cisplatin-treated group. Collectively, our findings revealed that esomeprazole exerts a protective effect against cisplatin-induced hair cell damage in both HEI-OC1 cells and a zebrafish model.
Collapse
Affiliation(s)
- Hanul Jeon
- Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - In Sik Song
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Korea University Ansan Hospital, Ansan, Republic of Korea
| | - Jin-Gyeong Park
- Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Hyejin Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Korea University Ansan Hospital, Ansan, Republic of Korea
| | - Eunjung Han
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Korea University Ansan Hospital, Ansan, Republic of Korea
| | - Saemi Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Korea University Ansan Hospital, Ansan, Republic of Korea
| | - Yunkyoung Lee
- Zebrafish Translational Medical Research Center, Korea University, Ansan, Republic of Korea
| | - Chi-Man Song
- Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Wooyoung Hur
- Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - In-Gyun Lee
- Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea.
| | - June Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Korea University Ansan Hospital, Ansan, Republic of Korea; Zebrafish Translational Medical Research Center, Korea University, Ansan, Republic of Korea.
| |
Collapse
|
32
|
Wagle SR, Ionescu CM, Kovacevic B, Jones M, Foster T, Lim P, Lewkowicz M, Ðanić M, Mikov M, Mooranian A, Al-Salami H. Pharmaceutical characterization of probucol bile acid-lithocholic acid nanoparticles to prevent chronic hearing related and similar cellular oxidative stress pathologies. Nanomedicine (Lond) 2023; 18:923-940. [PMID: 37529927 DOI: 10.2217/nnm-2023-0092] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023] Open
Abstract
Background: Sensorineural hearing loss has been associated with oxidative stress. However, an antioxidant that passes effectively through the ear remains elusive. Method: Probucol (PB)-based nanoparticles were formed using a spray-drying encapsulation technique, characterized and tested in vitro. Results: Uniform, spherical nanoparticles were produced. The addition of lithocholic acid to PB formulations did not affect drug content or production yield, but it did modify capsule size, surface tension, electrokinetic stability and drug release. Cell viability, bioenergetics and inflammatory profiles were improved when auditory cells were exposed to PB-based nanoparticles, which showed antioxidant properties (p < 0.05). Conclusion: PB-based nanoparticles can potentially protect the auditory cell line from oxidative stress and could be used in future in vivo studies as a potential new therapeutic agent for sensorineural hearing loss.
Collapse
Affiliation(s)
- Susbin R Wagle
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands 6009, Perth, Western Australia, Australia
| | - Corina M Ionescu
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands 6009, Perth, Western Australia, Australia
| | - Bozica Kovacevic
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands 6009, Perth, Western Australia, Australia
| | - Melissa Jones
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands 6009, Perth, Western Australia, Australia
| | - Thomas Foster
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands 6009, Perth, Western Australia, Australia
| | - Patrick Lim
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands 6009, Perth, Western Australia, Australia
| | - Michael Lewkowicz
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands 6009, Perth, Western Australia, Australia
| | - Maja Ðanić
- Department of Pharmacology, Toxicology & Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad (Hajduk Veljkova 3, 21101), Serbia
| | - Momir Mikov
- Department of Pharmacology, Toxicology & Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad (Hajduk Veljkova 3, 21101), Serbia
| | - Armin Mooranian
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands 6009, Perth, Western Australia, Australia
- School of Pharmacy, University of Otago, Dunedin, 9016, Otago, New Zealand
| | - Hani Al-Salami
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands 6009, Perth, Western Australia, Australia
- Medical School, University of Western Australia, Perth 6907, Western Australia, Australia
| |
Collapse
|
33
|
Mu YR, Zou SY, Li M, Ding YY, Huang X, He ZH, Kong WJ. Role and mechanism of FOXG1-related epigenetic modifications in cisplatin-induced hair cell damage. Front Mol Neurosci 2023; 16:1064579. [PMID: 37181652 PMCID: PMC10169754 DOI: 10.3389/fnmol.2023.1064579] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 04/11/2023] [Indexed: 05/16/2023] Open
Abstract
Cisplatin is widely used in clinical tumor chemotherapy but has severe ototoxic side effects, including tinnitus and hearing damage. This study aimed to determine the molecular mechanism underlying cisplatin-induced ototoxicity. In this study, we used CBA/CaJ mice to establish an ototoxicity model of cisplatin-induced hair cell loss, and our results showed that cisplatin treatment could reduce FOXG1 expression and autophagy levels. Additionally, H3K9me2 levels increased in cochlear hair cells after cisplatin administration. Reduced FOXG1 expression caused decreased microRNA (miRNA) expression and autophagy levels, leading to reactive oxygen species (ROS) accumulation and cochlear hair cell death. Inhibiting miRNA expression decreased the autophagy levels of OC-1 cells and significantly increased cellular ROS levels and the apoptosis ratio in vitro. In vitro, overexpression of FOXG1 and its target miRNAs could rescue the cisplatin-induced decrease in autophagy, thereby reducing apoptosis. BIX01294 is an inhibitor of G9a, the enzyme in charge of H3K9me2, and can reduce hair cell damage and rescue the hearing loss caused by cisplatin in vivo. This study demonstrates that FOXG1-related epigenetics plays a role in cisplatin-induced ototoxicity through the autophagy pathway, providing new ideas and intervention targets for treating ototoxicity.
