1
|
Zubair M, Hussain S, Ur-Rehman M, Hussain A, Akram ME, Shahzad S, Rauf Z, Mujahid M, Ullah A. Trends in protein derived materials for wound care applications. Biomater Sci 2024; 13:130-160. [PMID: 39569610 DOI: 10.1039/d4bm01099j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Natural resource based polymers, especially those derived from proteins, have attracted significant attention for their potential utilization in advanced wound care applications. Protein based wound care materials provide superior biocompatibility, biodegradability, and other functionalities compared to conventional dressings. The effectiveness of various fabrication techniques, such as electrospinning, phase separation, self-assembly, and ball milling, is examined in the context of developing protein-based materials for wound healing. These methods produce a wide range of forms, including hydrogels, scaffolds, sponges, films, and bioinspired nanomaterials, each designed for specific types of wounds and different stages of healing. This review presents a comprehensive analysis of recent research that investigates the transformation of proteins into materials for wound healing applications. Our focus is on essential proteins, such as keratin, collagen, gelatin, silk, zein, and albumin, and we emphasize their distinct traits and roles in wound care management. Protein-based wound care materials show promising potential in biomedical engineering, offering improved healing capabilities and reduced risks of infection. It is crucial to explore the potential use of these materials in clinical settings while also addressing the challenges that may arise from their commercialization in the future.
Collapse
Affiliation(s)
- Muhammad Zubair
- Lipids Utilization Lab, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5.
| | - Saadat Hussain
- LEJ Nanotechnology Center, HEJ Research Institute of Chemistry, ICCBS, University of Karachi, Karachi-75270, Pakistan
| | - Mujeeb- Ur-Rehman
- LEJ Nanotechnology Center, HEJ Research Institute of Chemistry, ICCBS, University of Karachi, Karachi-75270, Pakistan
| | - Ajaz Hussain
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Punjab, Pakistan
| | - Muhammad Ehtisham Akram
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Punjab, Pakistan
| | - Sohail Shahzad
- Department of Chemistry, University of Sahiwal, Sahiwal 57000, Pakistan
| | - Zahid Rauf
- Pakistan Forest Institute (PFI), Peshawar 25130, Khyber Pakhtunkhwa, Pakistan
| | - Maria Mujahid
- Department of Chemistry, University of Sahiwal, Sahiwal 57000, Pakistan
| | - Aman Ullah
- Lipids Utilization Lab, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5.
| |
Collapse
|
2
|
Li F, Gan L, Yang X, Tan Z, Shi H, Lai C, Zhang D. Progress of AI assisted synthesis of polysaccharides-based hydrogel and their applications in biomedical field. Int J Biol Macromol 2024; 287:138643. [PMID: 39667472 DOI: 10.1016/j.ijbiomac.2024.138643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
Polymeric hydrogels, characterized by their highly hydrophilic three-dimensional network structures, boast exceptional physical and chemical properties alongside high biocompatibility and biodegradability. These attributes make them indispensable in various biomedical applications such as drug delivery, tissue engineering, wound dressings and sensor technologies. With the integration of artificial intelligence (AI), hydrogels are undergoing significant transformations in design, leveraging human-machine interaction, machine learning, neural networks, and 3D/4D printing technology. This article provides a concise yet comprehensive overview of polysaccharide-based hydrogels, exploring their intrinsic properties, functionalities, preparation techniques, and classifications, alongside their progress in biomedical research. Special emphasis is placed on AI-enhanced hydrogels, underscoring their transformative potential in redefining hydrogel performance and functionality. By integrating AI technologies, these intelligent hydrogels open unprecedented opportunities in precision medicine, adaptive biomaterials, and smart healthcare systems, highlighting promising directions for future research.
Collapse
Affiliation(s)
- Fangyu Li
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu 223003, China
| | - Lu Gan
- College of Traditional Chinese Medicine, Xinjaing Medical University, Urumqi, Xinjiang 830017, China
| | - Xurui Yang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu 223003, China
| | - Zhongbiao Tan
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu 223003, China
| | - Hao Shi
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu 223003, China.
| | - Chenhuan Lai
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| | - Daihui Zhang
- Institute of Chemical Industry of Forest Product, Chinese Academy of Forestry, Nanjing, Jiangsu 210042, China
| |
Collapse
|
3
|
Zhou W, Xiong P, Ge Y, He Y, Sun Y, Zhang G, Chen Y, Wu C, Zhang W, Liu Y, Yang H. Amoeba-Inspired Soft Robot for Integrated Tumor/Infection Therapy and Painless Postoperative Drainage. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407148. [PMID: 39494576 DOI: 10.1002/advs.202407148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/30/2024] [Indexed: 11/05/2024]
Abstract
Tumor recurrence and wound infection are devastating complications of wide excision surgery for melanoma, and deep postoperative wound drainage typically increases pain. An amoeba-inspired magnetic soft robot (ASR) with switchable dormant and active phases is developed to address the aforementioned challenges. The dormant ASR supports wounds through its solid-like elasticity and regulates reactive oxygen species (ROS) levels bidirectionally, promoting healing in infected wounds and eliminating residual tumors. It solves the challenge caused by the contradictory need for ROS scavenging in wound healing and ROS amplification in tumor/infection management. The active ASR removes absorbed wound exudate by crawling out from irregular wounds; interestingly, this crawling motion prevents damage to fragile tissues and alleviates wound pain via "non-direct friction." More importantly, ASR switches different states in response to an alternating magnetic field owing to its magnetothermal properties, and this process also exerts synergistic antitumor and bacteriostatic effects. Due to the appropriate mechanical structure (cohesive force) of ASR, the content of magnetic nanoparticles required to drive the ASR is ten-fold lower than that of conventional magnetic soft robots, enabling in vivo degradation. These outcomes highlight the vantage of the ASR for treating post-tumor excision wounds and underscore their potential for clinical application.
