1
|
Šaula T, Cigić B, Jamnik P, Kralj Cigić I, Poklar Ulrih N, Požrl T, Marolt G. Enrichment of the nutritional value of pea flour milling fractions through fermentation. Food Chem 2025; 476:143303. [PMID: 39965343 DOI: 10.1016/j.foodchem.2025.143303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/14/2024] [Accepted: 02/07/2025] [Indexed: 02/20/2025]
Abstract
In this work, pea flour and two milling fractions obtained by industrial-scale air classification were characterized and fermented by Lactiplantibacillus plantarum to increase their nutritional value. Scanning electron microscopy and chemical analysis revealed major differences in the morphology and composition of the flours. Protein-rich (43.7 %) fraction exhibits a few-fold higher mineral, spermidine (290 μg/g), but also a higher phytate (20.4 mg/g) content compared to starch-rich fraction. Flour type and inoculum majorly influenced the composition of the fermented product. In spontaneously fermented flours, biogenic amines accumulated up to 6.6 mg/g, which was the main drawback besides the large variations between batches, as confirmed by metagenomic analysis. Higher contents of lactic acid, free amino groups formed by proteolysis and gamma-aminobutyric acid were determined in inoculated fermentations of protein rich fraction, whereas a higher relative bioavailability of minerals was found in the inoculated starch-rich fraction, as the phytate content was reduced by 42 %.
Collapse
Affiliation(s)
- Tina Šaula
- University of Ljubljana, Biotechnical Faculty, Jamnikarjeva 101, 1000 Ljubljana, Slovenia.
| | - Blaž Cigić
- University of Ljubljana, Biotechnical Faculty, Jamnikarjeva 101, 1000 Ljubljana, Slovenia.
| | - Polona Jamnik
- University of Ljubljana, Biotechnical Faculty, Jamnikarjeva 101, 1000 Ljubljana, Slovenia.
| | - Irena Kralj Cigić
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, 1000 Ljubljana, Slovenia.
| | - Nataša Poklar Ulrih
- University of Ljubljana, Biotechnical Faculty, Jamnikarjeva 101, 1000 Ljubljana, Slovenia.
| | - Tomaž Požrl
- University of Ljubljana, Biotechnical Faculty, Jamnikarjeva 101, 1000 Ljubljana, Slovenia.
| | - Gregor Marolt
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, 1000 Ljubljana, Slovenia.
| |
Collapse
|
2
|
Salsinha AS, Araújo-Rodrigues H, Dias C, Cima A, Rodríguez-Alcalá LM, Relvas JB, Pintado M. Omega-3 and conjugated fatty acids impact on human microbiota modulation using an in vitro fecal fermentation model. Clin Nutr 2025; 49:102-117. [PMID: 40262394 DOI: 10.1016/j.clnu.2025.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 03/07/2025] [Accepted: 04/03/2025] [Indexed: 04/24/2025]
Abstract
BACKGROUND & AIMS Gut microbiota has been gaining increasing attention and its important role in the maintenance of a general good health condition is already established. The potential of gut microbiota modulation through diet is an important research focus to be considered. Lipids, as omega-3 fatty acids, are well known for their beneficial role on organs and corresponding diseases. However, their impact on gut microbiota is still poorly defined, and studies on the role of other polyunsaturated fatty acids, such as conjugated linoleic and linolenic acids, are even scarcer. METHODS By using an in vitro human fermentation model, we assessed the effect of omega-3, CLA isomers, and punicic acid on microbiota modulation. RESULTS Fish oil, Omega-3, and CLA samples positively impact Akkermansia spp. and Bifidobacterium spp. growth. Moreover, all the samples supported Roseburia spp. growth after 24 h of fermentation and, importantly, they were able to maintain the Firmicutes: Bacteroidetes ratio near 1. All the bioactive fatty acid samples, except Pomegranate oil, were able to significantly increase butyrate levels compared to those found in the positive control (FOS) sample. Moreover, Fish oil and Omega-3 samples were able to increase the concentration of GABA, alanine, tyrosine, phenylalanine, isoleucine, and leucine between 12 and 24 h of fermentation. CONCLUSIONS The impact of the assessed polyunsaturated fatty acids in gut microbiota has been observed in its impact on key bacteria (Akkermansia, Bifidobacterium, and Roseburia) as well as their metabolic byproducts, including butyrate and amino acids, which could potentially play a role in modulating the gut-brain axis.
Collapse
Affiliation(s)
- Ana Sofia Salsinha
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina -Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal; Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto - Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Helena Araújo-Rodrigues
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina -Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal; Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto - Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Cindy Dias
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina -Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal
| | - André Cima
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina -Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal
| | - Luís Miguel Rodríguez-Alcalá
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina -Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal
| | - João B Relvas
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto - Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Departamento de Biomedicina, Faculdade de Medicina da Universidade do Porto (FMUP), 4200-319 Porto, Portugal
| | - Manuela Pintado
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina -Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal.
| |
Collapse
|
3
|
Costa TJN, Costa IM, Magalhães LMM, de Souza MR, Rossi GAM, Salotti-Souza BM, Fante CA. Technological Assessment and Predictive Modeling of Probiotic Lactose-Free Fermented Milk with Lacticaseibacillus paracasei GV17. Foods 2025; 14:1176. [PMID: 40238348 PMCID: PMC11988495 DOI: 10.3390/foods14071176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/19/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
This study investigated Lacticaseibacillus paracasei GV17, a potentially probiotic strain, in association with the commercial culture Streptococcus thermophilus STI-12, in lactose-free fermented milk. Predictive modeling was used to estimate growth parameters and microbial viability and the technological characteristics of the fermented milk during storage. The initial concentrations of the strains were 9.80 log CFU/mL for Lc. paracasei GV17 and 9.50 log CFU/mL for S. thermophilus STI-12. After eight hours, the pH reached 4.6, and the concentrations of GV17 and STI-12 were 10.90 log CFU/mL and 11.20 log CFU/mL, respectively. The Baranyi model was fitted to the growth data, with correlation coefficients of 0.760 for Lc. paracasei GV17 and 0.852 for St. thermophilus STI-12. The maximum specific growth rates were 0.912 log CFU/h for GV17 and 0.882 log CFU/h for STI-12. Regarding technological characteristics, syneresis decreased by 8.90% after 28 days, indicating greater structural stability, while water retention capacity remained constant. The viability of LAB remained above 10.00 log CFU/mL. Lc. paracasei GV17 showed great potential for use in functional products, prompting further research.
Collapse
Affiliation(s)
- Taynan Jonatha Neves Costa
- Department of Food, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil; (T.J.N.C.); (L.M.M.M.); (C.A.F.)
| | - Isabella Maciel Costa
- Department of Technology and Inspection of Animal Products, Veterinary School, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil; (I.M.C.); (M.R.d.S.)
| | - Larissa Mirelle Mendes Magalhães
- Department of Food, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil; (T.J.N.C.); (L.M.M.M.); (C.A.F.)
| | - Marcelo Resende de Souza
- Department of Technology and Inspection of Animal Products, Veterinary School, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil; (I.M.C.); (M.R.d.S.)
| | | | - Bruna Maria Salotti-Souza
- Department of Technology and Inspection of Animal Products, Veterinary School, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil; (I.M.C.); (M.R.d.S.)
| | - Camila Argenta Fante
- Department of Food, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil; (T.J.N.C.); (L.M.M.M.); (C.A.F.)
| |
Collapse
|
4
|
Udourioh GA, Solomon MM, Okolie JA. A Review of the Valorization of Dairy Industry Wastes through Thermochemical, Biological, and Integrated Processes for Value-Added Products. Food Sci Anim Resour 2025; 45:375-408. [PMID: 40093637 PMCID: PMC11907414 DOI: 10.5851/kosfa.2025.e2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/10/2024] [Accepted: 01/13/2025] [Indexed: 03/19/2025] Open
Abstract
The dairy industry is a significant player in the food industry, providing essential products such as milk, cheese, butter, yogurt, and milk powder to meet the global population's needs. However, the industry's activities have resulted in significant pollution, with heavy waste generation, disposal, and effluent emissions into the environment. Properly handling dairy waste residues is a major challenge, with up to 60% of the total treatment cost in the processing unit allocated to waste management. Therefore, valorizing dairy waste into useful products presents a significant advantage for the dairy industry. Numerous studies have proposed various approaches to convert dairy waste into useful products, including thermochemical, biological, and integrated conversion pathways. This review presents an overview of these approaches and identifies the best possible method for valorizing dairy waste and by-products. The research presents up-to-date information on the recovery of value-added products from dairy waste, such as biogas, biofertilizers, biopolymers, and biosurfactants, with a focus on integrating technology for environmental sustainability. Furthermore, the obstacles and prospects in dairy waste valorization have been presented. This review is a valuable resource for developing and deploying dairy waste valorization technologies, and it also presents research opportunities in this field.
Collapse
Affiliation(s)
- Godwin A Udourioh
- Department of Pure and Applied Chemistry, Veritas University Abuja, Abuja 6523, Nigeria
| | - Moses M Solomon
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Jude A Okolie
- Gallogly College of Engineering, University of Oklahoma, Norman, OK 73019, USA
| |
Collapse
|
5
|
Tsaruk A, Filip K, Sibirny A, Ruchala J. Native and Recombinant Yeast Producers of Lactic Acid: Characteristics and Perspectives. Int J Mol Sci 2025; 26:2007. [PMID: 40076630 PMCID: PMC11900929 DOI: 10.3390/ijms26052007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/13/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
Lactic acid (LA) is a key chemical used in various industries, including food, pharmaceuticals, and bioplastics. Although traditionally produced using lactic acid bacteria, yeasts offer significant advantages, such as higher tolerance to acidic environments, a broader substrate range, and the potential for genetic and metabolic engineering. This review explores the potential use of Lachancea thermotolerans, Saccharomyces cerevisiae, Kluyveromyces marxianus, Kluyveromyces lactis, Candida utilis, and Pichia kudriavzevii as LA producers, highlighting their unique characteristics and industrial applications. S. cerevisiae stands out due to its robust genetic toolkit and acid tolerance, while K. marxianus offers thermotolerance and the efficient utilization of lactose and pentoses, making it ideal for high-temperature fermentations. K. lactis is particularly suited for valorizing dairy by-products like whey, P. kudriavzevii exhibits high tolerance to multiple stresses, while C. utilis demonstrates superior resilience to lignocellulosic inhibitors, enabling its use in biorefineries. Key challenges, including enhancing LA tolerance and optimizing metabolic pathways, are addressed through strategies like heterologous lactate dehydrogenase (LDH) expression, redox balance modification, and adaptive laboratory evolution. The review also discusses industrial applications, particularly in the context of circular economy approaches, where yeasts can convert waste streams into high-value LA. Future research should focus on integrating yeasts into scalable, sustainable bioprocesses to meet the growing demand for renewable and biodegradable materials.
Collapse
Affiliation(s)
- Aksyniia Tsaruk
- Faculty of Biotechnology, Collegium Medicum, University of Rzeszow, 35-601 Rzeszow, Poland
- The Doctoral School of the University of Rzeszow, University of Rzeszow, 35-959 Rzeszow, Poland
| | - Kamila Filip
- Faculty of Biotechnology, Collegium Medicum, University of Rzeszow, 35-601 Rzeszow, Poland
| | - Andriy Sibirny
- Faculty of Biotechnology, Collegium Medicum, University of Rzeszow, 35-601 Rzeszow, Poland
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology NAS of Ukraine, 79005 Lviv, Ukraine
| | - Justyna Ruchala
- Faculty of Biotechnology, Collegium Medicum, University of Rzeszow, 35-601 Rzeszow, Poland
| |
Collapse
|
6
|
Sa'aid N, Tan JS. From probiotic fermentation to functional drinks: a review on fruit juices with lactic acid bacteria and prebiotics. Prep Biochem Biotechnol 2025:1-20. [PMID: 39968919 DOI: 10.1080/10826068.2025.2467441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
In recent years, the demand for probiotic beverages has surged, with dairy products traditionally serving as the primary sources of probiotics. However, many consumers face health issues such as lactose intolerance, milk allergies, and high cholesterol, which prevent them from consuming dairy products. This has led to the exploration of nondairy alternatives, particularly fruit juices, as carriers for probiotics. Lactic acid bacteria (LAB) have been identified as beneficial probiotics that can be incorporated into these beverages. The inclusion of prebiotics, such as inulin and galacto-oligosaccharides (GOS), in fruit juices has shown promise in enhancing the growth and activity of LAB, thereby creating functional beverages that support digestive health. Despite numerous studies on fruit juice fermentation, there is limited data on the optimal pairing of probiotics and prebiotics to develop stable, nondairy functional drinks. This review underscores the potential of lactic acid fermentation and the integration of prebiotics and probiotics in fruit juices, highlighting the necessity for further research to optimize these combinations for enhanced health benefits and improved beverage stability.
Collapse
Affiliation(s)
- Nurhazwani Sa'aid
- School of Industrial Technology, Universiti Sains Malaysia, Gelugor, Pulau Pinang, Malaysia
| | - Joo Shun Tan
- School of Industrial Technology, Universiti Sains Malaysia, Gelugor, Pulau Pinang, Malaysia
| |
Collapse
|
7
|
Díaz-Orozco L, Moscosa Santillán M, Delgado Portales RE, Rosales-Colunga LM, Leyva-Porras C, Saavedra-Leos Z. Advances in L-Lactic Acid Production from Lignocellulose Using Genetically Modified Microbial Systems. Polymers (Basel) 2025; 17:322. [PMID: 39940524 PMCID: PMC11820014 DOI: 10.3390/polym17030322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
Lactic acid is a vital organic acid with a wide range of industrial applications, particularly in the food, pharmaceutical, cosmetic, and biomedical sectors. The conventional production of lactic acid from refined sugars poses high costs and significant environmental impacts, leading to the exploration of alternative raw materials and more sustainable processes. Lignocellulosic biomass, particularly agro-industrial residues such as agave bagasse, represents a promising substrate for lactic acid production. Agave bagasse, a by-product of the tequila and mezcal industries, is rich in fermentable carbohydrates, making it an ideal raw material for biotechnological processes. The use of lactic acid bacteria (LAB), particularly genetically modified microorganisms (GMMs), has been shown to enhance fermentation efficiency and lactic acid yield. This review explores the potential of lignocellulosic biomass as a substrate for microbial fermentation to produce lactic acid and other high-value products. It covers the composition and pretreatment of some agricultural residues, the selection of suitable microorganisms, and the optimization of fermentation conditions. The paper highlights the promising future of agro-industrial residue valorization through biotechnological processes and the sustainable production of lactic acid as an alternative to conventional methods.
Collapse
Affiliation(s)
- Lucila Díaz-Orozco
- Faculty of Chemical Sciences, Autonomous University of San Luis Potosí (UASLP), San Luis Potosí 78210, Mexico; (L.D.-O.); (M.M.S.)
| | - Mario Moscosa Santillán
- Faculty of Chemical Sciences, Autonomous University of San Luis Potosí (UASLP), San Luis Potosí 78210, Mexico; (L.D.-O.); (M.M.S.)
| | - Rosa Elena Delgado Portales
- Faculty of Chemical Sciences, Autonomous University of San Luis Potosí (UASLP), San Luis Potosí 78210, Mexico; (L.D.-O.); (M.M.S.)
| | | | - César Leyva-Porras
- Advanced Materials Research Center (CIMAV), Miguel de Cervantes 120, Complejo Industrial Chihuahua, Chihuahua 31136, Mexico
| | - Zenaida Saavedra-Leos
- Multidisciplinary Academic Unit, Altiplano Region Campus (COARA), Autonomous University of San Luis Potosí (UASLP), Carretera Cedral km 5+600, Matehuala 78700, Mexico
| |
Collapse
|
8
|
Fernandez M, Calle A. Differences in Salmonella Serovars Response to Lactic Acid and Peracetic Acid Treatment Applied to Pork. J Food Prot 2025; 88:100403. [PMID: 39542107 DOI: 10.1016/j.jfp.2024.100403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
Pathogen control in the meat industry relies on the effectiveness of postharvest interventions in reducing microbial populations. This study investigated differences in the survival of Salmonella serovars when exposed to organic acids used as antimicrobials on raw pork meat. Seven serovars were included in this study (S. Newport, S. Kentucky, S. Typhimurium, S. Dublin, S. Heidelberg, S. Infantis, and S. Enteritidis). Multistrain serovar cocktails were prepared and tested against lactic acid (LA) and peracetic acid PAA at two concentrations, LA 2 and 4% and PAA 200 and 400 ppm. Pork samples were assigned to each serovar, inoculated with 6.0 Log CFU/cm2Salmonella (one serovar at a time), and treated with the corresponding antimicrobials. A two-way analysis of variance was conducted to examine the effects of serovar and antimicrobial concentrations on Salmonella survival. A significant main effect of serovar was identified, indicating that Salmonella concentration and reduction rate were significantly affected by serovar. Similarly, a significant main effect of antimicrobials was observed, suggesting that the treatment types impacted Salmonella concentration and reduction rate. However, the interaction effect between serovar and antimicrobial was not significant. Posthoc comparisons indicate that PAA 400 ppm is more effective at reducing Salmonella concentrations and that S. Dublin may be more susceptible than S. Newport to antimicrobial sprays. Additionally, under PAA exposure, only S. Dublin, S. Kentucky, and S. Heidelberg showed statistically significant differences (P < 0.05) compared with the control, indicating that these three serovars are more susceptible to PAA treatments than the rest. The behavior of different Salmonella serovars under stress conditions can give us an insight into how these pathogens survive processing.
