1
|
Teichert T, Papp L, Vincze F, Burns N, Goodell B, Ahmed Z, Holmes A, Gray CM, Chamanzar M, Gurnsey K. Volumetric mesoscopic electrophysiology: a new imaging modality for the non-human primate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.593946. [PMID: 38798595 PMCID: PMC11118515 DOI: 10.1101/2024.05.13.593946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The primate brain is a densely interconnected organ whose function is best understood by recording from the entire structure in parallel, rather than parts of it in sequence. However, available methods either have limited temporal resolution (functional magnetic resonance imaging), limited spatial resolution (macroscopic electroencephalography), or a limited field of view (microscopic electrophysiology). To address this need, we developed a volumetric, mesoscopic recording approach ( MePhys ) by tessellating the volume of a monkey hemisphere with 992 electrode contacts that were distributed across 62 chronically implanted multi-electrode shafts. We showcase the scientific promise of MePhys by describing the functional interactions of local field potentials between the more than 300,000 simultaneously recorded pairs of electrodes. We find that a subanesthetic dose of ketamine -believed to mimic certain aspects of psychosis- can create a pronounced state of functional disconnection and prevent the formation of stable large-scale intrinsic states. We conclude that MePhys provides a new and fundamentally distinct window into brain function whose unique profile of strengths and weaknesses complements existing approaches in synergistic ways.
Collapse
|
2
|
Gong Y, Song P, Du X, Zhai Y, Xu H, Ye H, Bao X, Huang Q, Tu Z, Chen P, Zhao X, Pérez-González D, Malmierca MS, Yu X. Neural correlates of novelty detection in the primary auditory cortex of behaving monkeys. Cell Rep 2024; 43:113864. [PMID: 38421870 DOI: 10.1016/j.celrep.2024.113864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/11/2024] [Accepted: 02/08/2024] [Indexed: 03/02/2024] Open
Abstract
The neural mechanisms underlying novelty detection are not well understood, especially in relation to behavior. Here, we present single-unit responses from the primary auditory cortex (A1) from two monkeys trained to detect deviant tones amid repetitive ones. Results show that monkeys can detect deviant sounds, and there is a strong correlation between late neuronal responses (250-350 ms after deviant onset) and the monkeys' perceptual decisions. The magnitude and timing of both neuronal and behavioral responses are increased by larger frequency differences between the deviant and standard tones and by increasing the number of standard tones preceding the deviant. This suggests that A1 neurons encode novelty detection in behaving monkeys, influenced by stimulus relevance and expectations. This study provides evidence supporting aspects of predictive coding in the sensory cortex.
Collapse
Affiliation(s)
- Yumei Gong
- Department of Anesthesiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, Shanghai, China; Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Hangzhou Extremely Weak Magnetic Field Major Science and Technology, Infrastructure Research Institute, Hangzhou 310000, China; Interdisciplinary Institute of Neuroscience and Technology, College of Biomedical, Engineering, and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Peirun Song
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xinyu Du
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yuying Zhai
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Haoxuan Xu
- Interdisciplinary Institute of Neuroscience and Technology, College of Biomedical, Engineering, and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hangting Ye
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xuehui Bao
- Interdisciplinary Institute of Neuroscience and Technology, College of Biomedical, Engineering, and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qianyue Huang
- Interdisciplinary Institute of Neuroscience and Technology, College of Biomedical, Engineering, and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhiyi Tu
- Department of Anesthesiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, Shanghai, China
| | - Pei Chen
- Department of Anesthesiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, Shanghai, China
| | - Xuan Zhao
- Department of Anesthesiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, Shanghai, China
| | - David Pérez-González
- Cognitive and Auditory Neuroscience Laboratory (Lab 1), Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, Salamanca, Spain; Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain; Department of Basic Psychology, Psychobiology, and Methodology of Behavioral Sciences, Faculty of Psychology, University of Salamanca, Salamanca, Spain
| | - Manuel S Malmierca
- Cognitive and Auditory Neuroscience Laboratory (Lab 1), Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, Salamanca, Spain; Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain; Department of Cell Biology and Pathology, Faculty of Medicine, University of Salamanca, Salamanca, Spain.