Collapse
Affiliation(s)
- Wanyi Zhou
- Department of Orthopedics, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Peizheng Xiong
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan, 610072, P. R. China
| | - Yiman Ge
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan, 610072, P. R. China
| | - Yuhan He
- Department of Orthopedics, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Yue Sun
- School of Mechanical and Electrical Engineering, Chengdu University of Technology, Chengdu, Sichuan, 610059, P. R. China
| | - Gang Zhang
- Department of Oncology, Chengdu Second People's Hospital, Chengdu, Sichuan, 610072, P. R. China
| | - Yifan Chen
- Department of Orthopedics, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Chunhui Wu
- Department of Orthopedics, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Wei Zhang
- Department of Orthopedics, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Yiyao Liu
- Department of Orthopedics, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan, 610072, P. R. China
- Department of Urology, Deyang People's Hospital, Deyang, Sichuan, 618099, P. R. China
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing, 401331, P. R. China
| | - Hong Yang
- Department of Orthopedics, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| |
Collapse
|
4
|
Korte D, Swapna MNS, Budasheva H, Diaz PC, Chhikara M, Škorjanc T, Tripon C, Farcas A, Pavlica E, Tran CD, Franko M. Characterization of sustainable biocompatible materials based on chitosan: cellulose composites containing sporopollenin exine capsules. Int J Biol Macromol 2024; 282:136649. [PMID: 39419139 DOI: 10.1016/j.ijbiomac.2024.136649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 09/06/2024] [Accepted: 10/15/2024] [Indexed: 10/19/2024]
Abstract
In this work, photothermal beam deflection spectrometric technique (BDS) is applied for non-contact and non-destructive characterization of chitosan (CS): cellulose (CEL) biocomposites with incorporated sporopollenin exine capsules (SEC). The objective was to determine the structural and thermal properties of synthesized CS:CEL:SEC composites with varying amounts of SEC, and to validate the BDS by photopyroelectric calorimetry (PPE) as an independent technique. It was found that CS:CEL biocomposites without SEC exhibit low porosities, which are on the order of 0.005 %, but can be increased by augmenting the content of CEL in the composite and/or by incorporation of SEC. By increasing the SEC content of CS:CEL composites to 50 % (w/w), the porosity increased up to 0.17 %. SEC also increases the surface roughness of biocomposite by over 2000-times to reach the roughness amplitude of 6 μm in composites with 50 % SEC. The thermal conductivities of investigated biocomposites were in the range of 40-80 mWm-1 K-1, while the thermal diffusivities were on the order of fractions of mm2s-1. With first validation of BDS results for thermal properties of CS:CEL-based composites, which show agreement with PPE results to within 5 %, this study confirms BDS technique as a perspectives tool for non-destructive characterization of CS:CEL:SEC biocomposites.
Collapse
Affiliation(s)
- Dorota Korte
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Vipavska 13, Nova Gorica SI-5000, Slovenia.
| | | | - Hanna Budasheva
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Vipavska 13, Nova Gorica SI-5000, Slovenia
| | - Patricia Cazon Diaz
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Vipavska 13, Nova Gorica SI-5000, Slovenia
| | - Manisha Chhikara
- Laboratory of Organic Matter Physics, University of Nova Gorica, Vipavska 13, Nova Gorica SI-5000, Slovenia
| | - Tina Škorjanc
- Materials Research Laboratory, University of Nova Gorica, Vipavska 11c, Ajdovscina SI-5270, Slovenia
| | - Carmen Tripon
- National R&D Institute for Isotopic and Molecular Technologies, Donat 65-103, 400293 Cluj-Napoca, Romania
| | - Alexandra Farcas
- National R&D Institute for Isotopic and Molecular Technologies, Donat 65-103, 400293 Cluj-Napoca, Romania
| | - Egon Pavlica
- Laboratory of Organic Matter Physics, University of Nova Gorica, Vipavska 13, Nova Gorica SI-5000, Slovenia
| | - Chieu D Tran
- Department of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, WI 53201, United States
| | - Mladen Franko
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Vipavska 13, Nova Gorica SI-5000, Slovenia
| |
Collapse
|
5
|
Hofman H, Duljic T, Johansson S, Kottner J, Kinnaer LM, Beeckman D, Eriksson M. Patients' experiences with the application of medical adhesives to the skin: a qualitative systematic review. BMJ Open 2024; 14:e089773. [PMID: 39486825 PMCID: PMC11529769 DOI: 10.1136/bmjopen-2024-089773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/09/2024] [Indexed: 11/04/2024] Open
Abstract
OBJECTIVES Medical adhesives provide securement of medical devices, facilitate skin protection and allow non-invasive monitoring. Application and removal of medical adhesives can result in pain, dermatitis, trauma or other skin lesions. Understanding patients' experiences when subjected to medical adhesives will contribute to the improvement of clinical routines and the development and improvement of new adhesive technologies. A qualitative systematic review was conducted to identify patients' experiences with the application of medical adhesives to the skin. DESIGN Qualitative systematic review. DATA SOURCES CINAHL, EMBASE, MEDLINE and PsycINFO were systematically searched for records published between January 2012 and March 2024. Reference lists of systematic reviews and included articles were reviewed. ELIGIBILITY CRITERIA Studies published in Danish, Dutch, English, German, Norwegian and Swedish that collected qualitative data on the experience of patients with the application of medical adhesives to the skin were considered. There were no restrictions regarding age, gender or setting. DATA EXTRACTION AND SYNTHESIS Study selection, data extraction and quality appraisal were independently conducted by two reviewers. The methodological quality of the studies under consideration was assessed using the Joanna Briggs Institute Critical Appraisal Tool for Qualitative Research. The extracted data were synthesised using meta-aggregation. RESULTS Nine studies describing patients' experiences were included. The included studies only reflected experiences with wound dressings. Meta-aggregation of the extracted findings resulted in seven categories that were further synthesised into two synthesised findings: 'strategies to alleviate pain during dressing changes' and 'dressing construction and characteristics'. The synthesised findings illustrate that patients experience pain during dressing change and removal and employ various strategies to alleviate this pain. CONCLUSIONS Patients experience pain and discomfort when dressings are changed or removed. Future research should focus on enhancing both routines and technologies, with a particular emphasis on advancing skin-friendly adhesives to reduce unwanted side effects. PROSPERO REGISTRATION NUMBER CRD42023457711.
Collapse
Affiliation(s)
- Hannelore Hofman
- Department of Public Health and Primary Care, University Centre for Nursing and Midwifery, Ghent University Faculty of Medicine and Health Sciences, Ghent, Belgium
| | - Tanja Duljic
- Faculty of Medicine and Health Sciences, School of Health Sciences, Orebro universitet, Örebro, Sweden
- Faculty of Medicine and Health Sciences, School of Health Sciences, Swedish Centre for Skin and Wound Research, Orebro universitet, Örebro, Sweden
| | | | - Jan Kottner
- Institute of Clinical Nursing Science, Charité Center for Health and Human Sciences, Charite—Universitatsmedizin Berlin, Berlin, Germany
| | - Lise-Marie Kinnaer
- Department of Public Health and Primary Care, University Centre for Nursing and Midwifery, Ghent University Faculty of Medicine and Health Sciences, Ghent, Belgium
| | - Dimitri Beeckman
- Department of Public Health and Primary Care, University Centre for Nursing and Midwifery, Ghent University Faculty of Medicine and Health Sciences, Ghent, Belgium
- Faculty of Medicine and Health Sciences, School of Health Sciences, Swedish Centre for Skin and Wound Research, Orebro universitet, Örebro, Sweden
| | - Mats Eriksson
- Faculty of Medicine and Health Sciences, School of Health Sciences, Orebro universitet, Örebro, Sweden
| |
Collapse
|
6
|
Lin Y, Li H, Zhao J. Resolved Chronic Non-Healing Ulcer After Distal Radius Giant Cell Tumor Resection: Nursing Experience and Wound Care. AMERICAN JOURNAL OF CASE REPORTS 2024; 25:e944971. [PMID: 39427231 PMCID: PMC11502519 DOI: 10.12659/ajcr.944971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 09/07/2024] [Accepted: 08/28/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Giant cell tumors of bone typically occur in early adulthood, when the growth plate has closed. The distal radius is the second most common location affected, accounting for 10% to 12% of cases. Complications of poor soft tissue healing are rare in the distal radius, owing to its rich blood supply. However, the curettage procedure and use of bone cement and external fixation can affect the local blood supply. CASE REPORT We present a rare case of a 24-year-old woman with no significant medical history who underwent surgery at a local hospital to treat a giant cell tumor of the radius. During postoperative wound dressing changes, a 4×3-cm area of flushed skin color with a small blister and reduced local sensation was found on the dorsal side of the wrist. The skin condition worsened despite treatment at the surgical outpatient clinic, leading to referral to scar specialist outpatient treatment. Examination revealed a well-healed surgical scar on the palmar side of the wrist, but a skin defect with necrotic tissue and tendon exposure on the dorsal side. The diagnosis was postoperative soft tissue necrosis of the skin with a giant cell tumor of the bone. CONCLUSIONS This case report discusses the management of chronic non-healing postoperative wounds in giant cell tumors of the distal radius. It emphasizes the importance of appropriate dressing changes, selecting suitable dressings, nutritional support, and effective nurse-patient communication. The case serves as an example of best practices for managing these types of wounds.
