1
|
Xie X, Lin M, Xiao G, Liu H, Wang F, Liu D, Ma L, Wang Q, Li Z. Phenolic amides (avenanthramides) in oats - an update review. Bioengineered 2024; 15:2305029. [PMID: 38258524 PMCID: PMC10807472 DOI: 10.1080/21655979.2024.2305029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 01/07/2024] [Indexed: 01/24/2024] Open
Abstract
Oats (Avena sativa L.) are one of the worldwide cereal crops. Avenanthramides (AVNs), the unique plant alkaloids of secondary metabolites found in oats, are nutritionally important for humans and animals. Numerous bioactivities of AVNs have been investigated and demonstrated in vivo and in vitro. Despite all these, researchers from all over the world are taking efforts to learn more knowledge about AVNs. In this work, we highlighted the recent updated findings that have increased our understanding of AVNs bioactivity, distribution, and especially the AVNs biosynthesis. Since the limits content of AVNs in oats strictly hinders the demand, understanding the mechanisms underlying AVN biosynthesis is important not only for developing a renewable, sustainable, and environmentally friendly source in both plants and microorganisms but also for designing effective strategies for enhancing their production via induction and metabolic engineering. Future directions for improving AVN production in native producers and heterologous systems for food and feed use are also discussed. This summary will provide a broad view of these specific natural products from oats.
Collapse
Affiliation(s)
- Xi Xie
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Miaoyan Lin
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Gengsheng Xiao
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Huifan Liu
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Feng Wang
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Dongjie Liu
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Lukai Ma
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Qin Wang
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Zhiyong Li
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|
2
|
Kantasrila R, Pandith H, Balslev H, Wangpakapattanawong P, Panyadee P, Inta A. Ethnobotany and phytochemistry of plants used to treat musculoskeletal disorders among Skaw Karen, Thailand. PHARMACEUTICAL BIOLOGY 2024; 62:62-104. [PMID: 38131672 PMCID: PMC10763916 DOI: 10.1080/13880209.2023.2292261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 12/03/2023] [Indexed: 12/23/2023]
Abstract
CONTEXT Musculoskeletal system disorders (MSD) are prevalent around the world affecting the health of people, especially farmers who work hard in the field. Karen farmers use many medicinal plants to treat MSD. OBJECTIVE This study collects traditional plant-based remedies used by the Skaw Karen to treat MSD and evaluates their active phytochemical compounds. MATERIALS AND METHODS The ethnobotanical study was conducted in six Karen villages in Chiang Mai province using semi-structured interviews were of 120 informants. The data were analyzed using ethnobotanical indices including use values (UV), choice value (CV), and informant consensus factor (ICF). Consequently, the 20 most important species, according to the indices, were selected for phytochemical analysis using LC-MS/MS. RESULTS A total of 3731 use reports were obtained for 139 species used in MSD treatment. The most common ailments treated with those plants were muscular pain. A total of 172 high-potential active compounds for MSD treatment were identified. Most of them were flavonoids, terpenoids, alkaloids, and steroids. The prevalent phytochemical compounds related to treat MSD were 9-hydroxycalabaxanthone, dihydrovaltrate, morroniside, isoacteoside, lithocholic acid, pomiferin, cucurbitacin E, leonuriside A, liriodendrin, and physalin E. Sambucus javanica Reinw. ex Blume (Adoxaceae), Betula alnoides Buch.-Ham. ex D.Don (Betulaceae), Blumea balsamifera (L.) DC. (Asteraceae), Plantago major L. (Plantaginaceae) and Flacourtia jangomas (Lour.) Raeusch. (Salicaceae) all had high ethnobotanical index values and many active compounds. DISCUSSION AND CONCLUSIONS This study provides valuable information, demonstrating low-cost medicine plants that are locally available. It is a choice of treatment for people living in remote areas.
