1
|
Orhan N, Gafner S, Blumenthal M. Estimating the extent of adulteration of the popular herbs black cohosh, echinacea, elder berry, ginkgo, and turmeric - its challenges and limitations. Nat Prod Rep 2024; 41:1604-1621. [PMID: 39108221 DOI: 10.1039/d4np00014e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
Covering: up to July 2023Botanical natural medicinal products and dietary supplements are utilized globally for their positive impacts on health and wellness. However, the effectiveness and safety of botanical products can be compromised by unintentional or intentional adulteration. The presence of adulterated botanical ingredients in the global market has been documented in the published literature but a key question, namely what the extent of adulteration is, remains to be answered. This review aims to estimate the prevalence of adulteration in preparations made from black cohosh rhizome, echinacea root or herb, elder berry, ginkgo leaf, and turmeric root/rhizome. According to the information provided in the 78 publications retrieved for this paper, 818 of 2995 samples were reported to be adulterated and/or mislabeled. Ginkgo leaf samples (n = 533) had the highest adulteration rate with 56.7%, followed by black cohosh rhizome (n = 322) samples with 42.2%, echinacea root/herb (n = 200) with 28.5%, elder berry (n = 695) with 17.1%, and turmeric root/rhizome (n = 1247) with 16.5%. Products sold as licensed or registered herbal medicines were found to have a lower risk of adulteration compared to products sold as dietary/food supplements. The data show that the adulteration rate substantially differs from one ingredient to the other. Due to the significant limitations of the available data upon which the estimated extent of adulteration is based, and the rapidly changing botanical dietary supplement market, conclusions from the five herbs examined in this publication cannot be applied to other botanicals traded in the global market. However, the data clearly show that a substantial portion of the botanical dietary supplements do not contain what is claimed on their labels.
Collapse
Affiliation(s)
- Nilüfer Orhan
- American Botanical Council, 6200 Manor Road, 78723, Austin, TX, USA.
| | - Stefan Gafner
- American Botanical Council, 6200 Manor Road, 78723, Austin, TX, USA.
| | - Mark Blumenthal
- American Botanical Council, 6200 Manor Road, 78723, Austin, TX, USA.
| |
Collapse
|
2
|
Reddy K, Stafford GI, Makunga NP. Skeletons in the closet? Using a bibliometric lens to visualise phytochemical and pharmacological activities linked to Sceletium, a mood enhancer. FRONTIERS IN PLANT SCIENCE 2024; 15:1268101. [PMID: 38576783 PMCID: PMC10991851 DOI: 10.3389/fpls.2024.1268101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 02/16/2024] [Indexed: 04/06/2024]
Abstract
Plants from the Sceletium genus (Aizoaceae) have been traditionally used for millennia by the Khoe and Khoen people in southern Africa, as an appetite suppressant as well as a mood elevator. In more recent times, this mood-elevating activity has been commercialised in the South African natural products industry for the treatment of anxiety and depression, with several products available both locally and abroad. Research on this species has seen rapid growth with advancements in analytical and pharmacological tools, in an effort to understand the composition and biological activity. The Web of Science (WoS) database was searched for articles related to 'Sceletium' and 'Mesembrine'. These data were additionally analysed by bibliometric software (VOSviewer) to generate term maps and author associations. The thematic areas with the most citations were South African Traditional Medicine for mental health (110) and anxiolytic agents (75). Pioneer studies in the genus focused on chemical structural isolation, purification, and characterisation and techniques such as thin layer chromatography, liquid chromatography (HPLC, UPLC, and more recently, LC-MS), gas chromatography mass spectrometry (GC-MS), and nuclear magnetic resonance (NMR) to study mesembrine alkaloids. Different laboratories have used a diverse range of extraction and preanalytical methods that became routinely favoured in the analysis of the main metabolites (mesembrine, mesembranol, mesembranone, and Sceletium A4) in their respective experimental settings. In contrast with previous reviews, this paper identified gaps in the research field, being a lack of toxicology assays, a deficit of clinical assessments, too few bioavailability studies, and little to no investigation into the minor alkaloid groups found in Sceletium. Future studies are likely to see innovations in analytical techniques like leaf spray mass spectrometry and direct analysis in real-time ionisation coupled with high-resolution time-of-flight mass spectrometry (DART-HR-TOF-MS) for rapid alkaloid identification and quality control purposes. While S. tortuosum has been the primary focus, studying other Sceletium species may aid in establishing chemotaxonomic relationships and addressing challenges with species misidentification. This research can benefit the nutraceutical industry and conservation efforts for the entire genus. At present, little to no pharmacological information is available in terms of the molecular physiological effects of mesembrine alkaloids in medical clinical settings. Research in these fields is expected to increase due to the growing interest in S. tortuosum as a herbal supplement and the potential development of mesembrine alkaloids into pharmaceutical drugs.
