1
|
Chauhan S, Jamwal P, Chauhan GS, Kumar K, Kumari B, Ranote S. Tailoring of spherical nanocellulose via esterification with methionine followed by protonation to generate two different adsorbents for mercuric ions and Congo red. Int J Biol Macromol 2024; 279:135313. [PMID: 39242000 DOI: 10.1016/j.ijbiomac.2024.135313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 08/21/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
Herein, we report two different adsorbents from spherical nanocellulose (SNC) in successive steps, for the adsorption of Hg2+ ions and Congo red (CR). Cellulose extracted from pine needles was subsequently converted to SNC through mixed acidic hydrolysis. As-obtained SNC was esterified with methionine at C6 of the anhydroglucose unit to produce SNC-methionine ester (SNC-ME). The amino group of methionine residue in SNC-ME was protonated to SNC-PME with positive surface charge. The SNC-ME and SNC-PME were evaluated as Hg2+ ions and CR adsorbents, respectively. The SNC, SNC-ME, SNC-PME, Hg2+-loaded SNC-ME, and CR-loaded SNC-PME were characterized by FTIR, XRD, XPS, Zeta potential, BET, FESEM, EDS, and surface charge analysis. SNC-ME showed Hg2+ ions removal efficiency of 94.8 ± 1.9 % in 40 min, while SNC-PME showed CR removal efficiency of 96.1 ± 3.8 % in 90 min. The adsorption data of both the adsorbents fitted best into pseudo-second order kinetic and Langmuir isotherm. The maximum adsorption capacity of SNC-ME for Hg2+ ions was 211.5 ± 3.1 mg/g and that of SNC-PME for CR was 281.1 ± 7.1 mg/g. The astounding recyclability of the adsorbents for ten repeat cycles with significant cumulative adsorption capacity of 760.9 ± 12.8 mg/g for Hg2+ ions and 758.8 ± 12.7 mg/g for CR endorses their spectacular potentiality for wastewater treatment.
Collapse
Affiliation(s)
- Sandeep Chauhan
- Department of Chemistry, Himachal Pradesh University, Summerhill, Shimla, Himachal Pradesh 171005, India.
| | - Pooja Jamwal
- Department of Chemistry, Himachal Pradesh University, Summerhill, Shimla, Himachal Pradesh 171005, India
| | - Ghanshyam S Chauhan
- Department of Chemistry, Himachal Pradesh University, Summerhill, Shimla, Himachal Pradesh 171005, India
| | - Kiran Kumar
- Department of Chemistry, Himachal Pradesh University, Summerhill, Shimla, Himachal Pradesh 171005, India.
| | - Babita Kumari
- Department of Chemistry, Himachal Pradesh University, Summerhill, Shimla, Himachal Pradesh 171005, India
| | - Sunita Ranote
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. Curie-Skłodowska St., 41-819 Zabrze, Poland
| |
Collapse
|
2
|
Darwesh OM, Matter IA, Abdel-Maksoud MA, Al-Qahtani WH, El-Tayeb MA, Kodous AS, Aufy M. Development of nanocomposite-selenium filter for water disinfection and bioremediation of wastewater from Hg and AgNPs. Sci Rep 2024; 14:21443. [PMID: 39271750 PMCID: PMC11399127 DOI: 10.1038/s41598-024-70120-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/13/2024] [Indexed: 09/15/2024] Open
Abstract
Selenium nanoparticles (SeNPs) are used in several sectors as antitumor, antimicrobial, and environmental adsorbents. Thus, the present research objective was the production of bacterial-SeNPs as an active and environmentally-friendly antibacterial and adsorbent agents and application into novel nanocomposite filter. From a total of 25 samples (soil, wastewater, and water) obtained from different locations in Egypt, 60 selenium-resistant bacterial isolates were obtained (on a mineral salt medium supplemented with selenium ions). After screening (based on the conversion of selenium from ionic form to nanoform), a superior bacterial isolate for SeNPs formation was obtained and molecular identified as Bacillus pumilus isolate OR431753. The high yield of SeNPs was noted after optimization (glucose as carbon source, pH 9 at 30 °C). The produced SeNPs were characterized as approximately 15 nm-diameter spherical nanoparticles, in addition to the presence of organic substances around these particles like polysaccharides and aromatic amines (protein residues). Also, they have antibacterial activity increased after formation of nanocomposite with nano-chitosan (SeNPs/NCh) against several pathogens. The antibacterial activity (expressed as a diameter of the inhibitory zone) averaged between 2.1 and 4.3, 2.7 and 4.8 cm for SeNPs and SeNPs/NCh, respectively compared with 1.1 to 1.8 cm for Amoxicillin. The produced nanoselenium/chitosan was used as a biofilter to remove mercury (Hg) and AgNPs as model chemicals with serious toxicity and potential pollutant for water bodies in many industries. The new SeNPs/NCh biofilter has proven highly effective in individually removing mercury and AgNPs from their synthetic wastewaters, with an efficiency of up to 99%. Moreover, the removal efficiency of AgNPs stabilized at 99% after treating them with the syringe filter-Se nanocomposite for 4 cycles of treatment (5 min each).
