1
|
Pandiyan A, Lari S, Vanka J, Kumar BS, Ghosh S, Jee B, Jonnalagadda PR. Plasma pesticide residues-serum 8-OHdG among farmers/non-farmers diagnosed with lymphoma, leukaemia and breast cancers: A case-control study. PLoS One 2024; 19:e0295625. [PMID: 39436919 PMCID: PMC11495580 DOI: 10.1371/journal.pone.0295625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/23/2023] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND A hospital-based cross-sectional case-control study was conducted to investigate the association between exposure through various pesticide residues detected in the plasma and serum 8-OHdG levels among farmers and non-farmers diagnosed with leukaemia, lymphoma and breast cancers and compare the same with healthy controls with no cancer and no exposure. METHODOLOGY The present study was conducted among the farmers and non-farmers visiting a regional tertiary cancer care hospital in Hyderabad, Telangana State, India. Data were collected by administering a pre-tested questionnaire through an interview followed by the collection of blood samples which were analyzed for pesticide residues using LC-MS/MS while the serum levels of 8-OHdG were measured using ELISA. Data were analyzed using SPSS 24. RESULTS The pesticide residues detected were chlorpyrifos, dimethoate, malathion, phosalone, and quinalphos which were approved and recommended for their use on the crops that were cultivated by the farmers in their plasma samples along with banned pesticide residues like monocrotophos, diazinon, and dichlorvos among farmers diagnosed with all three types of cancers while the non-farmers and healthy controls were not detected with any such residues. In addition, farmers diagnosed with leukemia had higher levels of all the pesticide residues in their plasma than those diagnosed with lymphoma and breast cancers. Further, a significant difference was also observed between profenofos residues in plasma and serum 8-OHdG levels. CONCLUSION In the present study, though the farmers diagnosed with three types of cancers were detected with various types of pesticide residues analysed, only residues of profenofos showed a significant difference with serum levels of 8-OHdG suggesting the need for an in-depth follow up molecular studies in a larger cohort to assess the possible association between 8-OHdG levels with the pesticide residues among the exposed.
Collapse
Affiliation(s)
- Arun Pandiyan
- ICMR-National Institute of Nutrition, Tarnaka, Osmania University, Hyderabad, Telangana, India
| | - Summaiya Lari
- ICMR-National Institute of Nutrition, Tarnaka, Osmania University, Hyderabad, Telangana, India
- Department of Biochemistry, Acharya Nagarjuna University, Guntur, Andhra Pradesh, India
| | - Janardhan Vanka
- ICMR-National Institute of Nutrition, Tarnaka, Osmania University, Hyderabad, Telangana, India
| | | | - Sudip Ghosh
- ICMR-National Institute of Nutrition, Tarnaka, Osmania University, Hyderabad, Telangana, India
| | - Babban Jee
- Department of Health Research, Ministry of Health and Family Welfare, Government of India, New Delhi, India
| | - Padmaja R. Jonnalagadda
- ICMR-National Institute of Nutrition, Tarnaka, Osmania University, Hyderabad, Telangana, India
| |
Collapse
|
2
|
Wise C, Breen M, Stapleton HM. Canine on the Couch: The New Canary in the Coal Mine for Environmental Health Research. ENVIRONMENT & HEALTH (WASHINGTON, D.C.) 2024; 2:517-529. [PMID: 39170948 PMCID: PMC11334179 DOI: 10.1021/envhealth.4c00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/10/2024] [Accepted: 05/12/2024] [Indexed: 08/23/2024]
Abstract
Human health is intimately connected and tied to the health of our environment and ecosystem, with only a very small fraction of the risk for chronic diseases explained by genetics alone. Companion animals are prone to disease types that are shared with people, including cancers and endocrine disorders, reinforcing the thought that environmental factors contribute to the risks for chronic diseases. These factors include air and water pollution and the built environment. As such, there is increasing interest in pursuing research with companion animals, and specifically dogs, as sentinel species to inform comparative health assessments and identify risk factors for disease. Of the canine diseases for which environmental exposure research has been published, cancers have received the most attention. This review summarizes two main aspects of this comparative approach: (1) cancers that occur in dogs and which are similar to humans and (2) research investigating environmental exposures and health outcomes in dogs. The goal of this review is to highlight the diverse conditions in which pet dogs may provide unique perspectives and advantages to examine relationships between environmental exposures and health outcomes, with an emphasis on chemical pollution and cancer. Furthermore, this review seeks to raise awareness and stimulate discussion around the best practices for the use of companion animals as environmental health sentinels.