Collapse
Affiliation(s)
- Mariana Fernandez
- Texas Tech University School of Veterinary Medicine, 7671 Evans Dr., Amarillo, TX, USA
| | - Alexandra Calle
- Texas Tech University School of Veterinary Medicine, 7671 Evans Dr., Amarillo, TX, USA.
| |
Collapse
|
9
|
Kim HG, Park WL, Min HJ, Won YS, Seo KI. Antioxidant and anticancer effects of kiwi ( Actinidia deliciosa) fermented beverage using Lactobacillus plantarum. Food Sci Biotechnol 2025; 34:207-216. [PMID: 39758717 PMCID: PMC11695656 DOI: 10.1007/s10068-024-01643-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/09/2024] [Accepted: 06/16/2024] [Indexed: 01/07/2025] Open
Abstract
Kiwi fermented beverages utilizing lactic acid bacteria exhibit a decrease in sugar content, pH and increase in total acidity. The maximum CFU is observed in 20% kiwi fermented beverages containing Lactobacillus plantarum. For the most efficient fermentation conditions, 20% kiwi fermented beverages fermented at 24 h was selected for use in subsequent experiments. The glucose, fructose, citric acid levels decreased in optimized kiwi fermented beverage, while the succinic acid, lactic acid, acetic acid, total flavonoid content, and total polyphenol content increased. Furthermore, optimized kiwi fermented beverage showed significantly higher reducing power, ABTS·+ and DPPH radical scavenging activities, and hydroxyl radical scavenging activities compared to the optimized kiwi beverage. Optimized kiwi fermented beverage suppresses proliferation in various cells, including MDA-MB-231, in a dose- and time-dependent manner. Lactobacillus plantarum fermentation of kiwi fruit enhances its functionality, underscoring the potential of OKFB as an improved functional food ingredient.
Collapse
Affiliation(s)
- Hwi Gon Kim
- Department of Food Biotechnology, Dong-A University, 37, Nakdong-Daero 550beon-gil, Sahagu, Busan, 49315 Republic of Korea
| | - Wool Lim Park
- Department of Food Biotechnology, Dong-A University, 37, Nakdong-Daero 550beon-gil, Sahagu, Busan, 49315 Republic of Korea
| | - Hye Ji Min
- Department of Food Biotechnology, Dong-A University, 37, Nakdong-Daero 550beon-gil, Sahagu, Busan, 49315 Republic of Korea
| | - Yeong Seon Won
- Department of Food Biotechnology, Dong-A University, 37, Nakdong-Daero 550beon-gil, Sahagu, Busan, 49315 Republic of Korea
- Division of Research Management, Honam National Institute of Biological Resources, Jeollanam-do, Mokpo, 58672 Republic of Korea
| | - Kwon Il Seo
- Department of Food Biotechnology, Dong-A University, 37, Nakdong-Daero 550beon-gil, Sahagu, Busan, 49315 Republic of Korea
| |
Collapse
|
10
|
Singh V, Shirbhate E, Kore R, Vishwakarma S, Parveen S, Veerasamy R, Tiwari AK, Rajak H. Microbial Metabolites-induced Epigenetic Modifications for Inhibition of Colorectal Cancer: Current Status and Future Perspectives. Mini Rev Med Chem 2025; 25:76-93. [PMID: 38982701 DOI: 10.2174/0113895575320344240625080555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 07/11/2024]
Abstract
Globally, one of the most prevalent cancers is colorectal cancer (CRC). Chemotherapy and surgery are two common conventional CRC therapies that are frequently ineffective and have serious adverse effects. Thus, there is a need for complementary and different therapeutic approaches. The use of microbial metabolites to trigger epigenetic alterations as a way of preventing CRC is one newly emerging field of inquiry. Small chemicals called microbial metabolites, which are made by microbes and capable of altering host cell behaviour, are created. Recent research has demonstrated that these metabolites can lead to epigenetic modifications such as histone modifications, DNA methylation, and non-coding RNA regulation, which can control gene expression and affect cellular behaviour. This review highlights the current knowledge on the epigenetic modification for cancer treatment, immunomodulatory and anti-carcinogenic attributes of microbial metabolites, gut epigenetic targeting system, and the role of dietary fibre and gut microbiota in cancer treatment. It also focuses on short-chain fatty acids, especially butyrates (which are generated by microbes), and their cancer treatment perspective, challenges, and limitations, as well as state-of-the-art research on microbial metabolites-induced epigenetic changes for CRC inhibition. In conclusion, the present work highlights the potential of microbial metabolites-induced epigenetic modifications as a novel therapeutic strategy for CRC suppression and guides future research directions in this dynamic field.
Collapse
Affiliation(s)
- Vaibhav Singh
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Bilaspur (C.G.), 495 009, India
| | - Ekta Shirbhate
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Bilaspur (C.G.), 495 009, India
| | - Rakesh Kore
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Bilaspur (C.G.), 495 009, India
| | - Subham Vishwakarma
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Bilaspur (C.G.), 495 009, India
| | - Shadiya Parveen
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Bilaspur (C.G.), 495 009, India
| | - Ravichandran Veerasamy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, AIMST University, Semeling, Bedong, Kedah Darul Aman, 08100, Malaysia
| | - Amit K Tiwari
- UAMS College of Pharmacy; UAMS - University of Arkansas for Medical Sciences, AR 72205, USA
| | - Harish Rajak
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Bilaspur (C.G.), 495 009, India
| |
Collapse
|
11
|
Wu R, Yang J, Jiang Y, Xin F. Advances and prospects for lactic acid production from lignocellulose. Enzyme Microb Technol 2025; 182:110542. [PMID: 39489097 DOI: 10.1016/j.enzmictec.2024.110542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/30/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
Lactic acid is a versatile building block that can be produced via microbial fermentation. Owing to the high optical purity, approximately 90 % of lactic acid is produced by microbes. Recently, the biosynthesis of lactic acid from lignocellulose has concerned much attentions. However, the cost-effective process faces several obstacles because of the complex structure of lignocellulose. This review will comprehensively summarize the state-of-the-art lactic acid production from lignocellulose, including the commonly used lactate-producing microorganisms, the co-utilization of glucose and xylose for the lactic acid production, as well as the lactic acid production from lignocellulose hydrolysate. Furthermore, the strategies regarding the lignocellulosic lactic acid production via consolidated bioprocessing will be also discussed, which can greatly reduce the complexity of the fermentation process.
Collapse
Affiliation(s)
- Ruofan Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Jiahui Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Yujia Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China.
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China.
| |
Collapse
|
12
|
Russo G, Gelosia M, Fabbrizi G, Angrisano M, Policastro G, Cavalaglio G. Valorization of Xylose-Rich Medium from Cynara cardunculus Stalks for Lactic Acid Production via Microbial Fermentation. Polymers (Basel) 2024; 16:3577. [PMID: 39771432 PMCID: PMC11679648 DOI: 10.3390/polym16243577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Lactic acid (LA) is a versatile, optically active compound with applications across the food, cosmetics, pharmaceutical, and chemical industries, largely driven by its role in producing biodegradable polylactic acid (PLA). Due to its abundance, lignocellulosic biomass is a promising and sustainable resource for LA production, although media derived from these matrices are often rich in xylose and contain growth inhibitors. This study investigates LA production using a xylose-rich medium derived from Cynara cardunculus L. altilis DC stalks treated through steam explosion and enzymatic hydrolysis. The lactic acid bacteria strains Lacticaseibacillus casei, Paucilactobacillus vaccinostercus, and Pediococcus pentosaceus were grown on natural media, achieving yields of 0.59, 0.57, and 0.58 g LA/g total carbon consumed, respectively. Remarkably, on xylose-rich media, all supplied sugar was consumed, with LA yields comparable to those on complex media. These findings highlight the adaptability of these strains in the presence of inhibitors and support the potential of lignocellulosic biomass as a low-cost and sustainable substrate for effective PLA production.
Collapse
Affiliation(s)
- Gianfrancesco Russo
- CIRIAF, Interuniversity Research Centre on Pollution and Environment “M.Felli”, University of Perugia, Via G. Duranti 67, 06125 Perugia, Italy; (G.R.); (M.G.); (G.F.)
| | - Mattia Gelosia
- CIRIAF, Interuniversity Research Centre on Pollution and Environment “M.Felli”, University of Perugia, Via G. Duranti 67, 06125 Perugia, Italy; (G.R.); (M.G.); (G.F.)
| | - Giacomo Fabbrizi
- CIRIAF, Interuniversity Research Centre on Pollution and Environment “M.Felli”, University of Perugia, Via G. Duranti 67, 06125 Perugia, Italy; (G.R.); (M.G.); (G.F.)
| | - Mariarosaria Angrisano
- Department of Engineering, Pegaso Telematic University, 80143 Naples, Italy; (M.A.); (G.P.)
| | - Grazia Policastro
- Department of Engineering, Pegaso Telematic University, 80143 Naples, Italy; (M.A.); (G.P.)
| | - Gianluca Cavalaglio
- Department of Engineering, Pegaso Telematic University, 80143 Naples, Italy; (M.A.); (G.P.)
| |
Collapse
|
13
|
Falih MA, Altemimi AB, Hamed Alkaisy Q, Awlqadr FH, Abedelmaksoud TG, Amjadi S, Hesarinejad MA. Enhancing safety and quality in the global cheese industry: A review of innovative preservation techniques. Heliyon 2024; 10:e40459. [PMID: 39654744 PMCID: PMC11625285 DOI: 10.1016/j.heliyon.2024.e40459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/09/2024] [Accepted: 11/14/2024] [Indexed: 12/12/2024] Open
Abstract
The global cheese industry faces challenges in adopting new preservation methods due to microbiological decay and health risks associated with chemical preservatives. Ensuring the safety and quality control of hard and semi-hard cheeses is crucial given their prolonged maturation and storage. Researchers are urged to create cheese products emphasizing safety, minimal processing, eco-labels, and clean labels to address consumer health and environmental worries. This review aims to explore effective strategies for ensuring the safety and quality of ripened cheeses, covering traditional techniques like aging, maturation, and salting, along with innovative methods such as modified and vacuum packaging, high-pressure processing, and active and intelligent packaging. Additionally, sustainable cheese preservation approaches, their impact on shelf life extension, and the physiochemical and quality attributes post-preservation are all analyzed. Overall, the cheese industry stands to benefit from this evaluation through enhanced market value, increased consumer satisfaction, and better environmental sustainability.The integration of novel preservation techniques in the cheese industry not only addresses current challenges but also paves the way for a more sustainable and consumer-oriented approach. By continually refining and implementing safety measures, quality control processes, and environmentally friendly practices, cheese producers can meet evolving consumer demands while ensuring the longevity and integrity of their products. Through a concerted effort to embrace innovation and adapt to changing market dynamics, the global cheese industry is poised to thrive in a competitive landscape where safety, quality, and sustainability are paramount.
Collapse
Affiliation(s)
- Mohammed A. Falih
- Department of Dairy Science and Technology, College of Food Sciences, University of AL-Qasim Green, Al Qasim, Iraq
| | - Ammar B. Altemimi
- Department of Food Science, College of Agriculture, University of Basrah, Basrah 61004, Iraq
- College of Medicine, University of Warith Al-Anbiyaa, Karbala 56001, Iraq
| | - Qausar Hamed Alkaisy
- Department of Dairy Science and Technology, College of Food Sciences, University of AL-Qasim Green, Al Qasim, Iraq
| | - Farhang H. Awlqadr
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Iran
| | | | - Sajed Amjadi
- Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad, PO Box: 91895-157-356, Iran
| | - Mohamad Ali Hesarinejad
- Department of Food Sensory and Cognitive Science, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| |
Collapse
|
14
|
Song L, Cai C, Chen Z, Lin C, Lv Y, Ye X, Liu Y, Dai X, Liu M. Lactic acid production from food waste: Advances in microbial fermentation and separation technologies. BIORESOURCE TECHNOLOGY 2024; 414:131635. [PMID: 39401659 DOI: 10.1016/j.biortech.2024.131635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/11/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024]
Abstract
China generates over 100 million tons of food waste annually, leading to significant environmental pollution and health risks if not managed properly. Converting FW into a high-value-added platform molecule, lactic acid (LA), through fermentation offers a promising approach for both waste treatment and resource recovery. This paper presents a comprehensive review of recent advancements in LA production from FW, focusing on pure strains fermentation and open fermentation technologies, metabolic mechanisms, and problems in fermentation. It also assesses purification methods, including molecular distillation, adsorption, membrane separation, precipitation, esterification and hydrolysis, solvent extraction, and in-situ separation, analyzing their efficiency, advantages, and disadvantages. However, current research encounters several challenges, including low LA yield, low optical purity of L-(+)-LA, and difficulties in the separation and purification of LA. The integration of in-situ separation technology coupled with multiple separation methods is highlighted as a promising direction for future advancements.
Collapse
Affiliation(s)
- Liang Song
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Chenhang Cai
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Zengpeng Chen
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Chunxiang Lin
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Yuancai Lv
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Xiaoxia Ye
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Yifan Liu
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Minghua Liu
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China.
| |
Collapse
|
15
|
Liu Y, Zeng Y, Chen L, Xin J, Zhong Z, Liu H, Fu H, Zhou Z, Peng G. Isolation and evaluation of multi-functional properties of lactic acid bacteria strains derived from canine milk. Front Vet Sci 2024; 11:1505854. [PMID: 39669658 PMCID: PMC11634844 DOI: 10.3389/fvets.2024.1505854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 11/08/2024] [Indexed: 12/14/2024] Open
Abstract
Introduction Lactic acid bacteria (LAB) are Gram-positive bacteria that produce lactic acid during fermentation, with some strains enhancing host health by modulating the gut microbiota, boosting immune responses, and reducing inflammation. Methods In this study, 6 LAB strains were isolated from two dog milk samples, and their probiotic properties were comprehensively evaluated. The evaluation included growth properties, stress resistance, antipathogen activity, adhesion activity, safety assessment, antioxidant capacity, and prebiotic metabolites assessment. Results In comparison to the control strain Lactobacillus rhamnosus LGG, all 6 LAB isolates exhibited favorable probiotic properties. Additionally, the results of the antioxidant tests indicated that these strains demonstrated high tolerance to 0.5 mmol/L H2O2 and exhibited significant scavenging abilities for the free radicals 1,1-diphenyl-2-trinitrophenylhydrazine (DPPH) and hydroxyl (OH-). Furthermore, the 6 LAB isolates were found to produce elevated concentrations of prebiotic metabolites, including exopolysaccharides (EPS), γ-aminobutyric acid (GABA), and bile salt hydrolase (BSH). Discussion This study presents a comprehensive analysis of LAB isolates derived from canine milk. These isolates exhibited multifunctional properties, with strain L221 performing the best overall, making it a promising candidate for probiotic use in dogs.
Collapse
Affiliation(s)
- Yunjiang Liu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yueyan Zeng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Li Chen
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, Sichuan, China
| | - Jialiang Xin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhijun Zhong
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Haifeng Liu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Hualin Fu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ziyao Zhou
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Guangneng Peng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
16
|
Chiarini E, Alessandria V, Buzzanca D, Giordano M, Seif Zadeh N, Mancuso F, Zeppa G. Valorization of Fruit By-Products Through Lactic Acid Fermentation for Innovative Beverage Formulation: Microbiological and Physiochemical Effects. Foods 2024; 13:3715. [PMID: 39682787 DOI: 10.3390/foods13233715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/13/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
The increase in food production is accompanied by an increase in waste, particularly agricultural by-products from cultivation and processing. These residues are referred to as agricultural by-products. To address this issue, biotechnological processes can be used to create new applications for these by-products. This study explored the use of LAB strains (Lactiplantibacillus plantarum, Streptococcus thermophilus, Lactobacillus delbrueckii subsp. bulgaricus, and Limosilactobacillus fermentum) on by-products such as white grape pomace, cocoa bean shells, apple pomace, and defatted roasted hazelnut to develop yoghurt-style fruit beverages. Microbial load and pH changes were monitored during a 24 h fermentation and 14-day shelf life at 5 °C. Concentrations of sugars, organic acids, and volatile organic compounds were also analyzed using HPLC and GC-qMS. The results showed that optimizing the matrix led to significant bacterial growth, with viable microbes remaining under refrigeration. In particular, the strain of L. plantarum tested on the cocoa bean shell yielded the most promising results. After 24 h of fermentation, the strain reached a charge of 9.3 Log CFU/mL, acidifying the substrate to 3.9 and producing 19.00 g/100 g of lactic acid. Aromatic compounds were produced in all trials, without off-flavours, and characteristic fermented food flavours developed. Additionally, secondary metabolites produced by lactic acid bacteria may enhance the health benefits of these beverages.