Collapse
Affiliation(s)
- Yu-rong Mu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng-yu Zou
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ming Li
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan-yan Ding
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Huang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zu-hong He
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wei-jia Kong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
34
|
Hong BN, Shin SW, Nam YH, Shim JH, Kim NW, Kim MC, Nuankaew W, Kwak JH, Kang TH. Amelioration of Sensorineural Hearing Loss through Regulation of Trpv1, Cacna1h, and Ngf Gene Expression by a Combination of Cuscutae Semen and Rehmanniae Radix Preparata. Nutrients 2023; 15:nu15071773. [PMID: 37049613 PMCID: PMC10097224 DOI: 10.3390/nu15071773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
Sensorineural hearing loss (SNHL) is a common condition that results from the loss of function of hair cells, which are responsible for converting sound into electrical signals within the cochlea and auditory nerve. Despite the prevalence of SNHL, a universally effective treatment has yet to be approved. To address this absence, the present study aimed to investigate the potential therapeutic effects of TS, a combination of Cuscutae Semen and Rehmanniae Radix Preparata. To this end, both in vitro and in vivo experiments were performed to evaluate the efficacy of TS with respect to SNHL. The results showed that TS was able to protect against ototoxic neomycin-induced damage in both HEI-OC1 cells and otic hair cells in zebrafish. Furthermore, in images obtained using scanning electron microscopy (SEM), an increase in the number of kinocilia, which was prompted by the TS treatment, was observed in the zebrafish larvae. In a noise-induced hearing loss (NIHL) mouse model, TS improved hearing thresholds as determined by the auditory brainstem response (ABR) test. Additionally, TS was found to regulate several genes related to hearing loss, including Trpv1, Cacna1h, and Ngf, as determined by quantitative real-time polymerase chain reaction (RT-PCR) analysis. In conclusion, the findings of this study suggest that TS holds promise as a potential treatment for sensorineural hearing loss. Further research is necessary to confirm these results and evaluate the safety and efficacy of TS in a clinical setting.
Collapse
Affiliation(s)
- Bin Na Hong
- Department of Oriental Medicine Biotechnology, Graduate School of Biotechnology, Kyung Hee University, Global Campus, Yongin 17104, Gyeonggi-do, Republic of Korea
- Invivotec Co., Ltd., Seongnam 13449, Gyeonggi-do, Republic of Korea
| | - Sung Woo Shin
- Department of Oriental Medicine Biotechnology, Graduate School of Biotechnology, Kyung Hee University, Global Campus, Yongin 17104, Gyeonggi-do, Republic of Korea
| | - Youn Hee Nam
- Department of Oriental Medicine Biotechnology, Graduate School of Biotechnology, Kyung Hee University, Global Campus, Yongin 17104, Gyeonggi-do, Republic of Korea
- Invivotec Co., Ltd., Seongnam 13449, Gyeonggi-do, Republic of Korea
| | - Ji Heon Shim
- Department of Oriental Medicine Biotechnology, Graduate School of Biotechnology, Kyung Hee University, Global Campus, Yongin 17104, Gyeonggi-do, Republic of Korea
- Invivotec Co., Ltd., Seongnam 13449, Gyeonggi-do, Republic of Korea
| | - Na Woo Kim
- Department of Oriental Medicine Biotechnology, Graduate School of Biotechnology, Kyung Hee University, Global Campus, Yongin 17104, Gyeonggi-do, Republic of Korea
- Invivotec Co., Ltd., Seongnam 13449, Gyeonggi-do, Republic of Korea
| | - Min Cheol Kim
- Department of Oriental Medicine Biotechnology, Graduate School of Biotechnology, Kyung Hee University, Global Campus, Yongin 17104, Gyeonggi-do, Republic of Korea
| | - Wanlapa Nuankaew
- Department of Oriental Medicine Biotechnology, Graduate School of Biotechnology, Kyung Hee University, Global Campus, Yongin 17104, Gyeonggi-do, Republic of Korea
| | - Jong Hwan Kwak
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Gyeonggi-do, Republic of Korea
| | - Tong Ho Kang
- Department of Oriental Medicine Biotechnology, Graduate School of Biotechnology, Kyung Hee University, Global Campus, Yongin 17104, Gyeonggi-do, Republic of Korea
| |
Collapse
|
35
|
He W, Wu F, Xiong H, Zeng J, Gao Y, Cai Z, Pang J, Zheng Y. Promoting TFEB nuclear localization with curcumin analog C1 attenuates sensory hair cell injury and delays age-related hearing loss in C57BL/6 mice. Neurotoxicology 2023; 95:218-231. [PMID: 36792013 DOI: 10.1016/j.neuro.2023.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/16/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
Sensory hair cell (HC) injuries, especially outer hair cell (OHC) loss, are well-documented to be the primary pathology of age-related hearing loss (AHL). Recent studies have demonstrated that autophagy plays an important role in HC injury in the inner ear. In our previous works, a decline in autophagy levels and HC loss were found to occur simultaneously in the inner ears of aged C57BL/6 mice, and the administration of rapamycin promoted autophagy levels, which reduced OHC loss and delayed AHL, but the underlying mechanism of autophagy in AHL has not been well elucidated. Transcription factor EB (TFEB), an autophagy regulator and the downstream target of mammalian target of rapamycin (mTOR), is involved in the pathological development of neurodegenerative disease. This study would address the link between autophagy and TFEB in aged C57BL/6 mouse cochleae and clarify the effect of the TFEB activator curcumin analog C1 (C1) in aged cochleae. Decreased TFEB nuclear localization (p = 0.0371) and autophagy dysfunction (p = 0.0273) were observed in the cochleae of aged C57BL/6 mice that exhibited AHL, HCs loss and HCs senescence. Treatment with C1 promoted TFEB nuclear localization and restored autophagy, subsequently alleviating HC injury and delaying AHL. The protective effect of C1 on HEI-OC1 cells against autophagy disorder and aging induced by D-galactose was abolished by chloroquine, which is one of the commonly used autophagy inhibitors. Overall, our results demonstrated that the capacity to perform autophagy is mediated by the nuclear localization of TFEB in aged C57BL/6 mouse cochleae. C1 promotes the nuclear localization of TFEB, subsequently alleviating HC injury and delaying AHL by restoring the impaired autophagy function. TFEB may serve as a new therapeutic target for AHL treatment.