Collapse
Affiliation(s)
- Kaylan Reddy
- Department of Botany and Zoology, Natural Sciences Faculty, Stellenbosch University, Stellenbosch, South Africa
| | - Gary I. Stafford
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
| | - Nokwanda P. Makunga
- Department of Botany and Zoology, Natural Sciences Faculty, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
3
|
Bednarska K, Fecka I, Scheijen JLJM, Ahles S, Vangrieken P, Schalkwijk CG. A Citrus and Pomegranate Complex Reduces Methylglyoxal in Healthy Elderly Subjects: Secondary Analysis of a Double-Blind Randomized Cross-Over Clinical Trial. Int J Mol Sci 2023; 24:13168. [PMID: 37685975 PMCID: PMC10488144 DOI: 10.3390/ijms241713168] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Reactive α-dicarbonyls (α-DCs), such as methylglyoxal (MGO), glyoxal (GO), and 3-deoxyglucosone (3-DG), are potent precursors in the formation of advanced glycation end products (AGEs). In particular, MGO and MGO-derived AGEs are thought to be involved in the development of vascular complications in diabetes. Experimental studies showed that citrus and pomegranate polyphenols can scavenge α-DCs. Therefore, the aim of this study was to evaluate the effect of a citrus and pomegranate complex (CPC) on the α-DCs plasma levels in a double-blind, placebo-controlled cross-over trial, where thirty-six elderly subjects were enrolled. They received either 500 mg of Citrus sinensis peel extract and 200 mg of Punica granatum concentrate in CPC capsules or placebo capsules for 4 weeks, with a 4-week washout period in between. For the determination of α-DCs concentrations, liquid chromatography tandem mass spectrometry was used. Following four weeks of CPC supplementation, plasma levels of MGO decreased by 9.8% (-18.7 nmol/L; 95% CI: -36.7, -0.7 nmol/L; p = 0.042). Our findings suggest that CPC supplementation may represent a promising strategy for mitigating the conditions associated with MGO involvement. This study was registered on clinicaltrials.gov as NCT03781999.
Collapse
Affiliation(s)
- Katarzyna Bednarska
- Department of Pharmacognosy, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland
| | - Izabela Fecka
- Department of Pharmacognosy, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland
- The Committee on Therapeutics and Pharmaceutical Sciences, The Polish Academy of Sciences, Pl. Defilad 1, 00-901 Warsaw, Poland
| | - Jean L. J. M. Scheijen
- Department of Internal Medicine, Maastricht University Medical Center+, 6229 ER Maastricht, The Netherlands; (J.L.J.M.S.); (P.V.); (C.G.S.)
- CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Sanne Ahles
- Department of Nutrition and Movement Sciences, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6229 ER Maastricht, The Netherlands;
- BioActor BV, 6229 GS Maastricht, The Netherlands
| | - Philippe Vangrieken
- Department of Internal Medicine, Maastricht University Medical Center+, 6229 ER Maastricht, The Netherlands; (J.L.J.M.S.); (P.V.); (C.G.S.)
- CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Casper G. Schalkwijk
- Department of Internal Medicine, Maastricht University Medical Center+, 6229 ER Maastricht, The Netherlands; (J.L.J.M.S.); (P.V.); (C.G.S.)
- CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
4
|
Villaescusa L, Zaragoza C, Zaragoza F, Tamargo J. Herbal medicines for the treatment of cardiovascular diseases: Benefits and risks- A narrative review. Int J Cardiol 2023:S0167-5273(23)00599-5. [PMID: 37116758 DOI: 10.1016/j.ijcard.2023.04.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/14/2023] [Accepted: 04/24/2023] [Indexed: 04/30/2023]
Abstract
Herbal medicines (HMs) have been traditionally used for the prophylaxis/treatment of cardiovascular diseases (CVDs). Their use is steadily increasing and many patients with CVDs often combine HMs with prescribed cardiovascular medications. Interestingly, up to 70% of patients do not notify cardiologists/physicians the use of HMs and up to 90% of cardiologists/physicians may not routinely inquire them about the use of HMs. There is limited scientific evidence from well-designed clinical trials supporting the efficacy and safety of HMs and because they do not reduce morbidity and mortality are not recommended in clinical guidelines for the prophylaxis/treatment of CVDs. There is also a great deal of confusion about the identification, active constituents and mechanisms of action of HMs; the lack of standardization and quality control (contaminations, adulterations) represent other sources of concern. Furthermore, the widespread perception that unlike prescription drugs HMs are safe is misleading and some HMs can cause clinically relevant adverse events and interactions, particularly when used with narrow therapeutic index prescribed cardiovascular drugs (antiarrhythmics, antithrombotics, digoxin). Cardiologists/physicians can no longer ignore the problem. They must improve their knowledge about the HMs their patients consume to provide the best advice and prevent adverse reactions and drug interactions. This narrative review addresses the putative mechanisms of action, suggested clinical uses and safety of most commonly used HMs, the pivotal role of cardiologists/physicians to protect consumers and the main challenges and gaps in evidence related to the use of HMs in the prophylaxis and treatment of CVDs.
Collapse
Affiliation(s)
- Lucinda Villaescusa
- Pharmacology Unit, Biomedical Sciences Department, University of Alcalá, Madrid, 28805 Alcalá de Henares, Spain.
| | - Cristina Zaragoza
- Pharmacology Unit, Biomedical Sciences Department, University of Alcalá, Madrid, 28805 Alcalá de Henares, Spain
| | - Francisco Zaragoza
- Pharmacology Unit, Biomedical Sciences Department, University of Alcalá, Madrid, 28805 Alcalá de Henares, Spain
| | - Juan Tamargo
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense, 28040 Madrid, Spain.
| |
Collapse
|
5
|
Gafner S, Blumenthal M, Foster S, Cardellina JH, Khan IA, Upton R. Botanical Ingredient Forensics: Detection of Attempts to Deceive Commonly Used Analytical Methods for Authenticating Herbal Dietary and Food Ingredients and Supplements. JOURNAL OF NATURAL PRODUCTS 2023; 86:460-472. [PMID: 36716213 PMCID: PMC9972475 DOI: 10.1021/acs.jnatprod.2c00929] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Indexed: 05/30/2023]
Abstract
Botanical ingredients are used widely in phytomedicines, dietary/food supplements, functional foods, and cosmetics. Products containing botanical ingredients are popular among many consumers and, in the case of herbal medicines, health professionals worldwide. Government regulatory agencies have set standards (collectively referred to as current Good Manufacturing Practices, cGMPs) with which suppliers and manufacturers must comply. One of the basic requirements is the need to establish the proper identity of crude botanicals in whole, cut, or powdered form, as well as botanical extracts and essential oils. Despite the legal obligation to ensure their authenticity, published reports show that a portion of these botanical ingredients and products are adulterated. Most often, such adulteration is carried out for financial gain, where ingredients are intentionally substituted, diluted, or "fortified" with undisclosed lower-cost ingredients. While some of the adulteration is easily detected with simple laboratory assays, the adulterators frequently use sophisticated schemes to mimic the visual aspects and chemical composition of the labeled botanical ingredient in order to deceive the analytical methods that are used for authentication. This review surveys the commonly used approaches for botanical ingredient adulteration and discusses appropriate test methods for the detection of fraud based on publications by the ABC-AHP-NCNPR Botanical Adulterants Prevention Program, a large-scale international program to inform various stakeholders about ingredient and product adulteration. Botanical ingredients at risk of adulteration include, but are not limited to, the essential oils of lavender (Lavandula angustifolia, Lamiaceae), rose (Rosa damascena, Rosaceae), sandalwood (Santalum album, Santalaceae), and tea tree (Melaleuca alternifolia, Myrtaceae), plus the extracts of bilberry (Vaccinium myrtillus, Ericaceae) fruit, cranberry (Vaccinium macrocarpon, Ericaceae) fruit, elder (Sambucus nigra, Viburnaceae) berry, eleuthero (Eleutherococcus senticosus, Araliaceae) root, ginkgo (Ginkgo biloba, Ginkgoaceae) leaf, grape (Vitis vinifera, Vitaceae) seed, saw palmetto (Serenoa repens, Arecaceae) fruit, St. John's wort (Hypericum perforatum, Hypericaceae) herb, and turmeric (Curcuma longa, Zingiberaceae) root/rhizome, among numerous others.