Collapse
Affiliation(s)
- Elisabetta Chiarini
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, 10095 Grugliasco, TO, Italy
| | - Valentina Alessandria
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, 10095 Grugliasco, TO, Italy
| | - Davide Buzzanca
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, 10095 Grugliasco, TO, Italy
| | - Manuela Giordano
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, 10095 Grugliasco, TO, Italy
| | - Negin Seif Zadeh
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, 10095 Grugliasco, TO, Italy
| | - Francesco Mancuso
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, 10095 Grugliasco, TO, Italy
| | - Giuseppe Zeppa
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, 10095 Grugliasco, TO, Italy
| |
Collapse
|
17
|
Velmurugan L, Pandian KD. Enhancing physico-chemical water quality in recycled dairy effluent through microbial consortium treatment. Heliyon 2024; 10:e39501. [PMID: 39524800 PMCID: PMC11544059 DOI: 10.1016/j.heliyon.2024.e39501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/11/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
The dairy industry, notorious by generating wastewater rich in organic and nitrogenous content, necessitates sustainable recycling solutions. Biological treatment emerges as a cost-effective and chemical-free alternative. This study delves into the potential of microbial consortium, a microbial consortium, for recycling dairy effluent, aiming at water reclamation and environmental sustainability. Effluent samples from Madurai's Dairy Industry underwent microbial consortium treatment in a recycling prototype, with treatment efficacy assessed through physicochemical parameters and contaminant removal efficiency. Guided by a biodegradability index of 4.51, the study showcased EM's impact, revealing a notable decrease in pH levels, fostering an alkaline environment (2.35 ± 0.06 ppt). Dissolved oxygen increased significantly to 4.50 ppm, indicating improved aerobic conditions. EM treatment led to substantial reductions in calcium (53 %), magnesium (95 %), nitrogen (22 %), sulfate (79 %), phosphate (86 %), BOD (78 %), and COD (82 %). In contrast, dairy effluent treated without microbial consortium during the sludge activation process exhibited negligible water quality improvement. These findings underscore microbial consortium efficacy in advancing biological treatment of dairy effluent, demonstrating a significant reduction in contaminants and showcasing its potential for sustainable water reclamation. Improved alkalinity, dissolved oxygen, and nutrient content further signify positive impacts on ecosystem health. Microbial consortium emerges as a promising avenue for recycling dairy effluent, offering an economically viable and environmentally friendly solution. The study emphasizes the crucial role of microbial treatments in achieving efficient water reclamation, contributing to a cleaner and sustainable environment. Future research and broader implementation of microbial consortium in dairy industry wastewater management are recommended for enhanced environmental benefits.
Collapse
Affiliation(s)
- Lavanya Velmurugan
- Research Center, Department of Botany, Thiagarajar College, 139-140, Kamarajar Salai, Teppakulam, Madurai, Tamil Nadu, 625 009, India
| | - Kannan Dorai Pandian
- Research Centre, Department of Botany (Retired), Thiagarajar College, 139-140, Kamarajar Salai, Teppakulam, Madurai, Tamil Nadu, 625 009, India
- Guest Faculty, Department of Ecology and Environmental Sciences, Pondicherry University, Puducherry, 605 014, India
| |
Collapse
|
18
|
Zhao X, Sun Y, Chang Z, Yao B, Han Z, Wang T, Shang N, Wang R. Innovative Lactic Acid Production Techniques Driving Advances in Silage Fermentation. FERMENTATION-BASEL 2024; 10:533. [DOI: 10.3390/fermentation10100533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Lactic acid (LA) plays a crucial role in the silage process, which occurs through LA fermentation. Consequently, there is a strong correlation between lactic acid production and the efficiency of the silage. However, traditional methods face challenges like long fermentation times, low acid production, and unstable quality, limiting agricultural preservation. This paper aims to explore innovations in lactic acid production technologies and show how these technologies have driven the development of silage fermentation for agricultural conservation. First, the important role of LA in agricultural preservation and the limitations of traditional silage techniques are presented. Next, advancements in LA production methods are thoroughly examined, covering the selection of microbial strains and the substitution of fermentation substrates. Following this, new technologies for silage fermentation are explored, drawing from innovations in LA production. These include the selection of LA strains, optimization of fermentation conditions, and improvements in fermentation techniques. These innovations have proven effective in increasing LA production, improving feed quality, extending shelf life, and providing new solutions to enhance agricultural production and sustainability.
Collapse
Affiliation(s)
- Xiaorui Zhao
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Yu Sun
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Zhiyi Chang
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Boqing Yao
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zixin Han
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Tianyi Wang
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Nan Shang
- College of Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China
| | - Ran Wang
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China
| |
Collapse
|
19
|
Won S, Kang HY. Production of Magnesium Dilactate through Lactic Acid Fermentation with Magnesium Carbonate. Microorganisms 2024; 12:2011. [PMID: 39458320 PMCID: PMC11509355 DOI: 10.3390/microorganisms12102011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
Magnesium dilactate is increasingly sought after for its applications in the pharmaceutical, food, and dietary supplement industries due to its essential role in various physiological processes. This study explores a sustainable method for synthesizing magnesium dilactate through lactic acid fermentation using tomato juice, coupling the neutralization of lactic acid with hydrated magnesium carbonate hydroxide. Utilizing the lactic acid bacteria Lactobacillus paracasei and Lactobacillus plantarum, fermentation was optimized in a 50% diluted MRS medium supplemented with glucose and tomato juice supplemented with glucose, yielding a maximum lactate concentration of 107 g/L. Notably, fermentation in diluted media proved more effective than in undiluted tomato juice, highlighting the inhibitory effects of certain organic compounds and the physical nature of the original tomato juice. Post-fermentation, magnesium lactate was crystallized, achieving high recovery rates of up to 95.9%. Characterization of the product through X-ray diffraction and scanning electron microscopy confirmed its crystalline purity. This research underscores the viability of tomato juice as a fermentation substrate, promoting the valorization of agricultural by-products while providing an eco-friendly alternative to traditional chemical synthesis methods for magnesium dilactate production.
Collapse
Affiliation(s)
- Sangmin Won
- Department of Microbiology, Pusan National University, Busan 46241, Republic of Korea
| | - Ho Young Kang
- Department of Microbiology, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
20
|
Borgonovi TF, Fugaban JII, Bucheli JEV, Casarotti SN, Holzapfel WH, Todorov SD, Penna ALB. Dual Role of Probiotic Lactic Acid Bacteria Cultures for Fermentation and Control Pathogenic Bacteria in Fruit-Enriched Fermented Milk. Probiotics Antimicrob Proteins 2024; 16:1801-1816. [PMID: 37572214 DOI: 10.1007/s12602-023-10135-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2023] [Indexed: 08/14/2023]
Abstract
The food industry has been developing new products with health benefits, extended shelf life, and without chemical preservation. Bacteriocin-producing lactic acid bacteria (LAB) strains have been evaluated for food fermentation to prevent contamination and increase shelf life. In this study, potentially probiotic LAB strains, Lactiplantibacillus (Lb.) plantarum ST8Sh, Lacticaseibacillus (Lb.) casei SJRP38, and commercial starter Streptococcus (St.) thermophilus ST080, were evaluated for their production of antimicrobial compounds, lactic acid and enzyme production, carbohydrate assimilation, and susceptibility to antibiotics. The characterization of antimicrobial compounds, the proteolytic activity, and its inhibitory property against Listeria (List.) monocytogenes and Staphylococcus (Staph.) spp. was evaluated in buriti and passion fruit-supplemented fermented milk formulations (FMF) produced with LAB strains. Lb. plantarum ST8Sh was found to inhibit List. monocytogenes through bacteriocin production and produced both L(+) and D(-) lactic acid isomers, while Lb. casei SJRP38 mainly produced L(+) lactic acid. The carbohydrate assimilation profiles were compatible with those usually found in LAB. The potentially probiotic strains were susceptible to streptomycin and tobramycin, while Lb. plantarum ST8Sh was also susceptible to ciprofloxacin. All FMF produced high amounts of L(+) lactic acid and the viability of total lactobacilli remained higher than 8.5 log CFU/mL during monitored storage period. Staph. aureus ATCC 43300 in fermented milk with passion fruit pulp (FMFP) and fermented milk with buriti pulp (FMB), and Staph. epidermidis KACC 13234 in all formulations were completely inhibited after 14 days of storage. The combination of Lb. plantarum ST8Sh and Lb. casei SJRP38 and fruit pulps can provide increased safety and shelf-life for fermented products, and natural food preservation meets the trends of the food market.
Collapse
Affiliation(s)
- Taís Fernanda Borgonovi
- Department of Food Engineering and Technology, São Paulo State University (UNESP), São José Do Rio Preto, SP, 15054-000, Brazil
- ProBacLab, Department of Advanced Convergence, Handong Global University, Pohang, Gyeongbuk, 37554, Republic of Korea
| | - Joanna Ivy Irorita Fugaban
- ProBacLab, Department of Advanced Convergence, Handong Global University, Pohang, Gyeongbuk, 37554, Republic of Korea
| | - Jorge Enrique Vazquez Bucheli
- ProBacLab, Department of Advanced Convergence, Handong Global University, Pohang, Gyeongbuk, 37554, Republic of Korea
| | - Sabrina Neves Casarotti
- Faculty of Health Sciences, Federal University of Rondonópolis (UFR), Rondonópolis, MT, 78736-900, Brazil
| | - Wilhelm Heinrich Holzapfel
- ProBacLab, Department of Advanced Convergence, Handong Global University, Pohang, Gyeongbuk, 37554, Republic of Korea
| | - Svetoslav Dimitrov Todorov
- ProBacLab, Department of Advanced Convergence, Handong Global University, Pohang, Gyeongbuk, 37554, Republic of Korea
- ProBacLab, Laboratório de Microbiologia de Alimentos, Departamento de Alimentos E Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Ana Lucia Barretto Penna
- Department of Food Engineering and Technology, São Paulo State University (UNESP), São José Do Rio Preto, SP, 15054-000, Brazil.
| |
Collapse
|
21
|
Tang J, Hu Z, Pu Y, Wang XC, Abomohra A. Bioprocesses for lactic acid production from organic wastes toward industrialization-a critical review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 369:122372. [PMID: 39241596 DOI: 10.1016/j.jenvman.2024.122372] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/11/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
Lactic acid (LA) is a crucial chemical which has been widely used for industrial application. Microbial fermentation is the dominant pathway for LA production and has been regarded as the promising technology. In recent years, many studies on LA production from various organic wastes have been published, which provided alternative ways to reduce the LA production cost, and further recycle organic wastes. However, few researchers focused on industrial application of this technology due to the knowledge gap and some uncertainties. In this review, the recent advances, basic knowledge and limitations of LA fermentation from organic wastes are discussed, the challenges and suitable envisaged solutions for enhancing LA yield and productivity are provided to realize industrial application of this technology, and also some perspectives are given to further valorize the LA fermentation processes from organic wastes. This review can be a useful guidance for industrial LA production from organic wastes on a sustainable view.
Collapse
Affiliation(s)
- Jialing Tang
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, China.
| | - Zongkun Hu
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, China
| | - Yunhui Pu
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, China; College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Xiaochang C Wang
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an, 710055, China.
| | - Abdelfatah Abomohra
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, China; Aquatic Ecophysiology and Phycology, Institute of Plant Science and Microbiology, University of Hamburg, 22609, Hamburg, Germany
| |
Collapse
|
22
|
Kemsawasd V, Karnpanit W, Thangsiri S, Wongputtisin P, Kanpiengjai A, Khanongnuch C, Suttisansanee U, Santivarangkna C, Kittibunchakul S. Efficient recovery of functional biomolecules from shrimp ( Litopenaeus vannamei) processing waste for food and health applications via a successive co-culture fermentation approach. Curr Res Food Sci 2024; 9:100850. [PMID: 39363902 PMCID: PMC11447299 DOI: 10.1016/j.crfs.2024.100850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 10/05/2024] Open
Abstract
This study developed a food-grade fermentation process that efficiently isolated proteins and minerals from shrimp-processing waste (SPW). The in vitro antioxidant and enzyme inhibitory effects of SPW hydrolysates obtained from the fermentation process were investigated. SPW broths were prepared from the head (SPW-SH) and body carapace (SPW-SS) of Pacific white shrimp (Litopenaeus vannamei) and fermented using a 5-day successive co-culture fermentation approach with Bacillus amyloliquefaciens TISTR-1880 and Lactobacillus casei TBRC-388. This bacterial combination demonstrated optimal efficiency in extracting proteins (up to 93% deproteinization) and minerals (up to 83% demineralization) from SPW samples compared with other studied co-culture combinations. The resulting SPW-SH and SPW-SS hydrolysates were rich in proteins (∼70 and ∼59 g/100 g dry weight, respectively). They exhibited significantly enhanced antioxidant potential compared to their corresponding non-fermented controls at up to 2.3 and 3.7-fold higher, respectively as determined by the ORAC, FRAP, and DPPH radical scavenging assays. The two SPW hydrolysates also had significantly higher inhibitory activities against angiotensin-converting enzyme, α-amylase, and lipase than the controls, indicating their improved anti-hypertension, anti-diabetes, and anti-obesity properties, respectively; however, both SPW-SH and SPW-SS hydrolysates did not inhibit α-glucosidase at the tested concentrations. The SPW hydrolysates produced in this study showed high potential for use as functional ingredients in food and nutraceutical products. Knowledge gained from this study can promote the prospective valorization of industrial SPW as an inexpensive source of functional biomolecules for food-related applications using a fermentation approach. This will increase the commercial value of SPW and reduce the environmental impact.
Collapse
Affiliation(s)
| | - Weeraya Karnpanit
- School of Molecular and Life Sciences, Curtin University, Western Australia, 6102, Australia
| | - Sirinapa Thangsiri
- Institute of Nutrition, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Pairote Wongputtisin
- Program in Biotechnology, Faculty of Science, Maejo University, Chiang Mai, 50290, Thailand
| | - Apinun Kanpiengjai
- Division of Biochemistry and Biochemical Innovation, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Chartchai Khanongnuch
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | | | | | | |
Collapse
|
23
|
Ngouénam RJ, Nofal G, Patra S, Njapndounke B, Kouam EMF, Kaktcham PM, Ngoufack FZ. Characterization of Lactic Acid Bacteria Isolated From Rotting Oranges and Use of Agropastoral Processing By-products as Carbon and Nitrogen Sources Alternative for Lactic Acid Production. BIOMED RESEARCH INTERNATIONAL 2024; 2024:4264229. [PMID: 39286282 PMCID: PMC11405111 DOI: 10.1155/2024/4264229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/26/2024] [Accepted: 08/13/2024] [Indexed: 09/19/2024]
Abstract
This study investigated the ability of lactic acid bacteria (LAB) isolated from oranges to use fish by-products (FB) and chicken by-products (CB) as nitrogen sources alternative to yeast extract for lactic acid (LA) production in a papaya by-product medium as a carbon source. Once the fermentation agents had been isolated, they were subjected to biochemical and molecular characterization. Inexpensive nitrogen sources, precisely CB and FB, were prepared, freeze-dried, and yield evaluated. Also, before to the fermentation experiments, the Total Kjehdahl Nitrogen (TKN) of these by-products and that of the yeast extract were determined. Then, three production media differing in terms of nitrogen source were formulated from these nitrogen sources. From the 22 LAB isolated from orange, two isolates of interest (NGO25 and NGO23) were obtained; all belonging to the Lactiplantibacillus plantarum species based on 16S rRNA gene sequencing. Furthermore, the production yield powder obtained after lyophilization of 1 L of CB and FB surpernatant were, respectively, 16.6 g and 12.933 g. The TKN of different nitrogen sources powder were 71.4 ± 0.000% DM (FB), 86.145 ± 0.001% DM (CB), and 87.5 ± 0.99% DM (yeast extract). The best kinetic parameters of LA production (LA (g/L): 31.945 ± 0.078; volumetric productivity (g/L.h): 1.331 ± 0.003; LA yield (mg/g) 63.89 ± 0.156; biomass (g/L) 7.925 ± 0.035; cell growth rate (g/L.h): 0.330 ± 0.001) were recorded by Lactiplantibacillus plantarum NGO25 after 24 h of fermentation. The latter data were obtained in the production medium containing CB as nitrogen sources. In addition, this production medium cost only $0.152 to formulate, compared to yeast extract which required $1.692 to formulate. Thus, freeze-dried CB can be used as an alternative to yeast extract in large-scale production of LA.