Collapse
Affiliation(s)
- Catherine
F. Wise
- Nicholas
School of the Environment, Duke University, Durham, North Carolina 27708, United States
- Duke
Cancer Institute, Durham, North Carolina 27710, United States
| | - Matthew Breen
- Department
of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, North Carolina 27607, United States
- Comparative
Medicine Institute, North Carolina State
University, Raleigh, North Carolina 27607, United States
- Center
for Human Health and the Environment, North
Carolina State University, Raleigh, North Carolina 27607, United States
| | - Heather M. Stapleton
- Nicholas
School of the Environment, Duke University, Durham, North Carolina 27708, United States
- Duke
Cancer Institute, Durham, North Carolina 27710, United States
| |
Collapse
|
3
|
Matheson R, Sexton CL, Wise CF, O'Brien J, Keyser AJ, Kauffman M, Dunbar MD, Stapleton HM, Ruple A. Silicone tags as an effective method of monitoring environmental contaminant exposures in a geographically diverse sample of dogs from the Dog Aging Project. Front Vet Sci 2024; 11:1394061. [PMID: 39220770 PMCID: PMC11363705 DOI: 10.3389/fvets.2024.1394061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/08/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction Companion animals offer a unique opportunity to investigate risk factors and exposures in our shared environment. Passive sampling techniques have proven effective in capturing environmental exposures in dogs and humans. Methods In a pilot study, we deployed silicone monitoring devices (tags) on the collars of a sample of 15 dogs from the Dog Aging Project Pack cohort for a period of 120 h (5 days). We extracted and analyzed the tags via gas chromatography-mass spectrometry for 119 chemical compounds in and around participants' homes. Results Analytes belonging to the following chemical classes were detected: brominated flame retardants (BFRs), organophosphate esters (OPEs), polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), pesticides, phthalates, and personal care products. The types and amounts of analytes detected varied substantially among participants. Discussion Data from this pilot study indicate that silicone dog tags are an effective means to detect and measure chemical exposure in and around pet dogs' households. Having created a sound methodological infrastructure, we will deploy tags to a geographically diverse and larger sample size of Dog Aging Project participants with a goal of further assessing geographic variation in exposures.
Collapse
Affiliation(s)
- Rylee Matheson
- Population Health Sciences Department, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Courtney L Sexton
- Population Health Sciences Department, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Catherine F Wise
- Nicholas School of the Environment, Duke University, Durham, NC, United States
| | - Janice O'Brien
- Population Health Sciences Department, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Amber J Keyser
- Center for Studies in Demography and Ecology, University of Washington, Seattle, WA, United States
| | - Mandy Kauffman
- Center for Studies in Demography and Ecology, University of Washington, Seattle, WA, United States
| | - Matthew D Dunbar
- Center for Studies in Demography and Ecology, University of Washington, Seattle, WA, United States
| | - Heather M Stapleton
- Nicholas School of the Environment, Duke University, Durham, NC, United States
| | - Audrey Ruple
- Population Health Sciences Department, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
4
|
Solanki S, Bisaria K, Iqbal HMN, Saxena R, Baxi S, Kothari AC, Singh R. Sugeno fuzzy inference system modeling and DFT calculations for the treatment of pesticide-laden water by newly developed arginine functionalized magnetic Mn-based metal organic framework. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:123126-123147. [PMID: 37979110 DOI: 10.1007/s11356-023-30944-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
The uncontrolled utilization of pesticides poses a significant risk to the environment and human health, making its management essential. In this regard, a new arginine functionalized magnetic Mn-based metal-organic framework (Arg@m-Mn-MOF) was fabricated and assessed for the removal of cypermethrin (CYP) and chlorpyrifos (CHL) from aqueous system. The Arg@m-Mn-MOF was characterized by scanning electron microscopy, energy dispersive X-ray, Fourier transform infrared spectroscopy, X-ray diffraction, and Brunauer-Emmett-Teller analysis. Various parameters were optimized in a series of batch experiments and the following conditions were found optimal: pH: 4 and 5, contact time: 20 min, adsorbent dosage: 0.6 and 0.8 g L-1 with initial concentration: 10 mg L-1 and temperature: 298 K for CYP and CHL, respectively. The composite attained a maximum removal capacity of 44.84 and 71.42 mg g-1 for CYP and CHL, respectively. The elucidated data was strongly fitted to the pseudo-second-order model of kinetics (R2 > 0.98) and Langmuir isotherm (R2 > 0.98). Based upon 350 experimental datasets obtained from batch studies and interpolated data, the adsorption capacity of the adsorbent was elucidated with R2 > 0.97 (CHL) and > 0.91 (CYP). The adsorption energy (- 11.67 kcal mol-1) calculated by Gaussian software suggests a good interaction between arginine and CHL through H-bonding. The present study's findings suggested the prepared Arg@m-Mn-MOF as a promising adsorbent for the efficient removal of pesticides from agriculture runoff.
