1
|
Ohoro CR, Amaku JF, Conradie J, Olisah C, Akpomie KG, Malloum A, Akpotu SO, Adegoke KA, Okeke ES, Omotola EO. Effect of physicochemical parameters on the occurrence of per- and polyfluoroalkyl substances (PFAS) in aquatic environment. MARINE POLLUTION BULLETIN 2024; 208:117040. [PMID: 39366060 DOI: 10.1016/j.marpolbul.2024.117040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/13/2024] [Accepted: 09/21/2024] [Indexed: 10/06/2024]
Abstract
Perfluoroalkyl substances (PFAS) and their distribution in aquatic environments have been studied extensively, but more information is needed to link these occurrences to their physicochemical characteristics. Understanding how these parameters influence PFAS can help predict their fate, mobility, and occurrences in water. This study reviewed the influence of physicochemical parameters on the occurrences of PFAS in aquatic environment using the relevant keywords to retrieve articles from databases spanning mostly between 2017 and 2024. The result suggests that high pH, turbidity, and dissolved oxygen, give high concentration of PFAS, while high electrical conductivity, temperature and salinity give low PFAS concentration in the water. Therefore, monitoring and safeguarding the aquatic bodies for human and environmental safety is imperative. Future studies should include the effects of the physicochemical properties on PFAS occurrences in the natural environment and focus on an organism's distinctive characteristics to comprehend the bioaccumulation and biomagnification of PFAS in them and environmental matrices.
Collapse
Affiliation(s)
- Chinemerem Ruth Ohoro
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, 11 Hoffman St, Potchefstroom 2520, South Africa.
| | - James F Amaku
- Department of Chemistry, Michael Okpara University of Agriculture, Umudike, Nigeria; Environmental Fate of Chemicals and Remediation Laboratory, Department of Biotechnology and Chemistry, Vaal University of Technology, Vanderbijlpark 1911, Gauteng, South Africa
| | - Jeanet Conradie
- Department of Chemistry, University of the Free State, Bloemfontein 9300, South Africa
| | - Chijioke Olisah
- Institute for Coastal and Marine Research (CMR), Nelson Mandela University, P.O. Box 77000, Gqeberha 6031, South Africa; Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 5/753, 625 00 Brno, Czech Republic
| | - Kovo G Akpomie
- Department of Chemistry, University of the Free State, Bloemfontein 9300, South Africa; Department of Pure & Industrial Chemistry, University of Nigeria, Nsukka, Nigeria
| | - Alhadji Malloum
- Department of Chemistry, University of the Free State, Bloemfontein 9300, South Africa; Department of Physics, Faculty of Science, University of Maroua, Maroua, Cameroon
| | - Samson O Akpotu
- Department of Biotechnology and Chemistry, Vaal University of Technology, Vanderbijlpark 1911, South Africa
| | - Kayode A Adegoke
- Department of Industrial Chemistry, First Technical University, Ibadan, Nigeria
| | - Emmanuel Sunday Okeke
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria; Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State, Nigeria; Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Elizabeth O Omotola
- Department of Chemical Sciences, Tai Solarin University of Education, Ijebu Ode PMB 2118, Ogun State, Nigeria
| |
Collapse
|
2
|
Pettersson M, Ericson Jogsten I, van Hees P, Karlsson P, Axelsson M, Yeung LWY. Sampling of per- and polyfluoroalkyl substances in drainage water from a waste management facility. CHEMOSPHERE 2024; 364:143031. [PMID: 39117088 DOI: 10.1016/j.chemosphere.2024.143031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/07/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have been used for decades in a broad range of consumer products and industrial applications. A variety of waste and products containing PFAS inevitably end up at waste management facilities when they are no longer considered useful. Drainage water samples (n = 157) were collected from eight subsections at a waste management facility in Sweden and analyzed for 23 PFAS and extractable organofluorine (EOF). Two different sampling methods were used, grab sampling (n = 32, without filtration) and composite sampling (n = 8, produced by pooling 16 filtered samples taken at the same subsection). Although PFAS have been studied at waste sites, the information is scarce regarding how the concentrations and homologue profiles could differ within the sites. In this study, we investigated if composite sampling could be an alternative to grab sampling for PFAS monitoring purposes. Herein, the PFAS concentrations ranged from <1 to 22 μg/L; the grab samples showed systematic higher concentrations than their corresponding composite sample. Short-chain perfluoroalkyl sulfonic acids (C4 and C5) were the largest contributing sub-class, followed by short-chain perfluoroalkyl carboxylic acids (C4 to C6). EOF was measured up to approximately 140 μg/L F with 99% being unexplained by the fluorine mass balance analysis. The results from this study showed that both sampling methods were comparable for target analysis and that 11 compounds represented most of the PFAS concentrations. However, the discrepancy between the sampling methods was greater for EOF analysis and may be due to the preparation of composite samples and/or due to fluctuating discharges during the sampling period. Composite sampling was observed to be comparable to grab sampling for target analysis.
Collapse
Affiliation(s)
- Mio Pettersson
- Man-Technology-Environment Research Centre, Department of Science and Technology, Orebro University, 701 82, Orebro, Sweden
| | - Ingrid Ericson Jogsten
- Man-Technology-Environment Research Centre, Department of Science and Technology, Orebro University, 701 82, Orebro, Sweden
| | - Patrick van Hees
- Man-Technology-Environment Research Centre, Department of Science and Technology, Orebro University, 701 82, Orebro, Sweden; Eurofins Food & Feed Testing Sweden AB, 531 40, Lidkoping, Sweden
| | - Patrik Karlsson
- Eurofins Food & Feed Testing Sweden AB, 531 40, Lidkoping, Sweden
| | | | - Leo W Y Yeung
- Man-Technology-Environment Research Centre, Department of Science and Technology, Orebro University, 701 82, Orebro, Sweden.
| |
Collapse
|
3
|
Burcham LE, Hoskins TD, Allmon EB, Scherer MN, Bushong AG, Hamilton MT, Macheri S, Coogan GS, Choi YJ, Lee LS, Sepúlveda MS. Does salinity mediate the toxicity of perfluorooctanesulfonic acid (PFOS) in an estuarine fish? MARINE POLLUTION BULLETIN 2024; 203:116446. [PMID: 38703627 DOI: 10.1016/j.marpolbul.2024.116446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
Perfluorooctanesulfonic acid (PFOS) is detected in estuarine environments, where salinity levels fluctuate regularly. We investigated the effects of salinity on the toxicity of PFOS in embryos and larvae of Cyprinodon variegatus. We crossed six PFOS treatments (0, 1-10,000 μg/L) with two salinities (10, 30 ppt). Larvae exposed to the highest concentration of PFOS under high salinity accumulated over twice the amount of PFOS compared to larvae maintained under low salinity. Embryonic survival was unaffected by PFOS, salinity, or their interaction. PFOS delayed time to hatch and increased salinity reduced time to hatch regardless of PFOS treatment; however, no salinity by PFOS interactions were observed. Conversely, PFOS and salinity interacted in the larval stage, with decreased survival at 30 ppt salinity. This is one of the first studies evaluating interactive effects of PFOS and high salinity and highlights the importance of assessing PFAS toxicity across life stages.