Collapse
Affiliation(s)
- Osama M Darwesh
- Agricultural Microbiology Department, National Research Centre, 33 El-Buhouth St., Dokki, Cairo, 12622, Egypt.
| | - Ibrahim A Matter
- Agricultural Microbiology Department, National Research Centre, 33 El-Buhouth St., Dokki, Cairo, 12622, Egypt
| | - Mostafa A Abdel-Maksoud
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Wahidah H Al-Qahtani
- Department of Food Sciences and Nutrition, College of Food and Agricultural Sciences, King Saud University, P.O. Box 270677, 11352, Riyadh, Saudi Arabia
| | - Mohamed A El-Tayeb
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ahmad S Kodous
- Department of Molecular Oncology, Cancer Institute (WIA), 38, Sardar Patel Road, P.O. Box 600036, Chennai, Tamilnadu, India
| | - Mohammed Aufy
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| |
Collapse
|
3
|
Chinnappa K, Bai CDG, Srinivasan PP. Nanocellulose-stabilized nanocomposites for effective Hg(II) removal and detection: a comprehensive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:30288-30322. [PMID: 38619767 DOI: 10.1007/s11356-024-33105-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/22/2024] [Indexed: 04/16/2024]
Abstract
Mercury pollution, with India ranked as the world's second-largest emitter, poses a critical environmental and public health challenge and underscores the need for rigorous research and effective mitigation strategies. Nanocellulose is derived from cellulose, the most abundant natural polymer on earth, and stands out as an excellent choice for mercury ion remediation due to its remarkable adsorption capacity, which is attributed to its high specific surface area and abundant functional groups, enabling efficient Hg(II) ion removal from contaminated water sources. This review paper investigates the compelling potential of nanocellulose as a scavenging tool for Hg(II) ion contamination. The comprehensive examination encompasses the fundamental attributes of nanocellulose, its diverse fabrication techniques, and the innovative development methods of nanocellulose-based nanocomposites. The paper further delves into the mechanisms that underlie Hg removal using nanocellulose, as well as the integration of nanocellulose in Hg detection methodologies, and also acknowledges the substantial challenges that lie ahead. This review aims to pave the way for sustainable solutions in mitigating Hg contamination using nanocellulose-based nanocomposites to address the global context of this environmental concern.
Collapse
Affiliation(s)
- Karthik Chinnappa
- Department of Biotechnology, St. Joseph's College of Engineering, OMR, Chennai, 600119, Tamil Nadu, India
| | | | - Pandi Prabha Srinivasan
- Department of Biotechnology, Sri Venkateswara College of Engineering, Sriperumbudur Taluk, Chennai, 602117, Tamil Nadu, India
| |
Collapse
|
4
|
Sharma S, Singh G, Wang Y, White JC, Xing B, Dhankher OP. Nanoscale sulfur alleviates silver nanoparticle toxicity and improves seed and oil yield in Soybean (Glycine max). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122423. [PMID: 37604392 DOI: 10.1016/j.envpol.2023.122423] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 08/23/2023]
Abstract
Silver nanoparticles (AgNPs) are commonly used in many commercial products due to their antimicrobial properties, and their significant exposure in agricultural systems is anticipated. AgNPs accumulation in soil and subsequent uptake by plants can be harmful to plant growth and exposure to animals and humans through the food chain is a major concern. This study evaluated the potential protective role of nanosulfur (NS) and bulk sulfur (BS) at 200 and 400 mg/kg soil application in alleviating silver nanoparticle (AgNPs; 32 and 64 mg/kg) phytotoxicity to soybean [Glycine max (L) Merr.]. The treatments were added in the soil before soybean transplantation; growth, yield, nutrient, and silver accumulation were measured in the shoot, root, and seeds. Exposure to AgNPs significantly affected plant growth and yield, reducing nodule weight by 40%, fresh shoot weight by 66%, and seed yield by 68% when compared to controls. However, nanosulfur application in soil alleviated AgNPs toxicity, and importantly, this impact was nanoscale specific at the higher concentration because the benefits of corresponding bulk sulfur (BS) treatments were marginal. Specifically, nanosulfur at 400 mg/kg significantly increased seed yield (∼3-fold more than AgNP at 64 mg/kg) and shoot biomass (2.6-fold more than AgNP at 64 mg/kg) upon co-exposure with AgNPs, essentially alleviating AgNPs toxicity. Moreover, NS increased nodule mass by 3.5 times compared to AgNPs-treated plants, which was 170% greater than the Ag- and NS-free controls. Plants treated with NS with AgNPs co-exposure accumulated significantly less Ag in the shoots (∼80% reduction) and roots (∼95% reduction); no Ag contents were detected in seeds. These findings demonstrate the potential of sulfur, especially NS, as a sustainable soil amendment to reduce the accumulation and toxicity of AgNPs and as a valuable nano-enabled strategy to promote food safety and security.
Collapse
Affiliation(s)
- Sudhir Sharma
- Stockbridge School of Agriculture, University of Massachusetts Amherst, MA, 01003, USA
| | - Gurpal Singh
- Stockbridge School of Agriculture, University of Massachusetts Amherst, MA, 01003, USA
| | - Yi Wang
- Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - Jason C White
- Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts Amherst, MA, 01003, USA
| | - Om Parkash Dhankher
- Stockbridge School of Agriculture, University of Massachusetts Amherst, MA, 01003, USA.