Collapse
Affiliation(s)
- Swati Solanki
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector 125, Noida, Uttar Pradesh, 201313, India
| | - Kavya Bisaria
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector 125, Noida, Uttar Pradesh, 201313, India
| | - Hafiz M N Iqbal
- School of Engineering and Sciences, Tecnologico de Monterrey, 64849, Monterrey, Mexico
| | - Reena Saxena
- Department of Chemistry, Kirori Mal College, University of Delhi, Delhi, India
| | - Shalini Baxi
- Department of Chemistry, Kirori Mal College, University of Delhi, Delhi, India
| | - Anil Chandra Kothari
- Light Stock Processing Division, CSIR-Indian Institute of Petroleum, Dehradun, 248005, Uttarakhand, India
| | - Rachana Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector 125, Noida, Uttar Pradesh, 201313, India.
| |
Collapse
|
5
|
Hegedus C, Andronie L, Uiuiu P, Jurco E, Lazar EA, Popescu S. Pets, Genuine Tools of Environmental Pollutant Detection. Animals (Basel) 2023; 13:2923. [PMID: 37760323 PMCID: PMC10525180 DOI: 10.3390/ani13182923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
In a shared environment, our companion animals became unintended sentinels for pollutant exposure consequences, developing even earlier similar conditions to humans. This review focused on the human-pet cohabitation in an environment we all share. Alongside other species, canine and feline companions are veritable models in human medical research. The latency period for showing chronic exposure effects to pollutants is just a few years in them, compared to considerably more, decades in humans. Comparing the serum values of people and their companion animals can, for example, indicate the degree of poisonous lead load we are exposed to and of other substances as well. We can find 2.4 times higher perfluorochemicals from stain- and grease-proof coatings in canine companions, 23 times higher values of flame retardants in cats, and 5 times more mercury compared to the average levels tested in humans. All these represent early warning signals. Taking these into account, together with the animal welfare orientation of today's society, finding non-invasive methods to detect the degree of environmental pollution in our animals becomes paramount, alongside the need to raise awareness of the risks carried by certain chemicals we knowingly use.