Collapse
Affiliation(s)
- Lucy E Burcham
- Department of Forestry & Natural Resources, Purdue University, West Lafayette, IN 47907, USA
| | - Tyler D Hoskins
- Department of Forestry & Natural Resources, Purdue University, West Lafayette, IN 47907, USA
| | - Elizabeth B Allmon
- Department of Forestry & Natural Resources, Purdue University, West Lafayette, IN 47907, USA
| | - Meredith N Scherer
- Department of Forestry & Natural Resources, Purdue University, West Lafayette, IN 47907, USA
| | - Anna G Bushong
- Department of Forestry & Natural Resources, Purdue University, West Lafayette, IN 47907, USA
| | - Matthew T Hamilton
- Department of Forestry & Natural Resources, Purdue University, West Lafayette, IN 47907, USA
| | - Sini Macheri
- Department of Forestry & Natural Resources, Purdue University, West Lafayette, IN 47907, USA
| | - Grace S Coogan
- Department of Forestry & Natural Resources, Purdue University, West Lafayette, IN 47907, USA
| | - Youn J Choi
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Linda S Lee
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Maria S Sepúlveda
- Department of Forestry & Natural Resources, Purdue University, West Lafayette, IN 47907, USA; Sustainability Research Center and PhD in Conservation Medicine, Life Sciences Faculty, Universidad Andres Bello, Santiago, Chile.
| |
Collapse
|
4
|
Wang J, Shen C, Zhang J, Lou G, Shan S, Zhao Y, Man YB, Li Y. Per- and polyfluoroalkyl substances (PFASs) in Chinese surface water: Temporal trends and geographical distribution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170127. [PMID: 38242487 DOI: 10.1016/j.scitotenv.2024.170127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
PFAS, recognized as persistent organic pollutants, present risks to both the ecological environment and human health. Studying PFASs in surface water yields insights into pollution dynamics. However, existing research on PFASs surface water pollution in China often focuses on specific regions, lacking comprehensive nationwide analyses. This study examined 48 research papers covering PFAS pollution in Chinese surface water, involving 49 regions and 1338 sampling sites. The results indicate widespread PFAS contamination, even in regions like Tibet. Predominant PFAS types include PFOA and PFOS, and pollution is associated with the relocation of industries from developed to developing countries post-2010. The shift from long-chain to short-chain PFASs aligns with recent environmental policy proposals. Geographic concentration of PFAS pollution correlates with industry distribution and economic development levels. Addressing point source pollution, especially from wastewater plant tailwater, is crucial for combating PFAS contamination. Greater emphasis should be placed on addressing short-chain PFASs.
Collapse
Affiliation(s)
- Jie Wang
- Zhejiang Province Key Laboratory of Recycling and Eco-Treatment of Waste Biomass, Zhejiang University of Science and Technology, Hangzhou 310023, PR China
| | - Cheng Shen
- Zhejiang Province Key Laboratory of Recycling and Eco-Treatment of Waste Biomass, Zhejiang University of Science and Technology, Hangzhou 310023, PR China; Dooge Centre for Water Resources Research, School of Civil Engineering, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Jin Zhang
- Zhejiang Province Key Laboratory of Recycling and Eco-Treatment of Waste Biomass, Zhejiang University of Science and Technology, Hangzhou 310023, PR China
| | - Guangyu Lou
- Zhejiang Province Key Laboratory of Recycling and Eco-Treatment of Waste Biomass, Zhejiang University of Science and Technology, Hangzhou 310023, PR China
| | - Shengdao Shan
- Zhejiang Province Key Laboratory of Recycling and Eco-Treatment of Waste Biomass, Zhejiang University of Science and Technology, Hangzhou 310023, PR China
| | - Yaqian Zhao
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, PR China; Dooge Centre for Water Resources Research, School of Civil Engineering, University College Dublin, Belfield, Dublin 4, Ireland
| | - Yu Bon Man
- Consortium on Health, Environment, Education and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong, China
| | - Yuliang Li
- Department of Chemical Engineering, School of Water and Environment, Chang'an University, Xi'an 710064, PR China.
| |
Collapse
|
5
|
Foord CS, Szabo D, Robb K, Clarke BO, Nugegoda D. Hepatic concentrations of per- and polyfluoroalkyl substances (PFAS) in dolphins from south-east Australia: Highest reported globally. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168438. [PMID: 37963535 DOI: 10.1016/j.scitotenv.2023.168438] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/13/2023] [Accepted: 11/07/2023] [Indexed: 11/16/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) concentrations were investigated in hepatic tissue of four dolphin species stranded along the south-east coast of Australia between 2006 and 2021; Burrunan dolphin (Tursiops australis), common bottlenose dolphin (Tursiops truncatus), Indo-Pacific bottlenose dolphin (Tursiops aduncus), and short-beaked common dolphin (Delphinus delphis). Two Burrunan dolphin populations represented in the dataset have the highest reported global population concentrations of ∑25PFAS (Port Phillip Bay median 9750 ng/g ww, n = 3, and Gippsland Lakes median 3560 ng/g ww, n = 8), which were 50-100 times higher than the other species reported here; common bottlenose dolphin (50 ng/g ww, n = 9), Indo-Pacific bottlenose dolphin (80 ng/g ww, n = 1), and short-beaked common dolphin (61 ng/g ww, n = 12). Also included in the results is the highest reported individual ∑25PFAS (19,500 ng/g ww) and PFOS (18,700 ng/g ww) concentrations, at almost 30 % higher than any other Cetacea reported globally. Perfluorooctane sulfonate (PFOS) was above method reporting limits for all samples (range; 5.3-18,700 ng/g ww), and constituted the highest contribution to overall ∑PFAS burdens with between 47 % and 99 % of the profile across the dataset. The concentrations of PFOS exceed published tentative critical concentrations (677-775 ng/g) in 42 % of all dolphins and 90 % of the critically endangered Burrunan dolphin. This research reports for the first time novel and emerging PFASs such as 6:2 Cl-PFESA, PFMPA, PFEECH and FBSA in marine mammals of the southern hemisphere, with high detection rates across the dataset. It is the first study to show the occurrence of PFAS in the tissues of multiple species of Cetacea from the Australasian region, demonstrating high global concentrations for inshore dolphins. Finally, it provides key baseline knowledge to the potential exposure and bioaccumulation of PFAS compounds within the coastal environment of south-east Australia.