Collapse
Affiliation(s)
- Rapeeporn Kantasrila
- Department of Biology, Faculty of Science, Chiang Mai University, Thailand
- The Botanical Garden Organization, Queen Sirikit Botanic Garden, Chiang Mai, Thailand
| | | | - Henrik Balslev
- Department of Biology, Aarhus University, Aarhus C, Denmark
| | | | - Prateep Panyadee
- The Botanical Garden Organization, Queen Sirikit Botanic Garden, Chiang Mai, Thailand
| | - Angkhana Inta
- Department of Biology, Faculty of Science, Chiang Mai University, Thailand
| |
Collapse
|
3
|
Oracz J, Lewandowska U, Owczarek K, Caban M, Rosicka-Kaczmarek J, Żyżelewicz D. Isolation, structural characterization and biological activity evaluation of melanoidins from thermally processed cocoa beans, carob kibbles and acorns as potential cytotoxic agents. Food Chem 2024; 442:138423. [PMID: 38241994 DOI: 10.1016/j.foodchem.2024.138423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/12/2023] [Accepted: 01/10/2024] [Indexed: 01/21/2024]
Abstract
The aim of this study was to determine the chemical structure and biological activity of melanoidin fractions derived from cocoa beans, carob kibbles, and acorns roasted at different temperature-time conditions. The results showed that plant origin and roasting conditions had significant effects on the chemical composition, structural features, and morphology of melanoidins. All tested melanoidins exhibited significant antioxidant properties in three in vitro assays. In addition, they show significant in vitro anti-inflammatory activity by reducing lipoxygenase. The results from MTT assay showed that the all studied melanoidins had a cytotoxic effect against SW-480 cells in a dose- and time-dependent manner. Furthermore, the most pronounced activity was observed for acorn melanoidins. This is a unique finding, as the specific cytotoxic effect has not been reported for cocoa, carob and acorn melanoidins, and opens up a great opportunity to develop a potential novel cytotoxic agent against deadly colon cancer in the future.
Collapse
Affiliation(s)
- Joanna Oracz
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 2/22 Stefanowskiego Street, 90-537 Lodz, Poland.
| | - Urszula Lewandowska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, 5 Mazowiecka Street, 92-215 Lodz, Poland
| | - Katarzyna Owczarek
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, 5 Mazowiecka Street, 92-215 Lodz, Poland
| | - Miłosz Caban
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, 5 Mazowiecka Street, 92-215 Lodz, Poland
| | - Justyna Rosicka-Kaczmarek
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 2/22 Stefanowskiego Street, 90-537 Lodz, Poland
| | - Dorota Żyżelewicz
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 2/22 Stefanowskiego Street, 90-537 Lodz, Poland
| |
Collapse
|
4
|
Xu Z, Du H, Manyande A, Xiong S. A comprehensive investigation on the interaction between jaceosidin, baicalein and lipoxygenase: Multi-spectroscopic analysis and computational study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123423. [PMID: 37742591 DOI: 10.1016/j.saa.2023.123423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 08/11/2023] [Accepted: 09/16/2023] [Indexed: 09/26/2023]
Abstract
Lipoxygenase (LOX) has the harmful effect of accelerating lipid oxidation, and polyphenols have the inhibitory effect on lipoxygenase. However, there were rare researches investigated on the interactions between polyphenols and LOX. In this study, the binding mechanisms between polyphenols (Jaceosidin-JSD and baicalein-BCL) and LOX were investigated by multi-spectroscopic analysis and computational study. Both JSD and BCL binding to LOX resulted in static fluorescence quenching, and the complexes of JSD-LOX and BCL-LOX were built at a molar ratio of 1:1, respectively. The binding constants of LOX-JSD (72.18 × 105 L/mol at 298 K) and LOX-BCL (12.43 × 105 L/mol at 298 K) indicated that LOX had stronger binding affinity to JSD compared to BCL. Compared with BCL-LOX, the JSD-LOX system formed more hydrogen bonds which ensured a stronger bond between JSD and LOX. The studies in molecular dynamics also demonstrated that the JSD-LOX complex is more stable, and the addition of JSD is more conducive to the complex formation. The current study provides some new insights for the study on the inhibition of lipid oxidation and affords a new strategy for the discovery of novel food preservatives.
