1
|
Mathew J, Bhardwaj G, Pulicharla R, Rezai P, Brar SK. Innovating Ferro-sonication approach for extracting microplastics from wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175595. [PMID: 39154992 DOI: 10.1016/j.scitotenv.2024.175595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/15/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
For accurate and reliable analysis of microplastics (MPs) in wastewater (WW), it is imperative to comprehend the significance of pre-treating WW before analysis. The suspended solids (SS) in the matrix tend to adhere to the MPs during filtration, which interferes with the detection of the MPs. In this regard, the present study aims to develop and optimize a pretreatment method to improve the extraction efficiency of MPs from WW by reducing the SS. A combination of the Fenton reaction and ultrasonication, ferro-sonication (Fe-UlS), was proposed to digest and eliminate the SS from WW. This hybrid pretreatment, Fe-UlS, was optimized for ultrasonication amplitude, treatment time, and hydrogen peroxide dose using response surface methodology (RSM) with a Box-Behnken design, achieving a desirability of 0.984. The optimum conditions for the Fe-UlS, such as the (1:1) Fenton reagent ratio (0.05 M FeSO4: 30 % H2O2), ultrasonication amplitude (31 %), and total process time (30 min) were found to be statistically significant (p < 0.05). The developed method was then employed for the extraction of spiked polyethylene (PE), polypropylene (PP) and polyethylene terephthalate (PET) MPs in real WW and found efficient in removing 83 % of the TSS present in the primary influent were in 30 min at a temperature of 45 °C. Also, the method did not affect the physio-chemical characteristics of the MPs; however, the thermal analysis of PE and PP MPs showed a statistically significant decrease in the melting temperature, as proven by paired t-test analysis. Further, a non-targeted liquid chromatography-mass spectrometry (LC-MS) analysis proved that Fe-UlS is a stable process, as it did not cause any leaching of MPs under the optimum pretreatment conditions. Finally, Laser Direct-Infrared Imaging (LD-IR) analysis was conducted to validate the developed Fe-UlS pretreatment approach for MP analysis in real WW. About 3434 MPs were detected in 100 mL of WW primary influent, within the size range of 9 to 500 μm. This hybrid pretreatment approach not only streamlines WW sample processing but also reduces the required concentration of Fenton reagent and processing time, yielding accurate and reliable results for monitoring MPs in WW.
Collapse
Affiliation(s)
- Juviya Mathew
- Department of Civil Engineering, Lassonde School of Engineering, York University, Toronto, Canada
| | - Gaurav Bhardwaj
- Department of Civil Engineering, Lassonde School of Engineering, York University, Toronto, Canada
| | - Rama Pulicharla
- Department of Civil Engineering, Lassonde School of Engineering, York University, Toronto, Canada
| | - Pouya Rezai
- Department of Mechanical Engineering, Lassonde School of Engineering, York University, Toronto, Canada.
| | - Satinder Kaur Brar
- Department of Civil Engineering, Lassonde School of Engineering, York University, Toronto, Canada.
| |
Collapse
|
2
|
Themba NN, Dondofema F, Cuthbert RN, Munyai LF, Dalu T. Abundance and distribution of microplastics in benthic sediments and Cladocera taxa in a subtropical Austral reservoir. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:2256-2270. [PMID: 39016676 DOI: 10.1002/ieam.4977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/03/2024] [Accepted: 06/18/2024] [Indexed: 07/18/2024]
Abstract
Pollution of the natural environment by microplastics has become a global issue in ecosystems as it poses a potential long-term threat to biota. Microplastics can accrue in high abundances in sediments of aquatic ecosystems while also contaminating pelagic filter feeders, which could transfer pollutants up trophic webs. We assess the abundance and distribution of microplastics in benthic sediments and Cladocera taxa in a subtropical Austral reservoir using a combination of geospatial techniques, physicochemical analyses, diversity indices, and multivariate statistics between two seasons (i.e., hot-wet and cool-dry). We found particularly high densities of microplastics during the cool-dry season for both sediments (mean 224.1 vs. 189 particles kg-1 dry weight) and Cladocera taxa (0.3 particles per individual). Cladocera microplastic shapes were dominated by fibers with high densities of the transparent color scheme. Pearson correlation results indicated that sediment microplastic abundances were negatively correlated with chlorophyll-a concentration, temperature, and resistivity, whereas they were positively correlated with pH and salinity during the hot-wet season, with no variables significant in the cool-dry season. Cladocera microplastic abundances were positively correlated with conductivity and salinity during the cool-dry season, but no variables in the hot-wet season. These findings provide insights into the role of reservoirs as microplastic retention sites and the potential for uptake and transfer from lower trophic groups. These insights can be used to strengthen future monitoring and intervention strategies. Integr Environ Assess Manag 2024;20:2256-2270. © 2024 SETAC.
Collapse
Affiliation(s)
- Nombuso N Themba
- Aquatic Systems Research Group, School of Biology and Environmental Sciences, University of Mpumalanga, Nelspruit, South Africa
| | - Farai Dondofema
- Aquatic Systems Research Group, Department of Geography and Environmental Science, University of Venda, Thohoyandou, South Africa
| | - Ross N Cuthbert
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Linton F Munyai
- Aquatic Systems Research Group, School of Biology and Environmental Sciences, University of Mpumalanga, Nelspruit, South Africa
| | - Tatenda Dalu
- Aquatic Systems Research Group, School of Biology and Environmental Sciences, University of Mpumalanga, Nelspruit, South Africa
| |
Collapse
|
3
|
Chinfak N, Charoenpong C, Sampanporn A, Wongpa C, Sompongchaiyakul P. Microplastics in commercial bivalves from coastal areas of Thailand and health risk associated with microplastics in ingested bivalves. MARINE POLLUTION BULLETIN 2024; 208:116937. [PMID: 39260146 DOI: 10.1016/j.marpolbul.2024.116937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024]
Abstract
Microplastics (MPs) contamination in marine organisms is a significant threat to seafood consumers worldwide. This study is the first to investigate the abundance of MPs in the commercial bivalves from six sites along Thailand's coastline, the daily exposure of bivalve consumers to MPs, and potential associated health risks. The microplastic occurrence varied from 69 % to 93 % in four bivalve species while the average abundance of MPs was 1.87 ± 0.86 items/individual or 0.46 ± 0.43 items/g ww. Benthic bivalves (cockles and clams) contained more MPs than their pelagic counterparts (mussels and oysters). Small blue microfibers (<500 μm) were the most abundant. The most common polymers were natural based polymers (cotton and rayon) and polyethylene terephthalate (PET). The daily microplastic exposure for consumers was 0.52 items/person. Although the risk of microplastic contamination is low, we recommend investigation into the transfer of MPs within the food web, notably as it may pose significant human health concerns.
Collapse
Affiliation(s)
- Narainrit Chinfak
- Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chawalit Charoenpong
- Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Atchareeya Sampanporn
- Inter-Department of Environmental Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chayaporn Wongpa
- Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Penjai Sompongchaiyakul
- Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
4
|
Capozzi F, Granata A, Gaglione A, Gargiulo T, Rallo A, Marino F, Sorrentino MC, Pironti C, Vergara A, Spagnuolo V, Giordano S. Sequential extraction of anthropogenic microfibers from the leaves of Pittosporum tobira. CHEMOSPHERE 2024; 367:143628. [PMID: 39490755 DOI: 10.1016/j.chemosphere.2024.143628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
The emission of microfibers (MFs) into all environmental matrices, including biota, is a global concern, but appropriate methodologies aimed at biomonitoring these pollutants are still in an exploratory stage. In this work a new method is presented for the extraction of airborne anthropogenic microfibers (MFs) from the leaves of Pittosporum tobira. The method is a sequential extraction consisting of tape followed by water floating, ethanol extraction, and wet peroxidation, which considered at first outermost MFs, weakly adhering to leaf surface, and deeper MFs partly embedded in waxy cuticle layer. Tape tearing removed the highest fraction of MFs (about 75%), followed by water washing, ethanol and peroxidation. The constant ratio between the MFs collected in the successive extraction steps indicated that the protocol proposed is reliable and reproducible. Moreover, based on the tape tearing step, MFs number was significantly higher on the upper surface of the leaves, whereas MFs were significantly longer on the lower surface. A "reverse" extraction protocol in which tape tearing followed three water-washings demonstrated that a noticeable fraction of MFs still adhered to the leaf after water floating. SEM observation of the leaf surface highlighted the structural changes occurring during the extraction, with leaf surface becoming clearer and smoother at each step. Raman spectroscopy highlighted the presence of different kind of anthropogenic MFs, with microplastics representing 50%, and polyethylene terephthalate 39% of total MFs. Due to reproducible results and easy handling of the leaves, we encourage the use of P. tobira as a biomonitor of airborne MFs and suggest that a simplified extraction method based on tape tearing alone could be a fast and useful alternative to be adopted in biomonitoring protocols.
Collapse
Affiliation(s)
- Fiore Capozzi
- Department of Biology, University of Naples Federico II, 80126 Napoli, Italy
| | - Angelo Granata
- Department of Biology, University of Naples Federico II, 80126 Napoli, Italy
| | - Anna Gaglione
- Department of Biology, University of Naples Federico II, 80126 Napoli, Italy
| | - Tina Gargiulo
- Department of Biology, University of Naples Federico II, 80126 Napoli, Italy
| | - Antonio Rallo
- Department of Biology, University of Naples Federico II, 80126 Napoli, Italy
| | - Francesca Marino
- Department of Biology, University of Naples Federico II, 80126 Napoli, Italy
| | | | - Concetta Pironti
- Department of Chemical Sciences, University of Naples Federico II, 80126 Napoli, Italy
| | - Alessandro Vergara
- Department of Chemical Sciences, University of Naples Federico II, 80126 Napoli, Italy
| | - Valeria Spagnuolo
- Department of Biology, University of Naples Federico II, 80126 Napoli, Italy.
| | - Simonetta Giordano
- Department of Biology, University of Naples Federico II, 80126 Napoli, Italy
| |
Collapse
|
5
|
Akyildiz SH, Fiore S, Bruno M, Sezgin H, Yalcin-Enis I, Yalcin B, Bellopede R. Release of microplastic fibers from synthetic textiles during household washing. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124455. [PMID: 38942274 DOI: 10.1016/j.envpol.2024.124455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/29/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
Textile materials are one of the primary sources of microplastic pollution. The washing procedure is by far the most significant way that textile products release microplastic fibers (MPFs). Therefore, in this study, the effects of various textile raw materials (A acrylic, PA polyamide, PET polyester, RPET recycled polyester and PP polypropylene), fabric construction properties (woven, knitted), thickness and basis weight values on MPFs release at different washing stages (pre-washing, soaping/rinsing) were examined separately. To mimic the most popular home washing procedures, a 10-min pre-wash and a 35-min soaping/rinsing phase at 40 °C were selected for the washing procedure. Utilizing the Image J program on macroscopic images captured by a high-resolution SL. R camera, the microfibers collected by filtering the water have been visually counted. According to the results, knitted fabrics released fewer MPFs than woven fabrics, with the woven acrylic sample (A3-w) exhibiting the highest release (2405 MPFs). The number of MPFs increased along with the thickness and weight of the fabric. Recycled polyester was found to release more MPFs than virgin polyester under the same conditions (1193 MPFs vs. 908 MPFs). This study demonstrates how recycled polyester, although initially an environmentally beneficial solution, can eventually become detrimental to the environment. Furthermore, it is known that the pre-washing procedure-which is optional-releases a lot more MPFs than the soaping and rinsing procedures, and that stopping this procedure will drastically lower the amount of MPFs incorporated into the water.
Collapse
Affiliation(s)
- Sinem Hazal Akyildiz
- Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Torino, Italy; Department of Textile Engineering, Istanbul Technical University, Istanbul, Turkey; Department of Textile Engineering, Marmara University, Istanbul, Turkey
| | - Silvia Fiore
- Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Torino, Italy.
| | - Martina Bruno
- Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Torino, Italy
| | - Hande Sezgin
- Department of Textile Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Ipek Yalcin-Enis
- Department of Textile Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Bahattin Yalcin
- Department of Inorganic Chemistry, Marmara University, Istanbul, Turkey
| | - Rossana Bellopede
- Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Torino, Italy
| |
Collapse
|
6
|
Hoemann C, Bauer CA, Fissore C. Assessing meso-, micro-, and nanoplastic pollution in Los Angeles County estuaries. MARINE POLLUTION BULLETIN 2024; 206:116822. [PMID: 39116758 DOI: 10.1016/j.marpolbul.2024.116822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/03/2024] [Accepted: 08/03/2024] [Indexed: 08/10/2024]
Abstract
Estuaries can behave as plastic pollution hotspots, although the dynamics of accumulation in these unique habitats are not understood. We quantified the current levels of meso-, micro-, and nanoplastic pollution in four Los Angeles County estuaries for the first time, as a function of distance from the water outlet and local population density. Fourier-transform infrared spectroscopy (FTIR) and microscope imaging revealed the presence of six types of plastic; polyethylene or polypropylene dominated the meso- and microplastic, and nanoplastics were identified as mainly polyolefin fibers. The distribution was heterogeneous throughout, although the sand between the river mouth and ocean generally contained more plastic than inland control samples. Population density did not appear to affect the abundance of plastic estuarine pollution. Other factors, such as waste treatment effluent, recreation, and river geography, may contribute to plastic deposition. A positive correlation between meso- and microplastic abundance provides insight into such mechanisms for accumulation.