Collapse
Affiliation(s)
- Chantel S Foord
- Royal Melbourne Institute of Technology, Bundoora, Australia; Marine Mammal Foundation, Mentone, VIC.
| | - Drew Szabo
- Australian Laboratory for Emerging Contaminants, School of Chemistry, University of Melbourne, Victoria 3010, Australia; Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius Väg 16C, SE-106 91 Stockholm, Sweden
| | - Kate Robb
- Marine Mammal Foundation, Mentone, VIC
| | - Bradley O Clarke
- Australian Laboratory for Emerging Contaminants, School of Chemistry, University of Melbourne, Victoria 3010, Australia
| | | |
Collapse
|
6
|
Dunn M, Noons N, Vojta S, Becanova J, Pickard H, Sunderland EM, Lohmann R. Unregulated Active and Closed Textile Mills Represent a Significant Vector of PFAS Contamination into Coastal Rivers. ACS ES&T WATER 2024; 4:114-124. [PMID: 38222965 PMCID: PMC10785679 DOI: 10.1021/acsestwater.3c00439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Despite concerns over the ubiquity of per- and polyfluoroalkyl substances (PFAS), little is known about the diversity of input sources to surface waters and their seasonal dynamics. Frequent use of PFAS in textiles means both active and closed textile mills require evaluation as PFAS sources. We deployed passive samplers at seven sites in an urban river and estuary adjacent to textile mills in Southern Rhode Island (USA) over 12 months. We estimated monthly mass flows (g month-1) of perfluorohexanoic acid (PFHxA: 45±56), and perfluorooctanoic acid (PFOA: 30±45) from the upstream river influenced by an active mill. Average mass flows were 73-155% higher downstream, where historical textile waste lagoons contributed long chain perfluoroalkyl acids (PFAA). Mass flows of PFNA increased from 7.5 to 21 g month-1 between the upstream and downstream portions of the rivers. Distinct grouping of the two main PFAS sources, active textile mills and historical waste lagoons, were identified using principal components analysis. Neither suspect screening nor extractable organofluorine analysis revealed measurable PFAS were missing beyond the targeted compounds. This research demonstrates that both closed and active textile mills are important ongoing PFAS sources to freshwater and marine regions and should be further evaluated as a source category.
Collapse
Affiliation(s)
- Matthew Dunn
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, 02882 USA
| | - Nicholas Noons
- Rhode Island Department of Environmental Management, Providence, RI, 02980 USA
| | - Simon Vojta
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, 02882 USA
| | - Jitka Becanova
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, 02882 USA
| | - Heidi Pickard
- Harvard University John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA, 02138 USA
| | - Elsie M. Sunderland
- Harvard University John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA, 02138 USA
| | - Rainer Lohmann
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, 02882 USA
| |
Collapse
|
7
|
Ruffle B, Archer C, Vosnakis K, Butler JD, Davis CW, Goldsworthy B, Parkman R, Key TA. US and international per- and polyfluoroalkyl substances surface water quality criteria: A review of the status, challenges, and implications for use in chemical management and risk assessment. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:36-58. [PMID: 37069739 DOI: 10.1002/ieam.4776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 05/04/2023]
Abstract
Regulation of per- and polyfluorinated substances (PFAS) in surface water is a work-in-progress with relatively few criteria promulgated in the United States and internationally. Surface water quality criteria (SWQC) or screening values derived for perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) by Australia, Canada, the European Union (EU), and four US states (Florida, Michigan, Minnesota, and Wisconsin), and the San Francisco Bay Regional Water Quality Control Board (SFB RWQCB; California) were compared. Across these eight jurisdictions, promulgated numeric criteria for the same compound and receptor span over five orders of magnitude as a result of different approaches and data interpretations. Human health criteria for PFOS range from 0.0047 to 600 ng/L depending on route of exposure (e.g., fish consumption or drinking water) and are lower than most ecological criteria for protection of aquatic and wildlife receptors. Data gaps and uncertainty in chronic toxicity and bioaccumulation of PFOS and PFOA, as well as the use of conservative assumptions regarding intake and exposure, have resulted in some criteria falling at or below ambient background concentrations and current analytical detection limits (around 1 ng/L for commercial laboratories). Some jurisdictions (e.g., Australia, Canada) have deemed uncertainty in quantifying water-fish bioaccumulation too great and set fish tissue action levels in lieu of water criteria. Current dynamics associated with the emerging and evolving science of PFAS toxicity, exposure, and environmental fate (i.e., data gaps and uncertainty), as well as the continuous release of scientific updates, pose a challenge to setting regulatory limits. Integr Environ Assess Manag 2024;20:36-58. © 2023 AECOM Technical Services, Inc and The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
| | | | | | - Josh D Butler
- ExxonMobil Biomedical Sciences Inc., Annandale, New Jersey, USA
| | - Craig W Davis
- ExxonMobil Biomedical Sciences Inc., Annandale, New Jersey, USA
| | | | | | - Trent A Key
- ExxonMobil Environmental and Property Solutions Company, Spring, Texas, USA
| |
Collapse
|
8
|
Lukić Bilela L, Matijošytė I, Krutkevičius J, Alexandrino DAM, Safarik I, Burlakovs J, Gaudêncio SP, Carvalho MF. Impact of per- and polyfluorinated alkyl substances (PFAS) on the marine environment: Raising awareness, challenges, legislation, and mitigation approaches under the One Health concept. MARINE POLLUTION BULLETIN 2023; 194:115309. [PMID: 37591052 DOI: 10.1016/j.marpolbul.2023.115309] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/09/2023] [Accepted: 07/16/2023] [Indexed: 08/19/2023]
Abstract
Per- and polyfluorinated alkyl substances (PFAS) have long been known for their detrimental effects on the ecosystems and living organisms; however the long-term impact on the marine environment is still insufficiently recognized. Based on PFAS persistence and bioaccumulation in the complex marine food network, adverse effects will be exacerbated by global processes such as climate change and synergies with other pollutants, like microplastics. The range of fluorochemicals currently included in the PFAS umbrella has significantly expanded due to the updated OECD definition, raising new concerns about their poorly understood dynamics and negative effects on the ocean wildlife and human health. Mitigation challenges and approaches, including biodegradation and currently studied materials for PFAS environmental removal are proposed here, highlighting the importance of ongoing monitoring and bridging research gaps. The PFAS EU regulations, good practices and legal frameworks are discussed, with emphasis on recommendations for improving marine ecosystem management.