Collapse
Affiliation(s)
- Zeru Xu
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Hongying Du
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China; Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, PR China.
| | - Anne Manyande
- School of Human and Social Sciences, University of West London, Middlesex TW8 9GA, UK
| | - Shanbai Xiong
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China
| |
Collapse
|
5
|
Saleem H, Yaqub A, Rafique R, Ali Chohan T, Malik DES, Tousif MI, Khurshid U, Ahemad N, Ramasubburayan R, Rengasamy KR. Nutritional and medicinal plants as potential sources of enzyme inhibitors toward the bioactive functional foods: an updated review. Crit Rev Food Sci Nutr 2023; 64:9805-9828. [PMID: 37255100 DOI: 10.1080/10408398.2023.2217264] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Enzymes are biologically active complex protein molecules that catalyze most chemical reactions in living organisms, and their inhibitors accelerate biological processes. This review emphasizes medicinal food plants and their isolated chemicals inhibiting clinically important enzymes in common diseases. A mechanistic overview was investigated to explain the mechanism of these food bases enzyme inhibitors. The enzyme inhibition potential of medicinal food plants and their isolated substances was searched in Ovid, PubMed, Science Direct, Scopus, and Google Scholar. Cholinesterase, amylase, glucosidase, xanthine oxidase, tyrosinase, urease, lipoxygenase, and others were inhibited by crude extracts, solvent fractions, or isolated pure chemicals from medicinal food plants. Several natural compounds have shown tyrosinase inhibition potential, including quercetin, glabridin, phloretin-4-O-β-D-glucopyranoside, lupinalbin, and others. Some of these compounds' inhibitory kinetics and molecular mechanisms are also discussed. Phenolics and flavonoids inhibit enzyme activity best among the secondary metabolites investigated. Several studies showed flavonoids' significant antioxidant and anti-inflammatory activities, highlighting their medicinal potential. Overall, many medicinal food plants, their crude extracts/fractions, and isolated compounds have been studied, and some promising compounds depending on the enzyme have been found. Still, more studies are recommended to derive potential pharmacologically active functional foods.
Collapse
Affiliation(s)
- Hammad Saleem
- Institute of Pharmaceutical Sciences (IPS), University of Veterinary & Animal Sciences (UVAS), Lahore, Pakistan
| | - Anam Yaqub
- Fatima Memorial Medical and Dental College, Lahore, Pakistan
| | | | - Tahir Ali Chohan
- Institute of Pharmaceutical Sciences (IPS), University of Veterinary & Animal Sciences (UVAS), Lahore, Pakistan
| | - Durr-E-Shahwar Malik
- Institute of Pharmaceutical Sciences, Peoples University of Medical and Health Sciences, NawabShah, Pakistan
| | - Muhammad Imran Tousif
- Department of Chemistry, Division of Science and Technology, University of Education Lahore, Pakistan
| | - Umair Khurshid
- Department of Pharmaceutical Chemistry, The Islamia University of Bahawalpur, Pakistan
| | - Nafees Ahemad
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Ramasamy Ramasubburayan
- Marine Biomedical Research Lab & Environmental Toxicology Unit, Department of Prosthodotics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Kannan Rr Rengasamy
- Laboratory of Natural Products and Medicinal Chemistry (LNPMC), Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| |
Collapse
|
6
|
Yu Y, Zhou L, Li X, Liu J, Li H, Gong L, Zhang J, Wang J, Sun B. The Progress of Nomenclature, Structure, Metabolism, and Bioactivities of Oat Novel Phytochemical: Avenanthramides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:446-457. [PMID: 34994561 DOI: 10.1021/acs.jafc.1c05704] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Oats are among the most commonly consumed whole grains and are widely grown worldwide, and they contain numerous nutrients, including proteins, lipids, vitamins, minerals, β-glucan, and unique phytochemical polyphenol avenanthramides (Avns). Recent studies have indicated that Avns play essential roles in mediating the health benefits of oats. This review systemically summarized the nomenclature and structures of Avns, effect of germination on promoting Avns production, and in vivo metabolites produced after Avns consumption. The classical functions and novel potential bioactivities of Avns were further elucidated. The classical functions of Avns in cancer prevention, antioxidative response, anti-inflammatory reaction, and maintaining muscle health were expounded, and the internal mechanisms of these functions were analyzed. The potential novel bioactivities of Avns in modulating gut microbiota, alleviating obesity, and preventing chronic diseases, such as atherosclerosis and osteoporosis, were further revealed. This review may provide new prospects and directions for the development and utilization of oat Avns.