Collapse
Affiliation(s)
- Stefan Gafner
- American
Botanical Council, Austin, Texas 78714, United States
| | - Mark Blumenthal
- American
Botanical Council, Austin, Texas 78714, United States
| | - Steven Foster
- Steven Foster
Group, Eureka Springs, Arkansas 72632, United States
| | | | - Ikhlas A. Khan
- National
Center for Natural Products Research, University
of Mississippi, University, Mississippi 38677, United States
| | - Roy Upton
- American
Herbal Pharmacopoeia, Scotts
Valley, California 95067, United States
| |
Collapse
|
6
|
Kulić Ž, Lehner MD, Dietz GPH. Ginkgo biloba leaf extract EGb 761 ® as a paragon of the product by process concept. Front Pharmacol 2022; 13:1007746. [PMID: 36304165 PMCID: PMC9593214 DOI: 10.3389/fphar.2022.1007746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
It is an often-neglected fact that extracts derived from the very same plant can differ significantly in their phytochemical composition, and thus also in their pharmacokinetic and pharmacodynamic properties which are the basis for their clinical efficacy and safety. The Ginkgo biloba L. [Ginkgoaceae] special extract EGb 761® is one of the best-studied plant extracts in the world. In the present review, using that extract as a paradigm, we describe insights how climate, the harvest region, processing of the plant material, the drying process, the extraction solvents, and the details of the subsequent process steps substantially impact the quality and uniformity of the final extract. We highlight the importance of regulating active constituent levels and consistent reduction of undesired substances in herbal extracts. This is accomplished by a controlled production process and corresponding analytical specifications. In conclusion, since extracts derived from the same plant can have very different phytochemical compositions, results from pharmacological, toxicological and clinical studies gained with one specific extract cannot be extrapolated to other extracts that were generated using different production processes. We propose that the heterogenous nature of extracts should be meticulously considered when evaluating the efficacy and safety of plant-derived remedies.