Collapse
Affiliation(s)
- Lada Lukić Bilela
- Department of Biology, Faculty of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina.
| | - Inga Matijošytė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio ave. 7, Vilnius, Lithuania.
| | - Jokūbas Krutkevičius
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio ave. 7, Vilnius, Lithuania.
| | - Diogo A M Alexandrino
- CIIMAR Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal; Department of Environmental Health, School of Health, P. Porto, Porto, Portugal.
| | - Ivo Safarik
- Department of Nanobiotechnology, Biology Centre, ISBB, CAS, Na Sadkach 7, 370 05 Ceske Budejovice, Czech Republic; Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Juris Burlakovs
- Mineral and Energy Economy Research Institute of Polish Academy of Sciences, Józefa Wybickiego 7 A, 31-261 Kraków, Poland.
| | - Susana P Gaudêncio
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Chemistry Department, NOVA Faculty for Sciences and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal.
| | - Maria F Carvalho
- CIIMAR Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal; School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| |
Collapse
|
9
|
Mojiri A, Zhou JL, Ozaki N, KarimiDermani B, Razmi E, Kasmuri N. Occurrence of per- and polyfluoroalkyl substances in aquatic environments and their removal by advanced oxidation processes. CHEMOSPHERE 2023; 330:138666. [PMID: 37068615 DOI: 10.1016/j.chemosphere.2023.138666] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/15/2023] [Accepted: 04/10/2023] [Indexed: 05/14/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS), one of the main categories of emerging contaminants, are a family of fluorinated organic compounds of anthropogenic origin. PFAS can endanger the environment and human health because of their wide application in industries, long-term persistence, unique properties, and bioaccumulation potential. This study sought to explain the accumulation of different PFAS in water bodies. In aquatic environments, PFAS concentrations range extensively from <0.03 (groundwater; Melbourne, Australia) to 51,000 ng/L (Groundwater, Sweden). Additionally, bioaccumulation of PFAS in fish and water biota has been stated to range from 0.2 (Burbot, Lake Vättern, Sweden) to 13,900 ng/g (Bluegill samples, U.S.). Recently, studies have focused on PFAS removal from aqueous solutions; one promising technique is advanced oxidation processes (AOPs), including microwaves, ultrasound, ozonation, photocatalysis, UV, electrochemical oxidation, the Fenton process, and hydrogen peroxide-based and sulfate radical-based systems. The removal efficiency of PFAS ranges from 3% (for MW) to 100% for UV/sulfate radical as a hybrid reactor. Therefore, a hybrid reactor can be used to efficiently degrade and remove PFAS. Developing novel, efficient, cost-effective, and sustainable AOPs for PFAS degradation in water treatment systems is a critical area of research.
Collapse
Affiliation(s)
- Amin Mojiri
- Department of Civil and Environmental Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima, 739-8527, Hiroshima, Japan.
| | - John L Zhou
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Noriatsu Ozaki
- Department of Civil and Environmental Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima, 739-8527, Hiroshima, Japan
| | - Bahareh KarimiDermani
- Department of Geological Sciences, Hydrogeology, University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Elham Razmi
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Norhafezah Kasmuri
- School of Civil Engineering, College of Engineering, Universiti Teknologi MARA (UiTM), Shah Alam, 40450, Selangor, Malaysia
| |
Collapse
|
10
|
Novak PA, Hoeksema SD, Thompson SN, Trayler KM. Per- and polyfluoroalkyl substances (PFAS) contamination in a microtidal urban estuary: Sources and sinks. MARINE POLLUTION BULLETIN 2023; 193:115215. [PMID: 37392593 DOI: 10.1016/j.marpolbul.2023.115215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/03/2023]
Abstract
This study evaluates PFAS contamination and determines the major drainage sources to a temperate microtidal estuary, the Swan Canning Estuary, in Perth Western Australia. We describe how variability in these sources influences PFAS concentrations within this urban estuary. Surface water samples were collected from 20 estuary sites and 32 catchment sites in June and December from 2016 to 2018. Modelled catchment discharge was used to estimate PFAS load over the study period. Three major catchment sources of elevated PFAS were identified with contamination likely resulting from historical AFFF use on a commercial airport and defence base. Estuary PFAS concentration and composition varied significantly with season and spatially with the two different estuary arms responding differently to winter and summer conditions. This study has found that the influence of multiple PFAS sources on an estuary depend on the historical usage timeframe, groundwater interactions and surface water discharge.
Collapse
Affiliation(s)
- P A Novak
- Rivers and Estuaries Science, Biodiversity and Conservation Science Division, Department of Biodiversity, Conservation and Attractions, Kensington, Western Australia, Australia.
| | - S D Hoeksema
- Rivers and Estuaries Science, Biodiversity and Conservation Science Division, Department of Biodiversity, Conservation and Attractions, Kensington, Western Australia, Australia
| | - S N Thompson
- Rivers and Estuaries Science, Biodiversity and Conservation Science Division, Department of Biodiversity, Conservation and Attractions, Kensington, Western Australia, Australia
| | - K M Trayler
- Rivers and Estuaries Science, Biodiversity and Conservation Science Division, Department of Biodiversity, Conservation and Attractions, Kensington, Western Australia, Australia
| |
Collapse
|
11
|
Samandra S, Singh J, Plaisted K, Mescall OJ, Symons B, Xie S, Ellis AV, Clarke BO. Quantifying environmental emissions of microplastics from urban rivers in Melbourne, Australia. MARINE POLLUTION BULLETIN 2023; 189:114709. [PMID: 36821931 DOI: 10.1016/j.marpolbul.2023.114709] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/31/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
This study aims to understand the amount and type of microplastics flowing into Port Phillip Bay from urban rivers around Melbourne. Water samples were collected from the Patterson, Werribee, Maribyrnong, and Yarra Rivers, which contribute 97 % to the total flow into Port Phillip Bay. On average, the rivers contained a mean of 9 ± 15 microplastics/L and ranged from 4 ± 3 microplastics/L (Patterson) to 22 ± 11 microplastics/L (Werribee). Of the eight polymers investigated, polyamide and polypropylene were the most frequently detected polymers. Using the mean concentration of each river, the flow of microplastics into Port Philip Bay was estimated to be 7.5 × 106 microplastics per day and 3.7 × 1010 microplastics per year. To fully understand the fate and transport of microplastics into Port Phillip Bay, this study would be the foundation for a more in-depth investigation. Here, further samples will be collected at more points along the river and at the midpoint of each season.