Collapse
Affiliation(s)
- Yonghui Yu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Linyue Zhou
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Xinping Li
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Jie Liu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Hongyan Li
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Lingxiao Gong
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Jingjie Zhang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Baoguo Sun
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
7
|
Koriem KMM, Gad IB. Sinapic acid restores blood parameters, serum antioxidants, and liver and kidney functions in obesity. J Diabetes Metab Disord 2022; 21:293-303. [PMID: 35673480 PMCID: PMC9167363 DOI: 10.1007/s40200-022-00972-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/03/2022] [Indexed: 01/09/2023]
Abstract
Obesity is an additional body fat that causes a harmful effect on human health while sinapic acid (SA) is a phyto-constituent presents in spices, citrus, berry fruits, and vegetables. This study evaluates SA to amend blood parameters, serum glucose, proteins, lipids, and antioxidants, and liver and kidney functions in obese rats. Thirty male albino rats were divided into 2 groups (normal and obese rats). The normal, non-obese rats subdivided into 2 subgroups; Control and SA (40 mg/kg) subgroup: daily oral intake of 1 ml saline and 40 mg/kg SA, respectively once a day. The obese rats subdivided also into 3 subgroups; Obese, Obese + SA (20 mg/kg), and Obese + SA (40 mg/kg)-treated groups which received no treatment, 20 mg/kg SA, and 40 mg/kg SA, respectively once a day. All treatments were orally administrated for 1 month. The results showed that obesity caused an increase in body and organ weight, serum total cholesterol, triglycerides, low density lipoproteins, malondialdehyde, nitric oxide, glucose, bilirubin and blood urea nitrogen while decrease serum superoxide dismutase, glutathione peroxidase, glutathione, glutathione reductase, glutathione-S-transferase, hemoglobin, hematocrite, red blood cells, white blood cells, aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, urea, creatinine, and uric acid compared to control group. Obesity caused disappearance of prothrombin and fibrinogen proteins and damages to liver and kidney tissues. The oral administration with SA daily for 1 month in obese rats returned all these parameters to the control values where the higher dose of SA was more effective than the lower dose. In conclusion, SA restores body and organ weight, blood parameters, serum glucose, proteins, lipids, antioxidants, and liver and kidney functions in obesity.
Collapse
Affiliation(s)
- Khaled M. M. Koriem
- Department of Medical Physiology, Medical Research and Clinical Studies Institute, National Research Centre, 33 El-Buhouth Street, P. O. Box 12622, Dokki, Cairo Egypt
| | - Islam B. Gad
- Department of Pathology, Faculty of Medicine, Ain Shams University, Abbassia, Cairo, Egypt
| |
Collapse
|
8
|
Kakularam KR, Karst F, Polamarasetty A, Ivanov I, Heydeck D, Kuhn H. Paralog- and ortholog-specificity of inhibitors of human and mouse lipoxygenase-isoforms. Biomed Pharmacother 2021; 145:112434. [PMID: 34801853 DOI: 10.1016/j.biopha.2021.112434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 01/15/2023] Open
Abstract
Lipoxygenases (ALOX-isoforms) are lipid peroxidizing enzymes, which have been implicated in cell differentiation and maturation but also in the biosynthesis of lipid mediators playing important roles in the pathogenesis of inflammatory, hyperproliferative and neurological diseases. In mammals these enzymes are widely distributed and the human genome involves six functional genes encoding for six distinct human ALOX paralogs. In mice, there is an orthologous enzyme for each human ALOX paralog but the catalytic properties of human and mouse ALOX orthologs show remarkable differences. ALOX inhibitors are frequently employed for deciphering the biological role of these enzymes in mouse models of human diseases but owing to the functional differences between mouse and human ALOX orthologs the uncritical use of such inhibitors is sometimes misleading. In this study we evaluated the paralog- and ortholog-specificity of 13 frequently employed ALOX-inhibitors against four recombinant human and mouse ALOX paralogs (ALOX15, ALOX15B, ALOX12, ALOX5) under different experimental conditions. Our results indicated that except for zileuton, which exhibits a remarkable paralog-specificity for mouse and human ALOX5, no other inhibitor was strictly paralog specific but some compounds exhibit an interesting ortholog-specificity. Because of the variable isoform specificities of the currently available ALOX inhibitors care must be taken when the biological effects of these compounds observed in complex in vitro and in vivo systems are interpreted.