Collapse
Affiliation(s)
- Wuhui He
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Fan Wu
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hao Xiong
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China
| | - Junbo Zeng
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China
| | - Yiming Gao
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ziyi Cai
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiaqi Pang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Yiqing Zheng
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
36
|
Wang X, Xiong H, Zhang P, Liu Y, Gao C, Zhou Z, Sun J, Diao M. Intratympanic microcrystals of dexamethasone and lipoic acid for the treatment of cisplatin-induced inner ear injury. Colloids Surf B Biointerfaces 2023; 223:113191. [PMID: 36739674 DOI: 10.1016/j.colsurfb.2023.113191] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/04/2023]
Abstract
Steroids (anti-inflammatory drugs) combined with antioxidants are frequently prescribed to treat cisplatin (CP)-induced hearing loss in the clinic. Compared to systemic administration of free drugs, local drug delivery systems offer better therapeutic qualities and patient compliance since they not only can bypass the blood-labyrinth barrier but also can perform sustained release. In this work, dexamethasone (DEX) and lipoic acid (LA) non-spherical microcrystals (MCs) were prepared without complicated chemical modification. Following a series of physical characterizations, including morphology, stability and injectability, dissolution and round window membrane distribution of MCs, DEX MCs, LA MCs and the simple mixture of DEX MCs + LA MCs (combination group) were administered in guinea pigs by intratympanic injection. We found that LA MCs enabled improvement of DEX absorption in the combination group compared to a single dose. In addition, no significant morphological changes or inflammatory responses were observed in cochlear tissue, indicating good biocompatibility. Finally, the combination group also demonstrated synergistic therapeutic effect for protecting hair cells against CP-induced damage. The local co delivery of DEX MCs and LA MCs offers a new strategy for the treatment of CP-induced inner ear injury since they provide sustained anti-inflammatory and antioxidant effects simultaneously.
Collapse
Affiliation(s)
- Xiangxiang Wang
- Department of Otolaryngology, School of Medicine, South China University of Technology, Guangzhou 510006, China; Department of Endoscopic Ear Surgery, Senior Department of Otorhinolaryngology Head and Neck Surgery, The Sixth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Haixia Xiong
- Department of Otolaryngology, School of Medicine, South China University of Technology, Guangzhou 510006, China; Department of Endoscopic Ear Surgery, Senior Department of Otorhinolaryngology Head and Neck Surgery, The Sixth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Peili Zhang
- Department of Otolaryngology, School of Medicine, South China University of Technology, Guangzhou 510006, China; Department of Endoscopic Ear Surgery, Senior Department of Otorhinolaryngology Head and Neck Surgery, The Sixth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Ya Liu
- Department of Endoscopic Ear Surgery, Senior Department of Otorhinolaryngology Head and Neck Surgery, The Sixth Medical Center of PLA General Hospital, Beijing 100048, China; National Clinical Medical Research Center for Otolaryngology Diseases, Beijing 100048, China
| | - Chang Gao
- Biomedical Barriers Research Center, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Zhimin Zhou
- Biomedical Barriers Research Center, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| | - Jianjun Sun
- Department of Otorhinolaryngology Head and Neck Surgery, Peking University International Hospital, Beijing 102206, China.
| | - Mingfang Diao
- Department of Otolaryngology, School of Medicine, South China University of Technology, Guangzhou 510006, China; Department of Endoscopic Ear Surgery, Senior Department of Otorhinolaryngology Head and Neck Surgery, The Sixth Medical Center of PLA General Hospital, Beijing 100048, China; National Clinical Medical Research Center for Otolaryngology Diseases, Beijing 100048, China.
| |
Collapse
|
37
|
IGF-1 Controls Metabolic Homeostasis and Survival in HEI-OC1 Auditory Cells through AKT and mTOR Signaling. Antioxidants (Basel) 2023; 12:antiox12020233. [PMID: 36829792 PMCID: PMC9952701 DOI: 10.3390/antiox12020233] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Insulin-like growth factor 1 (IGF-1) is a trophic factor for the nervous system where it exerts pleiotropic effects, including the regulation of metabolic homeostasis. IGF-1 deficiency induces morphological alterations in the cochlea, apoptosis and hearing loss. While multiple studies have addressed the role of IGF-1 in hearing protection, its potential function in the modulation of otic metabolism remains unclear. Here, we report that "House Ear Institute-organ of Corti 1" (HEI-OC1) auditory cells express IGF-system genes that are regulated during their differentiation. Upon binding to its high-affinity receptor IGF1R, IGF-1 activates AKT and mTOR signaling to stimulate anabolism and, concomitantly, to reduce autophagic catabolism in HEI-OC1 progenitor cells. Notably, IGF-1 stimulation during HEI-OC1 differentiation to mature otic cells sustained both constructive metabolism and autophagic flux, possibly to favor cell remodeling. IGF1R engagement and downstream AKT signaling promoted HEI-OC1 cell survival by maintaining redox balance, even when cells were challenged with the ototoxic agent cisplatin. Our findings establish that IGF-1 not only serves an important function in otic metabolic homeostasis but also activates antioxidant defense mechanisms to promote hair cell survival during the stress response to insults.