Collapse
Affiliation(s)
- Connor Hoemann
- Department of Environmental Science, Whittier College, Whittier, CA, United States of America
| | - Christina A Bauer
- Department of Environmental Science, Whittier College, Whittier, CA, United States of America.
| | - Cinzia Fissore
- Department of Environmental Science, Whittier College, Whittier, CA, United States of America
| |
Collapse
|
7
|
Lahiri SK, Azimi Dijvejin Z, Gholamreza F, Shabanian S, Khatir B, Wotherspoon L, Golovin K. Liquidlike, Low-Friction Polymer Brushes for Microfibre Release Prevention from Textiles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400580. [PMID: 38529758 DOI: 10.1002/smll.202400580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/12/2024] [Indexed: 03/27/2024]
Abstract
During synthetic textile washing, rubbing between fibres or against the washing machine, exacerbated by the elevated temperature, initiates the release of millions of microplastic fibres into the environment. A general tribological strategy is reported that practically eliminates the release of microplastic fibres from laundered apparel. The two-layer fabric finishes combine low-friction, liquidlike polymer brushes with "molecular primers", that is, molecules that durably bond the low-friction layers to the surface of the polyester or nylon fabrics. It is shown that when the coefficient of friction is below a threshold of 0.25, microplastic fibre release is substantially reduced, by up to 96%. The fabric finishes can be water-wicking or water-repellent, and their comfort properties are retained after coating, indicating a tunable and practical strategy toward a sustainable textile industry and plastic-free oceans and marine foodstuffs.
Collapse
Affiliation(s)
- Sudip Kumar Lahiri
- Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada
| | - Zahra Azimi Dijvejin
- Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada
| | - Farzan Gholamreza
- School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Sadaf Shabanian
- Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada
- School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Behrooz Khatir
- Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada
| | - Lauren Wotherspoon
- Department of Materials Science & Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada
| | - Kevin Golovin
- Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada
- Department of Materials Science & Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada
| |
Collapse
|
8
|
Auguste M, Leonessi M, Doni L, Oliveri C, Jemec Kokalj A, Drobne D, Vezzulli L, Canesi L. Polyester Microfibers Exposure Modulates Mytilus galloprovincialis Hemolymph Microbiome. Int J Mol Sci 2024; 25:8049. [PMID: 39125616 PMCID: PMC11312190 DOI: 10.3390/ijms25158049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Microplastic (MP) contamination in the aquatic environment is a cause of concern worldwide since MP can be taken up by different organisms, altering different biological functions. In particular, evidence is accumulating that MP can affect the relationship between the host and its associated microbial communities (the microbiome), with potentially negative health consequences. Synthetic microfibers (MFs) represent one of the main MPs in the marine environment, which can be accumulated by filter-feeding invertebrates, such as bivalves, with consequent negative effects and transfer through the food chain. In the mussel Mytilus galloprovincialis, polyethylene terephthalate (PET) MFs, with a size distribution resembling that of an MF released from textile washing, have been previously shown to induce multiple stress responses. In this work, in the same experimental conditions, the effects of exposure to PET-MF (96 h, 10, and 100 μg/L) on mussel hemolymph microbiome were evaluated by 16S rRNA gene amplification and sequencing. The results show that PET-MF affects the composition of bacterial communities at the phylum, family and genus level, with stronger effects at the lowest concentration tested. The relationship between MF-induced changes in hemolymph microbial communities and responses observed at the whole organism level are discussed.
Collapse
Affiliation(s)
- Manon Auguste
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, 16132 Genoa, Italy; (M.L.); (L.D.); (C.O.); (L.V.); (L.C.)
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Martina Leonessi
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, 16132 Genoa, Italy; (M.L.); (L.D.); (C.O.); (L.V.); (L.C.)
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Lapo Doni
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, 16132 Genoa, Italy; (M.L.); (L.D.); (C.O.); (L.V.); (L.C.)
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Caterina Oliveri
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, 16132 Genoa, Italy; (M.L.); (L.D.); (C.O.); (L.V.); (L.C.)
| | - Anita Jemec Kokalj
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (A.J.K.); (D.D.)
| | - Damjana Drobne
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (A.J.K.); (D.D.)
| | - Luigi Vezzulli
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, 16132 Genoa, Italy; (M.L.); (L.D.); (C.O.); (L.V.); (L.C.)
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Laura Canesi
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, 16132 Genoa, Italy; (M.L.); (L.D.); (C.O.); (L.V.); (L.C.)
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| |
Collapse
|
9
|
Nopp-Mayr U, Layendecker S, Sittenthaler M, Philipp M, Kägi R, Weinberger I. Microplastic loads in Eurasian otter (Lutra lutra) feces-targeting a standardized protocol and first results from an alpine stream, the River Inn. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:707. [PMID: 38970695 PMCID: PMC11227469 DOI: 10.1007/s10661-024-12791-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/06/2024] [Indexed: 07/08/2024]
Abstract
Microplastics (MP) are omnipresent in a wide range of environments, constituting a potential threat for aquatic and terrestrial wildlife. Effects in consumers range from physical injuries to pathological reactions. Due to potential bioaccumulation of MP, predators are of particular concern for MP induced health effects. The Eurasian otter is an apex predator in (semi-)aquatic habitats feeding primarily on fish. Furthermore, the species is classified as "near threatened" on the IUCN Red List. Thus, the Eurasian otter is of conservation concern and may serve as a bioindicator for MP pollution. Feces can be used to detect pollutants, including MP. Initial studies confirmed the presence of MP in otter feces (= spraints). However, as specific, validated protocols targeting at an efficient and standardized extraction of MP from otter spraints are missing, experimental results reported from different groups are challenging to compare. Therefore, we (i) present steps towards a standardized protocol for the extraction of MP from otter feces, (ii) give recommendations for field sample collection of otter spraints, and (iii) provide a user-friendly step-by-step workflow for MP extraction and analysis. Applying this framework to field samples from five study sites along the River Inn (n = 50), we detected MP of different sizes and shapes (ranging from microfibers to road abrasion and tire wear) in all otter spraint samples.
Collapse
Affiliation(s)
- Ursula Nopp-Mayr
- Institute of Wildlife Biology and Game Management, Department of Integrative Biology and Biodiversity Research, University of Natural Resources and Life Sciences Vienna, Gregor Mendel-Straße 33, 1180, Vienna, Austria
| | - Sarah Layendecker
- Institute of Wildlife Biology and Game Management, Department of Integrative Biology and Biodiversity Research, University of Natural Resources and Life Sciences Vienna, Gregor Mendel-Straße 33, 1180, Vienna, Austria
| | - Marcia Sittenthaler
- Institute of Wildlife Biology and Game Management, Department of Integrative Biology and Biodiversity Research, University of Natural Resources and Life Sciences Vienna, Gregor Mendel-Straße 33, 1180, Vienna, Austria.
- Central Research Laboratories, Natural History Museum Vienna, Burgring 7, 1010, Vienna, Austria.
- IUCN Species Survival Commission, Otter Specialist Group, Rue Mauverney 28, 1196, Gland, Switzerland.
| | - Matthias Philipp
- Department Process Engineering, Eawag Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600, Dübendorf, Switzerland
| | - Ralf Kägi
- Department Process Engineering, Eawag Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600, Dübendorf, Switzerland
| | - Irene Weinberger
- Fondation Pro Lutra, Wasserwerkgasse 2, 3011, Bern, Switzerland
- IUCN Species Survival Commission, Otter Specialist Group, Rue Mauverney 28, 1196, Gland, Switzerland
| |
Collapse
|
10
|
Liu Z, Liang T, Liu X. Characteristics, distribution patterns and sources of atmospheric microplastics in the Bohai and Yellow Seas, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171906. [PMID: 38531455 DOI: 10.1016/j.scitotenv.2024.171906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 03/17/2024] [Accepted: 03/20/2024] [Indexed: 03/28/2024]
Abstract
Although the prevalence of microplastics in the atmosphere has recently received considerable attention, there is little information available regarding the distribution of atmospheric microplastics over oceanic regions. In this study, during the summer and autumn months of 2022, we investigated atmospheric microplastics in four marine regions off the eastern coast of mainland China, namely, the southern, middle, and northern regions of the Yellow Sea, and the Bohai Sea. The abundance of atmospheric microplastics in these regions ranged from 1.65 to 16.80 items/100 m3 during summer and from 0.38 to 14.58 items/100 m3 during autumn, although we detected no significant differences in abundance among these regions. Polyamide, chlorinated polyethylene, and polyethylene terephthalate were identified as the main types of plastic polymer. On the basis of meteorological data and backward trajectory model analyses, we established that the atmospheric microplastics detected during summer were mainly derived from the adjacent marine atmosphere and that over the continental landmass in the vicinity of the sampling area, whereas microplastics detected during autumn appear to have originated mainly from the northeast of China. By influencing the settlement and migration of microplastics, meteorological factors, such as relative humidity and wind speed, were identified as potential factors determining the distribution and characteristics of the detected microplastics. Our findings in this study, revealing the origin and fate of marine atmospheric microplastics, make an important contribution to our current understanding of the distribution and transmission of microplastics within the surveyed region and potentially worldwide.
Collapse
Affiliation(s)
- Zhengjinhao Liu
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China; MoE Key Laboratory of Evolution and Marine Biodiversity, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Ting Liang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China; MoE Key Laboratory of Evolution and Marine Biodiversity, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Xiaoshou Liu
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China; MoE Key Laboratory of Evolution and Marine Biodiversity, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
11
|
Latwal M, Arora S, Murthy KSR. Data driven AI (artificial intelligence) detection furnish economic pathways for microplastics. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 264:104365. [PMID: 38776560 DOI: 10.1016/j.jconhyd.2024.104365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/18/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024]
Abstract
Microplastics pollution is killing human life, contaminating our oceans, and lasting for longer in the environment than it is used. Microplastics have contaminated the geochemistry and turned the water system into trash barrel. Its detection in water is easy in comparison to soil and air so the attention of researchers is focused on it for now. Being very small in size, microplastics can easily cross the water filtration system and end up in the ocean or lakes and become the prospective challenge to aquatic life. This review piece provides the hot research theme and current advances in the field of microplastics and their eradication through the virtual world of artificial intelligence (AI) because Microplastics have confrontation with clean water tactics.
Collapse
Affiliation(s)
- Mamta Latwal
- Department of Chemistry, University of Petroleum and Energy Studies, Dehradun, UK, India
| | - Shefali Arora
- Department of Chemistry, University of Petroleum and Energy Studies, Dehradun, UK, India.
| | - K S R Murthy
- Department of Chemistry, University of Petroleum and Energy Studies, Dehradun, UK, India
| |
Collapse
|
12
|
Deakin K, Savage G, Jones JS, Porter A, Muñoz-Pérez JP, Santillo D, Lewis C. Sea surface microplastics in the Galapagos: Grab samples reveal high concentrations of particles <200 μm in size. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171428. [PMID: 38438045 DOI: 10.1016/j.scitotenv.2024.171428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/06/2024]
Abstract
Plastic pollution in the oceans is increasing, yet most global sea surface data is collected using plankton nets which limits our knowledge of the smaller and more bioaccessible size fraction of microplastics (<5 mm). We sampled the biodiverse coastal waters of the Galapagos Island of San Cristobal, comparing two different microplastic sampling methodologies; 1 l whole seawater grab samples filtered to 1.2 μm and sea surface plankton tows with a net mesh size of 200 μm. Our data reveal high concentrations of microplastics in Galapagos coastal waters surrounding the urban area, averaging 11.5 ± 1.48 particles l-1, with a four-order of magnitude increase in microplastic abundance observed using grab sampling compared with 200 μm plankton nets. This increase was greater when including anthropogenic cellulose particles, averaging 19.8 ± 1.86 particles l-1. Microplastic and anthropogenic cellulose particles smaller than 200 μm comprised 44 % of the particles from grab samples, suggesting previous estimates of microplastic pollution based on plankton nets likely miss and therefore underestimate these smaller particles. The particle characteristics and distribution of these smaller particles points strongly to a local input of cellulosic fibres in addition to the microplastic particles transported longer distances via the Humbolt current found across the surface seawater of the Galapagos. Improving our understanding of particle characteristics and distributions to highlight likely local sources will facilitate the development of local mitigation and management plans to reduce the input and impacts of microplastics to marine species, not just in the Galapagos but globally.