Collapse
Affiliation(s)
- Romial Joel Ngouénam
- Laboratory of Microbiology Department of Microbiology Faculty of Science University of Yaoundé I, PO Box 812, Yaoundé, Cameroon
| | - Ghadir Nofal
- Enzyme and Microbial Technology Laboratory Department of Biosciences and Bioengineering Indian Institute of Technology Guwahati 781039, Guwahati, Assam, India
| | - Sanjukta Patra
- Enzyme and Microbial Technology Laboratory Department of Biosciences and Bioengineering Indian Institute of Technology Guwahati 781039, Guwahati, Assam, India
| | - Bilkissou Njapndounke
- Laboratory of Microbiology Department of Microbiology Faculty of Science University of Yaoundé I, PO Box 812, Yaoundé, Cameroon
| | - Edith Marius Foko Kouam
- Department of Physiological Sciences and Biochemistry Faculty of Medicine and Pharmaceutical Sciences University of Dschang, Dschang, Cameroon
| | - Pierre Marie Kaktcham
- Research Unit of Biochemistry Medicinal Plants Food Science and Nutrition (URBPMAN) Department of Biochemistry Faculty of Science University of Dschang, PO Box 67, Dschang, Cameroon
| | - François Zambou Ngoufack
- Department of Physiological Sciences and Biochemistry Faculty of Medicine and Pharmaceutical Sciences University of Dschang, Dschang, Cameroon
- Research Unit of Biochemistry Medicinal Plants Food Science and Nutrition (URBPMAN) Department of Biochemistry Faculty of Science University of Dschang, PO Box 67, Dschang, Cameroon
| |
Collapse
|
24
|
Pavlečić M, Novak M, Trontel A, Marđetko N, Tominac VP, Dobrinčić A, Kralj M, Šantek B. The Production of Water Kefir Drink with the Addition of Dried Figs in the Horizontal Rotating Tubular Bioreactor. Foods 2024; 13:2834. [PMID: 39272599 PMCID: PMC11395198 DOI: 10.3390/foods13172834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
Water kefir is a product obtained through the fermentation of sucrose solution, usually with some kind of dried fruit addition, by a combined culture of micro-organisms which are contained within kefir grains. Its popularity is rising because of the simplicity of its preparation and its anti-inflammatory, antioxidant, probiotic, and antibacterial effects. In this research, the water kefir production was studied in 250 mL jars, as well as in a horizontal rotating tubular bioreactor (HRTB). The first part of the research was conducted in smaller-scale (jars), wherein the optimal fruit and fruit portions were determined. These experiments included the addition of dried plums, apricots, raisins, dates, cranberries, papaya, and figs into 150 mL of initial sugar solution. Also, the optimal ratio between dried fruit and sucrose solution (0.2) at the beginning of the bioprocess was determined. The second part of this research was conducted using HRTB. The experiments in the HRTB were carried out by using different operational modes (constant or interval bioreactor rotation). A total of six different bioreactor setups were used, and in all experiments, figs were added at the beginning of the bioprocess (0.2 ratio between dried figs and sucrose solution). On the basis of the obtained results, the interval bioreactor rotation mode proved to be the better HRTB mode for the production of the water kefir, as the yield of the main fermentation products was higher, and their ratios were the most adequate for the quality of water kefir drink. The optimal results were obtained via HRTB setup 3/57 (3 min rotation, 57 min pause within 1 h) and rotation speed of 3 rpm. Furthermore, it is clear that HRTB has great potential for water kefir production due to the fact that HRTB experiments showed shorter fermentation times (at least five times) than water kefir production in jars.
Collapse
Affiliation(s)
- Mladen Pavlečić
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Mario Novak
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Antonija Trontel
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Nenad Marđetko
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Vlatka Petravić Tominac
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Ana Dobrinčić
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Monika Kralj
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Božidar Šantek
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| |
Collapse
|
25
|
Slomkowski S, Basinska T, Gadzinowski M, Mickiewicz D. Polyesters and Polyester Nano- and Microcarriers for Drug Delivery. Polymers (Basel) 2024; 16:2503. [PMID: 39274136 PMCID: PMC11397835 DOI: 10.3390/polym16172503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024] Open
Abstract
Many therapies require the transport of therapeutic compounds or substances encapsulated in carriers that reduce or, if possible, eliminate their direct contact with healthy tissue and components of the immune system, which may react to them as something foreign and dangerous to the patient's body. To date, inorganic nanoparticles, solid lipids, micelles and micellar aggregates, liposomes, polymeric micelles, and other polymer assemblies were tested as drug carriers. Specifically, using polymers creates a variety of options to prepare nanocarriers tailored to the chosen needs. Among polymers, aliphatic polyesters are a particularly important group. The review discusses controlled synthesis of poly(β-butyrolactone)s, polylactides, polyglycolide, poly(ε-caprolactone), and copolymers containing polymacrolactone units with double bonds suitable for preparation of functionalized nanoparticles. Discussed are syntheses of aliphatic polymers with controlled molar masses ranging from a few thousand to 106 and, in the case of polyesters with chiral centers in the chains, with controlled microstructure. The review presents also a collection of methods useful for the preparation of the drug-loaded nanocarriers: classical, developed and mastered more recently (e.g., nanoprecipitation), and forgotten but still with great potential (by the direct synthesis of the drug-loaded nanoparticles in the process comprising monomer and drug). The article describes also in-vitro and model in-vivo studies for the brain-targeted drugs based on polyester-containing nanocarriers and presents a brief update on the clinical studies and the polyester nanocarrier formulation approved for application in the clinics in South Korea for the treatment of breast, lung, and ovarian cancers.
Collapse
Affiliation(s)
- Stanislaw Slomkowski
- Division of Functional Polymers and Polymer Materials, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, H. Sienkiewicza 112, 90-363 Lodz, Poland
| | - Teresa Basinska
- Division of Functional Polymers and Polymer Materials, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, H. Sienkiewicza 112, 90-363 Lodz, Poland
| | - Mariusz Gadzinowski
- Division of Functional Polymers and Polymer Materials, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, H. Sienkiewicza 112, 90-363 Lodz, Poland
| | - Damian Mickiewicz
- Division of Functional Polymers and Polymer Materials, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, H. Sienkiewicza 112, 90-363 Lodz, Poland
| |
Collapse
|
26
|
Bachleitner S, Severinsen MM, Lutz G, Mattanovich D. Overexpression of the transcriptional activators Mxr1 and Mit1 enhances lactic acid production on methanol in Komagataellaphaffii. Metab Eng 2024; 85:133-144. [PMID: 39067842 DOI: 10.1016/j.ymben.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/07/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
A bio-based production of chemical building blocks from renewable, sustainable and non-food substrates is one key element to fight climate crisis. Lactic acid, one such chemical building block is currently produced from first generation feedstocks such as glucose and sucrose, both requiring land and water resources. In this study we aimed for lactic acid production from methanol by utilizing Komagataella phaffii as a production platform. Methanol, a single carbon source has potential as a sustainable substrate as technology allows (electro)chemical hydrogenation of CO2 for methanol production. Here we show that expression of the Lactiplantibacillus plantarum derived lactate dehydrogenase leads to L-lactic acid production in Komagataella phaffii, however, production resulted in low titers and cells subsequently consumed lactic acid again. Gene expression analysis of the methanol-utilizing genes AOX1, FDH1 and DAS2 showed that the presence of lactic acid downregulates transcription of the aforementioned genes, thereby repressing the methanol-utilizing pathway. For activation of the methanol-utilizing pathway in the presence of lactic acid, we constructed strains deficient in transcriptional repressors Nrg1, Mig1-1, and Mig1-2 as well as strains with overrepresentation of transcriptional activators Mxr1 and Mit1. While loss of transcriptional repressors had no significant impact on lactic acid production, overexpression of both transcriptional activators, MXR1 and MIT1, increased lactic acid titers from 4 g L-1 to 17 g L-1 in bioreactor cultivations.
Collapse
Affiliation(s)
- Simone Bachleitner
- BOKU University, Vienna, Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, 1190, Vienna, Austria
| | - Manja Mølgaard Severinsen
- BOKU University, Vienna, Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, 1190, Vienna, Austria
| | - Gregor Lutz
- BOKU University, Vienna, Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, 1190, Vienna, Austria
| | - Diethard Mattanovich
- BOKU University, Vienna, Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, 1190, Vienna, Austria.
| |
Collapse
|
27
|
Kumar V, Agrawal D, Bommareddy RR, Islam MA, Jacob S, Balan V, Singh V, Thakur VK, Navani NK, Scrutton NS. Arabinose as an overlooked sugar for microbial bioproduction of chemical building blocks. Crit Rev Biotechnol 2024; 44:1103-1120. [PMID: 37932016 DOI: 10.1080/07388551.2023.2270702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/06/2023] [Accepted: 09/19/2023] [Indexed: 11/08/2023]
Abstract
The circular economy is anticipated to bring a disruptive transformation in manufacturing technologies. Robust and industrial scalable microbial strains that can simultaneously assimilate and valorize multiple carbon substrates are highly desirable, as waste bioresources contain substantial amounts of renewable and fermentable carbon, which is diverse. Lignocellulosic biomass (LCB) is identified as an inexhaustible and alternative resource to reduce global dependence on oil. Glucose, xylose, and arabinose are the major monomeric sugars in LCB. However, primary research has focused on the use of glucose. On the other hand, the valorization of pentose sugars, xylose, and arabinose, has been mainly overlooked, despite possible assimilation by vast microbial communities. The present review highlights the research efforts that have explicitly proven the suitability of arabinose as the starting feedstock for producing various chemical building blocks via biological routes. It begins by analyzing the availability of various arabinose-rich biorenewable sources that can serve as potential feedstocks for biorefineries. The subsequent section outlines the current understanding of arabinose metabolism, biochemical routes prevalent in prokaryotic and eukaryotic systems, and possible products that can be derived from this sugar. Further, currently, exemplar products from arabinose, including arabitol, 2,3-butanediol, 1,2,3-butanetriol, ethanol, lactic acid, and xylitol are discussed, which have been produced by native and non-native microbial strains using metabolic engineering and genome editing tools. The final section deals with the challenges and obstacles associated with arabinose-based production, followed by concluding remarks and prospects.
Collapse
Affiliation(s)
- Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, Cranfield, UK
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Deepti Agrawal
- Biochemistry and Biotechnology Area, Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Dehradun, India
| | - Rajesh Reddy Bommareddy
- Department of Applied Sciences, Health and Life Sciences, Hub for Biotechnology in the Built Environment, Northumbria University, Newcastle upon Tyne, UK
| | - M Ahsanul Islam
- Department of Chemical Engineering, Loughborough University, Loughborough, UK
| | - Samuel Jacob
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, India
| | - Venkatesh Balan
- Department of Engineering Technology, Cullen College of Engineering, University of Houston, Sugar Land, TX, USA
| | - Vijai Singh
- Department of Biosciences, School of Sciences, Indrashil University, Rajpur, Mehsana, India
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Edinburgh, UK
| | - Naveen Kumar Navani
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Nigel S Scrutton
- EPSRC/BBSRC Future Biomanufacturing Research Hub, Manchester Institute of Biotechnology and School of Chemistry, The University of Manchester, Manchester, UK
| |
Collapse
|
28
|
Kosiorek K, Grzesiak J, Gawor J, Sałańska A, Aleksandrzak-Piekarczyk T. Polar-Region Soils as Novel Reservoir of Lactic Acid Bacteria from the Genus Carnobacterium. Int J Mol Sci 2024; 25:9444. [PMID: 39273391 PMCID: PMC11395011 DOI: 10.3390/ijms25179444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Polar habitats offer excellent sites to isolate unique bacterial strains due to their diverse physical, geochemical, and biological factors. We hypothesize that the unique environmental conditions of polar regions select for distinct strains of lactic acid bacteria (LAB) with novel biochemical properties. In this study, we characterized ten strains of psychrotrophic LAB isolated from hitherto poorly described sources-High Arctic and maritime Antarctic soils and soil-like materials, including ornithogenic soils, cryoconites, elephant seal colonies, and postglacial moraines. We evaluated the physiological and biochemical properties of the isolates. Based on 16S rRNA and housekeeping genes, the four LAB strains were assigned to three Carnobacterium species: C. alterfunditum, C. maltaromaticum, and C. jeotgali. The remaining strains may represent three new species of the Carnobacterium genus. All isolates were neutrophilic and halophilic psychrotrophs capable of fermenting various carbohydrates, organic acids, and alcohols. The identified metabolic properties of the isolated Carnobacterium strains suggest possible syntrophic interactions with other microorganisms in polar habitats. Some showed antimicrobial activity against food pathogens such as Listeria monocytogenes and human pathogens like Staphylococcus spp. Several isolates exhibited unique metabolic traits with potential biotechnological applications that could be more effectively exploited under less stringent technological conditions compared to thermophilic LAB strains, such as lower temperatures and reduced nutrient concentrations. Analysis of extrachromosomal genetic elements revealed 13 plasmids ranging from 4.5 to 79.5 kb in five isolates, featuring unique genetic structures and high levels of previously uncharacterized genes. This work is the first comprehensive study of the biochemical properties of both known and new Carnobacterium species and enhances our understanding of bacterial communities in harsh and highly selective polar soil ecosystems.
Collapse
Affiliation(s)
- Katarzyna Kosiorek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Jakub Grzesiak
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Jan Gawor
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Agnieszka Sałańska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | | |
Collapse
|
29
|
Gapp C, Dijamentiuk A, Mangavel C, Callon C, Theil S, Revol-Junelles AM, Chassard C, Borges F. Serial fermentation in milk generates functionally diverse community lineages with different degrees of structure stabilization. mSystems 2024; 9:e0044524. [PMID: 39041801 PMCID: PMC11334471 DOI: 10.1128/msystems.00445-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/26/2024] [Indexed: 07/24/2024] Open
Abstract
Microbial communities offer considerable potential for tackling environmental challenges by improving the functioning of ecosystems. Top-down community engineering is a promising strategy that could be used to obtain communities of desired function. However, the ecological factors that control the balance between community shaping and propagation are not well understood. Dairy backslopping, which consists of using part of the previous production to inoculate a new one, can be used as a model engineering approach to investigate community dynamics during serial propagations. In this study, 26 raw milk samples were serially propagated 6 times each, giving rise to 26 community lineages. Bacterial community structures were analyzed by metabarcoding, and acidification was recorded by pH monitoring. The results revealed that different types of community lineages could be obtained in terms of taxonomic composition and dynamics. Five lineages reached a repeatable community structure in a few propagation steps, with little variation between the final generations, giving rise to stable acidification kinetics. Moreover, these stabilized communities presented a high variability of structure and diverse acidification properties between community lineages. Besides, the other lineages were characterized by different levels of dynamics leading to parallel or divergent trajectories. The functional properties and dynamics of the communities were mainly related to the relative abundance and the taxonomic composition of lactic acid bacteria within the communities. These findings highlight that short-term schemes of serial fermentation can produce communities with a wide range of dynamics and that the balance between community shaping and propagation is intimately linked to community structure. IMPORTANCE Microbiome applications require approaches for shaping and propagating microbial communities. Shaping allows the selection of communities with desired taxonomic and functional properties, while propagation allows the production of the biomass required to inoculate the engineered communities in the target ecosystem. In top-down community engineering, where communities are obtained from a pool of mixed microorganisms by acting on environmental variables, a major challenge is to master the balance between shaping and propagation. However, the ecological factors that favor high dynamics of community structure and, conversely, those that favor stability during propagation are not well understood. In this work, short-term dairy backslopping was used to investigate the key role of the taxonomic composition and structure of bacterial communities on their dynamics. The results obtained open up interesting prospects for the biotechnological use of microbiomes, particularly in the field of dairy fermentation, to diversify approaches for injecting microbial biodiversity into cheesemaking processes.
Collapse
Affiliation(s)
- Chloé Gapp
- Université de Lorraine, LIBio, Nancy, France
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR 0545 Fromage, Aurillac, France
| | | | | | - Cécile Callon
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR 0545 Fromage, Aurillac, France
| | - Sébastien Theil
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR 0545 Fromage, Aurillac, France
| | | | - Christophe Chassard
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR 0545 Fromage, Aurillac, France
| | | |
Collapse
|
30
|
Costa S, Summa D, Radice M, Vertuani S, Manfredini S, Tamburini E. Lactic acid production by Lactobacillus casei using a sequence of seasonally available fruit wastes as sustainable carbon sources. Front Bioeng Biotechnol 2024; 12:1447278. [PMID: 39157446 PMCID: PMC11327009 DOI: 10.3389/fbioe.2024.1447278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/12/2024] [Indexed: 08/20/2024] Open
Abstract
Introduction: Lactic acid (LA) production from fossil resources is unsustainable owing to their depletion and environmental concerns. Thus, this study aimed to optimize the production of LA by Lactobacillus casei in a cultured medium containing fruit wastes (FWs) from agro-industries and second cheese whey (SCW) from dairy production, supplemented with maize steep liquor (MSL, 10% v/v) as the nitrogen source. Methods: The FWs were selected based on seasonal availability [early summer (early ripening peach), full summer (melon), late summer (pear), and early autumn (apple)] and SCW as annual waste. Small-scale preliminary tests as well as controlled fermenter experiments were performed to demonstrate the potential of using various food wastes as substrates for LA fermentation, except for apple pomace. Results and discussion: A 5-cycle repeated batch fermentation was conducted to optimize waste utilization and production, resulting in a total of 180.56 g/L of LA with a volumetric productivity of 0.88 g/L∙h. Subsequently, mechanical filtration and enzymatic hydrolysis were attempted. The total amount of LA produced in the 5-cycle repeated batch process was 397.1 g/L over 288 h, achieving a volumetric productivity of 1.32 g/L∙h. These findings suggest a promising biorefinery process for low-cost LA production from agri-food wastes.