Collapse
|
38
|
Han H, Hu S, Hu Y, Liu D, Zhou J, Liu X, Ma X, Dong Y. Mitophagy in ototoxicity. Front Cell Neurosci 2023; 17:1140916. [PMID: 36909283 PMCID: PMC9995710 DOI: 10.3389/fncel.2023.1140916] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/08/2023] [Indexed: 02/25/2023] Open
Abstract
Mitochondrial dysfunction is associated with ototoxicity, which is caused by external factors. Mitophagy plays a key role in maintaining mitochondrial homeostasis and function and is regulated by a series of key mitophagy regulatory proteins and signaling pathways. The results of ototoxicity models indicate the importance of this process in the etiology of ototoxicity. A number of recent investigations of the control of cell fate by mitophagy have enhanced our understanding of the mechanisms by which mitophagy regulates ototoxicity and other hearing-related diseases, providing opportunities for targeting mitochondria to treat ototoxicity.
Collapse
Affiliation(s)
- Hezhou Han
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Sainan Hu
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yue Hu
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Dongliang Liu
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Junbo Zhou
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Xiaofang Liu
- Department of Surgical Oncology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiulan Ma
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yaodong Dong
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
39
|
Mehranpour M, Azimi H, Abdollahifar MA, Moghaddam MH, Eskandari N, Vakili K, Fathi M, Peyvandi AA, Aliaghaei A. Tramadol-induced apoptosis in auditory hair cells of adult male rats. J Chem Neuroanat 2022; 126:102172. [DOI: 10.1016/j.jchemneu.2022.102172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/15/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
|
40
|
Zou M, Huang M, Zhang J, Chen R. Exploring the effects and mechanisms of organophosphorus pesticide exposure and hearing loss. Front Public Health 2022; 10:1001760. [PMID: 36438228 PMCID: PMC9692084 DOI: 10.3389/fpubh.2022.1001760] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
Many environmental factors, such as noise, chemicals, and heavy metals, are mostly produced by human activities and easily induce acquired hearing loss. Organophosphorus pesticides (OPs) constitute a large variety of chemicals and have high usage with potentiate damage to human health. Moreover, their metabolites also show a serious potential contamination of soil, water, and air, leading to a serious impact on people's health. Hearing loss affects 430 million people (5.5% of the global population), bringing a heavy burden to individual patients and their families and society. However, the potential risk of hearing damage by OPs has not been taken seriously. In this study, we summarized the effects of OPs on hearing loss from epidemiological population studies and animal experiments. Furthermore, the possible mechanisms of OP-induced hearing loss are elucidated from oxidative stress, DNA damage, and inflammatory response. Overall, this review provides an overview of OP exposure alone or with noise that leads to hearing loss in human and experimental animals.
Collapse
|
41
|
Kinesin spindle protein inhibitor exacerbates cisplatin-induced hair cell damage. Arch Biochem Biophys 2022; 731:109432. [DOI: 10.1016/j.abb.2022.109432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 11/23/2022]
|
42
|
Durán-Alonso MB, Petković H. Induced Pluripotent Stem Cells, a Stepping Stone to In Vitro Human Models of Hearing Loss. Cells 2022; 11:3331. [PMID: 36291196 PMCID: PMC9600035 DOI: 10.3390/cells11203331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 10/05/2022] [Accepted: 10/14/2022] [Indexed: 11/28/2022] Open
Abstract
Hearing loss is the most prevalent sensorineural impairment in humans. Yet despite very active research, no effective therapy other than the cochlear implant has reached the clinic. Main reasons for this failure are the multifactorial nature of the disorder, its heterogeneity, and a late onset that hinders the identification of etiological factors. Another problem is the lack of human samples such that practically all the work has been conducted on animals. Although highly valuable data have been obtained from such models, there is the risk that inter-species differences exist that may compromise the relevance of the gathered data. Human-based models are therefore direly needed. The irruption of human induced pluripotent stem cell technologies in the field of hearing research offers the possibility to generate an array of otic cell models of human origin; these may enable the identification of guiding signalling cues during inner ear development and of the mechanisms that lead from genetic alterations to pathology. These models will also be extremely valuable when conducting ototoxicity analyses and when exploring new avenues towards regeneration in the inner ear. This review summarises some of the work that has already been conducted with these cells and contemplates future possibilities.
Collapse
Affiliation(s)
- María Beatriz Durán-Alonso
- Unit of Excellence, Institute of Biology and Molecular Genetics (IBGM), University of Valladolid-CSIC, 47003 Valladolid, Spain
| | - Hrvoje Petković
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| |
Collapse
|
43
|
Wan H, Zhang Y, Hua Q. Cellular autophagy, the compelling roles in hearing function and dysfunction. Front Cell Neurosci 2022; 16:966202. [PMID: 36246522 PMCID: PMC9561951 DOI: 10.3389/fncel.2022.966202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/14/2022] [Indexed: 11/21/2022] Open
Abstract
Sensorineural hearing loss (SNHL) is currently a major health issue. As one of the most common neurodegenerative diseases, SNHL is associated with the degradation of hair cells (HCs), spiral ganglion neurons (SGNs), the stria vascularis, supporting cells and central auditory system cells. Autophagy is a highly integrated cellular system that eliminates impaired components and replenishes energy to benefit cellular homeostasis. Etiological links between autophagy alterations and neurodegenerative diseases, such as SNHL, have been established. The hearing pathway is complex and depends on the comprehensive functions of many types of tissues and cells in auditory system. In this review, we discuss the roles of autophagy in promoting and inhibiting hearing, paying particular attention to specific cells in the auditory system, as discerned through research. Hence, our review provides enlightening ideas for the role of autophagy in hearing development and impairment.