| | - Xiongjie Yu
- Department of Anesthesiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, Shanghai, China; Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
3
|
Bouwer FL, Háden GP, Honing H. Probing Beat Perception with Event-Related Potentials (ERPs) in Human Adults, Newborns, and Nonhuman Primates. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1455:227-256. [PMID: 38918355 DOI: 10.1007/978-3-031-60183-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
The aim of this chapter is to give an overview of how the perception of rhythmic temporal regularity such as a regular beat in music can be studied in human adults, human newborns, and nonhuman primates using event-related brain potentials (ERPs). First, we discuss different aspects of temporal structure in general, and musical rhythm in particular, and we discuss the possible mechanisms underlying the perception of regularity (e.g., a beat) in rhythm. Additionally, we highlight the importance of dissociating beat perception from the perception of other types of structure in rhythm, such as predictable sequences of temporal intervals, ordinal structure, and rhythmic grouping. In the second section of the chapter, we start with a discussion of auditory ERPs elicited by infrequent and frequent sounds: ERP responses to regularity violations, such as mismatch negativity (MMN), N2b, and P3, as well as early sensory responses to sounds, such as P1 and N1, have been shown to be instrumental in probing beat perception. Subsequently, we discuss how beat perception can be probed by comparing ERP responses to sounds in regular and irregular sequences, and by comparing ERP responses to sounds in different metrical positions in a rhythm, such as on and off the beat or on strong and weak beats. Finally, we will discuss previous research that has used the aforementioned ERPs and paradigms to study beat perception in human adults, human newborns, and nonhuman primates. In doing so, we consider the possible pitfalls and prospects of the technique, as well as future perspectives.
Collapse
Affiliation(s)
- Fleur L Bouwer
- Cognitive Psychology Unit, Institute of Psychology, Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands.
- Department of Psychology, Brain & Cognition, University of Amsterdam, Amsterdam, The Netherlands.
| | - Gábor P Háden
- Institute of Cognitive Neuroscience and Psychology, Budapest, Hungary
- Department of Telecommunications and Media Informatics, Faculty of Electrical Engineering and Informatics, Budapest University of Technology and Economics, Budapest, Hungary
| | - Henkjan Honing
- Music Cognition group (MCG), Institute for Logic, Language and Computation (ILLC), Amsterdam Brain and Cognition (ABC), University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Vasunilashorn SM, Lunardi N, Newman JC, Crosby G, Acker L, Abel T, Bhatnagar S, Cunningham C, de Cabo R, Dugan L, Hippensteel JA, Ishizawa Y, Lahiri S, Marcantonio ER, Xie Z, Inouye SK, Terrando N, Eckenhoff RG. Preclinical and translational models for delirium: Recommendations for future research from the NIDUS delirium network. Alzheimers Dement 2023; 19:2150-2174. [PMID: 36799408 PMCID: PMC10576242 DOI: 10.1002/alz.12941] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 02/18/2023]
Abstract
Delirium is a common, morbid, and costly syndrome that is closely linked to Alzheimer's disease (AD) and AD-related dementias (ADRD) as a risk factor and outcome. Human studies of delirium have advanced our knowledge of delirium incidence and prevalence, risk factors, biomarkers, outcomes, prevention, and management. However, understanding of delirium neurobiology remains limited. Preclinical and translational models for delirium, while challenging to develop, could advance our knowledge of delirium neurobiology and inform the development of new prevention and treatment approaches. We discuss the use of preclinical and translational animal models in delirium, focusing on (1) a review of current animal models, (2) challenges and strategies for replicating elements of human delirium in animals, and (3) the utility of biofluid, neurophysiology, and neuroimaging translational markers in animals. We conclude with recommendations for the development and validation of preclinical and translational models for delirium, with the goal of advancing awareness in this important field.