Collapse
Affiliation(s)
- Katie Deakin
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter EX4 4QD, UK
| | - Georgie Savage
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter EX4 4QD, UK
| | - Jen S Jones
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter EX4 4QD, UK; Galapagos Conservation Trust, 7-14 Great Dover Street, London SE1 4YR, UK
| | - Adam Porter
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter EX4 4QD, UK
| | - Juan Pablo Muñoz-Pérez
- Colegio de Ciencias Biológicas y Ambientales (COCIBA), Universidad San Francisco de Quito USFQ, Quito, Ecuador; School of Science, Technology and Engineering, University of the Sunshine Coast UniSC, Hervey Bay, QLD, Australia
| | - David Santillo
- Greenpeace Research Laboratories, School of Biosciences, Innovation Centre Phase 2, University of Exeter, Exeter EX4 4RN, UK
| | - Ceri Lewis
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter EX4 4QD, UK.
| |
Collapse
|
13
|
Fernandes AN, Lara LZ, De Falco F, Turner A, Thompson RC. Effect of the age of garments used under real-life conditions on microfibre release from polyester and cotton clothing. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123806. [PMID: 38493865 DOI: 10.1016/j.envpol.2024.123806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
The release of microfibres from fabrics during laundering represents an important source of plastic and natural microfibres to aquatic environments. Garment age - how long the garment has been used - could be a key factor influencing the rate of release, yet most studies of microfibre shedding have only assessed newly manufactured products. To this end, we quantified microfibre release during laundering in domestic washing machines from polyester (PES) and cotton garments (n = 38) used in real-life conditions for periods between 1 and 31 years with different use intensities. In addition, to better understand the factors involved in microfibre releases, fibre composition (different PES percentages) and type of garments (T-shirts, polo shirts, uniforms, sports shirts, and sweatshirts) were examined. All garments released microfibres during washing, while the older garments presented higher releases for clothing with a PES/cotton blend. In general, older garments (15-31 years) released nearly twice as many fibres when washed than newer garments (1-10 years). The mass of microfibres released was consistently greater in garments with a higher proportion of cotton than PES (up to 1.774 mg g-1 in 2% PES and 0.366 mg g-1 in 100% PES fabrics), suggesting that cotton might be released more readily such that the relative proportion of PES in the garments could increase over time. Additionally, SEM images showed fibre damage, with fibres from the older garments exhibiting more peeling and splitting. While it is important to note that the overall environmental footprint is undoubtedly reduced by keeping garments in use for longer periods of time, older garments were shown to release more microfibres.
Collapse
Affiliation(s)
- Andreia N Fernandes
- Institute of Chemistry, Federal University of Rio Grande do Sul (UFRGS), Bento Gonçalves 9500, Porto Alegre, 91501-970, Brazil; School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK.
| | - Larissa Z Lara
- Institute of Chemistry, Federal University of Rio Grande do Sul (UFRGS), Bento Gonçalves 9500, Porto Alegre, 91501-970, Brazil
| | - Francesca De Falco
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK; School of Geography, Earth and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK
| | - Andrew Turner
- School of Geography, Earth and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK
| | - Richard C Thompson
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK
| |
Collapse
|
14
|
Rodrigues CC, Harayashiki CAY, S Pereira E, Rodrigues GLS, Neves BJ, Rocha TL. How do microplastics alter molluscicidal activity? Effects of weathered microplastics and niclosamide in developing freshwater snails. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171165. [PMID: 38395171 DOI: 10.1016/j.scitotenv.2024.171165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/23/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
Despite the wide distribution and persistence of microplastics (MPs), their interactive effects with molluscicides are unknown. Schistosomiasis, a neglected tropical disease, affects 236.6 million people worldwide. Niclosamide (NCL) is the only molluscicide recommended by the World Health Organization (WHO) and it is used to control the population of Schistosoma spp.'s intermediate host. Thus, this study aimed to evaluate of the interaction between polyethylene (PE) MPs and NCL, and their associated toxicity in the freshwater snail Biomphalaria glabrata (Say 1818). Weathered PE MPs were characterized and theoretical analysis of NCL-MP adsorption nature was made using quantum mechanical calculations. The toxicity of NCL isolated (0.0265 to 0.0809 mg L-1) and under interaction with PE MPs (3400 μg L-1) in B. glabrata embryos and newly hatched snails was analyzed. In silico analysis confirmed the adsorption mechanisms of NCL into PE MPs. PE MPs decreased the NCL toxicity to both B. glabrata developmental stages, increasing their survival and NCL lethal concentrations, indicating concerns regarding NCL use as molluscicide in aquatic environments polluted by MPs. In conclusion, MPs may change the efficiency of chemicals used in snail control programs.
Collapse
Affiliation(s)
- Cândido C Rodrigues
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Cyntia A Y Harayashiki
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Eufrásia S Pereira
- Laboratory of Cheminformatics, Faculty of Pharmacy, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Gabriel L S Rodrigues
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Bruno J Neves
- Laboratory of Cheminformatics, Faculty of Pharmacy, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Thiago L Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil.
| |
Collapse
|
15
|
Valdiviezo-Gonzales L, Ortiz Ojeda P, Espinoza Morriberón D, Colombo CV, Rimondino GN, Forero López AD, Fernández Severini MD, Malanca FE, De-la-Torre GE. Influence of the geographic location and house characteristics on the concentration of microplastics in indoor dust. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170353. [PMID: 38296076 DOI: 10.1016/j.scitotenv.2024.170353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/17/2024] [Accepted: 01/20/2024] [Indexed: 02/04/2024]
Abstract
Microplastics (MPs) are known for their ubiquity, having been detected in virtually any environmental compartment. However, indoor MPs concentrations are poorly studied despite being closely related to human exposure. The present study aims to evaluate the presence of MPs in settled atmospheric dust in 60 houses distributed in 12 districts of the metropolitan city of Lima, Peru, and investigate the influence of their geographical location and house characteristics. MPs concentration ranged from 0.01 to 33.9 MPs per mg of dust. Fibers and blue were the most frequent shape and color (98 % and 69 %, respectively). Also, 82 % of the particles were between 500 μm - 5 mm in size. A higher concentration of MPs was identified in the center-south of the city. The houses located on the highest floors (levels 4 to 13 to ground) displayed higher concentrations. MPs were primarily composed of polyester (PET), polypropylene (PP), and ethylene-vinyl acetate (EVA), among others. The polymers identified suggest that MPs derived from the fragmentation of components frequently found in houses, such as synthetic clothing, food storage containers, toys, carpets, floors, and curtains. The incorporation of MPs from the outside into dwellings is not ruled out. Future studies should evaluate the influence of consumption habits and housing characteristics on the abundance of MPs.
Collapse
Affiliation(s)
- Lorgio Valdiviezo-Gonzales
- Carrera Profesional de Ingeniería en Seguridad Laboral y Ambiental, Facultad de Ingeniería, Universidad Tecnológica del Perú, Lima, Peru.
| | - Paola Ortiz Ojeda
- Carrera Profesional de Ingeniería en Seguridad Laboral y Ambiental, Facultad de Ingeniería, Universidad Tecnológica del Perú, Lima, Peru
| | - Dante Espinoza Morriberón
- Universidad Tecnológica del Perú (UTP), Facultad de Ingeniería, Jirón Hernán Velarde 260, Cercado de Lima, 15046 Lima, Peru
| | - Carolina V Colombo
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Camino La Carrindanga, km 7.5, Edificio E1, Bahía Blanca B8000FWB, Buenos Aires, Argentina
| | - Guido Noé Rimondino
- Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC), Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Ana D Forero López
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Camino La Carrindanga, km 7.5, Edificio E1, Bahía Blanca B8000FWB, Buenos Aires, Argentina
| | - Melisa D Fernández Severini
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Camino La Carrindanga, km 7.5, Edificio E1, Bahía Blanca B8000FWB, Buenos Aires, Argentina
| | - Fabio Ernesto Malanca
- Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC), Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Gabriel Enrique De-la-Torre
- Grupo de Investigación de Biodiversidad, Medio Ambiente y Sociedad, Universidad San Ignacio de Loyola, Lima, Peru
| |
Collapse
|
16
|
Villanova-Solano C, Díaz-Peña FJ, Hernández-Sánchez C, González-Sálamo J, Edo C, Vega-Moreno D, Fernández-Martín S, Fraile-Nuez E, Machín F, Hernández-Borges J. Beneath the water column: Uncovering microplastic pollution in the sublittoral coastal sediments of the Canary Islands, Spain. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133128. [PMID: 38134684 DOI: 10.1016/j.jhazmat.2023.133128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/10/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023]
Abstract
Marine ecosystems pollution by microplastics (MPs) is a global problem of special concern. The present study examines the prevalence and distribution of MPs and cellulosic particles in sublittoral coastal sediments of the Canary Islands archipelago (Spain). At twenty-six different locations alongside seven islands, three samples were taken parallel to the shoreline between 1 and 10 m depth (n = 78). Sediment samples were primarily digested with a H2O2 solution followed by four flotations in a saturated NaCl solution. The mean concentration obtained was 3.9 ± 1.6 items/g of dry weight. A similar distribution pattern was observed across all islands concerning particles morphology, color, size and composition: mainly colorless/translucent and blue fibers (60.0%). Additionally, fragments were also found, and to a much lesser extent microbeads, films and tangled messes. MicroFourier Transform Infrared spectroscopy analysis of 12.5% of the fibers, showed that they were mainly cellulosic (54.5%) -either natural or semisynthetic- followed by polyester (22.7%) and acrylic (4.5%). The potential correlation between particle distribution in nearshore sediments and wave intensity was also explored. This work provides the first comprehensive report on the current MPs content of the seabed of the region.
Collapse
Affiliation(s)
- Cristina Villanova-Solano
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, Spain
| | - Francisco J Díaz-Peña
- Departamento de Biología Animal, Edafología y Geología, Facultad de Ciencias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, Spain
| | - Cintia Hernández-Sánchez
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Forense y Legal y Parasitología, Área de Medicina Preventiva y Salud Pública, Escuela Politécnica Superior de Ingeniería, Sección de Náutica, Máquinas y Radioelectrónica Naval, Universidad de La Laguna (ULL), Vía Auxiliar Paso Alto, 2, 38001 Santa Cruz de Tenerife, Spain
| | - Javier González-Sálamo
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, Spain
| | - Carlos Edo
- Departamento de Ingeniería Química, Universidad de Alcalá, E-28871 Alcalá de Henares, Madrid, Spain
| | - Daura Vega-Moreno
- Departamento de Química, Universidad de Las Palmas de Gran Canaria (ULPGC), Spain
| | - Sonia Fernández-Martín
- Departamento de Biología Animal, Edafología y Geología, Facultad de Ciencias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, Spain
| | - Eugenio Fraile-Nuez
- Centro Oceanográfico de Canarias, Instituto Español de Oceanografía (IEO), Consejo Superior de Investigaciones Científicas (CSIC), Calle Farola del Mar, 22, 38180 Santa Cruz de Tenerife, Spain
| | - Francisco Machín
- Departamento de Física, Universidad de Las Palmas de Gran Canaria (ULPGC), Spain
| | - Javier Hernández-Borges
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, Spain.
| |
Collapse
|
17
|
Thacharodi A, Hassan S, Meenatchi R, Bhat MA, Hussain N, Arockiaraj J, Ngo HH, Sharma A, Nguyen HT, Pugazhendhi A. Mitigating microplastic pollution: A critical review on the effects, remediation, and utilization strategies of microplastics. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119988. [PMID: 38181686 DOI: 10.1016/j.jenvman.2023.119988] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/23/2023] [Accepted: 12/28/2023] [Indexed: 01/07/2024]
Abstract
Microplastics are found ubiquitous in the natural environment and are an increasing source of worry for global health. Rapid industrialization and inappropriate plastic waste management in our daily lives have resulted in an increase in the amount of microplastics in the ecosystem. Microplastics that are <150 μm in size could be easily ingested by living beings and cause considerable toxicity. Microplastics can aggregate in living organisms and cause acute, chronic, carcinogenic, developmental, and genotoxic damage. As a result, a sustainable approach to reducing, reusing, and recycling plastic waste is required to manage microplastic pollution in the environment. However, there is still a significant lack of effective methods for managing these pollutants. As a result, the purpose of this review is to convey information on microplastic toxicity and management practices that may aid in the reduction of microplastic pollution. This review further insights on how plastic trash could be converted as value-added products, reducing the load of accumulating plastic wastes in the environment, and leading to a beneficial endeavor for humanity.