Collapse
Affiliation(s)
- Huanzhi Wan
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Research Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuanyuan Zhang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Research Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Yuanyuan Zhang,
| | - Qingquan Hua
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Research Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Qingquan Hua,
| |
Collapse
|
44
|
Li J, Liu C, Müller U, Zhao B. RIPOR2-mediated autophagy dysfunction is critical for aminoglycoside-induced hearing loss. Dev Cell 2022; 57:2204-2220.e6. [PMID: 36113482 PMCID: PMC9529990 DOI: 10.1016/j.devcel.2022.08.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/25/2022] [Accepted: 08/23/2022] [Indexed: 01/18/2023]
Abstract
Aminoglycosides (AGs) are potent antibiotics that are capable of treating a wide variety of life-threatening infections; however, they are ototoxic and cause irreversible damage to cochlear hair cells. Despite substantial progress, little is known about the molecular pathways critical for hair cell function and survival that are affected by AG exposure. We demonstrate here that gentamicin, a representative AG antibiotic, binds to and within minutes triggers translocation of RIPOR2 in murine hair cells from stereocilia to the pericuticular area. Then, by interacting with a central autophagy component, GABARAP, RIPOR2 affects autophagy activation. Reducing the expression of RIPOR2 or GABARAP completely prevents AG-induced hair cell death and subsequent hearing loss in mice. Additionally, abolishing the expression of PINK1 or Parkin, two key mitochondrial autophagy proteins, prevents hair cell death and subsequent hearing loss caused by AG. In summary, our study demonstrates that RIPOR2-mediated autophagic dysfunction is essential for AG-induced hearing loss.
Collapse
Affiliation(s)
- Jinan Li
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Chang Liu
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Ulrich Müller
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Bo Zhao
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
45
|
Yamada Y, Miwa T, Nakashima M, Shirakawa A, Ishii A, Namba N, Kondo Y, Takeo T, Nakagata N, Motoyama K, Higashi T, Arima H, Kurauchi Y, Seki T, Katsuki H, Okada Y, Ichikawa A, Higaki K, Hayashi K, Minami K, Yoshikawa N, Ikeda R, Ishikawa Y, Kajii T, Tachii K, Takeda H, Orita Y, Matsuo M, Irie T, Ishitsuka Y. Fine-tuned cholesterol solubilizer, mono-6-O-α-D-maltosyl-γ-cyclodextrin, ameliorates experimental Niemann-Pick disease type C without hearing loss. Biomed Pharmacother 2022; 155:113698. [PMID: 36116252 DOI: 10.1016/j.biopha.2022.113698] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 11/02/2022] Open
Abstract
Niemann-Pick disease type C (NPC) is a fatal disorder with abnormal intracellular cholesterol trafficking resulting in neurodegeneration and hepatosplenomegaly. A cyclic heptasaccharide with different degrees of substitution of 2-hydroxypropyl groups, 2-hydroxypropyl-β-cyclodextrin (HP-β-CD), acts as a strong cholesterol solubilizer and is under investigation for treating this disease in clinical trials, but its physicochemical properties and ototoxicity remain a concern. Here, we evaluated the potential of mono-6-O-α-maltosyl-γ-CD (G2-γ-CD), a single-maltose-branched cyclic octasaccharide with a larger cavity than HP-β-CD, for treating NPC. We identified that G2-γ-CD ameliorated NPC manifestations in model mice and showed lower ototoxicity in mice than HP-β-CD. To investigate the molecular mechanisms of action behind the differential ototoxicity of these CDs, we performed cholesterol solubility analysis, proton nuclear magnetic resonance spectroscopy, and molecular modeling, and estimated that the cholesterol inclusion mode of G2-γ-CD maintained solely the 1:1 inclusion complex, whereas that of HP-β-CD shifted to the highly-soluble 2:1 complex at higher concentrations. We predicted the associations of these differential complexations of CDs with cholesterol with the profile of disease attenuation and of the auditory cell toxicity using specific cell models. We proposed that G2-γ-CD can serve as a fine-tuned cholesterol solubilizer for treating NPC, being highly biocompatible and physicochemically suitable for clinical application.
Collapse
Affiliation(s)
- Yusei Yamada
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Department of Pharmacy, University of Miyazaki Hospital, 5200 Kihara, Kiyotake-cho, Miyazaki 889-1692, Japan.