Collapse
Affiliation(s)
- Kumar Reddy Kakularam
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Biochemistry, Chariteplatz 1, D-10117 Berlin, Germany
| | - Felix Karst
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Biochemistry, Chariteplatz 1, D-10117 Berlin, Germany
| | - Aparoy Polamarasetty
- Indian Institute of Petroleum and Energy, Visakhapatnam 530003, Andhra Pradesh, India
| | - Igor Ivanov
- Lomonosov Institute of Fine Chemical Technologies, MIREA - Russian Technological University, Vernadskogo Pr. 86, 119571 Moscow, Russia
| | - Dagmar Heydeck
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Biochemistry, Chariteplatz 1, D-10117 Berlin, Germany
| | - Hartmut Kuhn
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Biochemistry, Chariteplatz 1, D-10117 Berlin, Germany.
| |
Collapse
|
9
|
Antioxidant Serine-(NSAID) Hybrids with Anti-Inflammatory and Hypolipidemic Potency. Molecules 2021; 26:molecules26134060. [PMID: 34279399 PMCID: PMC8272148 DOI: 10.3390/molecules26134060] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/18/2021] [Accepted: 06/28/2021] [Indexed: 01/04/2023] Open
Abstract
A series of L-serine amides of antioxidant acids, such as Trolox, (E)-3-(3,5-di-tert-butyl-4-hydroxyphenyl)acrylic acid (phenolic derivative of cinnamic acid) and 3,5-di-tert-butyl-4-hydroxybenzoic acid (structurally similar to butylated hydroxytoluene), was synthesized. The hydroxy group of serine was esterified with two classical NSAIDs, ibuprofen and ketoprofen. The Trolox derivatives with ibuprofen (7) and ketoprofen (10) were the most potent inhibitors of lipid peroxidation (IC50 3.4 μΜ and 2.8 μΜ), several times more potent than the reference Trolox (IC50 25 μΜ). Most of the compounds decreased carrageenan-induced rat paw edema (37–67% at 150 μmol/kg). They were moderate inhibitors of soybean lipoxygenase, with the exception of ibuprofen derivative 8 (IC50 13 μΜ). The most active anti-inflammatory compounds exhibited a significant decrease in lipidemic indices in the plasma of Triton-induced hyperlipidemic rats, e.g., the most active compound 9 decreased triglycerides, total cholesterol and low-density lipoprotein cholesterol by 52%, 61% and 70%, respectively, at 150 μmol/kg (i.p.), similar to that of simvastatin, a well-known hypocholesterolemic drug. Since the designed compounds seem to exhibit multiple pharmacological actions, they may be of use for the development of agents against inflammatory and degenerative conditions.
Collapse
|
10
|
Habza-Kowalska E, Kaczor AA, Bartuzi D, Piłat J, Gawlik-Dziki U. Some Dietary Phenolic Compounds Can Activate Thyroid Peroxidase and Inhibit Lipoxygenase-Preliminary Study in the Model Systems. Int J Mol Sci 2021; 22:ijms22105108. [PMID: 34065957 PMCID: PMC8151655 DOI: 10.3390/ijms22105108] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/03/2021] [Accepted: 05/08/2021] [Indexed: 01/05/2023] Open
Abstract
The presented research concerns the triple activity of trans-cinnamic (tCA), ferulic (FA) and syringic acids (SA). They act as thyroid peroxidase (TPO) activators, lipoxygenase (LOX) inhibitors and show antiradical activity. All compounds showed a dose-dependent TPO activatory effect, thus the AC50 value (the concentration resulting in 50% activation) was determined. The tested compounds can be ranked as follows: tCA > FA > SA with AC50 = 0.10, 0.39, 0.69 mM, respectively. Strong synergism was found between FA and SA. The activatory effects of all tested compounds may result from interaction with the TPO allosteric site. It was proposed that conformational change resulting from activator binding to TPO allosteric pocket results from the flexibility of a nearby loop formed by residues Val352-Tyr363. All compounds act as uncompetitive LOX inhibitors. The most effective were tCA and SA, whereas the weakest was FA (IC50 = 0.009 mM and IC50 0.027 mM, respectively). In all cases, an interaction between the inhibitors carboxylic groups and side-chain atoms of Arg102 and Arg139 in an allosteric pocket of LOX was suggested. FA/tCA and FA/SA acted synergistically, whereas tCA/SA demonstrated antagonism. The highest antiradical activity was found in the case of SA (IC50 = 0.22 mM). FA/tCA and tCA/SA acted synergistically, whereas antagonism was found for the SA/FA mixture.
Collapse
Affiliation(s)
- Ewa Habza-Kowalska
- Department of Biochemistry and Food Chemistry, University of Life Sciences, Skromna Str. 8, 20-704 Lublin, Poland;
| | - Agnieszka A. Kaczor
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki St., 20-093 Lublin, Poland; (A.A.K.); (D.B.)