Collapse
Affiliation(s)
- Cristina Hegedus
- Department of Fundamental Sciences, Faculty of Animal Sciences and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania;
| | - Luisa Andronie
- Department of Biophysics, Meteorology and Climatology, Faculty of Forestry and Cadastre, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Paul Uiuiu
- Department of Fundamental Sciences, Faculty of Animal Sciences and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania;
| | - Eugen Jurco
- Department of Technological Sciences, Faculty of Animal Sciences and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania;
| | - Eva Andrea Lazar
- Association for the Welfare of Horses, 725700 Vatra Dornei, Romania;
| | - Silvana Popescu
- Department of Animal Hygiene and Welfare, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania;
| |
Collapse
|
6
|
Chen SF, Chen WJ, Huang Y, Wei M, Chang C. Insights into the metabolic pathways and biodegradation mechanisms of chloroacetamide herbicides. ENVIRONMENTAL RESEARCH 2023; 229:115918. [PMID: 37062473 DOI: 10.1016/j.envres.2023.115918] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/04/2023] [Accepted: 04/13/2023] [Indexed: 05/21/2023]
Abstract
Chloroacetamide herbicides are widely used around the world due to their high efficiency, resulting in increasing levels of their residues in the environment. Residual chloroacetamides and their metabolites have been frequently detected in soil, water and organisms and shown to have toxic effects on non-target organisms, posing a serious threat to the ecosystem. As such, rapid and efficient techniques that eliminate chloroacetamide residues from the ecosystem are urgently needed. Degradation of these herbicides in the environment mainly occurs through microbial metabolism. Microbial strains such as Acinetobacter baumannii DT, Bacillus altitudinis A16, Pseudomonas aeruginosa JD115, Sphingobium baderi DE-13, Catellibacterium caeni DCA-1, Stenotrophomonas acidaminiphila JS-1, Klebsiella variicola B2, and Paecilomyces marquandii can effectively degrade chloroacetamide herbicides. The degradation pathway of chloroacetamide herbicides in aerobic bacteria is mainly initiated by an N/C-dealkylation reaction, followed by aromatic ring hydroxylation and cleavage processes, whereas dechlorination is the initial reaction in anaerobic bacteria. The molecular mechanisms associated with bacterial degradation of chloroacetamide herbicides have been explored, with amidase, hydrolase, reductase, ferredoxin and cytochrome P450 oxygenase currently known to play a pivotal role in the catabolic pathways of chloroacetamides. The fungal pathway for the degradation of these herbicides is more complex with more diversified products, and the degradation enzymes and genes involved remain to be discovered. However, there are few reviews specifically summarizing the microbial degrading species and biochemical mechanisms of chloroacetamide herbicides. Here, we briefly summarize the latest progress resulting from research on microbial strain resources and enzymes involved in degradation of these herbicides and their corresponding genes. Furthermore, we explore the biochemical pathways and molecular mechanisms for biodegradation of chloroacetamide herbicides in depth, thereby providing a reference for further research on the bioremediation of such herbicides.
Collapse
Affiliation(s)
- Shao-Fang Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China; Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Wen-Juan Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China; Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Yaohua Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China; Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Ming Wei
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China; Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Changqing Chang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China; Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
7
|
Li ZM, Robinson M, Kannan K. An assessment of exposure to several classes of pesticides in pet dogs and cats from New York, United States. ENVIRONMENT INTERNATIONAL 2022; 169:107526. [PMID: 36155914 PMCID: PMC9574881 DOI: 10.1016/j.envint.2022.107526] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/16/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Exposure of pet dogs and cats to pesticides used in and around homes (e.g., lawns and gardens) is a significant health concern. Furthermore, some pesticides are directly used on dogs and cats for flea, lice, and tick control. Despite this, little is known regarding the extent of pesticide exposure in pets. In this study, we determined the concentrations of 30 biomarkers of pesticide exposure in urine collected from dogs and cats in New York State, USA: 6 dialkylphosphate (DAP) metabolites of organophosphates (OPs); 14 neonicotinoids (neonics); 3 specific metabolites of OPs; 5 pyrethroids (PYRs); and 2 phenoxy acids (PAs). The sum median concentrations of these 30 pesticide biomarkers (ΣPesticides) in dog and cat urine were 35.2 and 38.1 ng/mL, respectively. Neonics were the most prevalent in dogs (accounting for 43% of the total concentrations), followed by DAPs (17%), PYRs (16%), OPs (13%), and PAs (∼10%). In cat urine, neonics alone accounted for 83% of the total concentrations. Elevated concentrations of imidacloprid were found in the urine of certain dogs (max: 115 ng/mL) and cats (max: 1090 ng/mL). Some pesticides showed gender- and sampling location- related differences in urinary concentrations. We calculated daily exposure doses of pesticides from the measured urinary concentrations through a reverse dosimetry approach. The estimated daily intakes (DIs) of chlorpyrifos, diazinon, and cypermethrin were above the chronic reference doses (cRfDs) in 22, 76, and 5%, respectively, of dogs. The DIs of chlorpyrifos, parathion, diazinon, and imidacloprid were above the cRfDs in 33, 14, 100, and 29%, respectively, of cats. This study thus provides evidence that pet dogs and cats are exposed to certain pesticides at levels that warrant immediate attention.