| | - Toru Miwa
- Department of Otolaryngology-Head and Neck Surgery, Tazuke Kofukai Medical Research Institute, Kitano Hospital, 2-4-20 Ohgi-machi, Kita-ku, Osaka 530-8480, Japan
| | - Masaki Nakashima
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Aina Shirakawa
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Akira Ishii
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Nanami Namba
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Yuki Kondo
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Toru Takeo
- Division of Reproductive Engineering, Center for Animal Resources and Development (CARD), Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Naomi Nakagata
- Division of Reproductive Biotechnology and Innovation, Center for Animal Resources and Development (CARD), Institute of Resource Development and Analysis, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Keiichi Motoyama
- Department of Physical Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Taishi Higashi
- Priority Organization for Innovation and Excellence, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Hidetoshi Arima
- Laboratory of Evidence-Based Pharmacotherapy, Daiichi University of Pharmacy, 22-1 Tamagawa-machi, Minami-ku, Fukuoka 815-8511, Japan
| | - Yuki Kurauchi
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Takahiro Seki
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Hiroshi Katsuki
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Yasuyo Okada
- Institute Biosciences, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68 Koshien Kyuban-cho, Nishinomiya 663-8179, Japan
| | - Atsushi Ichikawa
- Institute Biosciences, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68 Koshien Kyuban-cho, Nishinomiya 663-8179, Japan
| | - Katsumi Higaki
- Research Initiative Center, Organization for Research Initiative and Promotion, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan
| | - Ken Hayashi
- Kawagoe Otology Institute, 103, Wakitamachi, Kawagoe-shi, Saitama 350-1122, Japan
| | - Kentaro Minami
- Department of Pharmacy, University of Miyazaki Hospital, 5200 Kihara, Kiyotake-cho, Miyazaki 889-1692, Japan
| | - Naoki Yoshikawa
- Department of Pharmacy, University of Miyazaki Hospital, 5200 Kihara, Kiyotake-cho, Miyazaki 889-1692, Japan
| | - Ryuji Ikeda
- Department of Pharmacy, University of Miyazaki Hospital, 5200 Kihara, Kiyotake-cho, Miyazaki 889-1692, Japan
| | - Yoshihide Ishikawa
- Department of Otolaryngology-Head and Neck Surgery, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Tomohito Kajii
- Department of Otolaryngology-Head and Neck Surgery, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Kyoko Tachii
- Department of Otolaryngology-Head and Neck Surgery, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Hiroki Takeda
- Department of Otolaryngology-Head and Neck Surgery, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Yorihisa Orita
- Department of Otolaryngology-Head and Neck Surgery, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Muneaki Matsuo
- Department of Pediatrics, Faculty of Medicine, Saga University, 5-1-1, Nabeshima, Saga 849-8501, Japan
| | - Tetsumi Irie
- Department of Pharmaceutical Packaging Technology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Yoichi Ishitsuka
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
| |
Collapse
|
46
|
Dindelegan MG, Pașcalău V, Suciu M, Neamțu B, Perde-Schrepler M, Blebea CM, Maniu AA, Necula V, Buzoianu AD, Filip M, Csapai A, Popa C. Biopolymer Lipid Hybrid Microcarrier for Transmembrane Inner Ear Delivery of Dexamethasone. Gels 2022; 8:gels8080483. [PMID: 36005084 PMCID: PMC9407102 DOI: 10.3390/gels8080483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 12/26/2022] Open
Abstract
Dexamethasone is one of the most often used corticosteroid drugs for sensorineural hearing loss treatment, and is used either by intratympanic injection or through systemic delivery. In this study, a biopolymer lipid hybrid microcarrier was investigated for enhanced local drug delivery and sustained release at the round window membrane level of the middle ear for the treatment of sensorineural hearing loss (SNHL). Dexamethasone-loaded and dexamethasone-free microparticles were prepared using biopolymers (polysaccharide and protein, pectin and bovine serum albumin, respectively) combined with lipid components (phosphatidylcholine and Dimethyldioctadecylammonium bromide) in order to obtain a biopolymer–liposome hybrid system, with a complex structure combining to enhance performance in terms of physical and chemical stability. The structure of the microparticles was evaluated by FTIR, XRD, thermal analysis, optical microscopy, and scanning electron microscopy (SEM). The encapsulation efficiency determination and the in vitro Dexamethasone release study were performed using UV-Vis spectroscopy. The high value of encapsulation efficiency and the results of the release study indicated six days of sustained release, encouraging us to evaluate the in vitro cytotoxicity of Dexamethasone-loaded microparticles and their influence on the cytotoxicity induced by Cisplatin on auditory HEI-OC1 cells. The results show that the new particles are able to protect the inner ear sensory cells.
Collapse
Affiliation(s)
- Maximilian George Dindelegan
- Department of Clinical Pharmacology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 23 Gh. Marinescu Street, 400337 Cluj-Napoca, Romania; (M.G.D.); (A.D.B.)
- Department of Otorhinolaringology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 4-6 Clinicilor Street, 400006 Cluj-Napoca, Romania; (C.M.B.); (A.A.M.); (V.N.)
| | - Violeta Pașcalău
- Department of Materials Science and Engineering, Technical University of Cluj-Napoca, 28 Memorandumului Street, 400114 Cluj-Napoca, Romania; (B.N.); (A.C.); (C.P.)
- Correspondence:
| | - Maria Suciu
- Electron Microscopy Center “C. Craciun”, Biology and Geology Faculty, Babes-Bolyai University, 5-7 Clinicilor Street, 400006 Cluj-Napoca, Romania;
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donath Street, 400293 Cluj-Napoca, Romania
| | - Bogdan Neamțu
- Department of Materials Science and Engineering, Technical University of Cluj-Napoca, 28 Memorandumului Street, 400114 Cluj-Napoca, Romania; (B.N.); (A.C.); (C.P.)
| | - Maria Perde-Schrepler
- Institute of Oncology “Prof Dr. Ion Chiricuta”, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania;
| | - Cristina Maria Blebea
- Department of Otorhinolaringology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 4-6 Clinicilor Street, 400006 Cluj-Napoca, Romania; (C.M.B.); (A.A.M.); (V.N.)
| | - Alma Aurelia Maniu
- Department of Otorhinolaringology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 4-6 Clinicilor Street, 400006 Cluj-Napoca, Romania; (C.M.B.); (A.A.M.); (V.N.)
| | - Violeta Necula
- Department of Otorhinolaringology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 4-6 Clinicilor Street, 400006 Cluj-Napoca, Romania; (C.M.B.); (A.A.M.); (V.N.)
| | - Anca Dana Buzoianu
- Department of Clinical Pharmacology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 23 Gh. Marinescu Street, 400337 Cluj-Napoca, Romania; (M.G.D.); (A.D.B.)