Collapse
Affiliation(s)
- Stefania Costa
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Daniela Summa
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| | - Matteo Radice
- Faculty of Earth Sciences, Dep. Ciencia de La Tierra, Universidad Estatal Amazónica, Puyo, Ecuador
| | - Silvia Vertuani
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Stefano Manfredini
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Elena Tamburini
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
31
|
Garcia-Villatoro EL, Ufondu A, Callaway ES, Allred KF, Safe SH, Chapkin RS, Jayaraman A, Allred CD. Aryl hydrocarbon receptor activity in intestinal epithelial cells in the formation of colonic tertiary lymphoid tissues. Am J Physiol Gastrointest Liver Physiol 2024; 327:G154-G174. [PMID: 38563893 PMCID: PMC11427098 DOI: 10.1152/ajpgi.00274.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/12/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
After birth, the development of secondary lymphoid tissues (SLTs) in the colon is dependent on the expression of the aryl hydrocarbon receptor (AhR) in immune cells as a response to the availability of AhR ligands. However, little is known about how AhR activity from intestinal epithelial cells (IECs) may influence the development of tertiary lymphoid tissues (TLTs). As organized structures that develop at sites of inflammation or infection during adulthood, TLTs serve as localized centers of adaptive immune responses, and their presence has been associated with the resolution of inflammation and tumorigenesis in the colon. Here, we investigated the effect of the conditional loss of AhR activity in IECs in the formation and immune cell composition of TLTs in a model of acute inflammation. In females, loss of AhR activity in IECs reduced the formation of TLTs without significantly changing disease outcomes or immune cell composition within TLTs. In males lacking AhR expression in IECs, increased disease activity index, lower expression of functional-IEC genes, increased number of TLTs, increased T-cell density, and lower B- to T-cell ratio were observed. These findings may represent an unfavorable prognosis when exposed to dextran sodium sulfate (DSS)-induced epithelial damage compared with females. Sex and loss of IEC AhR also resulted in changes in microbial populations in the gut. Collectively, these data suggest that the formation of TLTs in the colon is influenced by sex and AhR expression in IECs.NEW & NOTEWORTHY This is the first research of its kind to demonstrate a clear connection between biological sex and the development of tertiary lymphoid tissues (TLT) in the colon. In addition, the research finds that in a preclinical model of inflammatory bowel disease, the expression of the aryl hydrocarbon receptor (AhR) influences the development of these structures in a sex-specific manner.
Collapse
Affiliation(s)
- E L Garcia-Villatoro
- Department of Nutrition, Texas A&M University, College Station, Texas, United States
| | - A Ufondu
- Department of Chemical Engineering, Texas A&M University, College Station, Texas, United States
| | - E S Callaway
- Department of Chemical Engineering, Texas A&M University, College Station, Texas, United States
| | - K F Allred
- Department of Nutrition, Texas A&M University, College Station, Texas, United States
- Department of Nutrition, University of North Carolina Greensboro, Greensboro, North Carolina, United States
| | - S H Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas, United States
| | - R S Chapkin
- Department of Nutrition, Texas A&M University, College Station, Texas, United States
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, Texas, United States
| | - A Jayaraman
- Department of Nutrition, Texas A&M University, College Station, Texas, United States
- Department of Chemical Engineering, Texas A&M University, College Station, Texas, United States
| | - C D Allred
- Department of Nutrition, Texas A&M University, College Station, Texas, United States
- Department of Nutrition, University of North Carolina Greensboro, Greensboro, North Carolina, United States
| |
Collapse
|
32
|
Pyo Y, Kwon KH, Jung YJ. Probiotic Functions in Fermented Foods: Anti-Viral, Immunomodulatory, and Anti-Cancer Benefits. Foods 2024; 13:2386. [PMID: 39123577 PMCID: PMC11311591 DOI: 10.3390/foods13152386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/30/2024] [Accepted: 07/05/2024] [Indexed: 08/12/2024] Open
Abstract
Fermented foods can provide many benefits to our health. These foods are created by the action of microorganisms and help support our digestive health and immune system. Fermented foods include yogurt, kimchi, pickles, kefir, beer, wine, and more. Fermented foods contain probiotics, lactic acid bacteria (LAB), yeast, organic acids, ethanol, or antimicrobial compounds, which help balance the gut microbiome and improve digestive health. Fermented foods can also benefit your overall health by increasing the diversity of your gut microbiome and reducing inflammation. By routinely consuming fermented foods with these benefits, we can continue to improve our health. Probiotics from fermented foods are beneficial strains of bacteria that are safe for human health and constitute an important component of human health, even for children and the elderly. Probiotics can have a positive impact on your health, especially by helping to balance your gut microbiome and improve digestive health. Probiotics can also boost your immune system and reduce inflammation, which can benefit your overall health. Probiotics, which can be consumed in the diet or in supplement form, are found in many different types of foods and beverages. Research is continuing to investigate the health effects of probiotics and how they can be utilized. The potential mechanisms of probiotics include anti-cancer activity, preventing and treating immune system-related diseases, and slowing the development of Alzheimer's disease and Huntington's disease. This is due to the gut-brain axis of probiotics, which provides a range of health benefits beyond the digestive and gastrointestinal systems. Probiotics reduce tumor necrosis factor-α and interleukins through the nuclear factor-kappa B and mitogen-activated protein kinase pathways. They have been shown to protect against colon cancer and colitis by interfering with the adhesion of harmful bacteria in the gut. This article is based on clinical and review studies identified in the electronic databases PubMed, Web of Science, Embase, and Google Scholar, and a systematic review of clinical studies was performed.
Collapse
Affiliation(s)
- Yeonhee Pyo
- Department of Beauty Cosmetics, College of Biomedical and Health Science, Konkuk University, Chungju 27478, Republic of Korea
| | - Ki Han Kwon
- College of General Education, Kookmin University, Seoul 02707, Republic of Korea;
| | - Yeon Ja Jung
- Department of Beauty Cosmetics, College of Biomedical and Health Science, Konkuk University, Chungju 27478, Republic of Korea
| |
Collapse
|
33
|
Kim S, Seo SU, Kweon MN. Gut microbiota-derived metabolites tune host homeostasis fate. Semin Immunopathol 2024; 46:2. [PMID: 38990345 PMCID: PMC11239740 DOI: 10.1007/s00281-024-01012-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/15/2024] [Indexed: 07/12/2024]
Abstract
The gut microbiota, housing trillions of microorganisms within the gastrointestinal tract, has emerged as a critical regulator of host health and homeostasis. Through complex metabolic interactions, these microorganisms produce a diverse range of metabolites that substantially impact various physiological processes within the host. This review aims to delve into the intricate relationships of gut microbiota-derived metabolites and their influence on the host homeostasis. We will explore how these metabolites affect crucial aspects of host physiology, including metabolism, mucosal integrity, and communication among gut tissues. Moreover, we will spotlight the potential therapeutic applications of targeting these metabolites to restore and sustain host equilibrium. Understanding the intricate interplay between gut microbiota and their metabolites is crucial for developing innovative strategies to promote wellbeing and improve outcomes of chronic diseases.
Collapse
Affiliation(s)
- Seungil Kim
- Mucosal Immunology Laboratory, Department of Convergence Medicine, University of Ulsan College of Medicine / Asan Medical Center, Seoul, Republic of Korea
- Digestive Diseases Research Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sang-Uk Seo
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Mi-Na Kweon
- Mucosal Immunology Laboratory, Department of Convergence Medicine, University of Ulsan College of Medicine / Asan Medical Center, Seoul, Republic of Korea.
- Digestive Diseases Research Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
34
|
Bhunjun C, Chen Y, Phukhamsakda C, Boekhout T, Groenewald J, McKenzie E, Francisco E, Frisvad J, Groenewald M, Hurdeal VG, Luangsa-ard J, Perrone G, Visagie C, Bai F, Błaszkowski J, Braun U, de Souza F, de Queiroz M, Dutta A, Gonkhom D, Goto B, Guarnaccia V, Hagen F, Houbraken J, Lachance M, Li J, Luo K, Magurno F, Mongkolsamrit S, Robert V, Roy N, Tibpromma S, Wanasinghe D, Wang D, Wei D, Zhao C, Aiphuk W, Ajayi-Oyetunde O, Arantes T, Araujo J, Begerow D, Bakhshi M, Barbosa R, Behrens F, Bensch K, Bezerra J, Bilański P, Bradley C, Bubner B, Burgess T, Buyck B, Čadež N, Cai L, Calaça F, Campbell L, Chaverri P, Chen Y, Chethana K, Coetzee B, Costa M, Chen Q, Custódio F, Dai Y, Damm U, Santiago A, De Miccolis Angelini R, Dijksterhuis J, Dissanayake A, Doilom M, Dong W, Álvarez-Duarte E, Fischer M, Gajanayake A, Gené J, Gomdola D, Gomes A, Hausner G, He M, Hou L, Iturrieta-González I, Jami F, Jankowiak R, Jayawardena R, Kandemir H, Kiss L, Kobmoo N, Kowalski T, Landi L, Lin C, Liu J, Liu X, Loizides M, Luangharn T, Maharachchikumbura S, Mkhwanazi GM, Manawasinghe I, Marin-Felix Y, McTaggart A, Moreau P, Morozova O, et alBhunjun C, Chen Y, Phukhamsakda C, Boekhout T, Groenewald J, McKenzie E, Francisco E, Frisvad J, Groenewald M, Hurdeal VG, Luangsa-ard J, Perrone G, Visagie C, Bai F, Błaszkowski J, Braun U, de Souza F, de Queiroz M, Dutta A, Gonkhom D, Goto B, Guarnaccia V, Hagen F, Houbraken J, Lachance M, Li J, Luo K, Magurno F, Mongkolsamrit S, Robert V, Roy N, Tibpromma S, Wanasinghe D, Wang D, Wei D, Zhao C, Aiphuk W, Ajayi-Oyetunde O, Arantes T, Araujo J, Begerow D, Bakhshi M, Barbosa R, Behrens F, Bensch K, Bezerra J, Bilański P, Bradley C, Bubner B, Burgess T, Buyck B, Čadež N, Cai L, Calaça F, Campbell L, Chaverri P, Chen Y, Chethana K, Coetzee B, Costa M, Chen Q, Custódio F, Dai Y, Damm U, Santiago A, De Miccolis Angelini R, Dijksterhuis J, Dissanayake A, Doilom M, Dong W, Álvarez-Duarte E, Fischer M, Gajanayake A, Gené J, Gomdola D, Gomes A, Hausner G, He M, Hou L, Iturrieta-González I, Jami F, Jankowiak R, Jayawardena R, Kandemir H, Kiss L, Kobmoo N, Kowalski T, Landi L, Lin C, Liu J, Liu X, Loizides M, Luangharn T, Maharachchikumbura S, Mkhwanazi GM, Manawasinghe I, Marin-Felix Y, McTaggart A, Moreau P, Morozova O, Mostert L, Osiewacz H, Pem D, Phookamsak R, Pollastro S, Pordel A, Poyntner C, Phillips A, Phonemany M, Promputtha I, Rathnayaka A, Rodrigues A, Romanazzi G, Rothmann L, Salgado-Salazar C, Sandoval-Denis M, Saupe S, Scholler M, Scott P, Shivas R, Silar P, Silva-Filho A, Souza-Motta C, Spies C, Stchigel A, Sterflinger K, Summerbell R, Svetasheva T, Takamatsu S, Theelen B, Theodoro R, Thines M, Thongklang N, Torres R, Turchetti B, van den Brule T, Wang X, Wartchow F, Welti S, Wijesinghe S, Wu F, Xu R, Yang Z, Yilmaz N, Yurkov A, Zhao L, Zhao R, Zhou N, Hyde K, Crous P. What are the 100 most cited fungal genera? Stud Mycol 2024; 108:1-411. [PMID: 39100921 PMCID: PMC11293126 DOI: 10.3114/sim.2024.108.01] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/17/2024] [Indexed: 08/06/2024] Open
Abstract
The global diversity of fungi has been estimated between 2 to 11 million species, of which only about 155 000 have been named. Most fungi are invisible to the unaided eye, but they represent a major component of biodiversity on our planet, and play essential ecological roles, supporting life as we know it. Although approximately 20 000 fungal genera are presently recognised, the ecology of most remains undetermined. Despite all this diversity, the mycological community actively researches some fungal genera more commonly than others. This poses an interesting question: why have some fungal genera impacted mycology and related fields more than others? To address this issue, we conducted a bibliometric analysis to identify the top 100 most cited fungal genera. A thorough database search of the Web of Science, Google Scholar, and PubMed was performed to establish which genera are most cited. The most cited 10 genera are Saccharomyces, Candida, Aspergillus, Fusarium, Penicillium, Trichoderma, Botrytis, Pichia, Cryptococcus and Alternaria. Case studies are presented for the 100 most cited genera with general background, notes on their ecology and economic significance and important research advances. This paper provides a historic overview of scientific research of these genera and the prospect for further research. Citation: Bhunjun CS, Chen YJ, Phukhamsakda C, Boekhout T, Groenewald JZ, McKenzie EHC, Francisco EC, Frisvad JC, Groenewald M, Hurdeal VG, Luangsa-ard J, Perrone G, Visagie CM, Bai FY, Błaszkowski J, Braun U, de Souza FA, de Queiroz MB, Dutta AK, Gonkhom D, Goto BT, Guarnaccia V, Hagen F, Houbraken J, Lachance MA, Li JJ, Luo KY, Magurno F, Mongkolsamrit S, Robert V, Roy N, Tibpromma S, Wanasinghe DN, Wang DQ, Wei DP, Zhao CL, Aiphuk W, Ajayi-Oyetunde O, Arantes TD, Araujo JC, Begerow D, Bakhshi M, Barbosa RN, Behrens FH, Bensch K, Bezerra JDP, Bilański P, Bradley CA, Bubner B, Burgess TI, Buyck B, Čadež N, Cai L, Calaça FJS, Campbell LJ, Chaverri P, Chen YY, Chethana KWT, Coetzee B, Costa MM, Chen Q, Custódio FA, Dai YC, Damm U, de Azevedo Santiago ALCM, De Miccolis Angelini RM, Dijksterhuis J, Dissanayake AJ, Doilom M, Dong W, Alvarez-Duarte E, Fischer M, Gajanayake AJ, Gené J, Gomdola D, Gomes AAM, Hausner G, He MQ, Hou L, Iturrieta-González I, Jami F, Jankowiak R, Jayawardena RS, Kandemir H, Kiss L, Kobmoo N, Kowalski T, Landi L, Lin CG, Liu JK, Liu XB, Loizides M, Luangharn T, Maharachchikumbura SSN, Makhathini Mkhwanazi GJ, Manawasinghe IS, Marin-Felix Y, McTaggart AR, Moreau PA, Morozova OV, Mostert L, Osiewacz HD, Pem D, Phookamsak R, Pollastro S, Pordel A, Poyntner C, Phillips AJL, Phonemany M, Promputtha I, Rathnayaka AR, Rodrigues AM, Romanazzi G, Rothmann L, Salgado-Salazar C, Sandoval-Denis M, Saupe SJ, Scholler M, Scott P, Shivas RG, Silar P, Souza-Motta CM, Silva-Filho AGS, Spies CFJ, Stchigel AM, Sterflinger K, Summerbell RC, Svetasheva TY, Takamatsu S, Theelen B, Theodoro RC, Thines M, Thongklang N, Torres R, Turchetti B, van den Brule T, Wang XW, Wartchow F, Welti S, Wijesinghe SN, Wu F, Xu R, Yang ZL, Yilmaz N, Yurkov A, Zhao L, Zhao RL, Zhou N, Hyde KD, Crous PW (2024). What are the 100 most cited fungal genera? Studies in Mycology 108: 1-411. doi: 10.3114/sim.2024.108.01.