Collapse
Affiliation(s)
- Zhong-Min Li
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY 10016, United States; Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10016, United States
| | - Morgan Robinson
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY 10016, United States; Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10016, United States
| | - Kurunthachalam Kannan
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY 10016, United States; Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10016, United States.
| |
Collapse
|
8
|
Panis C, Candiotto LZP, Gaboardi SC, Gurzenda S, Cruz J, Castro M, Lemos B. Widespread pesticide contamination of drinking water and impact on cancer risk in Brazil. ENVIRONMENT INTERNATIONAL 2022; 165:107321. [PMID: 35691095 DOI: 10.1016/j.envint.2022.107321] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/26/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Pesticides, which are associated with endocrine dysfunction, immunological dysregulation, and cancer, are widespread sources of drinking water contamination. The state of Paraná has a population of 11 million, is the second largest grain producer in Brazil and is a leading consumer of pesticides. In this study, we analyzed the extent of drinking water contamination from 11 proven, probable, or potentially carcinogenic pesticides (alachlor, aldrin-dieldrin, atrazine, chlordane, DDT-DDD-DDE, diuron, glyphosate-AMPA, lindane-γ-HCH, mancozeb-ETU, molinate, and trifluralin) in 127 grain-producing municipalities in the state of Paraná. Extensive contamination of drinking water was found, including legacy pesticides such as aldrin-dieldrin (mean 0.047 ppb), DDT-DDD-DDE (mean: 0.07), chlordane (mean: 0.181), and lindane-HCH (mean: 2.17). Most of the municipalities were significantly above the maximum limits for each one of the currently allowed pesticides (67% for alachlor, 9.44% for atrazine, 96.85% for diuron, 100% for glyphosate-AMPA, 80.31% for mancozeb-ETU, 91.33% for molinate, and 12.6% for trifluralin). Ninety-seven percent of municipalities presented a sum of all pesticides at levels significantly above (189.84 ppb) the European Union preconized limits (<0.5 ppb). Using the mean pesticide concentration in water (ppb), the exposed population for each municipality, and the benchmark cancer risk for pesticides, we estimated the minimum number of cancer cases attributable to pesticide-contaminated drinking water during the period (total of 542 cases). More than 80% were attributed to mancozeb-ETU and diuron. Glyphosate-AMPA and diuron-attributable cases strongly correlated with the total cancer cases in the same period (R = 0.8117 and 0.8138, respectively) as well as with breast cancer cases (R = 0.7695 and 0.7551, respectively). Water contamination was significantly correlated with the sum of the estimated cancer cases for all 11 pesticides detected in each city (R = 0.58 and p < 0.0001). These findings reveal extensive contamination of drinking water in the state of Paraná and suggest that contamination may increase the risk of cancer in this region.
Collapse
Affiliation(s)
- Carolina Panis
- Laboratory of Tumor Biology, State University of Western Paraná, UNIOESTE, Francisco Beltrão, Paraná, Brazil; Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, United States.
| | | | - Shaiane Carla Gaboardi
- Catarinense Federal Institute of Science and Technology, Campus Ibirama, Santa Catarina, Brazil
| | - Susie Gurzenda
- Department of Global Health and Population, Harvard TH Chan School of Public Health, Boston, MA, United States
| | - Jurandir Cruz
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, United States; Faculty of Medicine of the University of São Paulo, São Paulo, Brazil
| | - Marcia Castro
- Department of Global Health and Population, Harvard TH Chan School of Public Health, Boston, MA, United States
| | - Bernardo Lemos
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, United States.