Collapse
Affiliation(s)
- Yiming Lin
- Corresponding Author: Lin Yiming, e-mail:
| | | | | |
Collapse
|
7
|
Chen P, Zhang P, Sun J, Hou Y, Liu X. Cooling wound dressings: Prospects for clinical practice. Clin Transl Med 2024; 14:e70064. [PMID: 39425252 PMCID: PMC11489132 DOI: 10.1002/ctm2.70064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024] Open
Affiliation(s)
- Peng Chen
- Department of Gastrointestinal SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Pingping Zhang
- Department of Infectious DiseasesChildren's Hospital Affiliated to Shandong UniversityJinanChina
| | - Jiangang Sun
- Department of Gastrointestinal SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yangzhe Hou
- National Engineering Research Center for Advanced Polymer Processing TechnologyZhengzhou UniversityZhengzhouChina
- UniSA STEM and Future Industries InstituteUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Xianhu Liu
- National Engineering Research Center for Advanced Polymer Processing TechnologyZhengzhou UniversityZhengzhouChina
| |
Collapse
|
8
|
Aldahish A, Shanmugasundaram N, Vasudevan R, Alqahtani T, Alqahtani S, Mohammad Asiri A, Devanandan P, Thamaraikani T, Vellapandian C, Jayasankar N. Silk Fibroin Nanofibers: Advancements in Bioactive Dressings through Electrospinning Technology for Diabetic Wound Healing. Pharmaceuticals (Basel) 2024; 17:1305. [PMID: 39458946 PMCID: PMC11510676 DOI: 10.3390/ph17101305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Non-healing diabetic wounds represent a significant clinical challenge globally, necessitating innovative approaches in drug delivery to enhance wound healing. Understanding the pathogenesis of these wounds is crucial for developing effective treatments. Bioactive dressings and polymeric nanofibers have emerged as promising modalities, with silk biomaterials gaining attention for their unique properties in diabetic wound healing. PURPOSE OF REVIEW The purpose of this review is to examine the challenges and innovations in treating non-healing diabetic wounds, emphasizing the global burden and the need for effective solutions. This review explores the complex mechanisms of wound healing in diabetes and evaluates the therapeutic potential of bioactive dressings and polymeric nanofibers. Special focus is given to the application of silk biomaterials, particularly silk fibroin, for wound healing, detailing their properties, mechanisms, and clinical translation. This review also describes various nanofiber fabrication methods, especially electrospinning technology, and presents existing evidence on the effectiveness of electrospun silk fibroin formulations. RECENT FINDINGS Recent advancements highlight the potential of silk biomaterials in diabetic wound healing, owing to their biocompatibility, mechanical strength, and controlled drug release properties. Electrospun silk fibroin-based formulations have shown promising results in preclinical and clinical studies, demonstrating accelerated wound closure and tissue regeneration. SUMMARY Non-healing diabetic wounds present a significant healthcare burden globally, necessitating innovative therapeutic strategies. Bioactive dressings and polymeric nanofibers, particularly silk-based formulations fabricated through electrospinning, offer promising avenues for enhancing diabetic wound healing. Further research is warranted to optimize formulation parameters and validate efficacy in larger clinical trials.
Collapse
Affiliation(s)
- Afaf Aldahish
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Nirenjen Shanmugasundaram
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu 603203, India
| | - Rajalakshimi Vasudevan
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Taha Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Saud Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Ahmad Mohammad Asiri
- Khamis Mushayt General Hospital, Aseer Health Cluster, Ministry of Health, Khamis Mushait 62433, Saudi Arabia
| | - Praveen Devanandan
- Department of Pharmacy Practice, St. Peter’s Institute of Pharmaceutical Sciences, Vidya Nagar, Hanamkonda 506001, India
| | - Tamilanban Thamaraikani
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu 603203, India
| | - Chitra Vellapandian
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu 603203, India
| | - Narayanan Jayasankar
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu 603203, India
| |
Collapse
|
9
|
Novosad YA, Shabunin AS, Enukashvily NI, Supilnikova OV, Konkina AI, Semenova NY, Yatsemirsky GS, Zinoviev EV, Rodionova KN, Kryshen KL, Borodina AY, Makarov AY, Fedyuk AM, Nilov AD, Chikulaeva EV, Konkova LS, Chustrak IS, Traxova VV, Safonov PA, Vissarionov SV, Prikhodko EM, Yurkevich YV. The Wound-Healing Effect of a Novel Fibroblasts-Impregnated Hydroxyethylcellulose Gel in a Rat Full-Thickness Burn Model: A Preclinical Study. Biomedicines 2024; 12:2215. [PMID: 39457528 PMCID: PMC11505042 DOI: 10.3390/biomedicines12102215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/23/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: The objective of this study was to assess the efficacy of a cell-containing wound dressing based on fibroblasts in hydroxyethylcellulose (HEC) gel for the local treatment of deep partial-thickness and/or full-thickness skin burns in an animal model. Methods: The rats (male Wistar, n = 100) were subjected to a full-thickness thermal burn (16 cm2). Radical necrectomy was performed one day after the burn. Three days later, the rats were randomly assigned to one of four groups: group 1 (no treatment), group 2 (chloramphenicol and methyluracil ointment, a routine clinical treatment), group 3 (a gel without cells, mock treatment), and group 4 (a dermal fibroblast-impregnated HEC gel). The treatment lasted for five days. The wound-healing process was evaluated by planimetric, cytologic, histologic, and immunohistochemical methods. Results: The differences in the rate of wound healing and the characteristics of wound cytology were identified. In the group 4, a regenerative type of cytogram was revealed, characterized by a significantly increased number of fibroblastic cells in comparison to samples from non-treated and mock-treated animals. Biopsy samples of burn wounds from animals in the group 4l demonstrated the presence of mature granulation tissue and a large number of microvessels. The repair process was stimulated, as evidenced by the increased thickness of newly formed granulation tissue and epidermis in the wound zone, elevated cellularity, and enhanced re-epithelialization activity. The number of Ki-67-positive proliferating cells was significantly higher in group 4 than in the control groups). A small number of non-proliferating donor fibroblasts was observed in the wound area 3 days after the end of treatment. Conclusions: The cell product is an effective agent for promoting wound healing during the regenerative phase. The experiments demonstrated that a gel populated by dermal fibroblasts can stimulate reparative regeneration processes in deep partial- and full-thickness burn wounds.