Collapse
Affiliation(s)
- C.S. Bhunjun
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Y.J. Chen
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - C. Phukhamsakda
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - T. Boekhout
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- The Yeasts Foundation, Amsterdam, the Netherlands
| | - J.Z. Groenewald
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - E.H.C. McKenzie
- Landcare Research Manaaki Whenua, Private Bag 92170, Auckland, New Zealand
| | - E.C. Francisco
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Laboratório Especial de Micologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - J.C. Frisvad
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - V. G. Hurdeal
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - J. Luangsa-ard
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - G. Perrone
- Institute of Sciences of Food Production, National Research Council (CNR-ISPA), Via G. Amendola 122/O, 70126 Bari, Italy
| | - C.M. Visagie
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - F.Y. Bai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - J. Błaszkowski
- Laboratory of Plant Protection, Department of Shaping of Environment, West Pomeranian University of Technology in Szczecin, Słowackiego 17, PL-71434 Szczecin, Poland
| | - U. Braun
- Martin Luther University, Institute of Biology, Department of Geobotany and Botanical Garden, Neuwerk 21, 06099 Halle (Saale), Germany
| | - F.A. de Souza
- Núcleo de Biologia Aplicada, Embrapa Milho e Sorgo, Empresa Brasileira de Pesquisa Agropecuária, Rodovia MG 424 km 45, 35701–970, Sete Lagoas, MG, Brazil
| | - M.B. de Queiroz
- Programa de Pós-graduação em Sistemática e Evolução, Universidade Federal do Rio Grande do Norte, Campus Universitário, Natal-RN, 59078-970, Brazil
| | - A.K. Dutta
- Molecular & Applied Mycology Laboratory, Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Jalukbari, Guwahati - 781014, Assam, India
| | - D. Gonkhom
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - B.T. Goto
- Programa de Pós-graduação em Sistemática e Evolução, Universidade Federal do Rio Grande do Norte, Campus Universitário, Natal-RN, 59078-970, Brazil
| | - V. Guarnaccia
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Largo Braccini 2, 10095 Grugliasco, TO, Italy
| | - F. Hagen
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, the Netherlands
| | - J. Houbraken
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - M.A. Lachance
- Department of Biology, University of Western Ontario London, Ontario, Canada N6A 5B7
| | - J.J. Li
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - K.Y. Luo
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - F. Magurno
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland
| | - S. Mongkolsamrit
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - V. Robert
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - N. Roy
- Molecular & Applied Mycology Laboratory, Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Jalukbari, Guwahati - 781014, Assam, India
| | - S. Tibpromma
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, P.R. China
| | - D.N. Wanasinghe
- Center for Mountain Futures, Kunming Institute of Botany, Honghe 654400, Yunnan, China
| | - D.Q. Wang
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - D.P. Wei
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, P.R. China
| | - C.L. Zhao
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - W. Aiphuk
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - O. Ajayi-Oyetunde
- Syngenta Crop Protection, 410 S Swing Rd, Greensboro, NC. 27409, USA
| | - T.D. Arantes
- Laboratório de Micologia, Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, 74605-050, Goiânia, GO, Brazil
| | - J.C. Araujo
- Mykocosmos - Mycology and Science Communication, Rua JP 11 Qd. 18 Lote 13, Jd. Primavera 1ª etapa, Post Code 75.090-260, Anápolis, Goiás, Brazil
- Secretaria de Estado da Educação de Goiás (SEDUC/ GO), Quinta Avenida, Quadra 71, número 212, Setor Leste Vila Nova, Goiânia, Goiás, 74643-030, Brazil
| | - D. Begerow
- Organismic Botany and Mycology, Institute of Plant Sciences and Microbiology, Ohnhorststraße 18, 22609 Hamburg, Germany
| | - M. Bakhshi
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| | - R.N. Barbosa
- Micoteca URM-Department of Mycology Prof. Chaves Batista, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n, Center for Biosciences, University City, Recife, Pernambuco, Zip Code: 50670-901, Brazil
| | - F.H. Behrens
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, Geilweilerhof, D-76833 Siebeldingen, Germany
| | - K. Bensch
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - J.D.P. Bezerra
- Laboratório de Micologia, Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, 74605-050, Goiânia, GO, Brazil
| | - P. Bilański
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - C.A. Bradley
- Department of Plant Pathology, University of Kentucky, Princeton, KY 42445, USA
| | - B. Bubner
- Johan Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei, Institut für Forstgenetik, Eberswalder Chaussee 3a, 15377 Waldsieversdorf, Germany
| | - T.I. Burgess
- Harry Butler Institute, Murdoch University, Murdoch, 6150, Australia
| | - B. Buyck
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d’Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP 39, 75231, Paris cedex 05, France
| | - N. Čadež
- University of Ljubljana, Biotechnical Faculty, Food Science and Technology Department Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - L. Cai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - F.J.S. Calaça
- Mykocosmos - Mycology and Science Communication, Rua JP 11 Qd. 18 Lote 13, Jd. Primavera 1ª etapa, Post Code 75.090-260, Anápolis, Goiás, Brazil
- Secretaria de Estado da Educação de Goiás (SEDUC/ GO), Quinta Avenida, Quadra 71, número 212, Setor Leste Vila Nova, Goiânia, Goiás, 74643-030, Brazil
- Laboratório de Pesquisa em Ensino de Ciências (LabPEC), Centro de Pesquisas e Educação Científica, Universidade Estadual de Goiás, Campus Central (CEPEC/UEG), Anápolis, GO, 75132-903, Brazil
| | - L.J. Campbell
- School of Veterinary Medicine, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - P. Chaverri
- Centro de Investigaciones en Productos Naturales (CIPRONA) and Escuela de Biología, Universidad de Costa Rica, 11501-2060, San José, Costa Rica
- Department of Natural Sciences, Bowie State University, Bowie, Maryland, U.S.A
| | - Y.Y. Chen
- Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - K.W.T. Chethana
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - B. Coetzee
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
- School for Data Sciences and Computational Thinking, University of Stellenbosch, South Africa
| | - M.M. Costa
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - Q. Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - F.A. Custódio
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa-MG, Brazil
| | - Y.C. Dai
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - U. Damm
- Senckenberg Museum of Natural History Görlitz, PF 300 154, 02806 Görlitz, Germany
| | - A.L.C.M.A. Santiago
- Post-graduate course in the Biology of Fungi, Department of Mycology, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n, 50740-465, Recife, PE, Brazil
| | | | - J. Dijksterhuis
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - A.J. Dissanayake
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - M. Doilom
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
| | - W. Dong
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
| | - E. Álvarez-Duarte
- Mycology Unit, Microbiology and Mycology Program, Biomedical Sciences Institute, University of Chile, Chile
| | - M. Fischer
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, Geilweilerhof, D-76833 Siebeldingen, Germany
| | - A.J. Gajanayake
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - J. Gené
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut & IURESCAT, Universitat Rovira i Virgili (URV), Reus, Catalonia Spain
| | - D. Gomdola
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - A.A.M. Gomes
- Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Recife-PE, Brazil
| | - G. Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, MB, R3T 5N6
| | - M.Q. He
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - L. Hou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Space Nutrition and Food Engineering, China Astronaut Research and Training Center, Beijing, 100094, China
| | - I. Iturrieta-González
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut & IURESCAT, Universitat Rovira i Virgili (URV), Reus, Catalonia Spain
- Department of Preclinic Sciences, Medicine Faculty, Laboratory of Infectology and Clinical Immunology, Center of Excellence in Translational Medicine-Scientific and Technological Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco 4810296, Chile
| | - F. Jami
- Plant Health and Protection, Agricultural Research Council, Pretoria, South Africa
| | - R. Jankowiak
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - R.S. Jayawardena
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, South Korea
| | - H. Kandemir
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - L. Kiss
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, QLD 4350 Toowoomba, Australia
- Centre for Research and Development, Eszterházy Károly Catholic University, H-3300 Eger, Hungary
| | - N. Kobmoo
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - T. Kowalski
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - L. Landi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - C.G. Lin
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - J.K. Liu
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - X.B. Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, P.R. China
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Temesvári krt. 62, Szeged H-6726, Hungary
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | | | - T. Luangharn
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - S.S.N. Maharachchikumbura
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - G.J. Makhathini Mkhwanazi
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - I.S. Manawasinghe
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
| | - Y. Marin-Felix
- Department Microbial Drugs, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstrasse 7, 38106, Braunschweig, Germany
| | - A.R. McTaggart
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Ecosciences Precinct, Dutton Park 4102, Queensland, Australia
| | - P.A. Moreau
- Univ. Lille, ULR 4515 - LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000 Lille, France
| | - O.V. Morozova
- Komarov Botanical Institute of the Russian Academy of Sciences, 2, Prof. Popov Str., 197376 Saint Petersburg, Russia
- Tula State Lev Tolstoy Pedagogical University, 125, Lenin av., 300026 Tula, Russia
| | - L. Mostert
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - H.D. Osiewacz
- Faculty for Biosciences, Institute for Molecular Biosciences, Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt/Main, Germany
| | - D. Pem
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - R. Phookamsak
- Center for Mountain Futures, Kunming Institute of Botany, Honghe 654400, Yunnan, China
| | - S. Pollastro
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - A. Pordel
- Plant Protection Research Department, Baluchestan Agricultural and Natural Resources Research and Education Center, AREEO, Iranshahr, Iran
| | - C. Poyntner
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria
| | - A.J.L. Phillips
- Faculdade de Ciências, Biosystems and Integrative Sciences Institute (BioISI), Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - M. Phonemany
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - I. Promputtha
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - A.R. Rathnayaka
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - A.M. Rodrigues
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo, 04023062, Brazil
| | - G. Romanazzi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - L. Rothmann
- Plant Pathology, Department of Plant Sciences, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa
| | - C. Salgado-Salazar
- Mycology and Nematology Genetic Diversity and Biology Laboratory, U.S. Department of Agriculture, Agriculture Research Service (USDA-ARS), 10300 Baltimore Avenue, Beltsville MD, 20705, USA
| | - M. Sandoval-Denis
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - S.J. Saupe
- Institut de Biochimie et de Génétique Cellulaire, UMR 5095 CNRS Université de Bordeaux, 1 rue Camille Saint Saëns, 33077 Bordeaux cedex, France
| | - M. Scholler
- Staatliches Museum für Naturkunde Karlsruhe, Erbprinzenstraße 13, 76133 Karlsruhe, Germany
| | - P. Scott
- Harry Butler Institute, Murdoch University, Murdoch, 6150, Australia
- Sustainability and Biosecurity, Department of Primary Industries and Regional Development, Perth WA 6000, Australia
| | - R.G. Shivas
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, QLD 4350 Toowoomba, Australia
| | - P. Silar
- Laboratoire Interdisciplinaire des Energies de Demain, Université de Paris Cité, 75205 Paris Cedex, France
| | - A.G.S. Silva-Filho
- IFungiLab, Departamento de Ciências e Matemática (DCM), Instituto Federal de Educação, Ciência e Tecnologia de São Paulo (IFSP), São Paulo, BraziI
| | - C.M. Souza-Motta
- Micoteca URM-Department of Mycology Prof. Chaves Batista, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n, Center for Biosciences, University City, Recife, Pernambuco, Zip Code: 50670-901, Brazil
| | - C.F.J. Spies
- Agricultural Research Council - Plant Health and Protection, Private Bag X5017, Stellenbosch, 7599, South Africa
| | - A.M. Stchigel
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut & IURESCAT, Universitat Rovira i Virgili (URV), Reus, Catalonia Spain
| | - K. Sterflinger
- Institute of Natural Sciences and Technology in the Arts (INTK), Academy of Fine Arts Vienna, Augasse 2–6, 1090, Vienna, Austria
| | - R.C. Summerbell
- Sporometrics, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - T.Y. Svetasheva
- Tula State Lev Tolstoy Pedagogical University, 125, Lenin av., 300026 Tula, Russia
| | - S. Takamatsu
- Mie University, Graduate School, Department of Bioresources, 1577 Kurima-Machiya, Tsu 514-8507, Japan
| | - B. Theelen
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - R.C. Theodoro
- Laboratório de Micologia Médica, Instituto de Medicina Tropical do RN, Universidade Federal do Rio Grande do Norte, 59078-900, Natal, RN, Brazil
| | - M. Thines
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325 Frankfurt Am Main, Germany
| | - N. Thongklang
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - R. Torres
- IRTA, Postharvest Programme, Edifici Fruitcentre, Parc Agrobiotech de Lleida, Parc de Gardeny, 25003, Lleida, Catalonia, Spain
| | - B. Turchetti
- Department of Agricultural, Food and Environmental Sciences and DBVPG Industrial Yeasts Collection, University of Perugia, Italy
| | - T. van den Brule
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- TIFN, P.O. Box 557, 6700 AN Wageningen, the Netherlands
| | - X.W. Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - F. Wartchow
- Departamento de Sistemática e Ecologia, Universidade Federal da Paraíba, Paraiba, João Pessoa, Brazil
| | - S. Welti
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstrasse 7, 38106, Braunschweig, Germany
| | - S.N. Wijesinghe
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - F. Wu
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - R. Xu
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Jilin Agricultural University, Changchun 130118, China
| | - Z.L. Yang
- Syngenta Crop Protection, 410 S Swing Rd, Greensboro, NC. 27409, USA
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - N. Yilmaz
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - A. Yurkov
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - L. Zhao
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - R.L. Zhao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - N. Zhou
- Department of Biological Sciences and Biotechnology, Botswana University of Science and Technology, Private Bag, 16, Palapye, Botswana
| | - K.D. Hyde
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
- Key Laboratory of Economic Plants and Biotechnology and the Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - P.W. Crous
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht
| |
Collapse
|
35
|
Erem E, Kilic-Akyilmaz M. The role of fermentation with lactic acid bacteria in quality and health effects of plant-based dairy analogues. Compr Rev Food Sci Food Saf 2024; 23:e13402. [PMID: 39030804 DOI: 10.1111/1541-4337.13402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/13/2024] [Accepted: 06/15/2024] [Indexed: 07/22/2024]
Abstract
The modern food industry is undergoing a rapid change with the trend of production of plant-based food products that are more sustainable and have less impact on nature. Plant-based dairy analogues have been increasingly popular due to their suitability for individuals with milk protein allergy or lactose intolerance and those preferring a plant-based diet. Nevertheless, plant-based products still have insufficient nutritional quality, undesirable structure, and earthy, green, and bean-like flavor compared to dairy products. In addition, most plant-based foods contain lesser amounts of essential nutrients, antinutrients limiting the bioavailability of some nutrients, and allergenic proteins. Novel processing technologies can be applied to have a homogeneous and stable structure. On the other hand, fermentation of plant-based matrix with lactic acid bacteria can provide a solution to most of these problems. Additional nutrients can be produced and antinutrients can be degraded by bacterial metabolism, thereby increasing nutritional value. Allergenic proteins can be hydrolyzed reducing their immunoreactivity. In addition, fermentation has been found to reduce undesired flavors and to enhance various bioactivities of plant foods. However, the main challenge in the production of fermented plant-based dairy analogues is to mimic familiar dairy-like flavors by producing the major flavor compounds other than organic acids, yielding a flavor profile similar to those of fermented dairy products. Further studies are required for the improvement of the flavor of fermented plant-based dairy analogues through the selection of special microbial cultures and formulations.
Collapse
Affiliation(s)
- Erenay Erem
- Department of Food Engineering, Istanbul Technical University, Istanbul, Türkiye
| | - Meral Kilic-Akyilmaz
- Department of Food Engineering, Istanbul Technical University, Istanbul, Türkiye
| |
Collapse
|
36
|
Karabagias VK, Giannakas AE, Andritsos ND, Leontiou AA, Moschovas D, Karydis-Messinis A, Avgeropoulos A, Zafeiropoulos NE, Proestos C, Salmas CE. Shelf Life of Minced Pork in Vacuum-Adsorbed Carvacrol@Natural Zeolite Nanohybrids and Poly-Lactic Acid/Triethyl Citrate/Carvacrol@Natural Zeolite Self-Healable Active Packaging Films. Antioxidants (Basel) 2024; 13:776. [PMID: 39061844 PMCID: PMC11274301 DOI: 10.3390/antiox13070776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Enhancing food preservation and safety using environmentally friendly techniques is urgently needed. The aim of this study was to develop food packaging films using biodegradable poly-L-lactic acid (PLA) as biopolymer and carvacrol (CV) essential oil as an antioxidant/antibacterial agent for the replacement of chemical additives. CV was adsorbed onto natural zeolite (NZ) via a new vacuum adsorption method. The novel nanohybrid CV@NZ with a high CV content contained 61.7%wt. CV. Pure NZ and the CV@NZ nanohybrid were successfully dispersed in a PLA/triethyl citrate (TEC) matrix via a melt extrusion process to obtain PLA/TEC/xCV@NZ and PLA/TEC/xNZ nanocomposite films with 5, 10, and 15%wt CV@NZ or pure NZ content. The optimum resulting film PLA/TEC/10CV@NZ contained 10%wt. CV@NZ and exhibited self-healable properties, 22% higher tensile strength, 40% higher elongation at break, 45% higher water barrier, and 40% higher oxygen barrier than the pure PLA/TEC matrix. This film also had a high CV release content, high CV control release rate as well as 2.15 mg/L half maximal effective concentration (EC50) and 0.27 mm and 0.16 mm inhibition zones against Staphylococcus aureus and Salmonella enterica ssp. enterica serovar Typhimurium, respectively. This film not only succeeded in extending the shelf life of fresh minced pork, as shown by the total viable count measurements in four days but also prevented the lipid oxidation of fresh minced pork and provided higher nutritional values of the minced meat, as revealed by the heme iron content determination. It also had much better and acceptable sensory characteristics than the commercial packaging paper.