Collapse
Affiliation(s)
- Aswin Thacharodi
- Dr. Thacharodi's Laboratories, Department of Research and Development, Puducherry, 605005, India
| | - Saqib Hassan
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, 600119, India
| | - Ramu Meenatchi
- Department of Biotechnology, SRM Institute of Science and Technology, Faculty of Science and Humanities, Kattankulathur, Chengalpattu District, Tamil Nadu, 603 203, India
| | - Mansoor Ahmad Bhat
- Eskişehir Technical University, Faculty of Engineering, Department of Environmental Engineering, 26555, Eskişehir, Turkey
| | - Naseer Hussain
- School of Life Sciences, B. S. Abdur Rahman Crescent Institute of Science and Technology, Vandalur, Chennai, Tamil Nadu, 600048, India
| | - Jesu Arockiaraj
- Department of Biotechnology, SRM Institute of Science and Technology, Faculty of Science and Humanities, Kattankulathur, Chengalpattu District, Tamil Nadu, 603 203, India
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Ashutosh Sharma
- Tecnologico de Monterrey, Centre of Bioengineering, NatProLab, Plant Innovation Lab, School of Engineering and Sciences, Queretaro, 76130, Mexico
| | - H T Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam; School of Engineering & Technology, Duy Tan University, Da Nang, Vietnam
| | - Arivalagan Pugazhendhi
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam; School of Engineering & Technology, Duy Tan University, Da Nang, Vietnam.
| |
Collapse
|
18
|
Malinowski CR, Searle CL, Schaber J, Höök TO. Microplastics impact simple aquatic food web dynamics through reduced zooplankton feeding and potentially releasing algae from consumer control. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166691. [PMID: 37659532 DOI: 10.1016/j.scitotenv.2023.166691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023]
Abstract
Concentrations of microplastics in aquatic environments continue to rise due to industrial production and pollution. While there are various concerns regarding potential deleterious effects of microplastics on ecosystems, several knowledge gaps remain, including the potential for microplastics to directly and indirectly affect biotic interactions and food web dynamics. We explored the effects of environmentally relevant microplastic concentrations on two co-exposed species of herbaceous freshwater crustaceous zooplankton, filter feeding Daphnia dentifera and selective phytoplankton grazers Arctodiaptomus dorsalis. Study organisms were exposed to different concentrations of microplastics (plastic polyethylene microspheres; low = 2.38 × 10-8 mg/L, medium = 0.023 mg/L, high = 162 mg/L), phytoplankton prey, and predator cues, simulating a simple freshwater food web. Microplastic uptake was greater by D. dentifera, but both species were characterized by decreased algal consumption in the highest microplastic concentration treatment. Importantly, aqueous chlorophyll-a concentrations at the conclusion of the experiment were greater for the high microplastic treatment than all controls and other microplastic treatments. Finally, a predator effect was only apparent for D. dentifera, with greater microplastic uptake in the presence of a predator. We conclude that microplastics may adversely impact the ability of zooplankton to feed on algae and potentially release algae from consumptive control by herbivorous zooplankton. SYNOPSIS: This research aimed to better understand the broader food web effects of environmentally relevant microplastic concentrations on aquatic communities.
Collapse
Affiliation(s)
- Christopher R Malinowski
- Purdue University, Department of Forestry and Natural Resources, 195 Marsteller St., West Lafayette, IN 47907, USA; Ocean First Institute, 51 Shoreland Drive, Key Largo, FL 33037, USA.
| | - Catherine L Searle
- Purdue University, Department of Biological Sciences, 915 W. State Street, West Lafayette, IN 47907, USA
| | - James Schaber
- Purdue University, Bindley Bioscience Center, 1275 3(rd) St., West Lafayette, IN 47906, USA
| | - Tomas O Höök
- Purdue University, Department of Forestry and Natural Resources, 195 Marsteller St., West Lafayette, IN 47907, USA; Illinois-Indiana Sea Grant College Program, 195 Marsteller St., West Lafayette, IN 47907, USA
| |
Collapse
|
19
|
Genchi L, Martin C, Laptenok SP, Baalkhuyur F, Duarte CM, Liberale C. When microplastics are not plastic: Chemical characterization of environmental microfibers using stimulated Raman microspectroscopy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 892:164671. [PMID: 37290646 DOI: 10.1016/j.scitotenv.2023.164671] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/27/2023] [Accepted: 06/02/2023] [Indexed: 06/10/2023]
Abstract
The abundance of anthropogenic debris dispersed in the environment is exponentially growing, raising concerns about marine life and human exposure to microplastics. Microfibers are the most abundant microplastic type in the environment. However, recent research suggests that most microfibers dispersed in the environment are not made of synthetic polymers. In this work, we systematically tested this assumption by determining the man-made or natural origin of microfibers found in different environments, including surface waters, sediments at depths >5000 m and highly sensitive habitats like mangroves and seagrass, and treated water using stimulated Raman scattering (SRS) microscopy. Our findings show that ¾th of analyzed microfibers are of natural origin. One plastic fiber is estimated per every 50 L in surface seawater, every 5 L in desalinated drinking water, every 3 g in deep sea sediments and every 27 g in coastal sediments. Synthetic fibers were significantly larger in surface seawaters compared to organic fibers due to higher resistance to solar radiation. These results emphasize the necessity of using spectroscopical methods to assess the origin of environmental microfibers to accurately estimate the abundance of synthetic materials in the environment.
Collapse
Affiliation(s)
- Luca Genchi
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Cecilia Martin
- Red Sea Research Center and Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia; Red Sea Global, SEZ Department of Environmental Sustainability, AlRaidah Digital City, Riyadh 12382 - 6726, Saudi Arabia
| | - Sergey P Laptenok
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Fadiyah Baalkhuyur
- Red Sea Research Center and Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Carlos M Duarte
- Red Sea Research Center and Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| | - Carlo Liberale
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia; Computer, Electrical and Mathematical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| |
Collapse
|
20
|
Pušić T, Vojnović B, Flinčec Grgac S, Čurlin M, Malinar R. Particle Shedding from Cotton and Cotton-Polyester Fabrics in the Dry State and in Washes. Polymers (Basel) 2023; 15:3201. [PMID: 37571095 PMCID: PMC10421144 DOI: 10.3390/polym15153201] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
The influence of 3, 10 and 50 washing cycles on the properties of cotton fabric and cotton-polyester blend in plain weave, was investigated in this study. In addition to the analysis of tensile properties in weft and warp directions and thickness, the number of particles produced in the dry state was also measured after 3, 10 and 50 washes. After washing, the entire effluent was analysed by determining the total suspended solids (TSS), the total solids (TS), the pH value and the conductivity. To determine the similarity of the observed wash cycles and properties of all processed samples, hierarchical cluster analysis (HCA) was performed. The fabric changes indicated by total wear in the warp direction after 50 washing cycles compared to unwashed ones amounting to 41.2% for cotton and 30.9% for cotton-polyester blend, may be attributed to the synergy of washing factors and raw material composition. Cotton fabric produced significantly more particles than cotton-polyester fabric in the dry state after the examined washing cycles in all size categories. A smaller number of released particles are in the larger size category >25 μm. The obtained TSS values confirm the degree of loading of the effluent with particulate matter from the analysed fabrics, since the detergent consists of water-soluble components. The HCA dendrograms confirmed that the release of particles during the first washing cycles is mainly determined by the structural properties of fabrics, while in the subsequent cycles the synergistic effect of chemical, mechanical and thermal effects in the interaction with the material prevailed.
Collapse
Affiliation(s)
- Tanja Pušić
- Faculty of Textile Technology, University of Zagreb, 10000 Zagreb, Croatia; (T.P.); (B.V.); (R.M.)
| | - Branka Vojnović
- Faculty of Textile Technology, University of Zagreb, 10000 Zagreb, Croatia; (T.P.); (B.V.); (R.M.)
| | - Sandra Flinčec Grgac
- Faculty of Textile Technology, University of Zagreb, 10000 Zagreb, Croatia; (T.P.); (B.V.); (R.M.)
| | - Mirjana Čurlin
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia;
| | - Rajna Malinar
- Faculty of Textile Technology, University of Zagreb, 10000 Zagreb, Croatia; (T.P.); (B.V.); (R.M.)
| |
Collapse
|
21
|
Yadav S, Kataria N, Khyalia P, Rose PK, Mukherjee S, Sabherwal H, Chai WS, Rajendran S, Jiang JJ, Khoo KS. Recent analytical techniques, and potential eco-toxicological impacts of textile fibrous microplastics (FMPs) and associated contaminates: A review. CHEMOSPHERE 2023; 326:138495. [PMID: 36963588 DOI: 10.1016/j.chemosphere.2023.138495] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/05/2023] [Accepted: 03/21/2023] [Indexed: 06/18/2023]
Abstract
Despite of our growing understanding of microplastic's implications, research on the effects of fibrous microplastic (FMPs) on the environment is still in its infancy. Some scientists have hypothesized the possibility of natural textile fibres, which may act as one of the emerging environmental pollutants prevalent among microplastic pollutants in the environment. Therefore, this review aims to critically evaluate the toxic effects of emerging FMPs, the presence, and sources of FMPs in the environment, identification and analytical techniques, and the potential impact or toxicity of the FMPs on the environment and human health. About175 publications (2011-2023) based on FMPs were identified and critically reviewed for transportation, analysis and ecotoxicological behaviours of FMPs in the environment. Textile industries, wastewater treatment plants, and household washing of clothes are significant sources of FMPs. In addition, various characterization techniques (e.g., FTIR, SEM, RAMAN, TGA, microscope, and X-Ray Fluorescence Spectroscopy) commonly used for the identification and analysis of FMPs are also discussed, which justifies the novelty aspects of this review. FMPs are pollutants of emerging concern due to their prevalence and persistence in the environment. FMPs are also found in the food chain, which is an alarming situation for living organisms, including effects on the nervous system, digestive system, circulatory system, and genetic alteration. This review will provide readers with a comparison of different analytical techniques, which will be helpful for researchers to select the appropriate analytical techniques for their study and enhance their knowledge about the harmful effects of FMPs.
Collapse
Affiliation(s)
- Sangita Yadav
- Department of Environmental Science and Engineering, Guru Jambheswar University of Science &Technology, Hisar, 125001, Haryana, India
| | - Navish Kataria
- Department of Environmental Sciences, J. C. Bose University of Science and Technology, YMCA, Faridabad, 121006, Haryana, India.
| | - Pradeep Khyalia
- Department of Environmental Science, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Pawan Kumar Rose
- Department of Energy and Environmental Sciences, Chaudhary Devi Lal University, Sirsa, 125055, Haryana, India
| | - Santanu Mukherjee
- Shoolini University of Biotechnology and Management Sciences, Sultanpur, Solan, Himachal Pradesh, 173229, India
| | - Himani Sabherwal
- Department of Environmental Sciences, J. C. Bose University of Science and Technology, YMCA, Faridabad, 121006, Haryana, India
| | - Wai Siong Chai
- Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Saravanan Rajendran
- Faculty of Engineering, Department of Mechanical Engineering, University of Tarapaca, Avda. General Velasquez, 1775, Arica, Chile
| | - Jheng-Jie Jiang
- Department of Environmental Engineering, Chung Yuan Christian University, Taoyuan, 320314, Taiwan; Centre for Environment Risk Management (CERM), Chung Yuan Christian University, Taoyuan, 320314, Taiwan
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan; Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, India; Centre for Research and Graduate Studies, University of Cyberjaya, Persiaran Bestari, 63000, Cyberjaya, Selangor, Malaysia.