Collapse
Affiliation(s)
- Subharthe Samandra
- Australian Laboratory for Emerging Contaminants (ALEC), School of Chemistry, The University of Melbourne, Grattan Street, Melbourne, Victoria 3010, Australia; Eurofins Environment Testing Australia & New Zealand, Australia
| | - Jai Singh
- Australian Laboratory for Emerging Contaminants (ALEC), School of Chemistry, The University of Melbourne, Grattan Street, Melbourne, Victoria 3010, Australia
| | - Katie Plaisted
- Eurofins Environment Testing Australia & New Zealand, Australia
| | | | - Bob Symons
- Eurofins Environment Testing Australia & New Zealand, Australia
| | - Shay Xie
- Eurofins Environment Testing Australia & New Zealand, Australia
| | - Amanda V Ellis
- Department of Chemical Engineering, The University of Melbourne, Grattan Street, Melbourne, Victoria 3010, Australia
| | - Bradley O Clarke
- Australian Laboratory for Emerging Contaminants (ALEC), School of Chemistry, The University of Melbourne, Grattan Street, Melbourne, Victoria 3010, Australia.
| |
Collapse
|
12
|
Pétré MA, Salk KR, Stapleton HM, Ferguson PL, Tait G, Obenour DR, Knappe DRU, Genereux DP. Per- and polyfluoroalkyl substances (PFAS) in river discharge: Modeling loads upstream and downstream of a PFAS manufacturing plant in the Cape Fear watershed, North Carolina. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 831:154763. [PMID: 35339537 DOI: 10.1016/j.scitotenv.2022.154763] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 01/25/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
The Cape Fear River is an important source of drinking water in North Carolina, and many drinking water intakes in the watershed are affected by per- and polyfluoroalkyl substances (PFAS). We quantified PFAS concentrations and loads in river water upstream and downstream of a PFAS manufacturing plant that has been producing PFAS since 1980. River samples collected from September 2018 to February 2021 were analyzed for 13 PFAS at the upstream station and 43-57 PFAS downstream near Wilmington. Frequent PFAS sampling (daily to weekly) was conducted close to gauging stations (critical to load estimation), and near major drinking water intakes (relevant to human exposure). Perfluoroalkyl acids dominated upstream while fluoroethers associated with the plant made up about 47% on average of the detected PFAS downstream. Near Wilmington, Σ43PFAS concentration averaged 143 ng/L (range 40-377) and Σ43PFAS load averaged 3440 g/day (range 459-17,300), with 17-88% originating from the PFAS plant. LOADEST was a useful tool in quantifying individual and total quantified PFAS loads downstream, however, its use was limited at the upstream station where PFAS levels in the river were affected by variable inputs from a wastewater treatment plant. Long-term monitoring of PFAS concentrations is warranted, especially at the downstream station. Results suggest a slight downward trend in PFAS levels downstream, as indicated by a decrease in flow-weighted mean concentrations and the best-fitting LOADEST model. However, despite the cessation of PFAS process wastewater discharge from the plant in November 2017, and the phase-out of perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) in North America, both fluoroethers and legacy PFAS continue to reach the river in significant quantities, reflecting groundwater discharge to the river and other continuing inputs. Persistence of PFAS in surface water and drinking water supplies suggests that up to 1.5 million people in the Cape Fear watershed might be exposed.
Collapse
Affiliation(s)
- M-A Pétré
- Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, NC, United States; Now at Geological Survey of Finland, Espoo, Finland.
| | - K R Salk
- Tetra Tech Center for Ecological Sciences, Research Triangle Park, NC, United States; Nicholas School of the Environment, Duke University, Durham, NC, United States
| | - H M Stapleton
- Nicholas School of the Environment, Duke University, Durham, NC, United States
| | - P L Ferguson
- Nicholas School of the Environment, Duke University, Durham, NC, United States; Department of Civil and Environmental Engineering, Duke University, Durham, NC, United States
| | - G Tait
- Nicholas School of the Environment, Duke University, Durham, NC, United States
| | - D R Obenour
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, NC, United States
| | - D R U Knappe
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, NC, United States
| | - D P Genereux
- Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
13
|
Szabo D, Moodie D, Green MP, Mulder RA, Clarke BO. Field-Based Distribution and Bioaccumulation Factors for Cyclic and Aliphatic Per- and Polyfluoroalkyl Substances (PFASs) in an Urban Sedentary Waterbird Population. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8231-8244. [PMID: 35678721 DOI: 10.1021/acs.est.2c01965] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The field-based distribution and bioaccumulation factor (BAF) for per- and polyfluoroalkyl substances (PFASs) were determined in residential Black Swans (Cygnus atratus) from an urban lake (Melbourne, Australia). The concentrations of 46 aliphatic and cyclic PFASs were determined by HPLC-MS/MS in serum and excrement from swans, and water, sediment, aquatic macrophytes, soil, and grass samples in and around the lake. Elevated concentrations of ∑46PFASs were detected in serum (120 ng mL-1) and excrement (110 ng g-1 dw) were strongly related indicating a potential noninvasive sampling methodology. Environmental concentrations of PFASs were consistent with a highly impacted ecosystem and notably high concentrations of perfluoro-4-ethylcyclohexanesulfonate (PFECHS, 67584-42-3; C8HF15SO3) were detected in water (27 ng L-1) and swan serum (16 ng mL-1). In the absence of credible putative alternative sources of PFECHS input to the lake, we propose that the use of high-performance motorsport vehicles is a likely source of contamination to this ecosystem. The BAF of perfluorocarboxylic acids increased with each additional CF2 moiety from PFOA (15.7 L kg-1 ww) to PFDoDA (3615 L kg-1 ww). The BAF of PFECHS was estimated as 593 L kg-1 ww, which is lower compared with that of PFOS (1097 L kg-1 ww).