Collapse
Affiliation(s)
- Yury A. Novosad
- Professor G.I. Gaivoronsky Laboratory of Experimental Traumatology and Orthopedics with Vivarium, H. Turner National Medical Research Center for Children’s Orthopedics and Trauma Surgery, 196603 St. Petersburg, Russia
- Institute of Biomedical Systems and Biotechnologies, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Anton S. Shabunin
- Professor G.I. Gaivoronsky Laboratory of Experimental Traumatology and Orthopedics with Vivarium, H. Turner National Medical Research Center for Children’s Orthopedics and Trauma Surgery, 196603 St. Petersburg, Russia
| | - Natella I. Enukashvily
- Cell Technology Center Pokrovsky, 199066 St. Petersburg, Russia
- Cell Technologies Lab., North-Western State Medical University named after I.I. Mechnikov, 191015 St. Peterburg, Russia
- Lab of the Non-Coding DNA Study, Institute of Cytology, 194064 St. Peterburg, Russia
| | - Olga V. Supilnikova
- Cell Technology Center Pokrovsky, 199066 St. Petersburg, Russia
- Cell Technologies Lab., North-Western State Medical University named after I.I. Mechnikov, 191015 St. Peterburg, Russia
| | | | - Natalia Yu. Semenova
- Research Department of Pathomorphology, Center for Preclinical and Translational Research, Federal State Budgetary Institution «Almazov National Medical Research Centre», Ministry of Health of Russia, 199034 St. Petersburg, Russia
| | | | - Evgenii V. Zinoviev
- Saint-Petersburg I. I. Dzhanelidze Research Institute of Emergency Medicine, 192242 St. Petersburg, Russia
| | - Kristina N. Rodionova
- Professor G.I. Gaivoronsky Laboratory of Experimental Traumatology and Orthopedics with Vivarium, H. Turner National Medical Research Center for Children’s Orthopedics and Trauma Surgery, 196603 St. Petersburg, Russia
- Institute of Biomedical Systems and Biotechnologies, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Kirill L. Kryshen
- “Home of Pharmacy” Center, Leningrad Region, 188663 Kuzmolovsky, Russia
| | | | - Alexander Yu. Makarov
- Professor G.I. Gaivoronsky Laboratory of Experimental Traumatology and Orthopedics with Vivarium, H. Turner National Medical Research Center for Children’s Orthopedics and Trauma Surgery, 196603 St. Petersburg, Russia
| | - Andrey M. Fedyuk
- Professor G.I. Gaivoronsky Laboratory of Experimental Traumatology and Orthopedics with Vivarium, H. Turner National Medical Research Center for Children’s Orthopedics and Trauma Surgery, 196603 St. Petersburg, Russia
| | - Alexander D. Nilov
- Professor G.I. Gaivoronsky Laboratory of Experimental Traumatology and Orthopedics with Vivarium, H. Turner National Medical Research Center for Children’s Orthopedics and Trauma Surgery, 196603 St. Petersburg, Russia
| | - Elena V. Chikulaeva
- Professor G.I. Gaivoronsky Laboratory of Experimental Traumatology and Orthopedics with Vivarium, H. Turner National Medical Research Center for Children’s Orthopedics and Trauma Surgery, 196603 St. Petersburg, Russia
| | - Lidiya S. Konkova
- Professor G.I. Gaivoronsky Laboratory of Experimental Traumatology and Orthopedics with Vivarium, H. Turner National Medical Research Center for Children’s Orthopedics and Trauma Surgery, 196603 St. Petersburg, Russia
| | - Irina S. Chustrak
- Professor G.I. Gaivoronsky Laboratory of Experimental Traumatology and Orthopedics with Vivarium, H. Turner National Medical Research Center for Children’s Orthopedics and Trauma Surgery, 196603 St. Petersburg, Russia
| | - Veronika V. Traxova
- Professor G.I. Gaivoronsky Laboratory of Experimental Traumatology and Orthopedics with Vivarium, H. Turner National Medical Research Center for Children’s Orthopedics and Trauma Surgery, 196603 St. Petersburg, Russia
| | - Platon A. Safonov
- Professor G.I. Gaivoronsky Laboratory of Experimental Traumatology and Orthopedics with Vivarium, H. Turner National Medical Research Center for Children’s Orthopedics and Trauma Surgery, 196603 St. Petersburg, Russia
| | - Sergey V. Vissarionov
- H. Turner National Medical Research Center for Children’s Orthopedics and Trauma Surgery, 196603 St. Petersburg, Russia
| | - Egor M. Prikhodko
- Cell Technology Center Pokrovsky, 199066 St. Petersburg, Russia
- Institute of Medicine, St. Petersburg State University, 199034 St. Petersburg, Russia
| | | |
Collapse
|
10
|
Li X, Xue X, Xie P. Smart Dressings and Their Applications in Chronic Wound Management. Cell Biochem Biophys 2024; 82:1965-1977. [PMID: 38969950 DOI: 10.1007/s12013-024-01402-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
During chronic wound healing, the inflammatory phase can endure for extended periods, heavily impeding or halting the process. Regular inspections and dressing changes are crucial. Modern dressings like hydrogels, hydrocolloids, and foam provide protection and an optimal healing environment. However, they have limitations in offering real-time wound bed status and healing rate. Evaluation relies heavily on direct observation, and passive dressings fail to identify subtle healing differences, preventing adaptive adjustments in biological factors and drug concentrations. In recent years, the clinical field recognizes the value of integrating intelligent diagnostic tools into wound dressings. By monitoring biomarkers linked to chronic wounds' inflammatory state, real-time data can be captured, reducing medical interventions and enabling more effective treatment plans. This fosters innovation in chronic wound care. Researchers have developed smart dressings with sensing, active drug delivery, and self-adjustment capabilities. These dressings detect inflammatory markers like temperature, pH, and oxygen content, enhancing drug bioavailability on the wound surface. As wound healing technology evolves, these smart dressings hold immense potential in chronic wound care and treatment. This comprehensive review updates our understanding on the role and mechanism of action of the smart dressings in chronic refractory wounds by summarizing and discussing the latest research progresses, including the intelligent monitoring of wound oxygen content, temperature, humidity, pH, infection, and enzyme kinetics; intelligent drug delivery triggered by temperature, pH, near-infrared, and electricity; as well as the intelligent self-adjustment of pressure and shape. The review also delves into the constraints and future perspectives of smart dressings in clinical settings, thereby advancing the development of smart wound dressings for chronic wound healing and their practical application in clinical practice.