| |
Collapse
|
22
|
Osman AI, Hosny M, Eltaweil AS, Omar S, Elgarahy AM, Farghali M, Yap PS, Wu YS, Nagandran S, Batumalaie K, Gopinath SCB, John OD, Sekar M, Saikia T, Karunanithi P, Hatta MHM, Akinyede KA. Microplastic sources, formation, toxicity and remediation: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2023; 21:1-41. [PMID: 37362012 PMCID: PMC10072287 DOI: 10.1007/s10311-023-01593-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 03/14/2023] [Indexed: 06/10/2023]
Abstract
Microplastic pollution is becoming a major issue for human health due to the recent discovery of microplastics in most ecosystems. Here, we review the sources, formation, occurrence, toxicity and remediation methods of microplastics. We distinguish ocean-based and land-based sources of microplastics. Microplastics have been found in biological samples such as faeces, sputum, saliva, blood and placenta. Cancer, intestinal, pulmonary, cardiovascular, infectious and inflammatory diseases are induced or mediated by microplastics. Microplastic exposure during pregnancy and maternal period is also discussed. Remediation methods include coagulation, membrane bioreactors, sand filtration, adsorption, photocatalytic degradation, electrocoagulation and magnetic separation. Control strategies comprise reducing plastic usage, behavioural change, and using biodegradable plastics. Global plastic production has risen dramatically over the past 70 years to reach 359 million tonnes. China is the world's top producer, contributing 17.5% to global production, while Turkey generates the most plastic waste in the Mediterranean region, at 144 tonnes per day. Microplastics comprise 75% of marine waste, with land-based sources responsible for 80-90% of pollution, while ocean-based sources account for only 10-20%. Microplastics induce toxic effects on humans and animals, such as cytotoxicity, immune response, oxidative stress, barrier attributes, and genotoxicity, even at minimal dosages of 10 μg/mL. Ingestion of microplastics by marine animals results in alterations in gastrointestinal tract physiology, immune system depression, oxidative stress, cytotoxicity, differential gene expression, and growth inhibition. Furthermore, bioaccumulation of microplastics in the tissues of aquatic organisms can have adverse effects on the aquatic ecosystem, with potential transmission of microplastics to humans and birds. Changing individual behaviours and governmental actions, such as implementing bans, taxes, or pricing on plastic carrier bags, has significantly reduced plastic consumption to 8-85% in various countries worldwide. The microplastic minimisation approach follows an upside-down pyramid, starting with prevention, followed by reducing, reusing, recycling, recovering, and ending with disposal as the least preferable option.
Collapse
Affiliation(s)
- Ahmed I. Osman
- School of Chemistry and Chemical Engineering, David Keir Building, Queen’s University Belfast, Stranmillis Road, Belfast, BT9 5AG Northern Ireland, UK
| | - Mohamed Hosny
- Green Technology Group, Environmental Sciences Department, Faculty of Science, Alexandria University, Alexandria, 21511 Egypt
| | | | - Sara Omar
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Ahmed M. Elgarahy
- Environmental Science Department, Faculty of Science, Port Said University, Port Said, Egypt
- Egyptian Propylene and Polypropylene Company (EPPC), Port-Said, Egypt
| | - Mohamed Farghali
- Department of Agricultural Engineering and Socio-Economics, Kobe University, Kobe, 657-8501 Japan
- Department of Animal and Poultry Hygiene & Environmental Sanitation, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526 Egypt
| | - Pow-Seng Yap
- Department of Civil Engineering, Xi’an Jiaotong-Liverpool University, Suzhou, 215123 China
| | - Yuan-Seng Wu
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, 47500 Subang Jaya, Selangor Malaysia
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, 47500 Subang Jaya, Selangor Malaysia
| | - Saraswathi Nagandran
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, 47500 Subang Jaya, Selangor Malaysia
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, 47500 Subang Jaya, Selangor Malaysia
| | - Kalaivani Batumalaie
- Department of Biomedical Sciences, Faculty of Health Sciences, Asia Metropolitan University, 81750 Johor Bahru, Malaysia
| | - Subash C. B. Gopinath
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), 02600 Arau, Perlis Malaysia
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), 01000 Kangar, Perlis, Malaysia
- Micro System Technology, Centre of Excellence, Universiti Malaysia Perlis (UniMAP), Pauh Campus, 02600 Arau, Perlis Malaysia
| | - Oliver Dean John
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah Malaysia
| | - Mahendran Sekar
- Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, 30450 Ipoh, Perak Malaysia
| | - Trideep Saikia
- Girijananda Chowdhury Institute of Pharmaceutical Science, Guwahati Assam, India
| | - Puvanan Karunanithi
- Department of Anatomy, Faculty of Medicine, Manipal University College Malaysia (MUCM), Melaka, Malaysia
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mohd Hayrie Mohd Hatta
- Centre for Research and Development, Asia Metropolitan University, 81750 Johor Bahru, Johor Malaysia
| | - Kolajo Adedamola Akinyede
- Department of Medical Bioscience, University of the Western Cape, Bellville, Cape Town, 7530 South Africa
- Biochemistry Unit, Department of Science Technology, The Federal Polytechnic, P.M.B.5351, Ado Ekiti, 360231 Ekiti State Nigeria
| |
Collapse
|
23
|
Fang C, Zheng R, Hong F, Chen S, Chen G, Zhang M, Gao F, Chen J, Bo J. First evidence of meso- and microplastics on the mangrove leaves ingested by herbivorous snails and induced transcriptional responses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161240. [PMID: 36587672 DOI: 10.1016/j.scitotenv.2022.161240] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/30/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Although evidence suggests the ubiquity of meso- and microplastics (MMPs) in mangrove forests, our knowledge of their bioavailability and risk on mangrove leaves is scarce. Here, we investigated MMP contamination concerning submerged mangrove leaves and herbivorous snails that mainly feed on them from the four mangrove forests located in Beibu Gulf, Guangxi Province, China. Results showed that the MMP abundance on the mangrove leaves ranged from 0.01 ± 0.00 to 0.42 ± 0.15 items cm-2, while it ranged from 0.33 ± 0.21 to 6.20 ± 2.91 items individual-1 in the snails. There were significant positive correlations between snails and leaves regarding the abundance of total MMPs and the proportions of MMPs with the same characteristics. Expanded polystyrene (EPS) that mainly derived from aquaculture rafts, accounted for a major component both on the leaves and in the snails in Shi Jiao (SJ). Both the detection frequency and percentage of larger EPS (2.00-17.50 mm) on the leaves in SJ were higher than other sites. Meanwhile, the detection frequency, abundance and percentage of larger EPS on the leaves had significant positive correlations with those of micro-EPS in the snails. These findings suggested that mangrove leaves may represent a viable pathway for MMPs to enter the herbivorous snails. Larger EPS with higher frequency of occurrence on mangrove leaves were more likely to be encountered and ingested by snail considering its opportunistic feeding behavior. In addition, 11 sensitive genes involved in the processes of metabolism, intestinal mucosal immune systems, and cellular transduction in the snails were significantly suppressed by MMP exposure, which may be potentially used as early biomarkers to indicate the biological effects of MMPs under realistic environmental conditions. Overall, this study provides novel insights into the fate, sources, and biological effects of MMPs on mangrove leaves.
Collapse
Affiliation(s)
- Chao Fang
- Laboratory of Marine Biodiversity, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; Observation and Research Station of Coastal Wetland Ecosystem in Beibu Gulf, Ministry of Natural Resources, Beihai 536015, China
| | - Ronghui Zheng
- Laboratory of Marine Biodiversity, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Fukun Hong
- Laboratory of Marine Biodiversity, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Shunyang Chen
- Laboratory of Marine Biodiversity, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; Observation and Research Station of Coastal Wetland Ecosystem in Beibu Gulf, Ministry of Natural Resources, Beihai 536015, China
| | - Guangcheng Chen
- Laboratory of Marine Biodiversity, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; Observation and Research Station of Coastal Wetland Ecosystem in Beibu Gulf, Ministry of Natural Resources, Beihai 536015, China
| | - Min Zhang
- Laboratory of Marine Biodiversity, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Fulong Gao
- Laboratory of Marine Biodiversity, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Jincan Chen
- Laboratory of Marine Biodiversity, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Jun Bo
- Laboratory of Marine Biodiversity, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China.
| |
Collapse
|
24
|
Hazlehurst A, Tiffin L, Sumner M, Taylor M. Quantification of microfibre release from textiles during domestic laundering. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:43932-43949. [PMID: 36680713 PMCID: PMC10076413 DOI: 10.1007/s11356-023-25246-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Domestic laundering of textiles is being increasingly recognised as a significant source of microfibre pollution. Reliable quantification of microfibre release is necessary to understanding the scale of this issue and to evaluate the efficacy of potential solutions. This study explores three major factors that influence the quantification of microfibres released from the domestic laundering of textiles: test methodologies, laundering variables, and fabric variables.A review of different test methods is presented, highlighting the variation in quantification created by using different methodologies. A reliable and reproducible method for quantifying microfibre release from domestic laundering is used to explore the impact of laundering and fabric variables experimentally. The reproducibility and reliability of the method used was validated through inter-laboratory trials and has informed the development of European and international testing standards. Our results show that increasing the wash liquor ratio and wash agitation results in a greater mass of microfibres released, but we found that fabric variables can have a greater influence on microfibre release than the laundering variables tested in this study. However, no single fabric variable appeared to have a dominant influence.Using the data obtained and assumptions for washing load size and frequency, results were scaled to reflect possible annual microfibre release from untreated domestic laundering in the UK. Depending on different laundering and fabric variables, these values range from 6490 tonnes to 87,165 tonnes of microfibre discharged in the UK each year.
Collapse
|
25
|
Rodrigues CC, Salla RF, Rocha TL. Bioaccumulation and ecotoxicological impact of micro(nano)plastics in aquatic and land snails: Historical review, current research and emerging trends. JOURNAL OF HAZARDOUS MATERIALS 2023; 444:130382. [PMID: 36417779 DOI: 10.1016/j.jhazmat.2022.130382] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Microplastics (MPs) and nanoplastics (NPs) are ubiquitous emerging pollutants in the environment. Although MPs/NPs' hazardous effects have been described at different trophic levels, little attention has been given to how they can affect gastropod communities. Thus, the current study aimed to summarize and critically address data available in the scientific literature about micro(nano)plastics' ecotoxicological impact on snails. The analyzed data has evidenced MP/NP bioaccumulation in 40 gastropod species collected in the field; 15 gastropod species were used to assess the potential toxicity of MPs/NPs. Asia accounted for the highest level of MPs/NPs bioaccumulated in gastropods; it was followed by the South American, European and Antarctic continents. MPs/NPs' toxicity depends on their composition, shape and size, as well as on differences in methodological approaches adopted by different studies. Results have shown that MPs/NPs induce several impairments - such as behavioral changes, developmental toxicity, dysbiosis, histopathological alterations, oxidative stress -, generate ecological impairments, as well as act as pollutant vector and increase chiral chemicals' toxicity. Research gaps and recommendations for future research were highlighted to help better understanding MPs/NPs' toxicity in gastropods, given the extremely important role played by them in studies focused on investigating how MPs/NPs can affect invertebrate communities living in terrestrial and aquatic environments.
Collapse
Affiliation(s)
- Cândido Carvalho Rodrigues
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Raquel Fernanda Salla
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil.
| |
Collapse
|
26
|
Koutnik VS, Leonard J, El Rassi LA, Choy MM, Brar J, Glasman JB, Cowger W, Mohanty SK. Children's playgrounds contain more microplastics than other areas in urban parks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158866. [PMID: 36126714 DOI: 10.1016/j.scitotenv.2022.158866] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 06/15/2023]
Abstract
Children spend many hours in urban parks and playgrounds, where the tree canopy could filter microplastics released from the surrounding urban hotspots. However, the majority of children's playgrounds also contain plastic structures that could potentially release microplastics. To assess if the children's playgrounds pose a higher exposure risk than other places inside the park, we evaluate the extent of microplastic contamination in the sand, soil, and leaf samples from 19 playgrounds inside urban parks in Los Angeles, CA, USA. The average microplastic concentration in sand samples collected inside the playground was 72 p g-1, and >50 % of identified plastics were either polyethylene or polypropylene. Microplastic concentrations inside the playgrounds were on average >5 times greater than concentrations outside the playgrounds in the park, indicating that children playing within the playground may be exposed to more microplastics than children playing outside the playground in the same park. By comparing the microplastic composition found inside and outside the playgrounds with the plastic composition of the plastic structures in the playground, we show that plastic structures and other products used inside the playgrounds could contribute to elevated microplastic concentration. The population density was slightly correlated with a microplastic concentration in the park soil but did not correlate with microplastic concentration inside the playgrounds. Therefore, playgrounds in urban parks may have microplastic exposure risks via inhalation or ingestion via hand-to-mouth transfer.