| |
Collapse
|
5
|
Wang T, Cao W, Wang Y, Qu C, Xu Y, Li H. Surface modification of quartz sand: A review of its progress and its effect on heavy metal adsorption. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115179. [PMID: 37356400 DOI: 10.1016/j.ecoenv.2023.115179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 06/27/2023]
Abstract
Quartz sand (SiO2) is a prevalent filtration medium, boasting wide accessibility, superior stability, and cost-effectiveness. However, its utility is often curtailed by its sleek surface, limited active sites, and swift saturation of adsorption sites. This review outlines the prevalent strategies and agents for quartz sand surface modification and provides a comprehensive analysis of the various modification reagents and their operative mechanisms. It delves into the mechanism and utility of surface-modified quartz sand for adsorbing heavy metal ions (HMIs). It is found that the reported modifiers usually form connections with the surface of quartz sand through electrostatic forces, van der Waals forces, pore filling, chemical bonding, and/or molecular entanglement. The literature suggests that these modifications effectively address issues inherent to natural quartz sand, such as its low superficial coarseness, rapid adsorption site saturation, and limited adsorption capacity. Regrettably, comprehensive investigations into the particle size, regenerative capabilities, and application costs of surface-modified quartz sand and the critical factors for its wider adoption are lacking in most reports. The adsorption mechanisms indicate that surface-modified quartz sand primarily removes HMIs from aqueous solutions through surface complexation, ion exchange, and electrostatic and gravitational forces. However, these findings were derived under controlled laboratory conditions, and practical applications for treating real wastewater necessitate overcoming further laboratory-scale obstacles. Finally, this review outlines the limitations of partially surface modified quartz sand and suggests potential venues for future developments, providing a valuable reference for the advancement of cost-effective, HMI-absorbing, surface-modified quartz sand filter media.
Collapse
Affiliation(s)
- Ting Wang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541006, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, China
| | - Weiyuan Cao
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541006, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, China
| | - Yingqi Wang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541006, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, China
| | - Chao Qu
- Handan Environmental Monitoring Center Station, Handan 056000, China
| | - Yufeng Xu
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541006, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, China; Chinese Acad Sci, Res Ctr Ecoenvironm Sci, Beijing 100085, China.
| | - Haixiang Li
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541006, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, China.
| |
Collapse
|
6
|
Du H, Gu X, Johs A, Yin X, Spano T, Wang D, Pierce EM, Gu B. Sonochemical oxidation and stabilization of liquid elemental mercury in water and soil. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130589. [PMID: 37055993 DOI: 10.1016/j.jhazmat.2022.130589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/23/2022] [Accepted: 12/08/2022] [Indexed: 06/19/2023]
Abstract
Over 3000 mercury (Hg)-contaminated sites worldwide contain liquid metallic Hg [Hg(0)l] representing a continuous source of elemental Hg(0) in the environment through volatilization and solubilization in water. Currently, there are few effective treatment technologies available to remove or sequester Hg(0)l in situ. We investigated sonochemical treatments coupled with complexing agents, polysulfide and sulfide, in oxidizing Hg(0)l and stabilizing Hg in water, soil and quartz sand. Results indicate that sonication is highly effective in breaking up and oxidizing liquid Hg(0)l beads via acoustic cavitation, particularly in the presence of polysulfide. Without complexing agents, sonication caused only minor oxidation of Hg(0)l but increased headspace gaseous Hg(0)g and dissolved Hg(0)aq in water. However, the presence of polysulfide essentially stopped Hg(0) volatilization and solubilization. As a charged polymer, polysulfide was more effective than sulfide in oxidizing Hg(0)l and subsequently stabilizing the precipitated metacinnabar (β-HgS) nanocrystals. Sonochemical treatments with sulfide yielded incomplete oxidation of Hg(0)l, likely resulting from the formation of HgS coatings on the dispersed µm-size Hg(0)l bead surfaces. Sonication with polysulfide also resulted in rapid oxidation of Hg(0)l and precipitation of HgS in quartz sand and in the Hg(0)l-contaminated soil. This research indicates that sonochemical treatment with polysulfide could be an effective means in rapidly converting Hg(0)l to insoluble HgS precipitates in water and sediments, thereby preventing its further emission and release to the environment. We suggest that future studies are performed to confirm its technical feasibility and treatment efficacy for remediation applications.
Collapse
Affiliation(s)
- Hongxia Du
- College of Resources and Environment, Southwest University, Chongqing 400715, PR China; Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Xin Gu
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Alexander Johs
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Xiangping Yin
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Tyler Spano
- Nuclear Nonproliferation Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Dingyong Wang
- College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Eric M Pierce
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Baohua Gu
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States; Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, TN 37996, United States.
| |
Collapse
|
7
|
Biogeneration of silver nanoparticles from Cuphea procumbens for biomedical and environmental applications. Sci Rep 2023; 13:790. [PMID: 36646714 PMCID: PMC9842608 DOI: 10.1038/s41598-022-26818-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 12/20/2022] [Indexed: 01/18/2023] Open
Abstract
Nanotechnology is one of the most important and relevant disciplines today due to the specific electrical, optical, magnetic, chemical, mechanical and biomedical properties of nanoparticles. In the present study we demonstrate the efficacy of Cuphea procumbens to biogenerate silver nanoparticles (AgNPs) with antibacterial and antitumor activity. These nanoparticles were synthesized using the aqueous extract of C. procumbens as reducing agent and silver nitrate as oxidizing agent. The Transmission Electron Microscopy demonstrated that the biogenic AgNPs were predominantly quasi-spherical with an average particle size of 23.45 nm. The surface plasmonic resonance was analyzed by ultraviolet visible spectroscopy (UV-Vis) observing a maximum absorption band at 441 nm and Infrared Spectroscopy (FT IR) was used in order to structurally identify the functional groups of some compounds involved in the formation of nanoparticles. The AgNPs demonstrated to have antibacterial activity against the pathogenic bacteria Escherichia coli and Staphylococcus aureus, identifying the maximum zone of inhibition at the concentration of 0.225 and 0.158 µg/mL respectively. Moreover, compared to the extract, AgNPs exhibited better antitumor activity and higher therapeutic index (TI) against several tumor cell lines such as human breast carcinoma MCF-7 (IC50 of 2.56 µg/mL, TI of 27.65 µg/mL), MDA-MB-468 (IC50 of 2.25 µg/mL, TI of 31.53 µg/mL), human colon carcinoma HCT-116 (IC50 of 1.38 µg/mL, TI of 51.07 µg/mL) and melanoma A-375 (IC50 of 6.51 µg/mL, TI of 10.89 µg/mL). This fact is of great since it will reduce the side effects derived from the treatment. In addition, AgNPs revealed to have a photocatalytic activity of the dyes congo red (10-3 M) in 5 min and malachite green (10-3 M) in 7 min. Additionally, the degradation percentages were obtained, which were 86.61% for congo red and 82.11% for malachite green. Overall, our results demonstrated for the first time that C. procumbens biogenerated nanoparticles are excellent candidates for several biomedical and environmental applications.