| | - Miuța Filip
- “Raluca Ripan” Institute for Research in Chemistry, Babes-Bolyai University, 30 Fantanele Street, 400294 Cluj-Napoca, Romania;
| | - Alexandra Csapai
- Department of Materials Science and Engineering, Technical University of Cluj-Napoca, 28 Memorandumului Street, 400114 Cluj-Napoca, Romania; (B.N.); (A.C.); (C.P.)
| | - Cătălin Popa
- Department of Materials Science and Engineering, Technical University of Cluj-Napoca, 28 Memorandumului Street, 400114 Cluj-Napoca, Romania; (B.N.); (A.C.); (C.P.)
| |
Collapse
|
47
|
Gu J, Wang X, Chen Y, Xu K, Yu D, Wu H. An enhanced antioxidant strategy of astaxanthin encapsulated in ROS-responsive nanoparticles for combating cisplatin-induced ototoxicity. J Nanobiotechnology 2022; 20:268. [PMID: 35689218 PMCID: PMC9185887 DOI: 10.1186/s12951-022-01485-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/31/2022] [Indexed: 11/30/2022] Open
Abstract
Background Excessive accumulation of reactive oxygen species (ROS) has been documented as the crucial cellular mechanism of cisplatin-induced ototoxicity. However, numerous antioxidants have failed in clinical studies partly due to inefficient drug delivery to the cochlea. A drug delivery system is an attractive strategy to overcome this drawback. Methods and results In the present study, we proposed the combination of antioxidant astaxanthin (ATX) and ROS-responsive/consuming nanoparticles (PPS-NP) to combat cisplatin-induced ototoxicity. ATX-PPS-NP were constructed by the self-assembly of an amphiphilic hyperbranched polyphosphoester containing thioketal units, which scavenged ROS and disintegrate to release the encapsulated ATX. The ROS-sensitivity was confirmed by 1H nuclear magnetic resonance spectroscopy, transmission electron microscopy and an H2O2 ON/OFF stimulated model. Enhanced release profiles stimulated by H2O2 were verified in artificial perilymph, the HEI-OC1 cell line and guinea pigs. In addition, ATX-PPS-NP efficiently inhibited cisplatin-induced HEI-OC1 cell cytotoxicity and apoptosis compared with ATX or PPS-NP alone, suggesting an enhanced effect of the combination of the natural active compound ATX and ROS-consuming PPS-NP. Moreover, ATX-PPS-NP attenuated outer hair cell losses in cultured organ of Corti. In guinea pigs, NiRe-PPS-NP verified a quick penetration across the round window membrane and ATX-PPS-NP showed protective effect on spiral ganglion neurons, which further attenuated cisplatin-induced moderate hearing loss. Further studies revealed that the protective mechanisms involved decreasing excessive ROS generation, reducing inflammatory chemokine (interleukin-6) release, increasing antioxidant glutathione expression and inhibiting the mitochondrial apoptotic pathway. Conclusions Thus, this ROS-responsive nanoparticle encapsulating ATX has favorable potential in the prevention of cisplatin-induced hearing loss. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01485-8.
Collapse
Affiliation(s)
- Jiayi Gu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases (14DZ2260300), Shanghai, China
| | - Xueling Wang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases (14DZ2260300), Shanghai, China
| | - Yuming Chen
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases (14DZ2260300), Shanghai, China
| | - Ke Xu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases (14DZ2260300), Shanghai, China
| | - Dehong Yu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases (14DZ2260300), Shanghai, China. .,Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, China.
| | - Hao Wu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases (14DZ2260300), Shanghai, China.
| |
Collapse
|
48
|
Chen Y, Gu J, Liu Y, Xu K, Song J, Wang X, Yu D, Wu H. Epigallocatechin gallate-loaded tetrahedral DNA nanostructures as a novel inner ear drug delivery system. NANOSCALE 2022; 14:8000-8011. [PMID: 35587814 DOI: 10.1039/d1nr07921b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The study of drug delivery systems to the inner ear is a crucial but challenging field. The sensory organ (in the inner ear) is protected by the petrous bone labyrinth and the membranous labyrinth, both of which need to be overcome during the drug delivery process. The requirements for such a delivery system include small size, appropriate flexibility and biodegradability. DNA nanostructures, biomaterials that can arrange multiple functional components with nanometer precision, exhibit characteristics that are compatible with the requirements for inner ear drug delivery. Herein, we report the development of a novel inner ear drug delivery system based on epigallocatechin gallate (EGCG)-loaded tetrahedral DNA nanostructures (TDNs, EGCG@TDNs). The TDNs self-assembled via base-pairing of four single-stranded DNA constructs and EGCG was loaded into the TDNs through non-covalent interactions. Cy5-labeled TDNs (Cy5-TDNs) were significantly internalized by the House Ear Institute-Organ of Corti 1 cell line, and this endocytosis was energy-, clathrin-, and micropinocytosis-dependent. Cy5-TDNs penetrated the round window membrane (RWM) rapidly in vivo. Local application of EGCG@TDNs onto the RWM of guinea pigs in a single dose continuously released EGCG over 4 hours. Drug concentrations in the perilymph were significantly elevated compared with the administration of free EGCG at the same dose. EGCG@TDNs were found to have favorable biocompatibility and strongly affected the RSL3-induced down-regulation of GPX4 and the generation of reactive oxygen species, on the basis of 2',7'-dichlorodihydrofluorescein diacetate staining. JC-1 staining suggested that EGCG@TDNs successfully reversed the decrease in mitochondrial membrane potential induced by RSL-3 in vitro and rescued cells from apoptosis, as demonstrated by the analysis of Annexin V-FITC/PI staining. Further functional studies showed that a locally administered single-dose of EGCG@TDNs effectively preserved spiral ganglion cells in C57/BL6 mice after noise-induced hearing loss. Hearing loss at 5.6 and 8 kHz frequencies was significantly attenuated when compared with the control EGCG formulation. Histological analyses indicated that the administration of TDNs and EGCG@TDNs did not induce local inflammatory responses. These favorable histological and functional effects resulting from the delivery of EGCG by TDNs through a local intratympanic injection suggest potential for therapeutic benefit in clinical applications.