Collapse
Affiliation(s)
- Vera S Koutnik
- Department of Civil and Environmental Engineering, University of California at Los Angeles, CA, USA.
| | - Jamie Leonard
- Department of Civil and Environmental Engineering, University of California at Los Angeles, CA, USA
| | - Lea A El Rassi
- Department of Civil and Environmental Engineering, University of California at Los Angeles, CA, USA
| | - Michelle M Choy
- Department of Civil and Environmental Engineering, University of California at Los Angeles, CA, USA
| | - Jaslyn Brar
- Department of Civil and Environmental Engineering, University of California at Los Angeles, CA, USA
| | - Joel B Glasman
- Department of Civil and Environmental Engineering, University of California at Los Angeles, CA, USA
| | - Win Cowger
- Moore Institute for Plastic Pollution Research, Long Beach, CA, USA
| | - Sanjay K Mohanty
- Department of Civil and Environmental Engineering, University of California at Los Angeles, CA, USA.
| |
Collapse
|
27
|
Bergami E, Ferrari E, Löder MGJ, Birarda G, Laforsch C, Vaccari L, Corsi I. Textile microfibers in wild Antarctic whelk Neobuccinum eatoni (Smith, 1875) from Terra Nova Bay (Ross Sea, Antarctica). ENVIRONMENTAL RESEARCH 2023; 216:114487. [PMID: 36265599 DOI: 10.1016/j.envres.2022.114487] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/26/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Antarctica has been affected directly and indirectly by human pressure for more than two centuries and recently plastic pollution has been recognized as a further potential threat for its unique biodiversity. Global long-range transport as well as local input from anthropogenic activities are potential sources of plastic pollution in both terrestrial and marine Antarctic territories. The present study evaluated the presence of microplastics in specimens of the Antarctic whelk Neobuccinum eatoni, a key species in benthic communities of the Ross Sea, one of the largest marine protected areas worldwide. To this aim, a thermo-oxidative extraction method was applied for microplastic isolation and quantification, and polymer identification was performed by manual μ-FTIR spectroscopy. Textile (semi-)synthetic or composite microfibers (length range: 0.8-5.7 mm) were found in 27.3% of whelk specimens, suggesting a low risk of bioaccumulation along Antarctic benthic food webs in the Ross Sea. Their polymer composition (of polyethylene terephthalate and cellulose-polyamide composites) matched those of outdoor technical clothing in use by the personnel of the Italian "Mario Zucchelli" station near Terra Nova Bay in the Ross Sea. Such findings indicate that sewage from base stations may act as potential local sources of textile microplastic fibers in this remote environment. More in-depth monitoring studies aiming at defining the extent of microplastic contamination related to such sources in Antarctica are encouraged.
Collapse
Affiliation(s)
- E Bergami
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, 53100, Italy; Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 213/D, 41125, Modena, Italy.
| | - E Ferrari
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, 53100, Italy
| | - M G J Löder
- Department of Animal Ecology I and BayCEER, University of Bayreuth, 95440, Bayreuth, Germany
| | - G Birarda
- SISSI-Chemical and Life Science Branch, Elettra-Sincrotrone Trieste, S.S. 14 Km 163.5, 34149, Basovizza, Trieste, Italy
| | - C Laforsch
- Department of Animal Ecology I and BayCEER, University of Bayreuth, 95440, Bayreuth, Germany
| | - L Vaccari
- SISSI-Chemical and Life Science Branch, Elettra-Sincrotrone Trieste, S.S. 14 Km 163.5, 34149, Basovizza, Trieste, Italy
| | - I Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, 53100, Italy
| |
Collapse
|
28
|
Masselter T, Schaumann U, Kampowski T, Ulrich K, Thielen M, Bold G, Speck T. Improvement of a microfiber filter for domestic washing machines. BIOINSPIRATION & BIOMIMETICS 2022; 18:016017. [PMID: 36582181 DOI: 10.1088/1748-3190/acaba2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
The development of enhanced processes for filtration is one solution for stopping the increasing freshwater and sea pollution caused by microplastic and microfibers. Major contributors to micro-X pollution are domestic devices such as washing machines, which also hold a high technical potential for separating problematic soils from waste water during cleaning cycles. The focus of the present paper are the biomimetic development of a novel concept for filtration and removal of particles such as microfibers in conventional washing machines. To this goal, a TRIZ analysis yielded viable solutions for the major key issues. In a next step, measurements were made with various filters with and without ribbed structures. The results are promising for the incorporation in a filter concept that is easy to operate and cost-effective.
Collapse
Affiliation(s)
- Tom Masselter
- University of Freiburg, Plant Biomechanics Group Freiburg, Botanic Garden of the University of Freiburg, Schaenzlestrasse 1, 79104 Freiburg i. Br., Germany
- University of Freiburg, FMF-Freiburg Materials Research Center, Stefan-Meier-Straße 21, 79104 Freiburg i. Br., Germany
| | - Uwe Schaumann
- E.G.O. Elektro-Gerätebau GmbH, Blanc-und-Fischer-Platz 1-3, 75038 Oberderdingen, Germany
| | - Tim Kampowski
- University of Freiburg, Plant Biomechanics Group Freiburg, Botanic Garden of the University of Freiburg, Schaenzlestrasse 1, 79104 Freiburg i. Br., Germany
- University of Freiburg, FMF-Freiburg Materials Research Center, Stefan-Meier-Straße 21, 79104 Freiburg i. Br., Germany
| | - Kim Ulrich
- University of Freiburg, Plant Biomechanics Group Freiburg, Botanic Garden of the University of Freiburg, Schaenzlestrasse 1, 79104 Freiburg i. Br., Germany
- University of Freiburg, FMF-Freiburg Materials Research Center, Stefan-Meier-Straße 21, 79104 Freiburg i. Br., Germany
- University of Freiburg, Cluster of Excellence livMatS @ FIT-Freiburg Center for Interactive Materials and Bioinspired Technologies, Georges-Koehler-Allee 105, 79110 Freiburg i. Br., Germany
| | - Marc Thielen
- University of Freiburg, Plant Biomechanics Group Freiburg, Botanic Garden of the University of Freiburg, Schaenzlestrasse 1, 79104 Freiburg i. Br., Germany
- University of Freiburg, FMF-Freiburg Materials Research Center, Stefan-Meier-Straße 21, 79104 Freiburg i. Br., Germany
| | - Georg Bold
- University of Freiburg, Plant Biomechanics Group Freiburg, Botanic Garden of the University of Freiburg, Schaenzlestrasse 1, 79104 Freiburg i. Br., Germany
- University of Freiburg, FMF-Freiburg Materials Research Center, Stefan-Meier-Straße 21, 79104 Freiburg i. Br., Germany
| | - Thomas Speck
- University of Freiburg, Plant Biomechanics Group Freiburg, Botanic Garden of the University of Freiburg, Schaenzlestrasse 1, 79104 Freiburg i. Br., Germany
- University of Freiburg, FMF-Freiburg Materials Research Center, Stefan-Meier-Straße 21, 79104 Freiburg i. Br., Germany
- University of Freiburg, Cluster of Excellence livMatS @ FIT-Freiburg Center for Interactive Materials and Bioinspired Technologies, Georges-Koehler-Allee 105, 79110 Freiburg i. Br., Germany
| |
Collapse
|
29
|
Shruti VC, Kutralam-Muniasamy G, Pérez-Guevara F, Roy PD, Martínez IE. Occurrence and characteristics of atmospheric microplastics in Mexico City. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157601. [PMID: 35882345 DOI: 10.1016/j.scitotenv.2022.157601] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
While atmospheric microplastics have attracted scientific attention as a significant source of microplastic contamination in the environment, studies in large population centers remain sparse. Here we present the first report on the occurrence and distribution of atmospheric microplastics in Mexico City (Latin America's second most densely populated city), collected using PM10 and PM2.5 active samplers at seven monitoring stations (urban, residential, and industrial) during the dry and wet seasons of 2020. The results showed that microplastics were detected in all of the samples examined, with mean microplastic concentrations (items m-3) of 0.205 ± 0.061 and 0.110 ± 0.055 in PM10 and PM2.5, respectively. The spatial distribution of microplastics showed seasonal variation, with greater abundances in locations closer to industrial and urban centers. There was also a significant difference in microplastic concentrations in PM10 and PM2.5 between the dry and wet seasons. The mean PM2.5/PM10 ratio was 0.576, implying that microplastics were partitioned more towards PM2.5 than PM10 in Mexico City. Fibers were the most prominent shape (>75 %), and blue was the most common color (>60 %). The size characteristics indicated microplastics of varying lengths, ranging from 39 to 5000 μm, with 66 % being <500 μm. Metal contaminants such as aluminum, iron, and titanium were detected using SEM-EDX on randomly selected microplastics. The microplastics were identified as cellophane, polyethylene, polyethylene terephthalate, polyamide, and cellulose (rayon) using ATR-FTIR spectral analysis. Our findings unravel the extent and characteristics of atmospheric microplastics in the Mexico City metropolitan area, which will aid future research to better understand their fate, transport, and potential health risks, demanding more investigations and close monitoring.
Collapse
Affiliation(s)
- V C Shruti
- Instituto de Geología, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Del. Coyoacán, C.P. 04510 Ciudad de México, Mexico.
| | - Gurusamy Kutralam-Muniasamy
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico.
| | - Fermín Pérez-Guevara
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico; Nanoscience & Nanotechnology Program, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Priyadarsi D Roy
- Instituto de Geología, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Del. Coyoacán, C.P. 04510 Ciudad de México, Mexico
| | - I Elizalde Martínez
- Instituto Politécnico Nacional (IPN), Centro Mexicano para la Producción más Limpia (CMP+L), Av. Acueducto s/n, Col. Barrio la Laguna Ticomán, Del Gustavo A. Madero, C.P. 07340 México City, Mexico
| |
Collapse
|
30
|
Pappoe C, Palm LMND, Denutsui D, Boateng CM, Danso-Abbeam H, Serfor-Armah Y. Occurrence of microplastics in gastrointestinal tract of fish from the Gulf of Guinea, Ghana. MARINE POLLUTION BULLETIN 2022; 182:113955. [PMID: 35878475 DOI: 10.1016/j.marpolbul.2022.113955] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/10/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Over the past decades, there has been a growing concern about microplastics pollution in global aquatic habitats and its potential impact on human health. This study was carried out to determine the presence of microplastics in fish of economic importance in Ghana. Microplastics were found to be abundant in all investigated samples, with 68 % of the fishes contaminated with microplastics and a total of 133 plastic items identified in the fish. The presence of fibers, black coloured particles, and microplastics in the size range of 0.5-1.0 mm was the most abundant in the samples examined. Three polymers specifically, polyethylene, polyvinyl acetate, and polyamide were identified in the study. The presence of microplastics in the fishes investigated may pose severe ecological and health concerns, and hence comprehensive policies targeted at preventing plastic pollution of Ghana's maritime environment is warranted.
Collapse
Affiliation(s)
| | - Linda Maud N-D Palm
- School of Nuclear and Allied Sciences, P. O. Box AE 1, Atomic, Ghana; Environmental Resources Research Centre, Ghana Atomic Energy Commission, P. O. Box LG 80, Legon, Ghana
| | - Dzifa Denutsui
- School of Nuclear and Allied Sciences, P. O. Box AE 1, Atomic, Ghana; Environmental Resources Research Centre, Ghana Atomic Energy Commission, P. O. Box LG 80, Legon, Ghana
| | - Charles Mario Boateng
- Department of Marine and Fisheries Sciences, University of Ghana, P. O. Box LG 99, Accra, Ghana
| | - Harriet Danso-Abbeam
- School of Nuclear and Allied Sciences, P. O. Box AE 1, Atomic, Ghana; Environmental Resources Research Centre, Ghana Atomic Energy Commission, P. O. Box LG 80, Legon, Ghana.
| | - Yaw Serfor-Armah
- School of Nuclear and Allied Sciences, P. O. Box AE 1, Atomic, Ghana
| |
Collapse
|
31
|
Cui R, Kwak JI, An YJ. Acute and multigenerational effects of petroleum- and cellulose-based microfibers on growth and photosynthetic capacity of Lemna minor. MARINE POLLUTION BULLETIN 2022; 182:113953. [PMID: 35870358 DOI: 10.1016/j.marpolbul.2022.113953] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Comparative toxicological assessment studies on the effects of petroleum- and cellulose-based microfibers on aquatic plants are limited. Therefore, we evaluated the acute and 10-generational toxicological effects of two types of petroleum- and cellulose-based microfibers on the duckweed Lemna minor. Plant growth and photosynthesis parameters were monitored as bioindicators. The multigenerational test revealed the following ranking of the microfibers according to the severity of their effects on L. minor: polypropylene > lyocell > viscose > polyethylene terephthalate. The acute tests revealed a significant increase in the energy required to initiate photosynthesis, although the growth of L. minor was not adversely affected by any microfiber. Both petroleum- and cellulose-based microfibers induced adverse effects on the growth and photosynthesis of L. minor in multigenerational tests. The results of the generational tests contribute to the understanding of the long-term adverse effects of microfibers on aquatic plants.