Collapse
Affiliation(s)
- Xiaodong Li
- Center for Cosmetic Surgery, General Hospital of Lanzhou Petrochemical Company (The Fourth Affiliated Hospital of Gansu University of Chinese Medicine), Lanzhou, 730060, Gansu, China
| | - Xiaodong Xue
- Department of Plastic Surgery, People's Hospital of Gansu Province, Lanzhou, 730000, Gansu, China
| | - Peilin Xie
- Department of Plastic Surgery, People's Hospital of Gansu Province, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
11
|
Asaftei M, Lucidi M, Anton SR, Trompeta AF, Hristu R, Tranca DE, Fiorentis E, Cirtoaje C, Lazar V, Stanciu GA, Cincotti G, Ayala P, Charitidis CA, Holban A, Visca P, Stanciu SG. Antibacterial Interactions of Ethanol-Dispersed Multiwalled Carbon Nanotubes with Staphylococcus aureus and Pseudomonas aeruginosa. ACS OMEGA 2024; 9:33751-33764. [PMID: 39130555 PMCID: PMC11307305 DOI: 10.1021/acsomega.4c03044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 08/13/2024]
Abstract
Infectious diseases are acknowledged as one of the leading causes of death worldwide. Statistics show that the annual death toll caused by bacterial infections has reached 14 million, most of which are caused by drug-resistant strains. Bacterial antibiotic resistance is currently regarded as a compelling problem with dire consequences, which motivates the urgent identification of alternative ways of fighting bacteria. Various types of nanomaterials have been reported to date as efficient antibacterial solutions. Among these, carbon-based nanomaterials, such as carbon nanodots, carbon graphene oxide, and carbon nanotubes (CNTs), have been shown to be effective in killing a wide panel of pathogenic bacteria. With this study, we aim to provide additional insights into this topic of research by investigating the antibacterial activity of a specific type of multiwalled CNTs, with diameters from 50 to 150 nm, against two representative opportunistic pathogens, i.e., the Gram-positive bacterium Staphylococcus aureus and the Gram-negative bacterium Pseudomonas aeruginosa, both included among the top antibiotic-resistant pathogens. We also test the synergistic effect of CNTs with different antibiotics commonly used in the treatment of infections caused by S. aureus and/or P. aeruginosa. Additionally, a novel approach for quantitatively analyzing bacterial aggregation in brightfield microscopy images was implemented. This method was utilized to assess the effectiveness of CNTs, either alone or in combination with antibiotics, in dispersing bacterial aggregates. Finally, atomic force microscopy coupled with a newly devised image analysis pipeline was used to examine any potential morphological changes in bacterial cells following exposure to CNTs and antibiotics.
Collapse
Affiliation(s)
- Mihaela Asaftei
- Center
for Microscopy-Microanalysis and Information Processing, National University of Science and Technology Politehnica
Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
- Department
of Microbiology and Immunology, Faculty of Biology, Research Institute
of the University of Bucharest, University
of Bucharest, 060101 Bucharest, Romania
| | - Massimiliano Lucidi
- Department
of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy
- NBFC,
National Biodiversity Future Center, Piazza Marina 61, 90133 Palermo, Italy
| | - Stefan Razvan Anton
- Center
for Microscopy-Microanalysis and Information Processing, National University of Science and Technology Politehnica
Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
| | - Aikaterini-Flora Trompeta
- Research
Lab of Advanced, Composite, Nano-Materials and Nanotechnology (R-NanoLab),
School of Chemical Engineering, National
Technical University of Athens, 9 Heroon Polytechniou, 15773 Athens, Greece
| | - Radu Hristu
- Center
for Microscopy-Microanalysis and Information Processing, National University of Science and Technology Politehnica
Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
| | - Denis E. Tranca
- Center
for Microscopy-Microanalysis and Information Processing, National University of Science and Technology Politehnica
Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
| | - Efstathios Fiorentis
- Center
for Microscopy-Microanalysis and Information Processing, National University of Science and Technology Politehnica
Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
| | - Cristina Cirtoaje
- Center
for Microscopy-Microanalysis and Information Processing, National University of Science and Technology Politehnica
Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
| | - Veronica Lazar
- Department
of Microbiology and Immunology, Faculty of Biology, Research Institute
of the University of Bucharest, University
of Bucharest, 060101 Bucharest, Romania
| | - George A. Stanciu
- Center
for Microscopy-Microanalysis and Information Processing, National University of Science and Technology Politehnica
Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
| | - Gabriella Cincotti
- Department
of Engineering, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy
| | - Paola Ayala
- Faculty
of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna, Austria
| | - Costas A. Charitidis
- Research
Lab of Advanced, Composite, Nano-Materials and Nanotechnology (R-NanoLab),
School of Chemical Engineering, National
Technical University of Athens, 9 Heroon Polytechniou, 15773 Athens, Greece
| | - Alina Holban
- Department
of Microbiology and Immunology, Faculty of Biology, Research Institute
of the University of Bucharest, University
of Bucharest, 060101 Bucharest, Romania
| | - Paolo Visca
- Department
of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy
| | - Stefan G. Stanciu
- Center
for Microscopy-Microanalysis and Information Processing, National University of Science and Technology Politehnica
Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
| |
Collapse
|
12
|
Korica M, Mihajlovski K, Mohan T, Kostić M. Films based on TEMPO-oxidized chitosan nanoparticles: Obtaining and potential application as wound dressings. Carbohydr Res 2024; 542:109203. [PMID: 38964016 DOI: 10.1016/j.carres.2024.109203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/27/2024] [Accepted: 06/30/2024] [Indexed: 07/06/2024]
Abstract
A series of novel films based on TEMPO-oxidized chitosan nanoparticles were prepared by casting method. Fourier transform infrared spectroscopy (FTIR) was employed to ascertain the chemical structure of TEMPO-oxidized chitosan. The surface morphology of the TEMPO-oxidized chitosan nanoparticles was analyzed by atomic force microscopy (AFM). The physicochemical (area density, thickness, iodine sorption, roughness), functional (moisture sorption, liquid absorption capacity, weight loss upon contact with the liquid, and water vapor transmission rate), antibacterial, and antioxidant properties of films based on TEMPO-oxidized chitosan nanoparticles were also investigated. The physicochemical properties of the films varied widely: area density ranged from 77.83 ± 0.06 to184.46 ± 0.05 mg/cm2, thickness varied between 80.5 ± 1.6 and 200.5 ± 1.6 μm, iodine sorption spanned from 333.7 ± 2.1 to166.4 ± 2.2 mg I2/g, and roughness ranged from 4.1 ± 0.2 to 5.6 ± 0.3 nm. Similarly, the functional properties also varied significantly: moisture sorption ranged from 4.76 ± 0.03 to 9.62 ± 0.11 %, liquid absorption capacity was between 129.04 ± 0.24 and 159.33 ± 0.73 % after 24 h, weight loss upon contact with the liquid varied between 31.06 ± 0.35 and 45.88 ± 0.58 % after 24 h and water vapor transmission rate ranged from 1220.10 ± 2.91to1407.77 ± 5.22 g/m2 day. Despite the wide variations in physicochemical and functional properties, all films showed maximum bacterial reduction of Staphylococcus aureus and Escherichia coli, although they exhibited low antioxidant activity. The results suggest that the films could be effectively utilized as antibacterial wound dressings.