| |
Collapse
|
9
|
Pang S, Lin Z, Li J, Zhang Y, Mishra S, Bhatt P, Chen S. Microbial Degradation of Aldrin and Dieldrin: Mechanisms and Biochemical Pathways. Front Microbiol 2022; 13:713375. [PMID: 35422769 PMCID: PMC9002305 DOI: 10.3389/fmicb.2022.713375] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 02/24/2022] [Indexed: 11/25/2022] Open
Abstract
As members of the organochlorine group of insecticides, aldrin and dieldrin are effective at protecting agriculture from insect pests. However, because of excessive use and a long half-life, they have contributed to the major pollution of the water/soil environments. Aldrin and dieldrin have been reported to be highly toxic to humans and other non-target organisms, and so their use has gradually been banned worldwide. Various methods have been tried to remove them from the environment, including xenon lamps, combustion, ion conversion, and microbial degradation. Microbial degradation is considered the most promising treatment method because of its advantages of economy, environmental protection, and convenience. To date, a few aldrin/dieldrin-degrading microorganisms have been isolated and identified, including Pseudomonas fluorescens, Trichoderma viride, Pleurotus ostreatus, Mucor racemosus, Burkholderia sp., Cupriavidus sp., Pseudonocardia sp., and a community of anaerobic microorganisms. Many aldrin/dieldrin resistance genes have been identified from insects and microorganisms, such as Rdl, bph, HCo-LGC-38, S2-RDLA302S, CSRDL1A, CSRDL2S, HaRdl-1, and HaRdl-2. Aldrin degradation includes three pathways: the oxidation pathway, the reduction pathway, and the hydroxylation pathway, with dieldrin as a major metabolite. Degradation of dieldrin includes four pathways: oxidation, reduction, hydroxylation, and hydrolysis, with 9-hydroxydieldrin and dihydroxydieldrin as major products. Many studies have investigated the toxicity and degradation of aldrin/dieldrin. However, few reviews have focused on the microbial degradation and biochemical mechanisms of aldrin/dieldrin. In this review paper, the microbial degradation and degradation mechanisms of aldrin/dieldrin are summarized in order to provide a theoretical and practical basis for the bioremediation of aldrin/dieldrin-polluted environment.
Collapse
Affiliation(s)
- Shimei Pang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural and Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Ziqiu Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural and Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Jiayi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural and Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yuming Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural and Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Sandhya Mishra
- Environmental Technologies Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, India
| | - Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural and Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural and Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
10
|
Parra-Arroyo L, González-González RB, Castillo-Zacarías C, Melchor Martínez EM, Sosa-Hernández JE, Bilal M, Iqbal HMN, Barceló D, Parra-Saldívar R. Highly hazardous pesticides and related pollutants: Toxicological, regulatory, and analytical aspects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:151879. [PMID: 34826476 DOI: 10.1016/j.scitotenv.2021.151879] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/26/2021] [Accepted: 11/18/2021] [Indexed: 02/05/2023]
Abstract
The pervasive manifestation and toxicological influence of hazardous pesticides pose adverse consequences on various environmental matrices and humans, directly via bioaccumulation or indirectly through the food chain. Due to pesticide residues' continuous presence above permissible levels in multiple forms, much attention has been given to re-evaluating to regulate their usage practices without harming or affecting the environment. However, there are regulations in place banning the use of multiple hazardous pesticides in the environment. Thus, efforts must be made to achieve robust detection and complete mitigation of pesticides, possibly through a combination of new and conventional methods. The complex nature of pesticides helps them to react differently across different environmental matrices. Therefore, highly hazardous pesticides are a risk to human well-being and the environment through enzymatic inhibition and the induction of oxidative stress. Consequently, developing fast, sensitive sensing strategies is essential to detect and quantify multiple pesticides and remove the pesticides present in the specific matrix without creating harmful derivatives. Additionally, the technology should be available worldwide to eliminate pesticide residuals from the environment. There are regulations, in practice, that limit the selling, storage, use of pesticides, and their concentration in the environment, although such regulations must be revised. However, the existing literature lacks regulatory, analytical detection, and mitigation considerations for pesticide remediation. Furthermore, the enforcement of such regulations and strict monitoring of pesticides in developing countries are needed. This review spotlights various analytical detection, regulatory, and mitigation considerations for efficiently removing hazardous pesticides.
Collapse
Affiliation(s)
- Lizeth Parra-Arroyo
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | | | - Carlos Castillo-Zacarías
- Universidad Autónoma de Nuevo León, Facultad de Ingeniería Civil, Departamento de Ingeniería Ambiental, Ciudad Universitaria S/N, San Nicolás de los Garza, Nuevo León, C.P. 66455, Mexico
| | | | | | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico.
| | - Damià Barceló
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona, 18-26, 08034 Barcelona, Spain; Catalan Institute of Water Research (ICRA-CERCA), Parc Científic i Tecnològic de la Universitat de Girona, c/Emili Grahit, 101, Edifici H(2)O, 17003 Girona, Spain; College of Environmental and Resources Sciences, Zhejiang A&F University, Hangzhou 311300, China.