Collapse
|
8
|
Ansari MAH, Khan ME, Mohammad A, Baig MT, Chaudary A, Tauqeer M. Application of nanocomposites in wastewater treatment. NANOCOMPOSITES-ADVANCED MATERIALS FOR ENERGY AND ENVIRONMENTAL ASPECTS 2023:297-319. [DOI: 10.1016/b978-0-323-99704-1.00025-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
9
|
Mohanapriya V, Sakthivel R, Pham NDK, Cheng CK, Le HS, Dong TMH. Nanotechnology- A ray of hope for heavy metals removal. CHEMOSPHERE 2023; 311:136989. [PMID: 36309058 DOI: 10.1016/j.chemosphere.2022.136989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/08/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Environmental effects of heavy metal pollution are considered as a widespread problem throughout the world, as it jeopardizes human health and also reduces the sustainability of a cleaner environment. Removal of such noxious pollutants from wastewater is pivotal because it provides a propitious solution for a cleaner environment and water scarcity. Adsorption treatment plays a significant role in water remediation due to its potent treatment and low cost of adsorbents. In the last two decades, researchers have been highly focused on the modification of adsorption treatment by functionalized and surface-modified nanomaterials which has spurred intense research. The characteristics of nano adsorbents attract global scientists as it is also economically viable. This review shines its light on the functionalized nanomaterials application for heavy metals removal from wastewater and also highlights the importance of regeneration of nanomaterials in the view of visualizing the economic aspects along with a cleaner environment. The review also focused on the proper disposal of nanomaterials with crucial issues that persist in the adsorption process and also emphasize future research modification at a large-scale application in industries.
Collapse
Affiliation(s)
- V Mohanapriya
- Research scholar, Department of Civil Engineering, Government College of Technology, Coimbatore, 641013, India.
| | - R Sakthivel
- Department of Mechanical Engineering, Amrita School of Engineering, Coimbatore, Amrita Vishwa Vidyapeetham, India
| | - Nguyen Dang Khoa Pham
- PATET Research Group, Ho Chi Minh City University of Transport, Ho Chi Minh City, Viet Nam
| | - Chin Kui Cheng
- Department of Chemical Engineering, College of Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Center for Catalysis and Separation (CeCaS), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Huu Son Le
- Faculty of Automotive Engineering, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Viet Nam
| | - Thi Minh Hao Dong
- Institute of Engineering, HUTECH University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
10
|
Xie Y, Hu J, Esmaeili H, Wang D, Zhou Y. A review study on wastewater decontamination using nanotechnology: Performance, mechanism and environmental impacts. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.118023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
11
|
Gindaba GT, Demsash HD, Jayakumar M. Green synthesis, characterization, and application of metal oxide nanoparticles for mercury removal from aqueous solution. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 195:9. [PMID: 36269461 DOI: 10.1007/s10661-022-10586-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 06/28/2022] [Indexed: 06/16/2023]
Abstract
In this work, a novel surface-modified, green-based wheat straw-supported magnetite nanoparticles (Fe3O4-NPs) were synthesized via the green synthesis method, and the adsorption of mercury (Hg(II)) ion from aqueous solutions was methodically investigated. The synthesized wheat straw-supported magnetite (Fe3O4-WSS) NPs were characterized using X-ray diffraction (XRD), Fourier transform-infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), and scanning electron microscopic (SEM) methods. FT-IR and TGA confirmed that the surface of Fe3O4-NPs was functionalized well. The XRD analysis revealed the existence of magnetite in the synthesized wheat straw-supported Fe3O4-NPs of 19.83 nm average crystalline size. SEM analysis showed Fe3O4-NPs were almost spherical, with an average particle size of 22.48 nm. Adsorption studies were carried out to investigate the adsorption of Hg(II) ions onto Fe3O4-WSS NPs and the effect of various adsorption parameters such as pH, time, adsorbent dosage, and Hg(II) ion concentration. The optimum adsorption conditions were obtained: pH of 6, contact time of 45 min, adsorbate of 40 mg/L, and adsorbent of 1 g. A maximum of 98.04% Hg(II) ion removal efficiency was obtained at these optimum conditions. FT-IR analysis also indicated that surface functional groups such as C = C,-OH, and C-C of the newly produced Fe3O4-NPs led to the more efficient removal of Hg(II) from aqueous solution. The synthesized nano-adsorbent showed an excellent adsorption capability of 101.01 mg/g. Hg(II) ions adsorption onto Fe3O4-WSS NPs fitted well with the Langmuir adsorption isotherm model. Therefore, these reasonable findings reveal that Fe3O4-WSS NPs are an efficient and promising adsorbent for Hg(II) removal from aqueous water environments.