Collapse
Affiliation(s)
- Vassilios K. Karabagias
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece; (V.K.K.); (N.D.A.); (A.A.L.)
| | - Aris E. Giannakas
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece; (V.K.K.); (N.D.A.); (A.A.L.)
| | - Nikolaos D. Andritsos
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece; (V.K.K.); (N.D.A.); (A.A.L.)
| | - Areti A. Leontiou
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece; (V.K.K.); (N.D.A.); (A.A.L.)
| | - Dimitrios Moschovas
- Department of Material Science and Engineering, University of Ioannina, 45110 Ioannina, Greece; (D.M.); (A.K.-M.); (A.A.); (N.E.Z.)
| | - Andreas Karydis-Messinis
- Department of Material Science and Engineering, University of Ioannina, 45110 Ioannina, Greece; (D.M.); (A.K.-M.); (A.A.); (N.E.Z.)
| | - Apostolos Avgeropoulos
- Department of Material Science and Engineering, University of Ioannina, 45110 Ioannina, Greece; (D.M.); (A.K.-M.); (A.A.); (N.E.Z.)
| | - Nikolaos E. Zafeiropoulos
- Department of Material Science and Engineering, University of Ioannina, 45110 Ioannina, Greece; (D.M.); (A.K.-M.); (A.A.); (N.E.Z.)
| | - Charalampos Proestos
- Laboratory of Food Chemistry, Department of Chemistry, National and Kapodistrian University of Athens Zografou, 15771 Athens, Greece;
| | - Constantinos E. Salmas
- Department of Material Science and Engineering, University of Ioannina, 45110 Ioannina, Greece; (D.M.); (A.K.-M.); (A.A.); (N.E.Z.)
| |
Collapse
|
37
|
Todorov SD, Alves VF, Popov I, Weeks R, Pinto UM, Petrov N, Ivanova IV, Chikindas ML. Antimicrobial Compounds in Wine. Probiotics Antimicrob Proteins 2024; 16:763-783. [PMID: 37855943 DOI: 10.1007/s12602-023-10177-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2023] [Indexed: 10/20/2023]
Abstract
Ipsum vinum est potestas et possession (wine itself is power and possession). Wine is a complex system that triggers multisensory cognitive stimuli. Wine and its consumption are thoroughly intertwined with the development of human society. The beverage was appreciated in many ancient mythologies and plays an essential part in Christianity and rituals to this day. Wine has been said to enlighten and inspire artists and has even been prohibited by law and some religions, but has nevertheless played a role in human civilizations since the beginning. Winemaking is also a prospering and economically important industry and a longtime symbol of status and luxury. In winemaking, the formation of the final product is influenced by several factors that contribute to the chemical and sensory complexity often associated with quality vintages. Factors such as terroir, climatic conditions, variety of the grape, all aspects of the winemaking process to the smallest details, including metabolic processes carried out by yeast and malolactic bacteria, and the conditions for the maturation and storage of the final product, up to, and even beyond the point of deciding to open the bottle and enjoy the wine. In conjunction with the empiric and scientific process of winemaking, different molecules with antibacterial activity can be identified in wine during the production process, and several of them are clearly present in the final product. Some of these antibacterial components are phytochemicals, such as flavonoids and phenolic compounds, that may be delivered to the final product (wine) as a part of the grape, a variety of potential additive compounds, or from the oak barrels or clay amphoras used during the maturation process. Others are produced by yeasts and malolactic bacteria and play a role not only in the moderation of the fermentation process but contributing to the microbiological safety and beneficial properties spectra of the final product. Lactic acid bacteria, responsible for conducting malolactic fermentation, contribute to the final balance of the wine but are also directly involved in the production of different compounds exhibiting antibacterial activity. Some examples of these compounds include bacteriocins (antibacterial peptides), diacetyl, organic acids, reuterin, hydrogen peroxide, and carbon dioxide. Major aspects of these different beneficial metabolites are the subject of discussion in this review with the aim of highlighting their beneficial functions.
Collapse
Affiliation(s)
- Svetoslav Dimitrov Todorov
- ProBacLab, Laboratório de Microbiologia de Alimentos, Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, 05508-000, São Paulo, SP, Brazil.
- Food Research Center (FoRC), Laboratório de Microbiologia de Alimentos, Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, 05508-000, São Paulo, SP, Brazil.
- CISAS- Center for Research and Development in Agrifood Systems and Sustainability, Instituto Politécnico de Viana do Castelo, 4900-347, Viana do Castelo, Portugal.
| | - Virginia Farias Alves
- Faculdade de Farmácia, Universidade Federal de Goiás (UFG), 74605-170, Goiânia, GO, Brazil
| | - Igor Popov
- Center for Agrobiotechnology, Don State Technical University, 344000, Gagarina Sq., 1, Rostov-On-Don, Russia
- Division of Immunobiology and Biomedicine, Center of Genetics and Life Sciences, Sirius University of Science and Technology, Olimpijskij av., 1, 354340, Federal Territory Sirius, Russia
| | - Richard Weeks
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, 65 Dudley Road, 08901, New Brunswick, NJ, USA
| | - Uelinton Manoel Pinto
- Food Research Center (FoRC), Laboratório de Microbiologia de Alimentos, Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, 05508-000, São Paulo, SP, Brazil
| | - Nikolay Petrov
- Laboratory of Virology, New Bulgarian University, Montevideo str. 21, 1618, Sofia, Bulgaria
| | - Iskra Vitanova Ivanova
- Department of General and Industrial Microbiology, Faculty of Biology, Sofia University St. Kliment Ohridski, 8, Bul. Dragan Tzankov, 1164, Sofia, Bulgaria
| | - Michael L Chikindas
- Center for Agrobiotechnology, Don State Technical University, 344000, Gagarina Sq., 1, Rostov-On-Don, Russia
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, 65 Dudley Road, 08901, New Brunswick, NJ, USA
- Department of General Hygiene, I.M. Sechenov First Moscow State Medical University, 119991, Moscow, Russia
| |
Collapse
|
38
|
Frohwitter J, Behrendt G, Klamt S, Bettenbrock K. A new Zymomonas mobilis platform strain for the efficient production of chemicals. Microb Cell Fact 2024; 23:143. [PMID: 38773442 PMCID: PMC11110354 DOI: 10.1186/s12934-024-02419-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/07/2024] [Indexed: 05/23/2024] Open
Abstract
BACKGROUND Zymomonas mobilis is well known for its outstanding ability to produce ethanol with both high specific productivity and with high yield close to the theoretical maximum. The key enzyme in the ethanol production pathway is the pyruvate decarboxylase (PDC) which is converting pyruvate to acetaldehyde. Since it is widely considered that its gene pdc is essential, metabolic engineering strategies aiming to produce other compounds derived from pyruvate need to find ways to reduce PDC activity. RESULTS Here, we present a new platform strain (sGB027) of Z. mobilis in which the native promoter of pdc was replaced with the IPTG-inducible PT7A1, allowing for a controllable expression of pdc. Expression of lactate dehydrogenase from E. coli in sGB027 allowed the production of D-lactate with, to the best of our knowledge, the highest reported specific productivity of any microbial lactate producer as well as with the highest reported lactate yield for Z. mobilis so far. Additionally, by expressing the L-alanine dehydrogenase of Geobacillus stearothermophilus in sGB027 we produced L-alanine, further demonstrating the potential of sGB027 as a base for the production of compounds other than ethanol. CONCLUSION We demonstrated that our new platform strain can be an excellent starting point for the efficient production of various compounds derived from pyruvate with Z. mobilis and can thus enhance the establishment of this organism as a workhorse for biotechnological production processes.
Collapse
Affiliation(s)
- Jonas Frohwitter
- Analysis and Redesign of Biological Networks, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106, Magdeburg, Germany
| | - Gerrich Behrendt
- Analysis and Redesign of Biological Networks, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106, Magdeburg, Germany
| | - Steffen Klamt
- Analysis and Redesign of Biological Networks, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106, Magdeburg, Germany
| | - Katja Bettenbrock
- Analysis and Redesign of Biological Networks, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106, Magdeburg, Germany.
| |
Collapse
|
39
|
Lecomte M, Cao W, Aubert J, Sherman DJ, Falentin H, Frioux C, Labarthe S. Revealing the dynamics and mechanisms of bacterial interactions in cheese production with metabolic modelling. Metab Eng 2024; 83:24-38. [PMID: 38460783 DOI: 10.1016/j.ymben.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/29/2023] [Accepted: 02/22/2024] [Indexed: 03/11/2024]
Abstract
Cheese taste and flavour properties result from complex metabolic processes occurring in microbial communities. A deeper understanding of such mechanisms makes it possible to improve both industrial production processes and end-product quality through the design of microbial consortia. In this work, we caracterise the metabolism of a three-species community consisting of Lactococcus lactis, Lactobacillus plantarum and Propionibacterium freudenreichii during a seven-week cheese production process. Using genome-scale metabolic models and omics data integration, we modeled and calibrated individual dynamics using monoculture experiments, and coupled these models to capture the metabolism of the community. This model accurately predicts the dynamics of the community, enlightening the contribution of each microbial species to organoleptic compound production. Further metabolic exploration revealed additional possible interactions between the bacterial species. This work provides a methodological framework for the prediction of community-wide metabolism and highlights the added value of dynamic metabolic modeling for the comprehension of fermented food processes.
Collapse
Affiliation(s)
- Maxime Lecomte
- Univ. Rennes, INRAE, STLO, F-35042, Rennes, France; Inria, Univ. Bordeaux, INRAE, F-33400, Talence, France
| | - Wenfan Cao
- Univ. Rennes, INRAE, STLO, F-35042, Rennes, France
| | - Julie Aubert
- Univ. Paris-Saclay, AgroParisTech, INRAE, UMR MIA Paris-Saclay, 91120, Palaiseau, France
| | | | | | | | - Simon Labarthe
- Inria, Univ. Bordeaux, INRAE, F-33400, Talence, France; Univ. Bordeaux, INRAE, BIOGECO, Cestas, France.
| |
Collapse
|
40
|
Ren F, Liu M, Tan B. Bacterial diversity and metabolites: Exploring correlations with preservative properties in soybean pastes. J Food Sci 2024; 89:2397-2409. [PMID: 38391005 DOI: 10.1111/1750-3841.16982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/24/2023] [Accepted: 01/30/2024] [Indexed: 02/24/2024]
Abstract
Soybean paste, a traditional fermented condiment, exhibits distinct quality attributes by its microbial communities. This study employed Illumina sequencing and LC-MS to scrutinize the bacterial biota and metabolome of highly preserved (HP) and easily spoiled (ES) soybean pastes. Firmicutes were prevalent in both pastes, with HP showcasing greater microbial α-diversity compared to ES pastes. Bacillus predominated in HP pastes, whereas Lactobacillus was most abundant in ES pastes. Significant metabolic differences were observed between HP and ES samples in lipids, peptides, nucleic acids, secondary metabolite biosynthesis, protein digestion, amino acid metabolism, inflammatory mediator regulation, and neomycin, kanamycin, and gentamicin biosynthesis. Lactobacillus exhibited positive associations with daidzein and 3,4,5-trihydroxypentanoylcarnitine, whereas Bacillus showed negative correlations with 1,n6-ethenoadenosine, 2-deoxy-2,3-dehydro-n-acetyl-neuraminic acid, 3,4,5-trihydroxypentanoyl carnitine, and fructosyl valine. These findings highlight the collaborative impact of bacterial communities and metabolites on soybean paste quality attributes. This research enhances our comprehension of preservation mechanisms in fermented foods, particularly soybean pastes. PRACTICAL APPLICATION: The investigation would provide insights into the soybean pastes fermentation, safe and quality control methods, bio-preservative development strategies, and so on of soybean pastes for related studies and the consumers. Bacteria and their metabolites could be used to optimize the fermentation processes for the preservative and safe regulations.
Collapse
Affiliation(s)
- Fei Ren
- Academy of National Food and Strategic Reserves Administration, Beijing, China
| | - Ming Liu
- Academy of National Food and Strategic Reserves Administration, Beijing, China
| | - Bin Tan
- Academy of National Food and Strategic Reserves Administration, Beijing, China
| |
Collapse
|
41
|
Yadav M, Kumar S, Parsana Y, Chauhan N, Tyagi N, Mondal G, Samanta AK. Non-encapsulated, encapsulated, and lyophilized probiotic Limosilactobacillus reuteri SW23 influenced the growth and gut health in calves. Sci Rep 2024; 14:7657. [PMID: 38561353 PMCID: PMC10984972 DOI: 10.1038/s41598-024-57353-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
The present study was conducted to assess the impact of non-encapsulated, air-dried microencapsulated, and lyophilized microencapsulated probiotics in indigenous cattle calves (Bos indicus). Twenty-four (5-7 days old) indigenous cattle calves were selected and assigned into four groups, with six calves in each as follows: control (CON), fed milk and basal diet alone, and treatment groups supplemented with non-encapsulated (NEC), air-dried microencapsulated (AEC) and lyophilized microencapsulated (LEC) probiotic L. reuteri SW23 at 108 CFU/head/day in skim milk as a carrier provided for 60 days. The animals were divided into four groups, adopting a complete randomized design, and the effects were considered significant at p ≤ 0.05. Probiotics supplementation increased (p < 0.05) body weight gain (kg), average daily gain, and structural growth measurements in calves of all treatment groups. Dry matter intake (g/d), feed conversion efficiency, and fecal counts of Lactobacilli and Bifidobacteria were also increased in the treatment groups compared to CON. The fecal consistency index was highest in CON (0.70 ± 0.03), followed by NEC (0.68 ± 0.01), AEC (0.66 ± 0.02), and LEC (0.65 ± 0.02). Fecal pH and ammonia levels were reduced (p < 0.05) in the probiotic-fed groups compared to CON, with a concomitant increase in fecal lactate, acetate, and propionate levels. In addition, cell-mediated and humoral immunity were significantly increased in supplemented groups as compared to CON. Thus, it can be concluded that supplementation of the probiotics in microencapsulated/non-encapsulated forms to neonatal calves had a variety of positive effects on their health, including better performance, improved gut health, and a lower fecal consistency index. Moreover, among all supplemented groups, the lyophilized microencapsulated group outperformed air-dried microencapsulated and non-microencapsulated groups in terms of ADG, DMI, and gut health.
Collapse
Affiliation(s)
- Manish Yadav
- Division of Animal Nutrition, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Sachin Kumar
- Division of Animal Nutrition, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India.
| | - Yash Parsana
- Division of Animal Nutrition, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Nutan Chauhan
- Division of Animal Nutrition, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Nitin Tyagi
- Division of Animal Nutrition, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Goutam Mondal
- Division of Animal Nutrition, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Ashis Kumar Samanta
- Division of Animal Nutrition, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| |
Collapse
|
42
|
Ngamsamer C, Muangnoi C, Tongkhao K, Sae-Tan S, Treesuwan K, Sirivarasai J. Potential Health Benefits of Fermented Vegetables with Additions of Lacticaseibacillus rhamnosus GG and Polyphenol Vitexin Based on Their Antioxidant Properties and Prohealth Profiles. Foods 2024; 13:982. [PMID: 38611288 PMCID: PMC11011267 DOI: 10.3390/foods13070982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Fermented vegetables are increasingly being recognized as an important dietary component, particularly of plant-based diets, to achieve a sustainable healthy gut because of their microbial diversity and antioxidant properties. However, the functional relevance of fermented vegetables varies based on the raw ingredients used and nutrient supplementation. Therefore, in the present study, we investigated the microbial diversity and antioxidant activity of three formulas of fermented vegetables (standard, supplemented with Lacticaseibacillus rhamnosus GG, and supplemented with polyphenol vitexin) at days 0 and 15. The bacterial community profiles were determined through 16S rRNA sequencing analysis, and antioxidant activity was analyzed using 2,2-diphenyl-1-picrylhydrazyl and by measuring the oxygen radical absorbance capacity, the ferric reducing ability of plasma, and the total phenolic content. The results confirm microbial diversity in the taxonomic composition of the different formulas of fermented vegetables, with different bacteria predominating, particularly lactic acid bacteria including the genera Weissella, Pedicocccus, Leuconostoc, and Lactobacillus. Spearman's correlation analysis showed significant differences in the specific bacteria present in the different formulas of fermented vegetables that conferred antioxidant capacity. Our findings show that supplementation with L. rhamnosus GG and polyphenol vitexin may effectively enhance the functional relevance of foods by promoting cellular protection against oxidative stress.
Collapse
Affiliation(s)
- Chanya Ngamsamer
- Doctoral Program in Nutrition, Faculty of Medicine Ramathibodi Hospital and Institute of Nutrition, Mahidol University, Bangkok 10400, Thailand;
| | | | - Kullanart Tongkhao
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand; (K.T.); (S.S.-T.)
| | - Sudathip Sae-Tan
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand; (K.T.); (S.S.-T.)
| | - Khemmapas Treesuwan
- Institute of Food Research and Product Development, Kasetsart University, Bangkok 10900, Thailand;
| | - Jintana Sirivarasai
- Nutrition Division, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
43
|
Moore KH, Ognenovska S, Chua XY, Chen Z, Hicks C, El-Assaad F, te West N, El-Omar E. Change in microbiota profile after vaginal estriol cream in postmenopausal women with stress incontinence. Front Microbiol 2024; 15:1302819. [PMID: 38505551 PMCID: PMC10948564 DOI: 10.3389/fmicb.2024.1302819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/19/2024] [Indexed: 03/21/2024] Open
Abstract
Introduction Vaginal estrogen is a treatment for genitourinary symptoms of menopause (GSM), which comprises vaginal atrophy and urinary dysfunction, including incontinence. Previous studies show that estrogen therapy promotes lactobacilli abundance and is associated with reduced GSM symptoms, including reduction of stress incontinence. However, detailed longitudinal studies that characterize how the microbiome changes in response to estrogen are scarce. We aimed to compare the vaginal microbiota of postmenopausal women, before and 12 weeks after vaginal estrogen cream. Methods A total of 44 paired samples from 22 postmenopausal women with vaginal atrophy and stress incontinence were collected pre-vaginal estrogens and were compared to 12 weeks post-vaginal estrogen. Microbiota was characterized by 16S rRNA amplicon sequencing and biodiversity was investigated by comparing the alpha- and beta-diversity and potential markers were identified using differential abundance analysis. Results Vaginal estrogen treatment was associated with a reduction in vaginal pH and corresponded with a significant reduction in alpha diversity of the microbiota. Healthy vaginal community state type was associated with lower mean pH 4.89 (SD = 0.6), in contrast to dysbiotic state which had a higher mean pH 6.4 (SD = 0.74). Women with lactobacilli dominant community pre-treatment, showed stable microbiota and minimal change in their pH. Women with lactobacilli deficient microbiome pre-treatment improved markedly (p = 0.004) with decrease in pH -1.31 and change to heathier community state types. Conclusion In postmenopausal women with stress incontinence, vaginal estrogen promotes Lactobacillus and Bifidobacterium growth and lowers vaginal pH. Maximum response is seen in those with a dysbiotic vaginal microbiota pre-treatment.