Collapse
Affiliation(s)
- Sarinnapha M. Vasunilashorn
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Nadia Lunardi
- Department of Anesthesiology, University of Virginia, Charlottesville, Virginia, USA
| | - John C. Newman
- Department of Medicine, University of California, San Francisco, California, USA
- Buck Institute for Research on Aging, Novato, California, USA
| | - Gregory Crosby
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Anesthesiology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Leah Acker
- Department of Anesthesiology, Duke University, Durham, Massachusetts, USA
| | - Ted Abel
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Seema Bhatnagar
- Department of Anesthesiology and Critical Care, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Colm Cunningham
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Dublin, Ireland
- Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
| | - Rafael de Cabo
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, Baltimore, Maryland, USA
| | - Laura Dugan
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee, USA
- Division of Geriatric Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- VA Tennessee Valley Geriatric Research, Education, and Clinical Center (GRECC), Nashville, Tennessee, USA
| | - Joseph A. Hippensteel
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Yumiko Ishizawa
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Shouri Lahiri
- Department of Neurology, Neurosurgery, and Biomedical Sciences, Cedar-Sinai Medical Center, Los Angeles, California, USA
| | - Edward R. Marcantonio
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, Massachusetts, USA
| | - Zhongcong Xie
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Sharon K. Inouye
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, Massachusetts, USA
| | - Niccolò Terrando
- Department of Anesthesiology, Duke University, Durham, North Carolina, USA
- Department of Cell Biology, Duke University, Durham, North Carolina, USA
- Department of Immunology, Duke University, Durham, North Carolina, USA
- Duke Center for the Study of Aging and Human Development, Duke University School of Medicine, Durham, USA
| | - Roderic G. Eckenhoff
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
5
|
Teichert T, Gnanateja GN, Sadagopan S, Chandrasekaran B. A Linear Superposition Model of Envelope and Frequency Following Responses May Help Identify Generators Based on Latency. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2022; 3:441-468. [PMID: 36909931 PMCID: PMC10003646 DOI: 10.1162/nol_a_00072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Envelope and frequency-following responses (FFRENV and FFRTFS) are scalp-recorded electrophysiological potentials that closely follow the periodicity of complex sounds such as speech. These signals have been established as important biomarkers in speech and learning disorders. However, despite important advances, it has remained challenging to map altered FFRENV and FFRTFS to altered processing in specific brain regions. Here we explore the utility of a deconvolution approach based on the assumption that FFRENV and FFRTFS reflect the linear superposition of responses that are triggered by the glottal pulse in each cycle of the fundamental frequency (F0 responses). We tested the deconvolution method by applying it to FFRENV and FFRTFS of rhesus monkeys to human speech and click trains with time-varying pitch patterns. Our analyses show that F0ENV responses could be measured with high signal-to-noise ratio and featured several spectro-temporally and topographically distinct components that likely reflect the activation of brainstem (<5 ms; 200-1000 Hz), midbrain (5-15 ms; 100-250 Hz), and cortex (15-35 ms; ~90 Hz). In contrast, F0TFS responses contained only one spectro-temporal component that likely reflected activity in the midbrain. In summary, our results support the notion that the latency of F0 components map meaningfully onto successive processing stages. This opens the possibility that pathologically altered FFRENV or FFRTFS may be linked to altered F0ENV or F0TFS and from there to specific processing stages and ultimately spatially targeted interventions.
Collapse
Affiliation(s)
- Tobias Teichert
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - G. Nike Gnanateja
- Department of Communication Sciences and Disorders, University of Pittsburgh, Pittsburgh, PA, USA
| | - Srivatsun Sadagopan
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bharath Chandrasekaran
- Department of Communication Sciences and Disorders, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
6
|
Comparison of non-invasive, scalp-recorded auditory steady-state responses in humans, rhesus monkeys, and common marmosets. Sci Rep 2022; 12:9210. [PMID: 35654875 PMCID: PMC9163194 DOI: 10.1038/s41598-022-13228-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/23/2022] [Indexed: 12/27/2022] Open
Abstract
Auditory steady-state responses (ASSRs) are basic neural responses used to probe the ability of auditory circuits to produce synchronous activity to repetitive external stimulation. Reduced ASSR has been observed in patients with schizophrenia, especially at 40 Hz. Although ASSR is a translatable biomarker with a potential both in animal models and patients with schizophrenia, little is known about the features of ASSR in monkeys. Herein, we recorded the ASSR from humans, rhesus monkeys, and marmosets using the same method to directly compare the characteristics of ASSRs among the species. We used auditory trains on a wide range of frequencies to investigate the suitable frequency for ASSRs induction, because monkeys usually use stimulus frequency ranges different from humans for vocalization. We found that monkeys and marmosets also show auditory event-related potentials and phase-locking activity in gamma-frequency trains, although the optimal frequency with the best synchronization differed among these species. These results suggest that the ASSR could be a useful translational, cross-species biomarker to examine the generation of gamma-band synchronization in nonhuman primate models of schizophrenia.