Collapse
Affiliation(s)
- Matea Korica
- Innovation Center of Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000, Belgrade, Serbia.
| | - Katarina Mihajlovski
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000, Belgrade, Serbia.
| | - Tamilselvan Mohan
- Institute for Chemistry and Technology of Biobased System (IBioSys), Graz University of Technology, Stremayrgasse 9, 8010, Graz, Austria; Laboratory for Characterisation and Processing of Polymers, Faculty of Mechanical Engineering, University of Maribor, Smetanova ulica17, 2000, Maribor, Slovenia.
| | - Mirjana Kostić
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000, Belgrade, Serbia.
| |
Collapse
|
13
|
Zhang Z, Zhao X, Song Z, Wang L, Gao J. Electrospun collagen/chitosan composite fibrous membranes for accelerating wound healing. Biomed Mater 2024; 19:055024. [PMID: 39025112 DOI: 10.1088/1748-605x/ad6545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/18/2024] [Indexed: 07/20/2024]
Abstract
The protein-polysaccharide nanofibers have attracted intensive attention in promoting wound healing, due to their components and nanoscale fibrous structure that mimics the native extracellular matrix (ECM). For the full-thickness wounds, in addition to promoting healing, hemostatic property and antibacterial activity are also of critical importance. However, currently, protein-polysaccharide-based nanofiber membranes exhibit poor mechanical properties, lack inherent hemostatic and antibacterial capabilities, as well as the ability to promote tissue repair. In this study, we developed composited membranes, which were composed of collagen (Col) and chitosan (Chs), through solvent alteration and post-processing, the membranes showed enhanced stability under physiological conditions, proper hydrophilic performance and improved mechanical property. Appropriated porosity and water vapor transmission rate, which benefit to wound healing, were detected among all the membranes except for Col membrane. Aimed at wound dressing, hemocompatibility, antibacterial activity and cell proliferation of the electrospun membranes were evaluated. The results indicated that the Col/Chs composited membranes exhibited superior blood clotting capacity, and the membranes with Chs exceeding 60% possessed sufficient antibacterial activity. Moreover, compared with Chs nanofibers, significant increase in cell grow was detected in Col/Chs (1:3) membrane. Taken together, the electrospun membrane with multiple properties favorable to wound healing, superior blood coagulation, sufficient antibacterial performance and promoting cell proliferation property make it favorable candidate for full-thickness skin wound healing.
Collapse
Affiliation(s)
- Zhan Zhang
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, People's Republic of China
| | - Xinzhe Zhao
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, People's Republic of China
| | - Ziyu Song
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, People's Republic of China
| | - Lu Wang
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, People's Republic of China
| | - Jing Gao
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, People's Republic of China
| |
Collapse
|
14
|
Marjani ME, HMTShirazi R, Mohammadi T. CDI crosslinked chitosan/poly (vinyl alcohol) electrospun nanofibers loaded with Achillea millefolium and Viola extract: A promising wound dressing. Carbohydr Polym 2024; 336:122117. [PMID: 38670768 DOI: 10.1016/j.carbpol.2024.122117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/06/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024]
Abstract
Biopolymer-based electrospun mats, mimicking the extracellular matrix, have been extensively explored in biomedical applications. This study compares Achillea millefolium (AM) and Viola (V) extracts for developing a biocompatible wound dressing. The extracts were incorporated into a Chitosan/polyvinyl alcohol (CS/PVA) matrix via electrospinning. Crosslinking with Carbonyldiimidazole (CDI) improved chemical stability, water resistance, and biodegradability. The resulting mats exhibited flawless interconnected nanofibers, confirming the presence of AM and Viola extracts as analyzed via FTIR. Significant differences were observed between these two herbal extracts, particularly in mechanical properties, with tensile strengths of 6.9 MPa for AM and 17.2 MPa for Viola. Viola extract demonstrated robust antibacterial properties, producing an 8.2 mm inhibition zone against Staphylococcus aureus, compared to AM's 30 %. The release of therapeutic agents indicated an initial rapid phase, followed by a controlled 72 h release at a consistent rate. Notably, Viola extract led to 80.9 % wound closure on the 10th day, surpassing AM extract at 63.7 %. In contrast, the control group achieved only 32.1 % closure. This comparative study underscores the distinct advantages of AM and Viola extracts in wound dressing applications. While AM presents specific strengths, Viola extract exhibits superior mechanical properties, antibacterial efficacy, and accelerated wound closure, suggesting its potential with significant clinical implications.
Collapse
Affiliation(s)
- Milad Ein Marjani
- Center of Excellence for Membrane Science and Technology, Department of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, Iran
| | - Romina HMTShirazi
- Center of Excellence for Membrane Science and Technology, Department of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, Iran
| | - Toraj Mohammadi
- Center of Excellence for Membrane Science and Technology, Department of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, Iran.
| |
Collapse
|
15
|
Su J, Yu W, Guo X, Wang C, Wang Q, Chen B, Hu Y, Dai H. Development and Evaluation of a Novel Antibacterial Wound Dressing: A Powder Preparation Based on Cross-Linked Pullulan with Polyhexamethylene Biguanide for Hydrogel-Transition in Advanced Wound Management and Infection Control. Polymers (Basel) 2024; 16:1352. [PMID: 38794544 PMCID: PMC11124900 DOI: 10.3390/polym16101352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/05/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
As antibiotic resistance increasingly undermines traditional infection management strategies, there is a critical demand for innovative wound care solutions that address these emerging challenges. This study introduces a novel antibacterial wound dressing based on Cross-Linked Pullulan (Pul) and Polyhexamethylene Biguanide (PHMB) for enhanced wound management and infection control. The dressing's adsorption rate reached 200% of its original weight within 30 min, exceeded 300% after 5 h, and exhibited significant non-Newtonian fluid properties. The dressings were able to release the loaded medication completely within 20 min; additionally, the dressing demonstrated significant antibacterial activity against a broad spectrum of bacteria. Significantly, the therapeutic effects of the Pul-PHMB/GP dressing were evaluated in a mouse model. Compared to untreated wounds, wounds treated with Pul-PHMB/GP exhibited a significant gelation process within 5 min post-treatment and showed a significant increase in wound healing rate within 12 days. This powder preparation overcomes the limitations associated with liquid and gel dressings, notably in storage and precise application, preventing the premature expansion or dissolution often caused by PHMB in high-humidity environments. The powder form can transform into a gel upon contact with wound exudate, ensuring accurate coverage of irregular wounds, such as those from burns or pressure sores, and offers excellent chemical and physical stability in a dry state, which facilitates storage and transport. This makes the dressing particularly suitable for emergency medical care and precision therapy, significantly improving the efficiency and adaptability of wound treatment and providing robust support for clinical treatments and emergency responses.