Collapse
Affiliation(s)
- Rongxue Cui
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, South Korea
| | - Jin Il Kwak
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, South Korea
| | - Youn-Joo An
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, South Korea.
| |
Collapse
|
32
|
Rezaei M, Abbasi S, Pourmahmood H, Oleszczuk P, Ritsema C, Turner A. Microplastics in agricultural soils from a semi-arid region and their transport by wind erosion. ENVIRONMENTAL RESEARCH 2022; 212:113213. [PMID: 35398314 DOI: 10.1016/j.envres.2022.113213] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/28/2022] [Accepted: 03/25/2022] [Indexed: 05/27/2023]
Abstract
Despite the importance of agricultural soils, little is known about the fate of microplastics (MPs) in this environment. In the present study, MPs have been determined in soils and wind-eroded sediments from two vegetable-growing fields in the Fars province of Iran, one using plastic mulch for water retention (Field 1) and the other using wastewater for irrigation (Field 2). MPs were heterogeneously distributed in the surface (0-5 cm) and subsurface (5-15 cm) soils of both fields, with a maximum concentration overall of about 1.1 MP g-1 and no significant differences in concentrations between either fields or depths. Fibres represented the principal shape of MPs, but spherules, presumably from wastewater, also made a significant (∼25%) contribution to MPs in Field 2. Analysis of selected samples by Raman spectroscopy and scanning electron microscopy revealed that polyethylene terephthalate (PET) and nylon were the most abundant polymers and that MPs exhibited varying degrees of weathering. Concentrations of MPs in this study are within the range reported previously for agricultural soils, although the absence of PET observed in earlier studies is attributed to the use of insufficiently dense solutions to isolate plastics. Deployment of a portable wind tunnel revealed threshold wind velocities for soil erosion of up to 7 and 12 m s-1 and MP erosion rates up to about 0.4 and 1.1 MP m-2 s-1 for Fields 1 and 2, respectively. Erosion rates are considerably greater than published depositional rates for MPs and suggest that agricultural soils act as both a temporary sink and dynamic secondary source of MPs that should be considered in risk assessments and global transport budgets.
Collapse
Affiliation(s)
- Mahrooz Rezaei
- Meteorology and Air Quality Group, Wageningen University & Research, PO. Box 47, 6700, AA, Wageningen, the Netherlands.
| | - Sajjad Abbasi
- Department of Earth Sciences, College of Science, Shiraz University, Shiraz, 71454, Iran; Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, Lublin, 20-031, Poland.
| | - Haniye Pourmahmood
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Patryk Oleszczuk
- Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, Lublin, 20-031, Poland
| | - Coen Ritsema
- Soil Physics and Land Management Group, Wageningen University & Research, PO. Box 47, 6700, AA, Wageningen, the Netherlands
| | - Andrew Turner
- School of Geography, Earth and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK
| |
Collapse
|
33
|
Basurko OC, Ruiz I, Rubio A, Beldarrain B, Kukul D, Cózar A, Galli M, Destang T, Larreta J. The coastal waters of the south-east Bay of Biscay a dead-end for neustonic plastics. MARINE POLLUTION BULLETIN 2022; 181:113881. [PMID: 35835053 PMCID: PMC9361389 DOI: 10.1016/j.marpolbul.2022.113881] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 05/29/2023]
Abstract
Numerical models point to the south-east Bay of Biscay as a convergence area for floating particles, including plastics. The few existing studies on plastic abundance in the area mainly focus on open waters and yet information on the coastal area is limited. To fill this gap, neustonic samples were taken along the coastal waters of the south-east Bay of Biscay (2017-2020) to define the spatial distribution of plastic abundances and composition. Results show an average plastic abundance of 739,395 ± 2,625,271 items/km2 (998 ± 4338 g/km2). French waters were more affected, with five times higher plastic abundances than Spanish coasts. Microplastics represented 93 % of the total abundance of plastic items (28 % in weight), mesoplastics 7 % (26 %) and macroplastics 1 % (46 %). This study demonstrates that this area is a hotspot for plastic with levels in coastal waters similar to those in the Mediterranean Sea or other litter aggregation areas.
Collapse
Affiliation(s)
- Oihane C Basurko
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Herrera Kaia, Portualdea z/g, 20110 Pasaia, Spain.
| | - Irene Ruiz
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Herrera Kaia, Portualdea z/g, 20110 Pasaia, Spain
| | - Anna Rubio
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Herrera Kaia, Portualdea z/g, 20110 Pasaia, Spain
| | - Beatriz Beldarrain
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Herrera Kaia, Portualdea z/g, 20110 Pasaia, Spain
| | - Deniz Kukul
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Herrera Kaia, Portualdea z/g, 20110 Pasaia, Spain
| | - Andrés Cózar
- Departamento de Biología, University of Cadiz and European University of the Seas (SEA-EU), Instituto Universitario de Investigación Marina (INMAR), Puerto Real, Spain
| | - Matteo Galli
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy
| | - Théo Destang
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Herrera Kaia, Portualdea z/g, 20110 Pasaia, Spain
| | - Joana Larreta
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Herrera Kaia, Portualdea z/g, 20110 Pasaia, Spain
| |
Collapse
|
34
|
Occurrence of Natural and Synthetic Micro-Fibers in the Mediterranean Sea: A Review. TOXICS 2022; 10:toxics10070391. [PMID: 35878296 PMCID: PMC9320265 DOI: 10.3390/toxics10070391] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 02/01/2023]
Abstract
Among microplastics (MPs), fibers are one of the most abundant shapes encountered in the aquatic environment. Growing attention is being focused on this typology of particles since they are considered an important form of marine contamination. Information about microfibers distribution in the Mediterranean Sea is still limited and the increasing evidence of the high amount of fibers in the aquatic environment should lead to a different classification from MPs which, by definition, are composed only of synthetic materials and not natural. In the past, cellulosic fibers (natural and regenerated) have been likely included in the synthetic realm by hundreds of studies, inflating “micro-plastic” counts in both environmental matrices and organisms. Comparisons are often hampered because many of the available studies have explicitly excluded the micro-fibers (MFs) content due, for example, to methodological problems. Considering the abundance of micro-fibers in the environment, a chemical composition analysis is fundamental for toxicological assessments. Overall, the results of this review work provide the basis to monitor and mitigate the impacts of microfiber pollution on the sea ecosystems in the Mediterranean Sea, which can be used to investigate other basins of the world for future risk assessment.
Collapse
|
35
|
An NMR look at an engineered PET depolymerase. Biophys J 2022; 121:2882-2894. [PMID: 35794828 PMCID: PMC9388554 DOI: 10.1016/j.bpj.2022.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/15/2022] [Accepted: 06/30/2022] [Indexed: 12/30/2022] Open
Abstract
Plastic environmental pollution is a major issue that our generation must face to protect our planet. Plastic recycling has the potential not only to reduce the pollution but also to limit the need for fossil-fuel-based production of new plastics. Enzymes capable of breaking down plastic could thereby support such a circular economy. Polyethylene terephthalate (PET) degrading enzymes have recently attracted considerable interest and have been subjected to intensive enzyme engineering to improve their characteristics. A quadruple mutant of Leaf-branch Compost Cutinase (LCC) was identified as a most efficient and promising enzyme. Here, we use NMR to follow the initial LCC enzyme through its different mutations that lead to its improved performance. We experimentally define the two calcium-binding sites and show their importance on the all-or-nothing thermal unfolding process, which occurs at a temperature of 72°C close to the PET glass transition temperature. Using various NMR probes such as backbone amide, methyl group, and histidine side-chain resonances, we probe the interaction of the enzymes with mono-(2-hydroxyethyl)terephthalic acid. The latter experiments are interpreted in terms of accessibility of the active site to the polymer chain.
Collapse
|
36
|
Esterhuizen M, Buchenhorst L, Kim YJ, Pflugmacher S. In vivo oxidative stress responses of the freshwater basket clam Corbicula javanicus to microplastic fibres and particles. CHEMOSPHERE 2022; 296:134037. [PMID: 35183583 DOI: 10.1016/j.chemosphere.2022.134037] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 05/15/2023]
Abstract
Microplastics have been detected in several aquatic organisms, especially bivalves such as clams, oysters, and mussels. To understand the ecotoxicological implication of microplastic accumulation in biota, it is crucial to investigate effects at the physiological level to identify knowledge gaps regarding the threat posed to the environment and assist decision-makers to set the necessary priorities. Typically, xenobiotics elicit an overproduction of reactive oxygen species in organisms, resulting in oxidative stress and cellular damage when not combated by the antioxidative system. Therefore, the present study aimed to establish the impacts of microplastic particles and fibres on the freshwater basket clam Corbicula javanicus. We measured the oxidative stress responses following microplastic exposure as the specific activities of the antioxidative enzymes glutathione S-transferase and catalase. When exposed to polyester fibres from the fleece jackets, the enzyme activities increased in the clams, while the enzyme activities decreased with high-density polyethylene microplastic fragments from bottle caps. All the exposures showed that the adverse effects on the antioxidative response system were elicited, indicating the negative ecotoxicological implications of microplastic pollution.
Collapse
Affiliation(s)
- Maranda Esterhuizen
- University of Helsinki, Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, Niemenkatu 73, 15140 Lahti, Finland, And Helsinki Institute of Sustainability Science (HELSUS), Fabianinkatu 33, 00014, Helsinki, Finland; Korea Institute of Science and Technology Europe (KIST Europe) Forschungsgesellschaft mbH, Joint Laboratory of Applied Ecotoxicology, Environmental Safety Group, Universität des Saarlandes Campus E7 1, 66123, Saarbrücken, Germany; University of Manitoba, Clayton H. Riddell Faculty of Environment, Earth, and Resources, Wallace Building, 125 Dysart Road, Winnipeg, MB R3T 2N2, Canada.
| | - Lucille Buchenhorst
- Technische Universität Berlin, Institute of Ecology, Chair Ecological Impact Research & Ecotoxicology, Ernst-Reuter-Platz 1, 10587, Berlin, Germany; Stockholm University, Department of Ecology, Environment and Plant Sciences, Svante Arrhenius väg 20A, 11418, Stockholm, Sweden
| | - Young Jun Kim
- Korea Institute of Science and Technology Europe (KIST Europe) Forschungsgesellschaft mbH, Joint Laboratory of Applied Ecotoxicology, Environmental Safety Group, Universität des Saarlandes Campus E7 1, 66123, Saarbrücken, Germany
| | - Stephan Pflugmacher
- University of Manitoba, Clayton H. Riddell Faculty of Environment, Earth, and Resources, Wallace Building, 125 Dysart Road, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
37
|
Pérez-Reverón R, González-Sálamo J, Hernández-Sánchez C, González-Pleiter M, Hernández-Borges J, Díaz-Peña FJ. Recycled wastewater as a potential source of microplastics in irrigated soils from an arid-insular territory (Fuerteventura, Spain). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:152830. [PMID: 35016926 DOI: 10.1016/j.scitotenv.2021.152830] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/21/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
In this work, the occurrence of microplastics (MPs) in irrigation recycled wastewaters (RWWs) and a desalinated brackish water (DBW) from the arid territory of Fuerteventura (Canary Islands, Spain) was studied. Besides, the presence of MPs in two types of soils (sandy-loam and clay-loamy; with no mulch film or fertilization with sewage sludge applied) irrigated with both water qualities was addressed. Results showed the prevalence presence of cellulosic and polyester microfibers (between 84.4 and 100%) of blue and transparent colors (up to 55.6 and 33.3%, respectively), with an average length of 786.9 ± 812.1 μm in the water samples. DBW had the lowest MP concentration (2.0 ± 2.0 items·L-1) while RWW showed concentrations up to 40.0 ± 19.0 items·L-1. Similarities were also observed between the MPs types and sizes found in both soils top layer (0-5 cm), with an average concentration three times greater in soil irrigated with RWW than in soil under DBW irrigation (159 ± 338 vs. 46 ± 92 items·kg-1, respectively). In addition, no MPs were extracted from non-irrigated/non-cultivated soils, suggesting agricultural activities as the unique source of MPs in soils of this arid area. Results show that RWWs constitute a potential source of MPs in irrigated soils that should be considered among other pros and cons linked to the use of this water quality in agricultural arid lands.