Collapse
|
7
|
Gnanateja GN, Rupp K, Llanos F, Remick M, Pernia M, Sadagopan S, Teichert T, Abel TJ, Chandrasekaran B. Frequency-Following Responses to Speech Sounds Are Highly Conserved across Species and Contain Cortical Contributions. eNeuro 2021; 8:ENEURO.0451-21.2021. [PMID: 34799409 PMCID: PMC8704423 DOI: 10.1523/eneuro.0451-21.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/02/2021] [Indexed: 11/21/2022] Open
Abstract
Time-varying pitch is a vital cue for human speech perception. Neural processing of time-varying pitch has been extensively assayed using scalp-recorded frequency-following responses (FFRs), an electrophysiological signal thought to reflect integrated phase-locked neural ensemble activity from subcortical auditory areas. Emerging evidence increasingly points to a putative contribution of auditory cortical ensembles to the scalp-recorded FFRs. However, the properties of cortical FFRs and precise characterization of laminar sources are still unclear. Here we used direct human intracortical recordings as well as extracranial and intracranial recordings from macaques and guinea pigs to characterize the properties of cortical sources of FFRs to time-varying pitch patterns. We found robust FFRs in the auditory cortex across all species. We leveraged representational similarity analysis as a translational bridge to characterize similarities between the human and animal models. Laminar recordings in animal models showed FFRs emerging primarily from the thalamorecipient layers of the auditory cortex. FFRs arising from these cortical sources significantly contributed to the scalp-recorded FFRs via volume conduction. Our research paves the way for a wide array of studies to investigate the role of cortical FFRs in auditory perception and plasticity.
Collapse
Affiliation(s)
- G Nike Gnanateja
- Department of Communication Sciences and Disorders, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Kyle Rupp
- Department of Neurological Surgery, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Fernando Llanos
- Department of Linguistics, The University of Texas at Austin, Austin, Texas 78712
| | - Madison Remick
- Department of Neurological Surgery, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Marianny Pernia
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Srivatsun Sadagopan
- Department of Communication Sciences and Disorders, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Tobias Teichert
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Taylor J Abel
- Department of Neurological Surgery, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania 15213
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Bharath Chandrasekaran
- Department of Communication Sciences and Disorders, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| |
Collapse
|
8
|
Schmitt C, Schwenk JCB, Schütz A, Churan J, Kaminiarz A, Bremmer F. Preattentive processing of visually guided self-motion in humans and monkeys. Prog Neurobiol 2021; 205:102117. [PMID: 34224808 DOI: 10.1016/j.pneurobio.2021.102117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 06/15/2021] [Accepted: 06/29/2021] [Indexed: 10/20/2022]
Abstract
The visually-based control of self-motion is a challenging task, requiring - if needed - immediate adjustments to keep on track. Accordingly, it would appear advantageous if the processing of self-motion direction (heading) was predictive, thereby accelerating the encoding of unexpected changes, and un-impaired by attentional load. We tested this hypothesis by recording EEG in humans and macaque monkeys with similar experimental protocols. Subjects viewed a random dot pattern simulating self-motion across a ground plane in an oddball EEG paradigm. Standard and deviant trials differed only in their simulated heading direction (forward-left vs. forward-right). Event-related potentials (ERPs) were compared in order to test for the occurrence of a visual mismatch negativity (vMMN), a component that reflects preattentive and likely also predictive processing of sensory stimuli. Analysis of the ERPs revealed signatures of a prediction mismatch for deviant stimuli in both humans and monkeys. In humans, a MMN was observed starting 110 ms after self-motion onset. In monkeys, peak response amplitudes following deviant stimuli were enhanced compared to the standard already 100 ms after self-motion onset. We consider our results strong evidence for a preattentive processing of visual self-motion information in humans and monkeys, allowing for ultrafast adjustments of their heading direction.
Collapse
Affiliation(s)
- Constanze Schmitt
- Dept. Neurophysics, Philipps-Universität Marburg, Marburg, Germany; Center for Mind, Brain and Behavior - CMBB, Philipps-Universität Marburg and Justus-Liebig Universität Giessen, Germany.
| | - Jakob C B Schwenk
- Dept. Neurophysics, Philipps-Universität Marburg, Marburg, Germany; Center for Mind, Brain and Behavior - CMBB, Philipps-Universität Marburg and Justus-Liebig Universität Giessen, Germany.
| | - Adrian Schütz
- Dept. Neurophysics, Philipps-Universität Marburg, Marburg, Germany; Center for Mind, Brain and Behavior - CMBB, Philipps-Universität Marburg and Justus-Liebig Universität Giessen, Germany.