Collapse
Affiliation(s)
- Kate H. Moore
- Department of Urogynaecology, St George Hospital, University of New South Wales, Sydney, NSW, Australia
| | - Samantha Ognenovska
- Department of Urogynaecology, St George Hospital, University of New South Wales, Sydney, NSW, Australia
| | - Xin-Yi Chua
- University of New South Wales Microbiome Research Centre, St George and Sutherland Clinical Campuses, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Zhuoran Chen
- Department of Urogynaecology, St George Hospital, University of New South Wales, Sydney, NSW, Australia
| | - Chloe Hicks
- University of New South Wales Microbiome Research Centre, St George and Sutherland Clinical Campuses, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Fatima El-Assaad
- University of New South Wales Microbiome Research Centre, St George and Sutherland Clinical Campuses, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Nevine te West
- Department of Urogynaecology, St George Hospital, University of New South Wales, Sydney, NSW, Australia
| | - Emad El-Omar
- University of New South Wales Microbiome Research Centre, St George and Sutherland Clinical Campuses, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
44
|
Chakraborty N. Metabolites: a converging node of host and microbe to explain meta-organism. Front Microbiol 2024; 15:1337368. [PMID: 38505556 PMCID: PMC10949987 DOI: 10.3389/fmicb.2024.1337368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/13/2024] [Indexed: 03/21/2024] Open
Abstract
Meta-organisms encompassing the host and resident microbiota play a significant role in combatting diseases and responding to stress. Hence, there is growing traction to build a knowledge base about this ecosystem, particularly to characterize the bidirectional relationship between the host and microbiota. In this context, metabolomics has emerged as the major converging node of this entire ecosystem. Systematic comprehension of this resourceful omics component can elucidate the organism-specific response trajectory and the communication grid across the ecosystem embodying meta-organisms. Translating this knowledge into designing nutraceuticals and next-generation therapy are ongoing. Its major hindrance is a significant knowledge gap about the underlying mechanisms maintaining a delicate balance within this ecosystem. To bridge this knowledge gap, a holistic picture of the available information has been presented with a primary focus on the microbiota-metabolite relationship dynamics. The central theme of this article is the gut-brain axis and the participating microbial metabolites that impact cerebral functions.
Collapse
Affiliation(s)
- Nabarun Chakraborty
- Medical Readiness Systems Biology, CMPN, WRAIR, Silver Spring, MD, United States
| |
Collapse
|
45
|
Robergs R, O’Malley B, Torrens S, Siegler J. The missing hydrogen ion, part-2: Where the evidence leads to. SPORTS MEDICINE AND HEALTH SCIENCE 2024; 6:94-100. [PMID: 38463661 PMCID: PMC10918345 DOI: 10.1016/j.smhs.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/19/2023] [Accepted: 01/09/2024] [Indexed: 03/12/2024] Open
Abstract
The purpose of this manuscript was to present the evidence for why cells do not produce metabolic acids. In addition, evidence that opposes common viewpoints and arguments used to support the cellular production of lactic acid (HLa) or liver keto-acids have been provided. Organic chemistry reveals that many molecules involved in cellular energy catabolism contain functional groups classified as acids. The two main acidic functional groups of these molecules susceptible to ∼H+ release are the carboxyl and phosphoryl structures, though the biochemistry and organic chemistry of molecules having these structures reveal they are produced in a non-acidic ionic (negatively charged) structure, thereby preventing pH dependent ∼H+ release. Added evidence from the industrial production of HLa further reveals that lactate (La-) is produced followed by an acidification step that converts La- to HLa due to pH dependent ∼H+ association. Interestingly, there is a plentiful list of other molecules that are classified as acids and compared to HLa have similar values for their H+ dissociation constant (pKd). For many metabolic conditions, the cumulative turnover of these molecules is far higher than for La-. The collective evidence documents the non-empirical basis for the construct of the cellular production of HLa, or any other metabolic acid.
Collapse
Affiliation(s)
- Robert Robergs
- School of Exercise and Nutrition Sciences, Queensland University of Technology, Kelvin Grove, Queensland, 4059, Australia
| | - Bridgette O’Malley
- School of Exercise and Nutrition Sciences, Queensland University of Technology, Kelvin Grove, Queensland, 4059, Australia
| | - Sam Torrens
- School of Exercise and Nutrition Sciences, Queensland University of Technology, Kelvin Grove, Queensland, 4059, Australia
| | - Jason Siegler
- ASU Health Futures Center, College of Health Solutions, Arizona State University, 6161 East Mayo Blvd, Phoenix, 85054, Arizona, USA
| |
Collapse
|
46
|
Nohesara S, Abdolmaleky HM, Thiagalingam S. Potential for New Therapeutic Approaches by Targeting Lactate and pH Mediated Epigenetic Dysregulation in Major Mental Diseases. Biomedicines 2024; 12:457. [PMID: 38398057 PMCID: PMC10887322 DOI: 10.3390/biomedicines12020457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
Multiple lines of evidence have shown that lactate-mediated pH alterations in the brains of patients with neuropsychiatric diseases such as schizophrenia (SCZ), Alzheimer's disease (AD) and autism may be attributed to mitochondrial dysfunction and changes in energy metabolism. While neuronal activity is associated with reduction in brain pH, astrocytes are responsible for rebalancing the pH to maintain the equilibrium. As lactate level is the main determinant of brain pH, neuronal activities are impacted by pH changes due to the binding of protons (H+) to various types of proteins, altering their structure and function in the neuronal and non-neuronal cells of the brain. Lactate and pH could affect diverse types of epigenetic modifications, including histone lactylation, which is linked to histone acetylation and DNA methylation. In this review, we discuss the importance of pH homeostasis in normal brain function, the role of lactate as an essential epigenetic regulatory molecule and its contributions to brain pH abnormalities in neuropsychiatric diseases, and shed light on lactate-based and pH-modulating therapies in neuropsychiatric diseases by targeting epigenetic modifications. In conclusion, we attempt to highlight the potentials and challenges of translating lactate-pH-modulating therapies to clinics for the treatment of neuropsychiatric diseases.
Collapse
Affiliation(s)
- Shabnam Nohesara
- Department of Medicine (Biomedical Genetics), Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA;
| | - Hamid Mostafavi Abdolmaleky
- Department of Medicine (Biomedical Genetics), Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA;
- Nutrition/Metabolism Laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Sam Thiagalingam
- Department of Medicine (Biomedical Genetics), Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA;
- Department of Pathology & Laboratory Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
47
|
Szánti-Pintér E, Jirkalová L, Pohl R, Bednárová L, Kudova E. Stereoselective Reduction of Steroidal 4-Ene-3-ketones in the Presence of Biomass-Derived Ionic Liquids Leading to Biologically Important 5β-Steroids. ACS OMEGA 2024; 9:7043-7052. [PMID: 38371788 PMCID: PMC10870401 DOI: 10.1021/acsomega.3c08963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/19/2023] [Accepted: 01/23/2024] [Indexed: 02/20/2024]
Abstract
The stereoselective reduction of the steroidal 4-ene-3-ketone moiety (enone) affords the 5β-steroid backbone that is a key structural element of biologically important neuroactive steroids. Neurosteroids have been currently studied as novel and potent central nervous system drug-like compounds for the treatment of, e.g., postpartum depression. As a green methodology, we studied the palladium-catalyzed hydrogenation of steroidal 4-ene-3-ketones in the presence of ionic liquids derived from natural carboxylic acids. The hydrogenation proceeds with improved 5β-selectivity in the presence of tetrabutylammonium carboxylates as additives compared to the exclusive use of an organic solvent. Under optimal conditions, using tetrabutylammonium d-mandelate, the reduction of testosterone led to 5β-dihydrotestosterone in high yield and stereoselectivity and no byproduct formation was observed. Moreover, the catalyst could be recycled. The presence of additional substituents on the steroid backbone showed a significant effect on the 5β-selectivity.
Collapse
Affiliation(s)
- Eszter Szánti-Pintér
- Institute of Organic Chemistry
and Biochemistry of the Czech Academy of Sciences, Prague 166 10, Czech Republic
| | - Lada Jirkalová
- Institute of Organic Chemistry
and Biochemistry of the Czech Academy of Sciences, Prague 166 10, Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry
and Biochemistry of the Czech Academy of Sciences, Prague 166 10, Czech Republic
| | - Lucie Bednárová
- Institute of Organic Chemistry
and Biochemistry of the Czech Academy of Sciences, Prague 166 10, Czech Republic
| | - Eva Kudova
- Institute of Organic Chemistry
and Biochemistry of the Czech Academy of Sciences, Prague 166 10, Czech Republic
| |
Collapse
|
48
|
Goicochea-Vargas J, Salvatierra-Alor M, Acosta-Pachorro F, Rondón-Jorge W, Herrera-Briceño A, Morales-Parra E, Mialhe E. Genomic characterization and probiotic potential of lactic acid bacteria isolated from feces of guinea pig ( Cavia porcellus). Open Vet J 2024; 14:716-729. [PMID: 38549567 PMCID: PMC10970124 DOI: 10.5455/ovj.2024.v14.i2.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 01/23/2023] [Indexed: 04/02/2024] Open
Abstract
Background Presently, there exists a growing interest in mitigating the utilization of antibiotics in response to the challenges emanating from their usage in livestock. A viable alternative strategy encompasses the introduction of live microorganisms recognized as probiotics, exerting advantageous impacts on the immune system and nutritional aspects of the host animals. Native lactic acid bacteria, inherently possessing specific properties and adaptive capabilities tailored to each animal, are deemed optimal contenders for probiotic advancement. Aim In the current investigation, microorganisms exhibiting probiotic potential were isolated, characterized, and identified from the fecal samples of guinea pigs (Cavia porcellus) belonging to the Peruvian breed. Methods The lactic acid bacteria isolated on Man, Rogosa, and Sharpe agar underwent Gram staining, catalase testing, proteolytic, amylolytic, and cellulolytic activity assays, low pH tolerance assessment, hemolytic evaluation, antagonism against Salmonella sp., determination of autoaggregation and coaggregation capacity, and genotypic characterization through sequencing of the 16S rRNA gene. Results A total of 33 lactic acid bacteria were isolated from the feces of 30 guinea pigs, also 10 isolates were selected based on Gram staining and catalase testing. All strains exhibited proteolytic activity, while only one demonstrated amylolytic capability, and none displayed cellulase activity. These bacteria showed higher tolerance to pH 5.0 and, to a lesser extent, to pH 4.0. Furthermore, they exhibited antagonistic activity against Salmonella sp. Only two bacteria demonstrated hemolytic activity, and were subsequently excluded from further evaluations. Subsequent assessments revealed autoaggregation capacities ranging from 4.55% to 23.19%, with a lesser degree of coaggregation with Salmonella sp. ranging from 3.53% to 8.94% for the remaining eight bacterial isolates. Based on these comprehensive tests, five bacteria with notable probiotic potential were identified by molecular assays as Leuconostoc citreum, Enterococcus gallinarum, Exiguobacterium sp., and Lactococcus lactis. Conclusion The identified bacteria stand out as promising probiotic candidates, deserving further assessment in Peruvian breed guinea pigs. This exploration aims to enhance production outcomes while mitigating the adverse effects induced by pathogenic microorganisms.
Collapse
Affiliation(s)
- José Goicochea-Vargas
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Hermilio Valdizan, Huánuco, Peru
- Laboratorio de Biotecnología Molecular, Unidad Central de Laboratorios, Universidad Nacional Hermilio Valdizan, Huánuco, Peru
| | - Max Salvatierra-Alor
- Laboratorio de Biotecnología Molecular, Unidad Central de Laboratorios, Universidad Nacional Hermilio Valdizan, Huánuco, Peru
| | - Fidel Acosta-Pachorro
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Hermilio Valdizan, Huánuco, Peru
| | - Wilson Rondón-Jorge
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Hermilio Valdizan, Huánuco, Peru
| | - Arnold Herrera-Briceño
- Centros de Producción Canchán y Kotosh, Universidad Nacional Hermilio Valdizan, Huánuco, Peru
| | - Edson Morales-Parra
- Centro de Información y Educación para la Prevención del Abuso de Drogas—CEDRO, Lima, Peru
| | | |
Collapse
|
49
|
Alves-Santos AM, Silva MMDA, Rodrigues CAP, Albuquerque TMRD, Souza ELD, Naves MMV. Prebiotic Activity of Pequi ( Caryocar brasiliense Camb.) Shell on Lactobacillus and Bifidobacterium Strains: A Medicinal Food Ingredient. J Med Food 2024; 27:145-153. [PMID: 38079198 DOI: 10.1089/jmf.2022.0117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024] Open
Abstract
Pequi is a native and popular fruit in Cerrado biome. The internal yellow-orange mesocarp is the edible fraction of the fruit, but its shell (peel and external mesocarp), which comprises 80% of the fruit, is not used by the agro-industry during fruit processing. There is a growing interest in the reduction of food loss and waste because of environmental, economic, and social impacts. So this study evaluated the chemical composition, antioxidant capacity, and in vitro prebiotic activity of pequi shell flour. Pequi shell flour was obtained from the lyophilization and milling of pequi shell. The content of dietary fibers, oligosaccharides, sugars, organic acids, total phenolics and tannins, polyphenol profile, and antioxidant capacity was determined in pequi shell flour. In addition, its prebiotic activity was evaluated on growth and metabolism of probiotics Lactobacillus and Bifidobacterium strains. Pequi shell flour has a high content of dietary fibers (47.92 g/100 g), soluble fibers (18.65 g/100 g), raffinose (2.39 g/100 g), and phenolic compounds (14,062.40 mg gallic acid equivalents/100 g). For the first time, the polyphenols epigallocatechin gallate, epicatechin, and procyanidin B2 were identified in this by-product. Pequi shell flour promoted greater growth of Lacticaseibacillus casei L-26 (at 24-48 h) and Bifidobacterium animalis subsp. lactis BB-12, as well as higher prebiotic activity scores than fructooligosaccharides (standard prebiotic). Pequi shell flour is rich in prebiotic compounds and has a high antioxidant and prebiotic potential. The promising results encourage its use as an ingredient with antioxidant and potential prebiotic properties to elaborate new functional foods and nutraceuticals.
Collapse
Affiliation(s)
- Aline M Alves-Santos
- Laboratory of Experimental Nutrition, School of Nutrition, Federal University of Goiás (UFG), Goiânia, Brazil
| | - Monik Mariele de A Silva
- Laboratory of Experimental Nutrition, School of Nutrition, Federal University of Goiás (UFG), Goiânia, Brazil
| | | | | | - Evandro Leite de Souza
- Laboratory of Food Microbiology, Department of Nutrition, Federal University of Paraíba, João Pessoa, Brazil
| | - Maria Margareth V Naves
- Laboratory of Experimental Nutrition, School of Nutrition, Federal University of Goiás (UFG), Goiânia, Brazil
| |
Collapse
|
50
|
Ludfiani DD, Asmara W, Arianti FD. Enzyme characterization of lactic acid bacteria isolated from duck excreta. Vet World 2024; 17:143-149. [PMID: 38406367 PMCID: PMC10884574 DOI: 10.14202/vetworld.2024.143-149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/19/2023] [Indexed: 02/27/2024] Open
Abstract
Background and Aim The production of lignocellulosic biomass waste in the agricultural sector of Indonesia is quite high annually. Utilization of lignocellulosic biomass waste through fermentation technology can be used as feed and biofuel. Fermentation technology requires the involvement of micro-organisms such as bacteria (lactic acid bacteria or LAB). LABs can be isolated from various sources, such as duck excreta. However, there have not been many reports of LAB from duck excreta. The present study aimed to characterize LAB enzymes isolated from duck excreta and obtain LAB enzymes with superior fermentation properties. Materials and Methods A total of 11 LAB cultures obtained from duck excreta in Yogyakarta, Indonesia, were tested. Enzyme characterization of each LAB was performed using the API ZYM kit (BioMérieux, Marcy-I'Etoile, France). The bacterial cell suspension was dropped onto the API ZYM™ cupule using a pipette and incubated for 4 h at 37°C. After incubation, ZYM A and ZYM B were dripped onto the API ZYM cupule, and color changes were observed for approximately 10 s under a strong light source. Results Esterase activity was moderate for all LABs. The activity of α-chymotrypsin, β-glucuronidase, α-fucosidase, and α-mannosidase was not observed in a total of 10 LAB. The phosphohydrolase and amino peptidase enzyme activity of seven LABs was strong. Only six LAB samples showed protease activity. The glycosyl hydrolase (GH) activity was observed in a total of 8 LAB, while the activity of 2 LAB was strong (Lactococcus lactis subsp. lactis K5 and Lactobacillus brevis M4A). Conclusion A total of 2 LABs have superior properties. L. lactis subsp. lactis K5 and L. brevis M4A have a high potential to be used in fermentation. They have the potential for further research, such as their effectiveness in fermentation, lignocellulose hydrolysis, feed additives, molecular characterization to detect specific enzymes, and their specific activities.
Collapse
Affiliation(s)
- Dini Dwi Ludfiani
- Research Center for Sustainable Production Systems and Life Cycle Assessment, National Research and Innovation Agency (BRIN), Tangerang Selatan, Indonesia
| | - Widya Asmara
- Department of Microbiology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Forita Dyah Arianti
- Research Center for Sustainable Production Systems and Life Cycle Assessment, National Research and Innovation Agency (BRIN), Tangerang Selatan, Indonesia
| |
Collapse
|