Collapse
Affiliation(s)
- Raquel Pérez-Reverón
- Departamento de Biología Animal, Edafología y Geología, Facultad de Ciencias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, Spain
| | - Javier González-Sálamo
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, Spain
| | - Cintia Hernández-Sánchez
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Forense y Legal y Parasitología, Área de Medicina Preventiva y Salud Pública, Escuela Politécnica Superior de Ingeniería, Sección de Náutica, Máquinas y Radioelectrónica Naval, Universidad de La Laguna (ULL), Vía Auxiliar Paso Alto, nº 2, 38001 Santa Cruz de Tenerife, Spain
| | - Miguel González-Pleiter
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain
| | - Javier Hernández-Borges
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, Spain
| | - Francisco J Díaz-Peña
- Departamento de Biología Animal, Edafología y Geología, Facultad de Ciencias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, Spain.
| |
Collapse
|
38
|
Šaravanja A, Pušić T, Dekanić T. Microplastics in Wastewater by Washing Polyester Fabrics. MATERIALS 2022; 15:ma15072683. [PMID: 35408015 PMCID: PMC9000408 DOI: 10.3390/ma15072683] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/28/2022] [Accepted: 04/04/2022] [Indexed: 02/04/2023]
Abstract
Microplastics have become one of the most serious environmental hazards today, raising fears that concentrations will continue to rise even further in the near future. Micro/nanoparticles are formed when plastic breaks down into tiny fragments due to mechanical or photochemical processes. Microplastics are everywhere, and they have a strong tendency to interact with the ecosystem, putting biogenic fauna and flora at risk. Polyester (PET) and polyamide (PA) are two of the most important synthetic fibres, accounting for about 60% of the total world fibre production. Synthetic fabrics are now widely used for clothing, carpets, and a variety of other products. During the manufacturing or cleaning process, synthetic textiles have the potential to release microplastics into the environment. The focus of this paper is to explore the main potential sources of microplastic pollution in the environment, providing an overview of washable polyester materials.
Collapse
|
39
|
Lant NJ, Defaye MMA, Smith AJ, Kechi-Okafor C, Dean JR, Sheridan KJ. The impact of fabric conditioning products and lint filter pore size on airborne microfiber pollution arising from tumble drying. PLoS One 2022; 17:e0265912. [PMID: 35385503 PMCID: PMC8985936 DOI: 10.1371/journal.pone.0265912] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/09/2022] [Indexed: 12/02/2022] Open
Abstract
Vented tumble dryers release moist warm air from the drying process to the external environment, usually through pipework linking the appliance to a vent in an exterior wall. Although such dryers contain a lint filter to remove fibers from this air stream, recent reports suggest that this process is incomplete, leading to microfibers being released in the ducted warm air and subsequently polluting the external environment. Microfiber release from wash loads comprising 10 100% cotton and 10 100% polyester T-shirts (total load mass ratio 48% cotton, 52% polyester) was measured at different stages of the washing and drying process to compare the quantities of fibers released ‘down the drain’, collected in the dryer lint filter, and released to air from the tumble dryer. Testing under both European and North American washing conditions found that the quantities of microfibers released to air during tumble drying were significant and comparable to levels released ‘down the drain’ during washing. Use of conventional rinse-added liquid fabric conditioner increased microfiber accumulation on the dryer lint filter, with reduced release from the dryer exhaust observed at the highest fabric conditioner dose tested (21.6% and 14.2% reduction under North American and European conditions, respectively). Conventional liquid fabric conditioner did not significantly impact microfiber release from the washing machine, in line with previous studies. A fabric conditioner specially designed for anti-wrinkle performance reduced microfiber release from the dryer exhaust at all levels tested (by 17.6–35.6%, depending on dose), apparently by increasing the efficiency of microfiber accumulation in the lint filter. Tumble dryer sheets were also found to cause a reduction in microfiber release from the dryer exhaust (by 14.1–34.9%, depending on the dose/product), likely driven by collection of liberated fibers on the sheet during the drying process. The use of both antiwrinkle liquid fabric conditioner and dryer sheet enabled a 44.9% reduction in microfiber emissions from the dryer exhaust. In all studies, the fiber mass collected on the lint filter or emitted from the dryer exhaust was richer in cotton fibers (range 83.4–96.3% on the lint filter, 93.0–99.8% from the dryer exhaust) than the wash load composition (48% cotton). Moreover, fibers collected by the lint filter contained a higher proportion of polyester than emissions from the dryer exhaust (range 3.7–16.6% on the lint filter, 0.2–7.0% from the dryer exhaust). There is significant variation in the porosity of lint filters among installed vented tumble dryers. Single-variable testing of the impact of lint filter design concluded that reducing screen pore size significantly reduces airborne microfiber release during tumble drying; a reduction in lint filter pore size from 0.2 mm2 to 0.04 mm2 reduced release by 34.8%. As some lint filters have pore sizes of around 1 mm2, there is enormous scope to reduce microfiber release from dryers though improved lint filter design. However, it is suggested that a step-change in appliance design away from vented dryers to only fully-sealed condenser dryers might be necessary to eliminate the contribution of tumble drying to airborne microfiber pollution.
Collapse
Affiliation(s)
- Neil J. Lant
- Procter & Gamble, Newcastle Innovation Center, Newcastle upon Tyne, United Kingdom
- * E-mail:
| | - Margaux M. A. Defaye
- Procter & Gamble, Newcastle Innovation Center, Newcastle upon Tyne, United Kingdom
| | - Andrew J. Smith
- Procter & Gamble, Newcastle Innovation Center, Newcastle upon Tyne, United Kingdom
| | - Chimdia Kechi-Okafor
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - John R. Dean
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Kelly J. Sheridan
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
40
|
Villanova-Solano C, Díaz-Peña FJ, Hernández-Sánchez C, González-Sálamo J, González-Pleiter M, Vega-Moreno D, Fernández-Piñas F, Fraile-Nuez E, Machín F, Hernández-Borges J. Microplastic pollution in sublittoral coastal sediments of a North Atlantic island: The case of La Palma (Canary Islands, Spain). CHEMOSPHERE 2022; 288:132530. [PMID: 34653476 DOI: 10.1016/j.chemosphere.2021.132530] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/25/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
In this work, the microplastic content of sediments collected in July 2020 between 5 and 7 m depth was studied in four locations of La Palma island (Canary Islands, Spain). At each sampling location, three samples were taken parallel to the shoreline. The microplastic content in each sampling corer was studied every 2.5 cm depth after digestion with a H2O2 solution followed by flotation in a saturated NaCl solution. Visualization of the final filtrates under a stereomicroscope revealed that all the sediment samples evaluated contained mostly microfibers (98.3%) which were mainly white/colorless (86.0%) and blue (9.8%), with an average length of 2423 ± 2235 (SD) mm and an average concentration of 2682 ± 827 items per kg of dry weight, being the total number of items found 1,019. Fourier Transform Infrared microscopy analysis of 13.9% (n = 139) of the microfibers also showed that they were mainly cellulosic (81.3%). No significant differences were found between the depths of the sediment. However, significant differences were found between the number of fibers from the sampling sites at the east and west of the island. Such variability could be driven by the winds and ocean mesoscale dynamics in the area. This study confirms the wide distribution of microfibers in sediments from an oceanic island like La Palma, providing their first report in marine sediments of the Canary Islands.
Collapse
Affiliation(s)
- Cristina Villanova-Solano
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206, San Cristóbal de La Laguna, Spain
| | - Francisco J Díaz-Peña
- Departamento de Biología Animal, Edafología y Geología, Facultad de Ciencias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206, San Cristóbal de La Laguna, Spain
| | - Cintia Hernández-Sánchez
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Forense y Legal y Parasitología, Área de Medicina Preventiva y Salud Pública, Escuela Politécnica Superior de Ingeniería, Sección de Náutica, Máquinas y Radioelectrónica Naval, Universidad de La Laguna (ULL), Vía Auxiliar Paso Alto, 2, 38001, Santa Cruz de Tenerife, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206, San Cristóbal de La Laguna, Spain
| | - Javier González-Sálamo
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206, San Cristóbal de La Laguna, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206, San Cristóbal de La Laguna, Spain
| | - Miguel González-Pleiter
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, E-28049, Madrid, Spain
| | - Daura Vega-Moreno
- Departamento de Química, Universidad de Las Palmas de Gran Canaria (ULPGC), Spain
| | - Francisca Fernández-Piñas
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, E-28049, Madrid, Spain
| | - Eugenio Fraile-Nuez
- Centro Oceanográfico de Canarias, Instituto Español de Oceanografía (IEO), Consejo Superior de Investigaciones Científicas (CSIC), Calle Farola del Mar, 22, 38180, Santa Cruz de Tenerife, Spain
| | - Francisco Machín
- Departamento de Física, Universidad de Las Palmas de Gran Canaria (ULPGC), Spain
| | - Javier Hernández-Borges
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206, San Cristóbal de La Laguna, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206, San Cristóbal de La Laguna, Spain.
| |
Collapse
|
41
|
Belišová N, Konečná B, Bachratá N, Ryba J, Potočárová A, Tamáš M, Phuong AL, Púček O, Kopáček J, Mackul’ak T. Sorption of SARS-CoV-2 Virus Particles to the Surface of Microplastics Released during Washing Processes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 19:281. [PMID: 35010541 PMCID: PMC8750602 DOI: 10.3390/ijerph19010281] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 05/04/2023]
Abstract
The research aims at washing processes as possible sources of microplastics, specifical microfibers in wastewater, and the behavior of the virus particles SARS-CoV-2 in wastewater after the washing process as well as their ability to sorb to the surface of microfibers, released from washing processes. The conclusions of the research point to the ability of the virus to attach to possible solid impurities such as textile fibers (microfibers) occurring in the sewer and to the ability of wash water to influence their possible occurrence in the sewer. The highest efficiency (more than 99%) of removal virus particles was after washing process, using liquid washing powder, and washing soda. These findings may gradually contribute to a better understanding of the behavior of the virus particles in the sewer.
Collapse
Affiliation(s)
- Noemi Belišová
- Department of Environmental Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37 Bratislava, Slovakia; (N.B.); (M.T.); (O.P.); (T.M.)
| | - Barbora Konečná
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, SK-811 08 Bratislava, Slovakia; (B.K.); (A.P.)
| | - Nikoleta Bachratá
- Department of Environmental Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37 Bratislava, Slovakia; (N.B.); (M.T.); (O.P.); (T.M.)
| | - Jozef Ryba
- Department of Polymer Processing, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37 Bratislava, Slovakia;
| | - Alena Potočárová
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, SK-811 08 Bratislava, Slovakia; (B.K.); (A.P.)
| | - Michal Tamáš
- Department of Environmental Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37 Bratislava, Slovakia; (N.B.); (M.T.); (O.P.); (T.M.)
| | - Anh Le Phuong
- Department of Chemical Engineering, Faculty of Environmental Chemistry and Technology, Centria University of Applied Science, Talonpojankatu 2, 671 00 Kokkola, Finland;
| | - Ondrej Púček
- Department of Environmental Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37 Bratislava, Slovakia; (N.B.); (M.T.); (O.P.); (T.M.)
| | - Juraj Kopáček
- Biomedical Research Center–SAV, Institute of Virology, Dúbravská Cesta 9, SK-835 05 Bratislava, Slovakia;
| | - Tomáš Mackul’ak
- Department of Environmental Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37 Bratislava, Slovakia; (N.B.); (M.T.); (O.P.); (T.M.)
| |
Collapse
|
42
|
Particle Characterization of Washing Process Effluents by Laser Diffraction Technique. MATERIALS 2021; 14:ma14247781. [PMID: 34947374 PMCID: PMC8704885 DOI: 10.3390/ma14247781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/03/2021] [Accepted: 12/11/2021] [Indexed: 11/17/2022]
Abstract
The dominant type of polymer particles in water, sediment, and various organisms partly derives from natural and synthetic fibres released in the washing process. Pollution of aquatic recipients with these particles poses an interdisciplinary problem throughout the world. Wastewater from washing represents a dispersion system with different particle sizes that is also loaded with the source of the particles. Due to this complex system, the qualification and quantification of this type of pollution is difficult. In this paper, the laser diffraction technique was applied to characterize particles in effluents from washing and rinsing materials made of a mixture of cotton and polyester. The results obtained through the analysis prove that the laser diffraction technique is acceptable for the characterization of a composite effluent sample. The advanced statistical technique of multivariate analysis confirmed the interrelationship of the parameters of this complex dispersion system.
Collapse
|