| | - Jan Churan
- Dept. Neurophysics, Philipps-Universität Marburg, Marburg, Germany; Center for Mind, Brain and Behavior - CMBB, Philipps-Universität Marburg and Justus-Liebig Universität Giessen, Germany.
| | - André Kaminiarz
- Dept. Neurophysics, Philipps-Universität Marburg, Marburg, Germany; Center for Mind, Brain and Behavior - CMBB, Philipps-Universität Marburg and Justus-Liebig Universität Giessen, Germany.
| | - Frank Bremmer
- Dept. Neurophysics, Philipps-Universität Marburg, Marburg, Germany; Center for Mind, Brain and Behavior - CMBB, Philipps-Universität Marburg and Justus-Liebig Universität Giessen, Germany.
| |
Collapse
|
9
|
Itoh K, Iwaoki H, Konoike N, Igarashi H, Nakamura K. Noninvasive scalp recording of the middle latency responses and cortical auditory evoked potentials in the alert common marmoset. Hear Res 2021; 405:108229. [PMID: 33836489 DOI: 10.1016/j.heares.2021.108229] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 03/01/2021] [Accepted: 03/20/2021] [Indexed: 11/18/2022]
Abstract
The common marmoset (Callithrix jacchus), a New World monkey, serves as a useful animal model in clinical and basic neuroscience. The present study recorded scalp auditory evoked potentials (AEP) in non-sedated common marmoset monkeys (n = 4) using a noninvasive method similar to that used in humans, and aimed to identify nonhuman primate correlates of the human AEP components. A pure tone stimulus was presented while electroencephalograms were recorded using up to 16 disk electrodes placed on the scalp and earlobes. Candidate homologues of two categories of the human AEP, namely, the middle latency responses (MLR; Na, Pa, Nb, and Pb) and the cortical auditory evoked potentials (CAEP; P1, N1, P2, N2, and the sustained potential, SP) were identified in the marmoset. These waves were labeled as CjNa, CjPa, CjNb, CjPb, CjP1, CjN1, CjP2, CjN2, and CjSP, where Cj stands for Callithrix jacchus. The last MLR component, CjPb, was identical to the first CAEP component, CjP1, similar to the relationship between Pb and P1 in humans. The peak latencies of the marmoset MLR and CAEP were generally shorter than in humans, which suggests a shorter integration time in neural processing. To our knowledge, the present study represents the first scalp recorded MLR and CAEP in the alert common marmoset. Further use of these recording methods would enable valid species comparisons of homologous brain indices between humans and animals.
Collapse
Affiliation(s)
- Kosuke Itoh
- Center for Integrated Human Brain Science, Brain Research Institute, Niigata University, 1-757 Asahimachi, Niigata, 951-8585, Japan.
| | - Haruhiko Iwaoki
- Cognitive Neuroscience Section, Primate Research Institute, Kyoto University, 41-2, Kanrin, Inuyama, Aichi, 484-8506, Japan
| | - Naho Konoike
- Cognitive Neuroscience Section, Primate Research Institute, Kyoto University, 41-2, Kanrin, Inuyama, Aichi, 484-8506, Japan
| | - Hironaka Igarashi
- Center for Integrated Human Brain Science, Brain Research Institute, Niigata University, 1-757 Asahimachi, Niigata, 951-8585, Japan
| | - Katsuki Nakamura
- Cognitive Neuroscience Section, Primate Research Institute, Kyoto University, 41-2, Kanrin, Inuyama, Aichi, 484-8506, Japan
| |
Collapse
|
10
|
Li F, Teichert T. A surface metric and software toolbox for EEG electrode grids in the macaque. J Neurosci Methods 2020; 346:108906. [PMID: 32822693 PMCID: PMC7606710 DOI: 10.1016/j.jneumeth.2020.108906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/19/2020] [Accepted: 08/07/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND The past years have seen increased appreciation of electroencephalographic (EEG) recordings in non-human primates (NHP) as a tool for translational research. In humans, even large EEG electrode grids can easily and quickly be placed on standardized positions using commercially available EEG caps. In the NHP, the identification of standardized EEG electrode positions is more complicated and time-consuming. NEW METHOD Here we introduce a surface metric and software package (NHP1020) that automates the planning of large, approximately evenly spaced electrode grids for EEG recordings in the NHP. RESULTS Based on one CT and one MRI image as well as two intracranial markers, the NHP1020 software defines electrode positions on the brain surface using a surface-based spherical metric similar to the one used by the international 10-20 system. Standardized electrode grids can be shared, imported or defined with few high-level commands. EXISTING METHODS NHP EEG electrodes can be placed relative to extracranial markers and measurements or relative to underlying neural structures of interest. Both approaches are time-consuming and require manual intervention. Furthermore, the use of extracranial markers in this species may be more problematic than in humans, because cranial muscles and ridges are larger and keep maturing long into adulthood. CONCLUSION The presented surface metric and the NHP1020 toolbox provide fast and automated identification of entire electrode grids in the non-human primate based on a two-dimensional metric on the brain surface.