Collapse
Affiliation(s)
- Gadissa Tokuma Gindaba
- Department of Chemical Engineering, Institute of Technology, Haramaya University, P.O. Box 138, Dire Dawa, Ethiopia
| | - Hundessa Dessalegn Demsash
- School of Chemical and Bio-Engineering, Institute of Technology, Addis Ababa University, King George VI Street, P.O. Box 385, Addis Ababa, Ethiopia.
| | - Mani Jayakumar
- Department of Chemical Engineering, Institute of Technology, Haramaya University, P.O. Box 138, Dire Dawa, Ethiopia.
| |
Collapse
|
12
|
Rani L, Srivastav AL, Kaushal J, Nguyen XC. Recent advances in nanomaterial developments for efficient removal of Hg(II) from water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:62851-62869. [PMID: 35831652 DOI: 10.1007/s11356-022-21869-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
"Water" contamination by mercury Hg(II) has become the biggest concern due to its severe toxicities on public health. There are different conventional techniques like ion exchange, reverse osmosis, and filtration that have been used for the elimination of Hg(II) from the aqueous solutions. Although, these techniques have some drawbacks during the remediation of Hg(II) present in water. Adsorption could be a better option for the elimination of Hg(II) from the aqueous solutions. "Conventional adsorbents" like zeolite, clay, and activated carbons are inefficient for this purpose. Recently, nanomaterials have attracted attention for the elimination of Hg(II) from the aqueous solutions due to high porosity, better surface properties, and high efficiency. In this review, a thorough discussion has been carried out on the synthesis and characterization of nanomaterials along with mechanisms involved in the elimination of Hg(II) from aqueous solutions.
Collapse
Affiliation(s)
- Lata Rani
- Centre for Water Sciences, Chitkara University Institute of Engineering & Technology, Chitkara University, Punjab, India
- Chitkara University School of Pharmacy, Chitkara University, Himachal-Pradesh, India
| | - Arun Lal Srivastav
- Chitkara University School of Engineering and Technology, Chitkara University, Himachal-Pradesh, India.
| | - Jyotsna Kaushal
- Centre for Water Sciences, Chitkara University Institute of Engineering & Technology, Chitkara University, Punjab, India
| | - Xuan Cuong Nguyen
- Laboratory of energy and environmental science, Institute of Research and Development, Duy Tan University, Da Nang, 550000, Vietnam
- Faculty of Environmental Chemical Engineering, Duy Tan University, Da Nang, 550000, Vietnam
| |
Collapse
|
13
|
Damiri F, Andra S, Kommineni N, Balu SK, Bulusu R, Boseila AA, Akamo DO, Ahmad Z, Khan FS, Rahman MH, Berrada M, Cavalu S. Recent Advances in Adsorptive Nanocomposite Membranes for Heavy Metals Ion Removal from Contaminated Water: A Comprehensive Review. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5392. [PMID: 35955327 PMCID: PMC9369589 DOI: 10.3390/ma15155392] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/27/2022] [Accepted: 08/03/2022] [Indexed: 05/31/2023]
Abstract
Water contamination is one of the most urgent concerns confronting the world today. Heavy metal poisoning of aquatic systems has piqued the interest of various researchers due to the high toxicity and carcinogenic consequences it has on living organisms. Due to their exceptional attributes such as strong reactivity, huge surface area, and outstanding mechanical properties, nanomaterials are being produced and employed in water treatment. In this review, recent advances in the use of nanomaterials in nanoadsorptive membrane systems for wastewater treatment and heavy metal removal are extensively discussed. These materials include carbon-based nanostructures, metal nanoparticles, metal oxide nanoparticles, nanocomposites, and layered double hydroxide-based compounds. Furthermore, the relevant properties of the nanostructures and the implications on their performance for water treatment and contamination removal are highlighted. The hydrophilicity, pore size, skin thickness, porosity, and surface roughness of these nanostructures can help the water permeability of the nanoadsorptive membrane. Other properties such as surface charge modification and mechanical strength can improve the metal adsorption effectiveness of nanoadsorptive membranes during wastewater treatment. Various nanocomposite membrane fabrication techniques are also reviewed. This study is important because it gives important information on the roles of nanomaterials and nanostructures in heavy metal removal and wastewater treatment.