| | | |
Collapse
|
11
|
Wise CF, Hammel SC, Herkert NJ, Ospina M, Calafat AM, Breen M, Stapleton HM. Comparative Assessment of Pesticide Exposures in Domestic Dogs and Their Owners Using Silicone Passive Samplers and Biomonitoring. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1149-1161. [PMID: 34964617 PMCID: PMC10150270 DOI: 10.1021/acs.est.1c06819] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Pesticides are used extensively in residential settings for lawn maintenance and in homes to control household pests including application directly on pets to deter fleas and ticks. Pesticides are commonly detected in the home environment where people and pets can be subject to chronic exposure. Due to increased interest in using companion animals as sentinels for human environmental health studies, we conducted a comparative pesticide exposure assessment in 30 people and their pet dogs to determine how well silicone wristbands and silicone dog tags can predict urinary pesticide biomarkers of exposure. Using targeted gas chromatography-mass spectrometry analyses, we quantified eight pesticides in silicone samplers and used a suspect screening approach for additional pesticides. Urine samples were analyzed for 15 pesticide metabolite biomarkers. Several pesticides were detected in >70% of silicone samplers including permethrin, N,N-diethyl-meta-toluamide (DEET), and chlorpyrifos. Significant and positive correlations were observed between silicone sampler levels of permethrin and DEET with their corresponding urinary metabolites (rs = 0.50-0.96, p < 0.05) in both species. Significantly higher levels of fipronil were observed in silicone samplers from participants who reported using flea and tick products containing fipronil on their dog. This study suggests that people and their dogs have similar pesticide exposures in a home environment.
Collapse
Affiliation(s)
- Catherine F Wise
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27708, United States
| | - Stephanie C Hammel
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27708, United States
| | - Nicholas J Herkert
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27708, United States
| | - Maria Ospina
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Hwy, MSS103-2, Atlanta, Georgia 30341, United States
| | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Hwy, MSS103-2, Atlanta, Georgia 30341, United States
| | - Matthew Breen
- Duke Cancer Institute, Durham, North Carolina 27710, United States
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, North Carolina 27607, United States
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27607, United States
- Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina 27607, United States
| | - Heather M Stapleton
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27708, United States
- Duke Cancer Institute, Durham, North Carolina 27710, United States
| |
Collapse
|
12
|
Current insights into the microbial degradation for butachlor: strains, metabolic pathways, and molecular mechanisms. Appl Microbiol Biotechnol 2021; 105:4369-4381. [PMID: 34021814 DOI: 10.1007/s00253-021-11346-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/04/2021] [Accepted: 05/09/2021] [Indexed: 01/08/2023]
Abstract
The herbicide butachlor has been used in huge quantities worldwide, affecting various environmental systems. Butachlor residues have been detected in soil, water, and organisms, and have been shown to be toxic to these non-target organisms. This paper briefly summarizes the toxic effects of butachlor on aquatic and terrestrial animals, including humans, and proposes the necessity of its removal from the environment. Due to long-term exposure, some animals, plants, and microorganisms have developed resistance toward butachlor, indicating that the toxicity of this herbicide can be reduced. Furthermore, we can consider removing butachlor residues from the environment by using such butachlor-resistant organisms. In particular, microbial degradation methods have attracted much attention, with about 30 kinds of butachlor-degrading microorganisms have been found, such as Fusarium solani, Novosphingobium chloroacetimidivorans, Chaetomium globosum, Pseudomonas putida, Sphingomonas chloroacetimidivorans, and Rhodococcus sp. The metabolites and degradation pathways of butachlor have been investigated. In addition, enzymes associated with butachlor degradation have been identified, including CndC1 (ferredoxin), Red1 (reductase), FdX1 (ferredoxin), FdX2 (ferredoxin), Dbo (debutoxylase), and catechol 1,2 dioxygenase. However, few reviews have focused on the microbial degradation and molecular mechanisms of butachlor. This review explores the biochemical pathways and molecular mechanisms of butachlor biodegradation in depth in order to provide new ideas for repairing butachlor-contaminated environments. KEY POINTS: • Biodegradation is a powerful tool for the removal of butachlor. • Dechlorination plays a key role in the degradation of butachlor. • Possible biochemical pathways of butachlor in the environment are described.
Collapse
|