Collapse
Affiliation(s)
- Fan Li
- Department of Psychiatry, University of Pittsburgh, PA
| | | |
Collapse
|
11
|
Shiramatsu TI, Takahashi H. Mismatch-negativity (MMN) in animal models: Homology of human MMN? Hear Res 2020; 399:107936. [PMID: 32197715 DOI: 10.1016/j.heares.2020.107936] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/11/2020] [Accepted: 03/02/2020] [Indexed: 02/06/2023]
Abstract
Mismatch negativity (MMN) has long been considered to be one of the deviance-detecting neural characteristics. Animal models exhibit similar neural activities, called MMN-like responses; however, there has been considerable debate on whether MMN-like responses are homologous to MMN in humans. Herein, we reviewed several studies that compared the electrophysiological, pharmacological, and functional properties of MMN-like responses and adaptation-exhibiting middle-latency responses (MLRs) in animals with those in humans. Accumulating evidence suggests that there are clear differences between MMN-like responses and MLRs, in particular that MMN-like responses can be distinguished from mere effects of adaptation, i.e., stimulus-specific adaptation. Finally, we discuss a new direction for research on MMN-like responses by introducing our recent work, which demonstrated that MMN-like responses represent empirical salience of deviant stimuli, suggesting a new functional role of MMN beyond simple deviance detection.
Collapse
Affiliation(s)
| | - Hirokazu Takahashi
- Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, 113-8656, Japan.
| |
Collapse
|
12
|
Tada M, Kirihara K, Mizutani S, Uka T, Kunii N, Koshiyama D, Fujioka M, Usui K, Nagai T, Araki T, Kasai K. Mismatch negativity (MMN) as a tool for translational investigations into early psychosis: A review. Int J Psychophysiol 2019; 145:5-14. [DOI: 10.1016/j.ijpsycho.2019.02.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 02/09/2019] [Accepted: 02/25/2019] [Indexed: 12/14/2022]
|
13
|
Itoh K, Nejime M, Konoike N, Nakamura K, Nakada T. Evolutionary Elongation of the Time Window of Integration in Auditory Cortex: Macaque vs. Human Comparison of the Effects of Sound Duration on Auditory Evoked Potentials. Front Neurosci 2019; 13:630. [PMID: 31293370 PMCID: PMC6601703 DOI: 10.3389/fnins.2019.00630] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/31/2019] [Indexed: 11/29/2022] Open
Abstract
The auditory cortex integrates auditory information over time to obtain neural representations of sound events, the time scale of which critically affects perception. This work investigated the species differences in the time scale of integration by comparing humans and monkeys regarding how their scalp-recorded cortical auditory evoked potentials (CAEPs) decrease in amplitude as stimulus duration is shortened from 100 ms (or longer) to 2 ms. Cortical circuits tuned to processing sounds at short time scales would continue to produce large CAEPs to brief sounds whereas those tuned to longer time scales would produce diminished responses. Four peaks were identified in the CAEPs and labeled P1, N1, P2, and N2 in humans and mP1, mN1, mP2, and mN2 in monkeys. In humans, the N1 diminished in amplitude as sound duration was decreased, consistent with the previously described temporal integration window of N1 (>50 ms). In macaques, by contrast, the mN1 was unaffected by sound duration, and it was clearly elicited by even the briefest sounds. Brief sounds also elicited significant mN2 in the macaque, but not the human N2. Regarding earlier latencies, both P1 (humans) and mP1 (macaques) were elicited at their full amplitudes even by the briefest sounds. These findings suggest an elongation of the time scale of late stages of human auditory cortical processing, as reflected by N1/mN1 and later CAEP components. Longer time scales of integration would allow neural representations of complex auditory features that characterize speech and music.