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Damian Bartuzi
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki St., 20-093 Lublin, Poland; (A.A.K.); (D.B.)
| | - Jacek Piłat
- Department of General Surgery, Transplantology and Clinical Nutrition, Medical University of Lublin, Jaczewskiego Str. 8, 20-090 Lublin, Poland;
| | - Urszula Gawlik-Dziki
- Department of Biochemistry and Food Chemistry, University of Life Sciences, Skromna Str. 8, 20-704 Lublin, Poland;
- Correspondence:
| |
Collapse
|
11
|
Bergh C, Landberg R, Andersson K, Heyman-Lindén L, Rascón A, Magnuson A, Khalili P, Kåregren A, Nilsson J, Pirazzi C, Erlinge D, Fröbert O. Effects of Bilberry and Oat intake on lipids, inflammation and exercise capacity after Acute Myocardial Infarction (BIOAMI): study protocol for a randomized, double-blind, placebo-controlled trial. Trials 2021; 22:338. [PMID: 33971938 PMCID: PMC8112057 DOI: 10.1186/s13063-021-05287-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 04/22/2021] [Indexed: 12/21/2022] Open
Abstract
Background Bilberries from Sweden, rich in polyphenols, have shown cholesterol-lowering effects in small studies, and the cholesterol-lowering properties of oats, with abundant beta-glucans and potentially bioactive phytochemicals, are well established. Both may provide cardiometabolic benefits following acute myocardial infarction (AMI), but large studies of adequate statistical power and appropriate duration are needed to confirm clinically relevant treatment effects. No previous study has evaluated the potential additive or synergistic effects of bilberry combined with oats on cardiometabolic risk factors. Our primary objective is to assess cardioprotective effects of diet supplementation with dried bilberry or with bioprocessed oat bran, with a secondary explorative objective of assessing their combination, compared with a neutral isocaloric reference supplement, initiated within 5 days following percutaneous coronary intervention (PCI) for AMI. Methods The effects of Bilberry and Oat intake on lipids, inflammation and exercise capacity after Acute Myocardial Infarction (BIOAMI) trial is a double-blind, randomized, placebo-controlled clinical trial. A total of 900 patients will be randomized post-PCI to one of four dietary intervention arms. After randomization, subjects will receive beverages with bilberry powder (active), beverages with high-fiber bioprocessed oat bran (active), beverages with bilberry and oats combined (active), or reference beverages containing no active bilberry or active oats, for consumption twice daily during a 3-month intervention. The primary endpoint is the difference in LDL cholesterol change between the intervention groups after 3 months. The major secondary endpoint is exercise capacity at 3 months. Other secondary endpoints include plasma concentrations of biochemical markers of inflammation, metabolomics, and gut microbiota composition after 3 months. Discussion Controlling hyperlipidemia and inflammation is critical to preventing new cardiovascular events, but novel pharmacological treatments for these conditions are expensive and associated with negative side effects. If bilberry and/or oat, in addition to standard medical therapy, can lower LDL cholesterol and inflammation more than standard therapy alone, this could be a cost-effective and safe dietary strategy for secondary prevention after AMI. Trial registration ClinicalTrials.gov NCT03620266. Registered on August 8, 2018. Supplementary Information The online version contains supplementary material available at 10.1186/s13063-021-05287-5.
Collapse
Affiliation(s)
- Cecilia Bergh
- Clinical Epidemiology and Biostatistics, School of Medical Sciences, Örebro University, 701 85, Örebro, Sweden.