Collapse
Affiliation(s)
- Drew Szabo
- Australian Laboratory for Emerging Contaminants, School of Chemistry, University of Melbourne, Victoria, Australia 3010
| | - Damien Moodie
- Australian Laboratory for Emerging Contaminants, School of Chemistry, University of Melbourne, Victoria, Australia 3010
- School of Science, RMIT University, Victoria, Australia 3001
| | - Mark P Green
- School of BioSciences, University of Melbourne, Victoria, Australia 3010
| | - Raoul A Mulder
- School of BioSciences, University of Melbourne, Victoria, Australia 3010
| | - Bradley O Clarke
- Australian Laboratory for Emerging Contaminants, School of Chemistry, University of Melbourne, Victoria, Australia 3010
| |
Collapse
|
14
|
Huerta B, McHugh B, Regan F. Development and application of an LC-MS method to the determination of poly- and perfluoroalkyl substances (PFASs) in drinking, sea and surface water samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2090-2099. [PMID: 35551566 DOI: 10.1039/d2ay00300g] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Poly- and perfluoroalkyl substances (PFASs) are a group of synthetic organic surfactants that have become a global concern because of their toxicity and widespread presence in the aquatic environment and organisms globally. In this study, a new analytical method has been developed and validated for the analysis of 15 perfluorinated compounds in different water matrices: river water, drinking water and seawater. Water extraction was performed in anion exchange solid phase extraction cartridges, and extracts were analysed by liquid chromatography in tandem with mass spectrometry. Recoveries for target analytes were between 35 and 120%, depending on the water matrix. Method detection limits were in the range of 0.5-17 ng L-1. The validated method was applied to the determination of perfluorinated compounds in water samples around Ireland. Eight compounds out of fifteen were detected at least in one sample. Measured concentrations were higher in river water than seawater, and drinking water had the lowest levels, although still detectable for a considerable amount of compounds. The most prevalent compounds were PFPeA, PFOA and PFHxA, present in all types of water, and they had the highest concentrations.
Collapse
Affiliation(s)
- Belinda Huerta
- DCU Water Institute, School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland.
| | - Brendan McHugh
- Marine Institute, Rinville, Oranmore, Co. Galway, H91 R673, Ireland
| | - Fiona Regan
- DCU Water Institute, School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland.
| |
Collapse
|
15
|
Lalonde B, Garron C. Perfluoroalkyl Substances (PFASs) in the Canadian Freshwater Environment. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 82:581-591. [PMID: 35347351 PMCID: PMC9079020 DOI: 10.1007/s00244-022-00922-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/02/2022] [Indexed: 06/12/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are anthropogenic substances that are very stable in the receiving environment. Legacy perfluoroalkane sulfonates (PFSAs) and perfluoroalkyl carboxylic acids (PFCAs) are especially persistent and resistant to typical environmental degradation processes and therefore are distributed across all trophic levels and environmental compartments (soil, air, water). Since most uses of perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), and LC-long-chain PFCAs are banned in Canada, alternative PFASs have been in use for a number of years. Twenty-nine sites across Canada were sampled for PFASs to determine concentrations and trends. Overall, 13 PFASs were measured in 566 Canadian freshwater samples from 2013 to 2020 with a range from below the detection limit (LOD range: 0.4-1.6 ng/L) of the laboratory to a maximum of 138 ng/L (for PFBS). While PFOS and PFOA concentrations are declining significantly over time, other compounds such as PFPeA and PFBA have increased significantly over 2013-2020. Overall, the range of concentrations found in this study was similar to that of other Canadian and international studies. However, this study also found a higher frequency of detections of the replacement PFASs than that of the other, older, Canadian studies.
Collapse
Affiliation(s)
- Benoit Lalonde
- Water Quality Monitoring and Surveillance Division, Water Science and Technology, Environment and Climate Change Canada, 45 Alderney Drive, Dartmouth, NS, B2Y 2N6, Canada.
| | - Christine Garron
- Water Quality Monitoring and Surveillance Division, Water Science and Technology, Environment and Climate Change Canada, 45 Alderney Drive, Dartmouth, NS, B2Y 2N6, Canada
| |
Collapse
|
16
|
Sims JL, Stroski KM, Kim S, Killeen G, Ehalt R, Simcik MF, Brooks BW. Global occurrence and probabilistic environmental health hazard assessment of per- and polyfluoroalkyl substances (PFASs) in groundwater and surface waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151535. [PMID: 34762945 DOI: 10.1016/j.scitotenv.2021.151535] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) have been used in consumer and military products since the 1950s but are increasingly scrutinized worldwide because of inherent chemical properties, environmental contamination, and risks to public health and the environment. The United States Environmental Protection Agency (USEPA) identified 24 PFASs of interest for further study and possible regulation. We examined 371 peer-reviewed studies published since 2001 to understand the occurrence and distribution of 24 priority PFASs in global surface waters and groundwater. We identified 77,541 and 16,246 data points for surface waters and groundwater, respectively, with total PFAS concentrations ranging from low pg/L to low mg/L levels. Most data were from Asia, Europe, and North America with some reports from Oceania. PFAS information from other geographic regions is lacking. PFASs levels are consistently higher in rivers and streams followed by lakes and reservoirs and then coastal and marine systems. When sufficient data were available, probabilistic environmental hazard assessments (PEHAs) were performed from environmental exposure distributions (EEDs) to identify potential exceedances of available guideline values for each compound by matrix, region, and aquatic system. Specifically, exceedances of USEPA drinking water lifetime health advisory levels were up to 74% for PFOS in groundwater from Oceania and 69% for PFOA in North American groundwater. Our findings support selection of environmentally relevant experimental treatment levels for future toxicology, ecotoxicology and bioaccumulation studies, and potable source water exposure investigations, while highlighting PFASs and major geographic locations requiring additional study and inclusion in global monitoring and surveillance campaigns.