Collapse
Affiliation(s)
- Kosuke Itoh
- Center for Integrated Human Brain Science, Brain Research Institute, Niigata University, Niigata, Japan
| | - Masafumi Nejime
- Cognitive Neuroscience Section, Primate Research Institute, Kyoto University, Kyoto, Japan
| | - Naho Konoike
- Cognitive Neuroscience Section, Primate Research Institute, Kyoto University, Kyoto, Japan
| | - Katsuki Nakamura
- Cognitive Neuroscience Section, Primate Research Institute, Kyoto University, Kyoto, Japan
| | - Tsutomu Nakada
- Center for Integrated Human Brain Science, Brain Research Institute, Niigata University, Niigata, Japan
| |
Collapse
|
14
|
Teichert T, Gurnsey K. Formation and decay of auditory short-term memory in the macaque monkey. J Neurophysiol 2019; 121:2401-2415. [PMID: 31017849 DOI: 10.1152/jn.00821.2018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Echoic memory (EM) is a short-lived, precategorical, and passive form of auditory short-term memory (STM). A key hallmark of EM is its rapid exponential decay with a time constant between 1 and 2 s. It is not clear whether auditory STM in the rhesus, an important model system, shares this rapid exponential decay. To resolve this shortcoming, two rhesus macaques were trained to perform a delayed frequency discrimination task. Discriminability of delayed tones was measured as a function of retention duration and the number of times the standard had been repeated before the target. Like in the human, our results show a rapid decline of discriminability with retention duration. In addition, the results suggest a gradual strengthening of discriminability with repetition number. Model-based analyses suggest the presence of two components of auditory STM: a short-lived component with a time constant on the order of 550 ms that most likely corresponds to EM and a more stable memory trace with time constants on the order of 10 s that strengthens with repetition and most likely corresponds to auditory recognition memory. NEW & NOTEWORTHY This is the first detailed quantification of the rapid temporal dynamics of auditory short-term memory in the rhesus. Much of the auditory information in short-term memory is lost within the first couple of seconds. Repeated presentations of a tone strengthen its encoding into short-term memory. Model-based analyses suggest two distinct components: an echoic memory homolog that mediates the rapid decay and a more stable but less detail-rich component that mediates strengthening of the trace with repetition.
Collapse
Affiliation(s)
- Tobias Teichert
- Department of Psychiatry, University of Pittsburgh , Pittsburgh, Pennsylvania.,Department of Bioengineering, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Kate Gurnsey
- Department of Psychiatry, University of Pittsburgh , Pittsburgh, Pennsylvania
| |
Collapse
|
15
|
Honing H, Bouwer FL, Prado L, Merchant H. Rhesus Monkeys ( Macaca mulatta) Sense Isochrony in Rhythm, but Not the Beat: Additional Support for the Gradual Audiomotor Evolution Hypothesis. Front Neurosci 2018; 12:475. [PMID: 30061809 PMCID: PMC6054994 DOI: 10.3389/fnins.2018.00475] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 06/22/2018] [Indexed: 12/05/2022] Open
Abstract
Charles Darwin suggested the perception of rhythm to be common to all animals. While only recently experimental research is finding some support for this claim, there are also aspects of rhythm cognition that appear to be species-specific, such as the capability to perceive a regular pulse (or beat) in a varying rhythm. In the current study, using EEG, we adapted an auditory oddball paradigm that allows for disentangling the contributions of beat perception and isochrony to the temporal predictability of the stimulus. We presented two rhesus monkeys (Macaca mulatta) with a rhythmic sequence in two versions: an isochronous version, that was acoustically accented such that it could induce a duple meter (like a march), and a jittered version using the same acoustically accented sequence but that was presented in a randomly timed fashion, as such disabling beat induction. The results reveal that monkeys are sensitive to the isochrony of the stimulus, but not its metrical structure. The MMN was influenced by the isochrony of the stimulus, resulting in a larger MMN in the isochronous as opposed to the jittered condition. However, the MMN for both monkeys showed no interaction between metrical position and isochrony. So, while the monkey brain appears to be sensitive to the isochrony of the stimulus, we find no evidence in support of beat perception. We discuss these results in the context of the gradual audiomotor evolution (GAE) hypothesis (Merchant and Honing, 2014) that suggests beat-based timing to be omnipresent in humans but only weakly so or absent in non-human primates.