Collapse
Affiliation(s)
- Fouad Damiri
- Laboratory of Biomolecules and Organic Synthesis (BIOSYNTHO), Department of Chemistry, Faculty of Sciences Ben M’Sick, University Hassan II of Casablanca, Casablanca 20000, Morocco
| | - Swetha Andra
- Department of Chemistry, Rajalakshmi Institute of Technology, Chennai 600124, Tamil Nadu, India
| | | | - Satheesh Kumar Balu
- Department of Oral Pathology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, Tamil Nadu, India
| | - Raviteja Bulusu
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Amira A. Boseila
- Department of Pharmaceutics, National Organization for Drug Control and Research (NODCAR), Cairo 12611, Egypt
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Sinai University, Sinai 41636, Egypt
| | - Damilola O. Akamo
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN 37996, USA
| | - Zubair Ahmad
- Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Biology Department, College of Arts and Sciences, Dehran Al-Junub, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Farhat S. Khan
- Biology Department, College of Arts and Sciences, Dehran Al-Junub, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Md. Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea
| | - Mohammed Berrada
- Laboratory of Biomolecules and Organic Synthesis (BIOSYNTHO), Department of Chemistry, Faculty of Sciences Ben M’Sick, University Hassan II of Casablanca, Casablanca 20000, Morocco
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania
| |
Collapse
|
14
|
Darweesh MA, Elgendy MY, Ayad MI, Ahmed AMM, Kamel Elsayed N, Hammad W. A unique, inexpensive, and abundantly available adsorbent: composite of synthesized silver nanoparticles (AgNPs) and banana leaves powder (BLP). Heliyon 2022; 8:e09279. [PMID: 35497039 PMCID: PMC9046953 DOI: 10.1016/j.heliyon.2022.e09279] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/08/2022] [Accepted: 04/11/2022] [Indexed: 11/03/2022] Open
Abstract
The purpose of this study is to investigate the development of a new and inexpensive adsorbent by immobilization synthesized silver nanoparticles (AgNPs) onto banana leaves powder (BLP), and the prepared composite (BLP)/(AgNPs) was used as an adsorbent for Zn(II), Pb(II), and Fe(III) ion removal from aqueous solutions under the influence of various reaction conditions. (BLP)/(AgNPs) demonstrated remarkable sensitivity toward Zn (II), Pb (II), and Fe (III) ions; metal ions eliminations increased with increasing contact time, agitation speed, adsorbent dose, and temperature, yielding adequate selectivity and ideal removal efficiency of 79%, 88%, and 91% for Zn (II), Pb (II), and Fe (III) ions, respectively, at pH = 5 for Zn(II) and pH = 6 for Pb(II), and Fe(III). The equilibrium contact time for elimination of Zn (II), Pb (II), and Fe (III) ions was reaches at 40 min. Langmuir, Freundlich, and Temkin equations were used to test the obtained experimental data. Langmuir isotherm model was found to be more accurate in representing the data of Zn(II), Pb(II), and Fe(III) ions adsorption onto (BLP)/(AgNPs), with a regression coefficient (R2 = 0.999) and maximum adsorption capacities of 190, 244, and 228 mg/g for Zn(II), Pb(II), and Fe(III) ions, respectively. The thermodynamic parameters proved that adsorption of metal ions is spontaneous, feasible, and endothermic, whereas Kinetic studies revealed that the process was best described by a pseudo second order kinetics. By reduction reaction, silver nanoparticles were impregnated in banana leaves homogeneous powder and used as an adsorbent. The fabricated composites are used as adsorbent for the removal of Zn (II), Pb (II), and Fe (III) ions from aqueous solutions. The new adsorbent exhibited high adsorption capacity with three metal ions and followed the order Pb (II)> Fe (III) >Zn (II) ions. The metal ions vanished from the solution within approximately 40 min.
Collapse
|
15
|
R J, Gurunathan B, K S, Varjani S, Ngo HH, Gnansounou E. Advancements in heavy metals removal from effluents employing nano-adsorbents: Way towards cleaner production. ENVIRONMENTAL RESEARCH 2022; 203:111815. [PMID: 34352231 DOI: 10.1016/j.envres.2021.111815] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/29/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
Due to the development in science field which gives not only benefit but also introducesundesirable pollution to the environment. This pollution is due to poor discharge activities of industrial effluents into the soil and water bodies, surface run off from fields of agricultural lands, dumping of untreated wastes by municipalities, and mining activites, which deteriorates the cardinal virtue of our environment and causes menace to human health and life. Heavy metal(s), a natural constituent on earth's crust and economic important mineral, due to its recalcitrant effects creates heavy metal pollution which affects food chain and also reduces the quality of water. For this, many researchers have performed studies to find efficient methods for wastewater remediation. One of the most promising methods from economic point of view is adsorption, which is simple in design, but leads to use of a wide range of adsorbents and ease of operations. Due to advances in nanotechnology, many nanomaterials were used as adsorbents for wastewater remediation, because of their efficiency. Many researchers have reported that nanoadsorbents are unmitigatedly a fruitful solution to address this world's problem. This review presents a potent view on various classes of nanoadsorbents and their application to wastewater treatment. It provides a bird's eye view of the suitability of different types of nanomaterials for remediation of wastewater and Backspace gives up-to-date information about polymer based and silica-based nanoadsorbents.
Collapse
Affiliation(s)
- Janani R
- Department of Biotechnology, St. Joseph's College of Engineering, Chennai, 6000119, India
| | - Baskar Gurunathan
- Department of Biotechnology, St. Joseph's College of Engineering, Chennai, 6000119, India.
| | - Sivakumar K
- Department of Biotechnology, KarpagaVinayaga College of Engineering and Technology, Chinna Kolambakkam, 603308, Tamilnadu, India
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, 382 010, India.