Collapse
Affiliation(s)
- Jaylen L Sims
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, USA
| | - Kevin M Stroski
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, USA
| | - Sujin Kim
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, USA
| | - Grace Killeen
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, USA
| | - Ricardo Ehalt
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, USA
| | - Matt F Simcik
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, MN 55455, USA
| | - Bryan W Brooks
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, USA; Institute of Biomedical Studies, Baylor University, Waco, TX, USA.
| |
Collapse
|
17
|
Szabo D, Nuske MR, Lavers JL, Shimeta J, Green MP, Mulder RA, Clarke BO. A baseline study of per- and polyfluoroalkyl substances (PFASs) in waterfowl from a remote Australian environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 812:152528. [PMID: 34954161 DOI: 10.1016/j.scitotenv.2021.152528] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/11/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Elevated concentrations of PFASs in the liver may pose a toxicological risk to bird species and humans that consume them. This study aimed to determine concentrations of 43 per- and polyfluoroalkyl substances (PFASs) in livers (n = 80) of Australian Shelducks (Tadorna tadornoides), Pacific Black Ducks (Anas superciliosa), and Teals (Anas sp.), as well as water and sediment from a remote Australian environment. Maximum concentrations of PFBA (1.9 ng L-1), PFOA (1.7 ng L-1) and PFOS (0.99 ng L-1) in water were consistent with long-range atmospheric and oceanic transport. PFOS (30%) and PFNA (22%) were the most frequently detected PFASs in Australian Shelduck livers (0.31 ± 0.68 ng g-1 ww and 0.16 ± 0.15 ng g-1 ww respectively). Maximum concentrations of PFOS in Pacific Black Ducks (50%) and Teals (44%) was 2.4 ng g-1 ww and 5.3 ng g-1 ww respectively. While PFAS levels in birds from this remote environment were below current animal consumption guidelines, continued monitoring of this ecosystem is recommended to assess the human health risk of consumption of wild game.
Collapse
Affiliation(s)
- Drew Szabo
- Australian Laboratory for Emerging Contaminants, School of Chemistry, University of Melbourne, Victoria 3010, Australia
| | - Madison R Nuske
- School of Chemistry, University of Melbourne, Victoria 3010, Australia
| | - Jennifer L Lavers
- Institute for Marine and Antarctic Studies, University of Tasmania, 7004, Australia
| | - Jeff Shimeta
- School of Science, RMIT University, Victoria 3000, Australia
| | - Mark P Green
- School of BioSciences, University of Melbourne, Victoria 3010, Australia
| | - Raoul A Mulder
- School of BioSciences, University of Melbourne, Victoria 3010, Australia
| | - Bradley O Clarke
- Australian Laboratory for Emerging Contaminants, School of Chemistry, University of Melbourne, Victoria 3010, Australia.
| |
Collapse
|
18
|
PFAS Molecules: A Major Concern for the Human Health and the Environment. TOXICS 2022; 10:toxics10020044. [PMID: 35202231 PMCID: PMC8878656 DOI: 10.3390/toxics10020044] [Citation(s) in RCA: 114] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 01/09/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a group of over 4700 heterogeneous compounds with amphipathic properties and exceptional stability to chemical and thermal degradation. The unique properties of PFAS compounds has been exploited for almost 60 years and has largely contributed to their wide applicability over a vast range of industrial, professional and non-professional uses. However, increasing evidence indicate that these compounds represent also a serious concern for both wildlife and human health as a result of their ubiquitous distribution, their extreme persistence and their bioaccumulative potential. In light of the adverse effects that have been already documented in biota and human populations or that might occur in absence of prompt interventions, the competent authorities in matter of health and environment protection, the industries as well as scientists are cooperating to identify the most appropriate regulatory measures, substitution plans and remediation technologies to mitigate PFAS impacts. In this review, starting from PFAS chemistry, uses and environmental fate, we summarize the current knowledge on PFAS occurrence in different environmental media and their effects on living organisms, with a particular emphasis on humans. Also, we describe present and provisional legislative measures in the European Union framework strategy to regulate PFAS manufacture, import and use as well as some of the most promising treatment technologies designed to remediate PFAS contamination in different environmental compartments.
Collapse
|
19
|
Taylor S, Terkildsen M, Stevenson G, de Araujo J, Yu C, Yates A, McIntosh RR, Gray R. Per and polyfluoroalkyl substances (PFAS) at high concentrations in neonatal Australian pinnipeds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 786:147446. [PMID: 33971603 DOI: 10.1016/j.scitotenv.2021.147446] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
Per and polyfluorinated substances (PFAS) exposure was investigated in Australian pinnipeds. Concentrations of 16 PFAS were measured in the livers of Australian sea lion (Neophoca cinerea), Australian fur seal (Arctocephalus pusillus doriferus) and a long-nosed Fur Seal (Arctocephalus forsteri) pup sampled between 2017 and 2020 from colonies in South Australia and Victoria. Findings reported in this study are the first documented PFAS concentrations in Australian pinnipeds. Median and observed range of values in ng/g wet weight were highest for perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA) and perfluorononanoic acid (PFNA) in the liver of N. cinerea (PFOS = 7.14, 1.00-16.9; PFOA = 2.73, 0.32-11.2; PFNA = 2.96, 0.61-8.22; n = 28), A. forsteri (PFOS = 15.98, PFOA = 2.02, PFNA = 7.86; n = 1) and A. p. doriferus (PFOS = 27.4, 10.5-2119; PFOA = 0.98, 0.32-52.2; PFNA = 2.50, 0.91-44.2; n = 20). PFAS concentrations in A. p. doriferus pups were significantly greater (p < 0.05) than in N. cinerea pups for all PFAS except PFOA and were of similar magnitude to those reported in northern hemisphere marine animals. These results demonstrate exposure differences in both magnitude and PFAS profiles for N. cinerea in South Australia and A. p. doriferus in Victoria. This study reports detectable PFAS concentrations in Australian pinniped pups indicating the importance of maternal transfer of these toxicants. As N. cinerea are endangered and recent declines in pup production has been reported for A. p. doriferus at the colony sampled, investigation of potential health impacts of these toxicants on Australian pinnipeds is recommended.