Collapse
Affiliation(s)
- Henkjan Honing
- Amsterdam Brain and Cognition, Institute for Advanced Study, Institute for Logic, Language and Computation, University of Amsterdam, Amsterdam, Netherlands
| | - Fleur L Bouwer
- Amsterdam Brain and Cognition, Institute for Advanced Study, Institute for Logic, Language and Computation, University of Amsterdam, Amsterdam, Netherlands
| | - Luis Prado
- Department of Cognitive Neuroscience, Instituto de Neurobiología, Universidad Nacional Autonoma de México, Santiago de Querétaro, Mexico
| | - Hugo Merchant
- Department of Cognitive Neuroscience, Instituto de Neurobiología, Universidad Nacional Autonoma de México, Santiago de Querétaro, Mexico
| |
Collapse
|
16
|
Teichert T. Loudness- and time-dependence of auditory evoked potentials is blunted by the NMDA channel blocker MK-801. Psychiatry Res 2017. [PMID: 28645081 PMCID: PMC5723527 DOI: 10.1016/j.psychres.2017.06.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amplitudes of auditory evoked potentials (AEP) increase with the intensity/loudness of sounds (loudness-dependence of AEP, LDAEP), and the time between adjacent sounds (time-dependence of AEP, TDAEP). Both, blunted LDAEP and blunted TDAEP are markers of altered auditory function in schizophrenia (SZ). However, while blunted LDAEP has been attributed to altered serotonergic function, blunted TDAEP has been linked to altered NMDA receptor function. Despite phenomenological similarities of the two effects, no common pharmacological underpinnings have been identified. To test whether LDAEP and TDAEP are both affected by NMDA receptor blockade, two rhesus macaques passively listened to auditory clicks of 5 different intensities presented with stimulus-onset asynchronies ranging between 0.2 and 6.4s. 8 AEP components were analyzed, including the N85, the presumed human N1 homolog. LDAEP and TDAEP were estimated as the slopes of AEP amplitude with intensity and the logarithm of stimulus-onset asynchrony, respectively. On different days, AEPs were collected after systemic injection of MK-801 or vehicle. Both TDAEP and LDAEP of the N85 were blunted by the NMDA blocker MK-801 and recapitulate the SZ phenotype. In summary, LDAEP and TDAEP share important pharmacological commonalities that may help identify a common pharmacological intervention to normalize both electrophysiological phenotypes in SZ.
Collapse
Affiliation(s)
- Tobias Teichert
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
17
|
Teichert T, Gurnsey K, Salisbury D, Sweet RA. Contextual processing in unpredictable auditory environments: the limited resource model of auditory refractoriness in the rhesus. J Neurophysiol 2016; 116:2125-2139. [PMID: 27512021 DOI: 10.1152/jn.00419.2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 08/09/2016] [Indexed: 01/15/2023] Open
Abstract
Auditory refractoriness refers to the finding of smaller electroencephalographic (EEG) responses to tones preceded by shorter periods of silence. To date, its physiological mechanisms remain unclear, limiting the insights gained from findings of abnormal refractoriness in individuals with schizophrenia. To resolve this roadblock, we studied auditory refractoriness in the rhesus, one of the most important animal models of auditory function, using grids of up to 32 chronically implanted cranial EEG electrodes. Four macaques passively listened to sounds whose identity and timing was random, thus preventing animals from forming valid predictions about upcoming sounds. Stimulus onset asynchrony ranged between 0.2 and 12.8 s, thus encompassing the clinically relevant timescale of refractoriness. Our results show refractoriness in all 8 previously identified middle- and long-latency components that peaked between 14 and 170 ms after tone onset. Refractoriness may reflect the formation and gradual decay of a basic sensory memory trace that may be mirrored by the expenditure and gradual recovery of a limited physiological resource that determines generator excitability. For all 8 components, results were consistent with the assumption that processing of each tone expends ∼65% of the available resource. Differences between components are caused by how quickly the resource recovers. Recovery time constants of different components ranged between 0.5 and 2 s. This work provides a solid conceptual, methodological, and computational foundation to dissect the physiological mechanisms of auditory refractoriness in the rhesus. Such knowledge may, in turn, help develop novel pharmacological, mechanism-targeted interventions.
Collapse
Affiliation(s)
- Tobias Teichert
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania; .,Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kate Gurnsey
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Dean Salisbury
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Robert A Sweet
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania; and.,Mental Illness Research, Education, and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania
| |
Collapse
|