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Edgard Gnansounou
- Bioenergy and Energy Planning Research Group, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
16
|
Jafarirad S, Mirzayinahr S, Pooresmaeil M, Salehi R. Green and facile synthesis of gold/perlite nanocomposite using Allium Fistulosum L. for photothermal application. Photodiagnosis Photodyn Ther 2021; 34:102243. [PMID: 33677069 DOI: 10.1016/j.pdpdt.2021.102243] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 02/11/2021] [Accepted: 03/01/2021] [Indexed: 12/30/2022]
Abstract
Photothermal therapy (PTT) procedure is anticipated as a new generation of cancer therapy techniques. With this in mind, in this work, an effective drug-free approach was developed to kill MCF7 breast cancer cells using PTT. A novel biocompatible nanocomposite as a PTT transducer was prepared from the in situ phytosynthesis of gold nanoparticles (Au NPs) in the presence of perlite as a platform and extract of Allium Fistulosum L. as a stabilizing and reducing agent (Au/perlite NC). The common characterization techniques such as Fourier transform infrared (FT-IR), zeta potential, dynamic light scattering (DLS), X-ray diffraction (XRD), ultraviolet-visible (UV-vis), scanning electron microscopy (SEM), and energy-dispersive X-ray (EDX) were used to approve the synthesis of Au/perlite NC. The potential of the synthesized NCs on ROS generating and antioxidant activity was assessed by DPPH. In the following, the PTT efficacy of the Au/perlite NC on the destruction of MCF-7 breast cancer cells was assessed in vitro via the cell cycle, cell viability, and DAPI staining assays. The DPPH assay results showed that Au/perlite NC had a radicals scavenging capacity of about 41.47 % in 30 min. Cellular uptake results indicated a significant cell uptake after 1.5 h exposure with Au/perlite NC. Interestingly, cell death was increased dramatically by increasing irradiation time from 6 to 10 min. Cell viability assay revealed that the maximum number of cell death is around 50 % which was observed in the presence of Au/perlite NC by irradiation time of 10 min. Cell cycle results showed that the maximum amount of apoptotic cells (85 %) was observed in Au/perlite NC treatment group received laser irradiation for 10 min. The outcomes demonstrated that the Au/perlite NC can be used as a new drug-free and efficient agent for PTT of breast cancer cells without any concern cytotoxicity.
Collapse
Affiliation(s)
- Saeed Jafarirad
- Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran; Research Institute of Bioscience and Biotechnology, University of Tabriz, Tabriz, Iran; University of Tabriz, Tabriz, 5156917511, Iran.
| | - Sepide Mirzayinahr
- Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Malihe Pooresmaeil
- Research Laboratory of Dendrimers and Nano-Biopolymers, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Roya Salehi
- Drug Applied Research Center, Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
17
|
Egbosiuba TC, Abdulkareem AS, Kovo AS, Afolabi EA, Tijani JO, Bankole MT, Bo S, Roos WD. Adsorption of Cr(VI), Ni(II), Fe(II) and Cd(II) ions by KIAgNPs decorated MWCNTs in a batch and fixed bed process. Sci Rep 2021; 11:75. [PMID: 33420137 PMCID: PMC7794394 DOI: 10.1038/s41598-020-79857-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/19/2020] [Indexed: 01/29/2023] Open
Abstract
The efficient removal of toxic metals ions from chemical industry wastewater is considered problematic due to the existence of pollutants as mixtures in the aqueous matrix, thus development of advanced and effective treatment method has been identified as a panacea to the lingering problems of heavy metal pollution. In this study, KIAgNPs decorated MWCNTs nano adsorbent was developed using combination of green chemistry protocol and chemical vapor deposition techniques and subsequently characterized using UV-Vis, HRTEM, HRSEM, XRD, FTIR and XPS. The adsorptive efficiency of MWCNTs-KIAgNPs for the removal of Cr(VI), Ni(II), Fe(II), Cd(II) and physico-chemical parameters like pH, TDS, COD, BOD, nitrates, sulphates, chlorides and phosphates from chemical industrial wastewater was examined in both batch and fixed bed systems. The result exhibited successful deposition of KIAgNPs on the surface of MWCNTs as confirmed by the microstructures, morphology, crystalline nature, functional groups and elemental characteristics of the MWCNTs-KIAgNPs. Optimum batch adsorption parameters include; pH (3 for Cr(VI) and 6 for Ni(II), Fe(II) and Cd(II) ions), contact time (60 min), adsorbent dosage (40 mg) and temperature (318 K). The binding capacities were obtained as follows; Cr6+ (229.540 mg/g), Ni2+ (174.784 mg/g), Fe2+ (149.552) and Cd2+ (121.026 mg/g), respectively. Langmuir isotherm and pseudo-second order kinetic model best described the experimental data in batch adsorption, while the thermodynamic parameters validated the chemisorption and endothermic nature of the adsorption process. In continuous adsorption, the metal ions were effectively removed at low metal influent concentration, low flow rate and high bed depth, whereby the experimental data were designated by Thomas model. The high physico-chemical parameters in the wastewater were successfully treated in both batch and fixed bed systems to fall within WHO permissible concentrations. The adsorption/desorption study illustrated over 80% metal removal by MWCNTs-KIAgNPs even after 8th adsorption cycle. This study demonstrated excellent performance of MWCNTs-KIAgNPs for chemical industry wastewater treatment.
Collapse
Affiliation(s)
- Titus Chinedu Egbosiuba
- Department of Chemical Engineering, Federal University of Technology, PMB.65, Minna, Niger, Nigeria.
- Department of Chemical Engineering, Chukwuemeka Odumegwu Ojukwu University, PMB 02, Uli, Anambra, Nigeria.
- Nanotechnology Research Group, Africa Centre of Excellence for Mycotoxin and Food Safety, Federal University of Technology, P.M.B 65, Bosso, Minna, Niger, Nigeria.