Collapse
Affiliation(s)
- Yuming Chen
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China.
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases(14DZ2260300), Shanghai 200011, People's Republic of China
| | - Jiayi Gu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China.
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases(14DZ2260300), Shanghai 200011, People's Republic of China
| | - Yan Liu
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
- Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences; The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, People's Republic of China
| | - Ke Xu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China.
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases(14DZ2260300), Shanghai 200011, People's Republic of China
| | - Jie Song
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
- Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences; The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, People's Republic of China
| | - Xueling Wang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China.
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases(14DZ2260300), Shanghai 200011, People's Republic of China
| | - Dehong Yu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China.
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases(14DZ2260300), Shanghai 200011, People's Republic of China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Hao Wu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China.
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases(14DZ2260300), Shanghai 200011, People's Republic of China
| |
Collapse
|
49
|
Luan X, Cong Z, Anastassiades TP, Gao Y. N-Butyrylated Hyaluronic Acid Achieves Anti-Inflammatory Effects In Vitro and in Adjuvant-Induced Immune Activation in Rats. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103267. [PMID: 35630747 PMCID: PMC9145605 DOI: 10.3390/molecules27103267] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/13/2022] [Accepted: 05/18/2022] [Indexed: 12/20/2022]
Abstract
Previously synthesized N-butyrylated hyaluronic acid (BHA) provides anti-inflammatory effects in rat models of acute gouty arthritis and hyperuricemia. However, the mechanism of action remains to be elucidated. Herein, the anti-inflammatory and antioxidative activities of BHA and the targeted signaling pathways were explored with LPS-induced RAW264.7 and an adjuvant-induced inflammation in a rat model. Results indicated that BHA inhibited the generation of pro-inflammatory cytokines TNFα, IL-1β and IL-6, reduced ROS production and down-regulated JAK1-STAT1/3 signaling pathways in LPS-induced RAW264.7. In vivo, BHA alleviated paw and joint swelling, decreased inflammatory cell infiltration in paw tissues, suppressed gene expressions of p38 and p65, down-regulated the NF-κB and MAPK signaling pathways and reduced protein levels of TNFα, IL-1β and IL-6 in joint tissues of arthritis rats. This study demonstrated the pivotal role of BHA in anti-inflammation and anti-oxidation, suggesting the potential clinical value of BHA in the prevention of inflammatory arthritis and is worthy for development as a new pharmacological treatment.
Collapse
Affiliation(s)
- Xue Luan
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China; (X.L.); (Z.C.)
| | - Zhongcheng Cong
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China; (X.L.); (Z.C.)
| | - Tassos P. Anastassiades
- Division of Rheumatology, Department of Medicine, Queen’s University, Kingston, ON K7L 4B4, Canada;
| | - Yin Gao
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China; (X.L.); (Z.C.)
- Correspondence: ; Fax: +86-431-85168175
| |
Collapse
|
50
|
MicroRNA Signature and Cellular Characterization of Undifferentiated and Differentiated House Ear Institute-Organ of Corti 1 (HEI-OC1) Cells. J Assoc Res Otolaryngol 2022; 23:467-489. [PMID: 35546217 PMCID: PMC9094604 DOI: 10.1007/s10162-022-00850-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 04/20/2022] [Indexed: 11/29/2022] Open
Abstract
MicroRNAs (miRNAs) regulate gene expressions and control a wide variety of cellular functions. House Ear Institute-Organ of Corti 1 (HEI-OC1) cells are widely used to screen ototoxic drugs and to investigate cellular and genetic alterations in response to various conditions. HEI-OC1 cells are almost exclusively studied under permissive conditions that promote cell replication at the expense of differentiation. Many researchers suggest that permissive culture condition findings are relevant to understanding human hearing disorders. The mature human cochlea however consists of differentiated cells and lacks proliferative capacity. This study therefore aimed to compare the miRNA profiles and cellular characteristics of HEI-OC1 cells cultured under permissive (P-HEI-OC1) and non-permissive (NP-HEI-OC1) conditions. A significant increase in the level of expression of tubulin β1 class VI (Tubb1), e-cadherin (Cdh1), espin (Espn), and SRY (sex determining region Y)-box2 (Sox2) mRNAs was identified in non-permissive cells compared with permissive cells (P < 0.05, Kruskal–Wallis H test, 2-sided). miR-200 family, miR-34b/c, and miR-449a/b functionally related cluster miRNAs, rodent-specific maternally imprinted gene Sfmbt2 intron 10th cluster miRNAs (-466a/ -467a), and miR-17 family were significantly (P < 0.05, Welch’s t-test, 2-tailed) differentially expressed in non-permissive cells when compared with permissive cells. Putative target genes were significantly predominantly enriched in mitogen-activated protein kinase (MAPK), epidermal growth factor family of receptor tyrosine kinases (ErbB), and Ras signaling pathways in non-permissive cells compared with permissive cells. This distinct miRNA signature of differentiated HEI-OC1 cells could help in understanding miRNA-mediated cellular responses in the adult cochlea.
Collapse
|