| | - Rikard Landberg
- Department of Biology and Biological Engineering, Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden.,Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Kristina Andersson
- Department of Experimental Medical Science, Lund University, Lund, Sweden.,Glucanova AB, Lund, Sweden
| | - Lovisa Heyman-Lindén
- Molecular Nutrition, Department of Experimental Medical Science, Lund University, Lund, Sweden.,Berry Lab AB, Lund, Sweden
| | - Ana Rascón
- Glucanova AB, Lund, Sweden.,Department of Food Technology, Engineering and Nutrition, Lund University, Lund, Sweden
| | - Anders Magnuson
- Clinical Epidemiology and Biostatistics, School of Medical Sciences, Örebro University, 701 85, Örebro, Sweden
| | - Payam Khalili
- Department of Cardiology and Acute Internal Medicine, Central Hospital, Karlstad, Sweden
| | - Amra Kåregren
- Department of Medicine, Hospital Region Västmanland, Västerås, Sweden
| | - Johan Nilsson
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Carlo Pirazzi
- Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - David Erlinge
- Department of Cardiology, Clinical Sciences, Lund University, Lund, Sweden
| | - Ole Fröbert
- Department of Cardiology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
12
|
Danchenko OO, Nicolaeva YV, Koshelev OI, Danchenko MM, Yakoviichuk OV, Halko TI. Effect of extract from common oat on the antioxidant activity and fatty acid composition of the muscular tissues of geese. REGULATORY MECHANISMS IN BIOSYSTEMS 2021. [DOI: 10.15421/022141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Among natural antioxidants, increasing attention is being drawn to avenanthramides - phenolic compounds of the common oat Avena sativa (Linnaeus, 1753). Research has shown that avenanthramides have much higher antioxidant activity than well-known bioflavanoids. Currently, a great deal of work is being conducted on the structure of these compounds and mechanisms of their effect on the organism of humans and animals. We explored the specifics of the influence of aqueous extract from A. satíva on the antioxidant activity and fatty acid composition of lipids of histologically similar tissues of geese with different levels of aerobicity (muscles of the stomach and cardiac muscle), dynamics of the birds’ live weight and pterylographic parameters under physiological loading by the development of contour and juvenile feathers. The addition of extract of oat to the diet of geese during growth of feathers was observed to increase the antioxidant activity of their tissues. Physiological loading related to the development of contour feathers in the examined tissues of geese significantly weakens as a result of selective inhibition of synthesis of unsaturated fatty acids, especially oleic acid, the content of which in 28-day old geese of the experimental group decreased by 31.7 in the cardiac muscle and 46.8 times in the stomach, compared with the control. Further changes in fatty acid composition were characterized by lower number of differences between the control and experimental groups. Increase in antioxidant activity in these tissues during development of juvenile feathers (day 49) occurs as a result of activation of alternative mechanisms of antioxidative protection, which take place with no significant changes in fatty acid composition. Furthermore, we determined that in the stomach and cardiac muscles of geese, the action of extract from common oat activated mechanisms of antioxidative protection, which increased the level of correlation between the changes in fatty acid composition. The study confirmed that the extract caused not only significant increase in the weight of geese at the end of the experiment, but also improved their pterylographic parameters. Therefore, it is practical to conduct similar studies on wild species of birds grown for hunting, because this process of development of feathers, particularly for such species of birds, is essential.
Collapse
|
13
|
The Effects of Bioactive Compounds from Blueberry and Blackcurrant Powder on Oat Bran Pastes: Enhancing In Vitro Antioxidant Activity and Reducing Reactive Oxygen Species in Lipopolysaccharide-Stimulated Raw264.7 Macrophages. Antioxidants (Basel) 2021; 10:antiox10030388. [PMID: 33807689 PMCID: PMC7998505 DOI: 10.3390/antiox10030388] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 12/17/2022] Open
Abstract
In this study, blueberry and blackcurrant powder were chosen as the phenolic-rich enrichments for oat bran. A Rapid Visco Analyser was used to form blueberry and blackcurrant enriched oat pastes. An in vitro digestion process evaluated the changes of phenolic compounds and the in vitro antioxidant potential of extracts of pastes. The anthocyanidin profiles in the extracts were characterised by the pH differential method. The results showed that blueberry and blackcurrant powder significantly increased the content of phenolic compounds and the in vitro antioxidant capacity of pastes, while the total flavonoid content decreased after digestion compared to the undigested samples. Strong correlations between these bioactive compounds and antioxidant values were observed. Lipopolysaccharide-stimulated RAW264.7 macrophages were used to investigate the intracellular antioxidant activity of the extracts from the digested oat bran paste with 25% enrichment of blueberry or blackcurrant powder. The results indicated that the extracts of digested pastes prevented the macrophages from experiencing lipopolysaccharide (LPS)-stimulated intracellular reactive oxygen species accumulation, mainly by the Kelch-like ECH-associated protein 1 (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2) signalling pathway. These findings suggest that the bioactive ingredients from blueberry and blackcurrant powder enhanced the in vitro and intracellular antioxidant capacity of oat bran pastes, and these enriched pastes have the potential to be utilised in the development of the functional foods.
Collapse
|