Collapse
Affiliation(s)
- Jiangtao Su
- School of Life and Health Sciences, Hubei University of Technology, No. 28, Nanli Road, Wuhan 430068, China; (J.S.); (W.Y.); (X.G.); (C.W.); (Q.W.); (B.C.); (Y.H.)
- National ‘111’ Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
- Key Laboratory of Industrial Microbiology in Hubei, Hubei University of Technology, Wuhan 430068, China
- Hubei Province Cooperative Innovation Center for Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China
| | - Wantao Yu
- School of Life and Health Sciences, Hubei University of Technology, No. 28, Nanli Road, Wuhan 430068, China; (J.S.); (W.Y.); (X.G.); (C.W.); (Q.W.); (B.C.); (Y.H.)
| | - Xiaoxia Guo
- School of Life and Health Sciences, Hubei University of Technology, No. 28, Nanli Road, Wuhan 430068, China; (J.S.); (W.Y.); (X.G.); (C.W.); (Q.W.); (B.C.); (Y.H.)
- National ‘111’ Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
| | - Chaofan Wang
- School of Life and Health Sciences, Hubei University of Technology, No. 28, Nanli Road, Wuhan 430068, China; (J.S.); (W.Y.); (X.G.); (C.W.); (Q.W.); (B.C.); (Y.H.)
| | - Qianqiu Wang
- School of Life and Health Sciences, Hubei University of Technology, No. 28, Nanli Road, Wuhan 430068, China; (J.S.); (W.Y.); (X.G.); (C.W.); (Q.W.); (B.C.); (Y.H.)
| | - Ban Chen
- School of Life and Health Sciences, Hubei University of Technology, No. 28, Nanli Road, Wuhan 430068, China; (J.S.); (W.Y.); (X.G.); (C.W.); (Q.W.); (B.C.); (Y.H.)
| | - Yuchen Hu
- School of Life and Health Sciences, Hubei University of Technology, No. 28, Nanli Road, Wuhan 430068, China; (J.S.); (W.Y.); (X.G.); (C.W.); (Q.W.); (B.C.); (Y.H.)
| | - Heshuang Dai
- School of Life and Health Sciences, Hubei University of Technology, No. 28, Nanli Road, Wuhan 430068, China; (J.S.); (W.Y.); (X.G.); (C.W.); (Q.W.); (B.C.); (Y.H.)
- National ‘111’ Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
16
|
Alves P, Luzio D, de Sá K, Correia I, Ferreira P. Preparation of Gel Forming Polymer-Based Sprays for First Aid Care of Skin Injuries. Gels 2024; 10:297. [PMID: 38786214 PMCID: PMC11121244 DOI: 10.3390/gels10050297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Currently, there are several types of materials for the treatment of wounds, burns, and other topical injuries available on the market. The most used are gauzes and compresses due to their fluid absorption capacity; however, these materials adhere to the surface of the lesions, which can lead to further bleeding and tissue damage upon removal. In the present study, the development of a polymer-based gel that can be applied as a spray provides a new vision in injury protection, respecting the requirements of safety, ease, and quickness of both applicability and removal. The following polymeric sprays were developed to further obtain gels based on different polymers: hydroxypropyl cellulose (HPC), polyvinyl pyrrolidone (PVP) and hydroxypropyl methylcellulose (HPMC) using polyethylene glycol (PEG) as a plasticizer. The developed sprays revealed suitable properties for use in topical injuries. A protective film was obtained when sprayed on a surface through a casting mechanism. The obtained films adhered to the surface of biological tissue (pig muscle), turning into a gel when the exudate was absorbed, and proved to be washable with saline solution and contribute to the clotting process. Moreover, biocompatibility results showed that all materials were biocompatible, as cell viability was over 90% for all the materials.
Collapse
Affiliation(s)
- Patrícia Alves
- Chemical Engineering and Renewable Resources for Sustainability (CERES), Department of Chemical Engineering, University of Coimbra, 3030-790 Coimbra, Portugal; (P.A.); (D.L.); (I.C.)
| | - Diana Luzio
- Chemical Engineering and Renewable Resources for Sustainability (CERES), Department of Chemical Engineering, University of Coimbra, 3030-790 Coimbra, Portugal; (P.A.); (D.L.); (I.C.)
| | - Kevin de Sá
- Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilha, Portugal;
| | - Ilídio Correia
- Chemical Engineering and Renewable Resources for Sustainability (CERES), Department of Chemical Engineering, University of Coimbra, 3030-790 Coimbra, Portugal; (P.A.); (D.L.); (I.C.)
- Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilha, Portugal;
| | - Paula Ferreira
- Chemical Engineering and Renewable Resources for Sustainability (CERES), Department of Chemical Engineering, University of Coimbra, 3030-790 Coimbra, Portugal; (P.A.); (D.L.); (I.C.)