| | - Ambali Saka Abdulkareem
- Department of Chemical Engineering, Federal University of Technology, PMB.65, Minna, Niger, Nigeria
- Nanotechnology Research Group, Africa Centre of Excellence for Mycotoxin and Food Safety, Federal University of Technology, P.M.B 65, Bosso, Minna, Niger, Nigeria
| | - Abdulsalami Sanni Kovo
- Department of Chemical Engineering, Federal University of Technology, PMB.65, Minna, Niger, Nigeria
- Nanotechnology Research Group, Africa Centre of Excellence for Mycotoxin and Food Safety, Federal University of Technology, P.M.B 65, Bosso, Minna, Niger, Nigeria
| | - Eyitayo Amos Afolabi
- Department of Chemical Engineering, Federal University of Technology, PMB.65, Minna, Niger, Nigeria
| | - Jimoh Oladejo Tijani
- Department of Chemistry, Federal University of Technology, PMB.65, Minna, Niger, Nigeria
- Nanotechnology Research Group, Africa Centre of Excellence for Mycotoxin and Food Safety, Federal University of Technology, P.M.B 65, Bosso, Minna, Niger, Nigeria
| | - Mercy Temitope Bankole
- Department of Chemistry, Federal University of Technology, PMB.65, Minna, Niger, Nigeria
- Nanotechnology Research Group, Africa Centre of Excellence for Mycotoxin and Food Safety, Federal University of Technology, P.M.B 65, Bosso, Minna, Niger, Nigeria
| | - Shufeng Bo
- Faculty of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, People's Republic of China
| | - Wiets Daniel Roos
- Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein, 9300, South Africa
| |
Collapse
|
18
|
Removal of Mercury (II) from Aqueous Solution Using Silver Nanocomposite: Synthesis and Adsorption Mechanism. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-020-01839-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
19
|
Akpomie KG, Conradie J. Biogenic and chemically synthesized Solanum tuberosum peel-silver nanoparticle hybrid for the ultrasonic aided adsorption of bromophenol blue dye. Sci Rep 2020; 10:17094. [PMID: 33051565 PMCID: PMC7555862 DOI: 10.1038/s41598-020-74254-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/29/2020] [Indexed: 11/20/2022] Open
Abstract
This work was aimed at the synthesis of a hybrid (STpe-AgNP), obtained by impregnation of silver nanoparticles (AgNP) onto Solanum tuberosum peel (STpe), for the ultrasonic assisted adsorption of bromophenol blue (BB) dye. SEM, FTIR, XRD, EDX, TGA and BET techniques were used to characterize the adsorbents. The XRD, SEM and EDX confirmed successful impregnation of AgNPs onto STpe to form the hybrid. The AgNPs impregnated onto the hybrid were found to be water stable at various pH values of 2.0-9.0. Chi-square (χ2 < 0.024) and linear regression (R2 > 0.996) showed that the Freundlich model was best fitted among the isotherm models, corroborated by the oriented site model. Kinetic analysis conformed to the intraparticle diffusion and pseudo-first-order rate equations, while thermodynamics displayed a physical, spontaneous and endothermic adsorption process. The presence of competing Pb(II), Ni(II), Cd(II) and Zn(II) metal ions in solution interfered with the adsorption of BB onto the biosorbents. In terms of reusability, STpe and STpe-AgNP showed BB desorption of 91.3% and 88.5% respectively, using NaOH as eluent. Ultra-sonication significantly enhanced the adsorption of BB by both adsorbents, but the impregnation of AgNPs only slightly improved adsorption of the dye from the simulated wastewater. This study also illustrated that pristine STpe biomass waste is a cheap viable option for the decontamination of BB from water.
Collapse
Affiliation(s)
- Kovo G Akpomie
- Physical Chemistry Research Laboratory, Department of Chemistry, University of the Free State, Bloemfontein, South Africa.
- Industrial/Physical Chemistry Unit, Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, Nigeria.
| | - Jeanet Conradie
- Physical Chemistry Research Laboratory, Department of Chemistry, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
20
|
Kubasheva Z, Sprynskyy M, Railean-Plugaru V, Pomastowski P, Ospanova A, Buszewski B. Synthesis and Antibacterial Activity of (AgCl, Ag)NPs/Diatomite Hybrid Composite. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E3409. [PMID: 32748873 PMCID: PMC7435914 DOI: 10.3390/ma13153409] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/26/2020] [Accepted: 07/30/2020] [Indexed: 11/17/2022]
Abstract
. In the present research, hybrid (AgCl, Ag)NPs/diatomite composites were synthesized by direct impregnation with aqueous silver nitrate solutions. The silver chloride nanoparticles (AgCl-NPs) were formed as an effect of the exchange reaction when silver interacted with the diatomite mineral impurity halite. Nanoparticles of metallic silver (AgNPs) were created by the reduction of silver ions under the influence of hydrogen peroxide. The content of silver chloride nanoparticles in the (AgCl, Ag)NPs/diatomite composite was limited by the content of the halite in the used diatomite. Samples of natural diatomite and synthesized (AgCl, Ag)NPs/diatomite composites were examined by using scanning electron microscopy, transmission electron microscopy, X-ray powder diffraction, infrared spectroscopy and thermogravimetric analysis. Moreover, the antibacterial potential of synthesized composites was also studied using the MIC (minimal inhibitory concentration) method against the most common drug-resistant microorganisms in the medical field: Gram-positive Staphylococcus aureus and Gram-negative Klebsiella pneumoniae. The obtained hybrid (AgCl, AgNPs)/diatomite composites were shown to have antimicrobial potential. However, widespread use requires further study by using various microorganisms and additional cytotoxic studies on eukaryotic systems, e.g., cell lines and animal models.
Collapse
Affiliation(s)
- Zhanar Kubasheva
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan; (Z.K.); (A.O.)
| | - Myroslav Sprynskyy
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland;
| | - Viorica Railean-Plugaru
- Interdisciplinary Center for Modern Technologies, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (V.R.-P.); (P.P.)
| | - Paweł Pomastowski
- Interdisciplinary Center for Modern Technologies, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (V.R.-P.); (P.P.)
| | - Aliya Ospanova
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan; (Z.K.); (A.O.)
| | - Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland;
- Interdisciplinary Center for Modern Technologies, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (V.R.-P.); (P.P.)
| |
Collapse
|