Collapse
Affiliation(s)
- Shannon Taylor
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camperdown, NSW 2006, Australia.
| | | | - Gavin Stevenson
- Australian Ultra-Trace Laboratory, National Measurement Institute, North Ryde, NSW 2113, Australia.
| | - Jesuina de Araujo
- Australian Ultra-Trace Laboratory, National Measurement Institute, North Ryde, NSW 2113, Australia
| | - Chunhai Yu
- Australian Ultra-Trace Laboratory, National Measurement Institute, North Ryde, NSW 2113, Australia
| | - Alan Yates
- Australian Ultra-Trace Laboratory, National Measurement Institute, North Ryde, NSW 2113, Australia.
| | - Rebecca R McIntosh
- Conservation Department, Phillip Island Nature Parks, PO Box 97, Cowes, Victoria 3922, Australia.
| | - Rachael Gray
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camperdown, NSW 2006, Australia.
| |
Collapse
|
20
|
Marchiandi J, Szabo D, Dagnino S, Green MP, Clarke BO. Occurrence and fate of legacy and novel per- and polyfluoroalkyl substances (PFASs) in freshwater after an industrial fire of unknown chemical stockpiles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 278:116839. [PMID: 33740602 DOI: 10.1016/j.envpol.2021.116839] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
An industrial warehouse illegally storing a large quantity of unknown chemical and industrial waste ignited in an urban area in Melbourne, Australia. The multiday fire required firefighters to use large amounts of fluorine-free foam that carried contaminated firewater runoff into an adjacent freshwater creek. In this study, the occurrence and fate of 42 per- and polyfluoroalkyl substances (PFASs) was determined from triplicate surface water samples (n = 45) from five locations (upstream, point-source, downstream; 8 km) over three sampling campaigns from 2018 to 2020. Out of the 42 target PFASs, perfluorocarboxylates (PFCAs: C4-C14), perfluoroalkane sulfonates (PFSAs: C4-C10), and perfluoroalkyl acid precursors (e.g. 6:2 fluorotelomer sulfonate (6:2 FTSA)) were ubiquitously detected in surface waters (concentration ranges: <0.7-3000 ng/L). A significant difference in ΣPFAS concentration was observed at the point-source (mean 5500 ng/L; 95% CI: 4800, 6300) relative to upstream sites (mean 100 ng/L; 95% CI: 90, 110; p ≤ 0.001). The point-source ΣPFAS concentration decreased from 5500 ± 1200 ng/L to 960 ± 42 ng/L (-83%) after two months and to 430 ± 15 ng/L (-98%) two years later. 6:2 FTSA and perfluorooctanesulfonate (PFOS) dominated in surface water, representing on average 31% and 20% of the ΣPFAS, respectively. Emerging PFASs including a cyclic perfluoroalkanesulfonate (PFECHS) and a C4 perfluoroalkane sulfonamide (FBSA) were repeatedly present in surface water (concentration ranges <0.3-77 ng/L). According to the updated Australian PFAS guidelines for ecological conservation, the water samples collected at the time of monitoring may have posed a short-term risk to aquatic organisms in regard to PFOS levels. These results illustrate that acute high dose exposure to PFASs can result from industrial fires at sites storing or stockpiling PFAS-based waste products. Continued monitoring will be crucial to evaluate potential long-term risk to wildlife in the region.
Collapse
Affiliation(s)
- Jaye Marchiandi
- School of Chemistry, Australian Laboratory for Emerging Contaminants, University of Melbourne, Victoria, 3010, Australia
| | - Drew Szabo
- School of Chemistry, Australian Laboratory for Emerging Contaminants, University of Melbourne, Victoria, 3010, Australia
| | - Sonia Dagnino
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, UK
| | - Mark P Green
- School of BioSciences, University of Melbourne, Victoria, 3010, Australia
| | - Bradley O Clarke
- School of Chemistry, Australian Laboratory for Emerging Contaminants, University of Melbourne, Victoria, 3010, Australia.
| |
Collapse
|
21
|
Sharp S, Sardiña P, Metzeling L, McKenzie R, Leahy P, Menkhorst P, Hinwood A. Per- and Polyfluoroalkyl Substances in Ducks and the Relationship with Concentrations in Water, Sediment, and Soil. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:846-858. [PMID: 32672850 DOI: 10.1002/etc.4818] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/05/2020] [Accepted: 07/09/2020] [Indexed: 06/11/2023]
Abstract
The present study examined the occurrence and concentration of per- and polyfluoroalkyl substances (PFAS) measured in game ducks (13 compounds), water, sediment, and soils (33 compounds) in waterways in Victoria, Australia. The study aimed to identify potential ecological and human health risks from measured PFAS concentrations. Four species of duck and samples of water, sediment, and soil were collected from 19 wetlands, which were chosen based on their popularity as hunting locations. The risks posed by 3 PFAS (perfluorooctanoic acid, perfluorohexane sulfonic acid [PFHxS], and perfluorooctane sulfonic acid [PFOS]) to the environment and human health were assessed using available national ecological and human health guidelines. A diverse range of short- and long-chain carboxylic and sulfonic acids were found in the environment and in ducks. Concentrations were generally low and varied between wetlands, duck species, tissue analyzed (breast or liver), and environmental compartment (water, sediment, soil). Higher PFOS concentrations in water and sediments were observed at wetlands near sources of contamination (i.e., a defense base or urban environment). Elevated PFOS and PFOS + PFHxS concentrations in ducks were observed near local point sources but also at wetlands with no known point sources of contamination. There were clear differences in PFAS concentrations detected in duck tissues versus the environment, highlighting complexities of bioaccumulation, movement of animals, and spatiotemporal variation and raising questions about the relevance of using abiotic criteria to assess risk to biota. Human health risk assessment showed that only ducks inhabiting wetlands near local sources of PFAS were likely to pose a risk to consumers. Further studies are required to improve our knowledge of PFAS toxicokinetics and chronic impacts in biota to guide management decisions. Environ Toxicol Chem 2021;40:846-858. © 2020 SETAC.
Collapse
Affiliation(s)
- Simon Sharp
- Environment Protection Authority Victoria, Applied Sciences Division, Macleod, Victoria, Australia
| | - Paula Sardiña
- Environment Protection Authority Victoria, Applied Sciences Division, Macleod, Victoria, Australia
| | - Leon Metzeling
- Environment Protection Authority Victoria, Applied Sciences Division, Macleod, Victoria, Australia
| | - Rob McKenzie
- Environment Protection Authority Victoria, Applied Sciences Division, Macleod, Victoria, Australia
| | - Paul Leahy
- Environment Protection Authority Victoria, Applied Sciences Division, Macleod, Victoria, Australia
| | - Peter Menkhorst
- Department of Environment Land Water and Planning, Arthur Rylah Institute for Environmental Research, Heidelberg, Victoria, Australia
| | - Andrea Hinwood
- Environment Protection Authority Victoria, Applied Sciences Division, Macleod, Victoria, Australia
| |
Collapse
|