- Applied Research Institute, Polytechnic Institute of Coimbra, Rua da Misericórdia, Lagar dos Cortiços—S. Martinho do Bispo, 3045-093 Coimbra, Portugal
- Research Centre for Natural Resources, Environment and Society (CERNAS), Polytechnic Institute of Coimbra, 3045-601 Coimbra, Portugal
| |
Collapse
|
17
|
Zhang Y, Chen ZH, Zhao K, Mu YD, Li KL, Yuan ZM, Liu ZG, Han L, Lü WD. Acellular embryoid body and hydroxybutyl chitosan composite hydrogels promote M2 macrophage polarization and accelerate diabetic cutaneous wound healing. Mater Today Bio 2024; 25:100975. [PMID: 38322662 PMCID: PMC10846410 DOI: 10.1016/j.mtbio.2024.100975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/31/2023] [Accepted: 01/22/2024] [Indexed: 02/08/2024] Open
Abstract
Diabetic wound healing is delayed due to persistent inflammation, and macrophage-immunomodulating biomaterials can control the inflammatory phase and shorten the healing time. In this study, acellular embryoid bodies (aEBs) were prepared and mixed with thermosensitive hydroxybutyl chitosan (HBC) hydrogels to produce aEB/HBC composite hydrogels. The aEB/HBC composite hydrogels exhibited reversible temperature-sensitive phase transition behavior and a hybrid porous network. In vitro analysis showed that the aEB/HBC composite hydrogels exhibited better antimicrobial activity than the PBS control, aEBs or HBC hydrogels and promoted M0 to M2 polarization but not M1 to M2 macrophage repolarization in culture. The in vivo results showed that the aEB/HBC composite hydrogels accelerated cutaneous wound closure, re-epithelialization, ingrowth of new blood vessels, and collagen deposition and reduced the scar width during wound healing in diabetic mice over time. Macrophage phenotype analysis showed that the aEB/HBC composite hydrogels induce M2 macrophage reactions continually, upregulate M2-related mRNA and protein expression and downregulate M1-related mRNA and protein expression. Therefore, the aEB/HBC composite hydrogels have excellent antimicrobial activity, promote M2 macrophage polarization and accelerate the functional and structural healing of diabetic cutaneous wounds.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Pathophysiology, Northwestern University School of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Zheng-Hong Chen
- Oncology Department of Integrated Chinese and Western Medicine, Tumor Hospital of Shaanxi Province, Affiliated to the Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Kun Zhao
- Department of Thoracic Surgery, Tumor Hospital of Shaanxi Province, Affiliated to the Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Yu-Dong Mu
- Department of Clinical Laboratory, Tumor Hospital of Shaanxi Province, Affiliated to the Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Kun-Long Li
- Department of Thoracic Surgery, Tumor Hospital of Shaanxi Province, Affiliated to the Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Zhi-Min Yuan
- Department of Clinical Laboratory, Tumor Hospital of Shaanxi Province, Affiliated to the Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Zhi-Gang Liu
- Department of Thoracic Surgery, Tumor Hospital of Shaanxi Province, Affiliated to the Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Le Han
- Department of Thoracic Surgery, Tumor Hospital of Shaanxi Province, Affiliated to the Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Wei-Dong Lü
- Department of Thoracic Surgery, Tumor Hospital of Shaanxi Province, Affiliated to the Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| |
Collapse
|
18
|
Ansari M, Darvishi A. A review of the current state of natural biomaterials in wound healing applications. Front Bioeng Biotechnol 2024; 12:1309541. [PMID: 38600945 PMCID: PMC11004490 DOI: 10.3389/fbioe.2024.1309541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 03/18/2024] [Indexed: 04/12/2024] Open
Abstract
Skin, the largest biological organ, consists of three main parts: the epidermis, dermis, and subcutaneous tissue. Wounds are abnormal wounds in various forms, such as lacerations, burns, chronic wounds, diabetic wounds, acute wounds, and fractures. The wound healing process is dynamic, complex, and lengthy in four stages involving cells, macrophages, and growth factors. Wound dressing refers to a substance that covers the surface of a wound to prevent infection and secondary damage. Biomaterials applied in wound management have advanced significantly. Natural biomaterials are increasingly used due to their advantages including biomimicry of ECM, convenient accessibility, and involvement in native wound healing. However, there are still limitations such as low mechanical properties and expensive extraction methods. Therefore, their combination with synthetic biomaterials and/or adding bioactive agents has become an option for researchers in this field. In the present study, the stages of natural wound healing and the effect of biomaterials on its direction, type, and level will be investigated. Then, different types of polysaccharides and proteins were selected as desirable natural biomaterials, polymers as synthetic biomaterials with variable and suitable properties, and bioactive agents as effective additives. In the following, the structure of selected biomaterials, their extraction and production methods, their participation in wound healing, and quality control techniques of biomaterials-based wound dressings will be discussed.
Collapse
Affiliation(s)
- Mojtaba Ansari
- Department of Biomedical Engineering, Meybod University, Meybod, Iran
| | | |
Collapse
|
19
|
Kurian AG, Singh RK, Sagar V, Lee JH, Kim HW. Nanozyme-Engineered Hydrogels for Anti-Inflammation and Skin Regeneration. NANO-MICRO LETTERS 2024; 16:110. [PMID: 38321242 PMCID: PMC10847086 DOI: 10.1007/s40820-024-01323-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 12/24/2023] [Indexed: 02/08/2024]
Abstract
Inflammatory skin disorders can cause chronic scarring and functional impairments, posing a significant burden on patients and the healthcare system. Conventional therapies, such as corticosteroids and nonsteroidal anti-inflammatory drugs, are limited in efficacy and associated with adverse effects. Recently, nanozyme (NZ)-based hydrogels have shown great promise in addressing these challenges. NZ-based hydrogels possess unique therapeutic abilities by combining the therapeutic benefits of redox nanomaterials with enzymatic activity and the water-retaining capacity of hydrogels. The multifaceted therapeutic effects of these hydrogels include scavenging reactive oxygen species and other inflammatory mediators modulating immune responses toward a pro-regenerative environment and enhancing regenerative potential by triggering cell migration and differentiation. This review highlights the current state of the art in NZ-engineered hydrogels (NZ@hydrogels) for anti-inflammatory and skin regeneration applications. It also discusses the underlying chemo-mechano-biological mechanisms behind their effectiveness. Additionally, the challenges and future directions in this ground, particularly their clinical translation, are addressed. The insights provided in this review can aid in the design and engineering of novel NZ-based hydrogels, offering new possibilities for targeted and personalized skin-care therapies.
Collapse
Affiliation(s)
- Amal George Kurian
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Rajendra K Singh
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Varsha Sagar
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Cell and Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea.
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea.
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea.
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea.
- Cell and Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea.
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea.
| |
Collapse
|
20
|
Patenall BL, Carter KA, Ramsey MR. Kick-Starting Wound Healing: A Review of Pro-Healing Drugs. Int J Mol Sci 2024; 25:1304. [PMID: 38279304 PMCID: PMC10816820 DOI: 10.3390/ijms25021304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/28/2024] Open
Abstract
Cutaneous wound healing consists of four stages: hemostasis, inflammation, proliferation/repair, and remodeling. While healthy wounds normally heal in four to six weeks, a variety of underlying medical conditions can impair the progression through the stages of wound healing, resulting in the development of chronic, non-healing wounds. Great progress has been made in developing wound dressings and improving surgical techniques, yet challenges remain in finding effective therapeutics that directly promote healing. This review examines the current understanding of the pro-healing effects of targeted pharmaceuticals, re-purposed drugs, natural products, and cell-based therapies on the various cell types present in normal and chronic wounds. Overall, despite several promising studies, there remains only one therapeutic approved by the United States Food and Drug Administration (FDA), Becaplermin, shown to significantly improve wound closure in the clinic. This highlights the need for new approaches aimed at understanding and targeting the underlying mechanisms impeding wound closure and moving the field from the management of chronic wounds towards resolving wounds.
Collapse
Affiliation(s)
| | | | - Matthew R. Ramsey
- Department of Dermatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA (K.A.C.)
| |
Collapse
|