Collapse
Affiliation(s)
- Žarko Kulić
- Preclinical Research and Development, Dr. Willmar Schwabe GmbH and Co., KG, Karlsruhe, Germany
| | - Martin D. Lehner
- Preclinical Research and Development, Dr. Willmar Schwabe GmbH and Co., KG, Karlsruhe, Germany
| | - Gunnar P. H. Dietz
- Global Medical Affairs, Dr. Willmar Schwabe GmbH and Co., KG, Karlsruhe, Germany
- University Medical Center, Göttingen, Germany
| |
Collapse
|
7
|
Jalil B, Naser AY, M Prieto J, Heinrich M. Herbal supplements in Jordan: a cross-sectional survey of pharmacists' perspectives and knowledge. BMJ Open 2022; 12:e057405. [PMID: 35896285 PMCID: PMC9335029 DOI: 10.1136/bmjopen-2021-057405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES Pharmacists are ideal partners for engaging with the needs and expectations of patients. They can play a vital role by providing information and supplying herbal medicines. In some community settings, pharmacists are also the main first point of care. This study explored Jordanian community pharmacists' perspectives and knowledge of herbal medicines available in pharmacies. DESIGN A cross-sectional study using an online survey was developed, and it was distributed via social media platforms. The one-way analysis of variance (ANOVA) test was used to compare the mean knowledge scores between different demographic groups. Multiple linear regression analysis was used to identify predictors of herbal medicines knowledge. SETTING Jordanian community pharmacies. PARTICIPANTS 401 Jordanian community pharmacists. RESULTS Herbal supplements are sold in practically all pharmacies (98.5%). Slimming aids (14.7%), followed by sexual and sports enhancements (14%) and maintaining general health (12.1%) were most requested by Jordanian customers. While supplements for maintaining general health (12%), followed by slimming aids (11.4%) and skin conditions (9.3%) were most recommended by Jordanian pharmacists. 63.1% were not aware of potential herb-drug interactions, 95.6% did not receive complaints from customers about herbal medicines and 41.2% would not report adverse reactions to the national pharmacovigilance services. The mean knowledge score for knowledge of use, regulation, adverse reactions, and drug interactions was 3.7 (SD: 0.7), 3.5 (SD: 0.8), 3.6 (SD: 0.8), and 3.6 (SD: 0.8) (out of 5), respectively. ANOVA test showed that total pharmacists' knowledge scores significantly differed based on the length of time practising pharmacy (p<0.05). CONCLUSION This study highlights some key concerns relating to recommendations, awareness and reporting of herbal medicines among Jordanian community pharmacists. Pharmacists need enhanced education to provide objective and evidence-based information on the benefits-risks of herbal medicines. Future studies need to be carried out to confirm whether our findings are transferable to other Middle Eastern countries.
Collapse
Affiliation(s)
- Banaz Jalil
- Pharmacognosy and Phytotherapy, UCL School of Pharmacy, 29 - 39 Brunswick Sq, London, UK
| | - Abdallah Y Naser
- Department of Applied Pharmaceutical Sciences and Clinical Pharmacy, Isra University, Amman, Jordan
| | - Jose M Prieto
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Michael Heinrich
- Pharmacognosy and Phytotherapy, UCL School of Pharmacy, 29 - 39 Brunswick Sq, London, UK
| |
Collapse
|
8
|
Discrimination of Adulterated Ginkgo Biloba Products Based on 2T2D Correlation Spectroscopy in UV-Vis Range. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27020433. [PMID: 35056747 PMCID: PMC8777600 DOI: 10.3390/molecules27020433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/19/2021] [Accepted: 01/07/2022] [Indexed: 11/23/2022]
Abstract
Ginkgo biloba is a popular medicinal plant widely used in numerous herbal products, including food supplements. Due to its popularity and growing economic value, G. biloba leaf extract has become the target of economically motivated adulterations. There are many reports about the poor quality of ginkgo products and their adulteration, mainly by adding flavonols, flavonol glycosides, or extracts from other plants. In this work, we developed an approach using two-trace two-dimensional correlation spectroscopy (2T2D COS) in UV-Vis range combined with multilinear principal component analysis (MPCA) to detect potential adulteration of twenty G. biloba food supplements. UV-Vis spectral data are obtained for 80% methanol and aqueous extracts in the range of 245–410 nm. Three series of two-dimensional correlation spectra were interpreted by visual inspection and using MPCA. The proposed relatively quick and straightforward approach successfully differentiated supplements adulterated with rutin or those lacking ginkgo leaf extract. Supporting information about adulteration was obtained from the difference between the DPPH radical scavenging capacity of both extracts and from chromatographic (HPLC-DAD) fingerprints of methanolic samples.
Collapse
|
9
|
Hosbas Coskun S, Wise SA, Kuszak AJ. The Importance of Reference Materials and Method Validation for Advancing Research on the Health Effects of Dietary Supplements and Other Natural Products. Front Nutr 2021; 8:786261. [PMID: 34970578 PMCID: PMC8713974 DOI: 10.3389/fnut.2021.786261] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/17/2021] [Indexed: 01/21/2023] Open
Abstract
Insufficient assessment of the identity and chemical composition of complex natural products, including botanicals, herbal remedies, and dietary supplements, hinders reproducible research and limits understanding mechanism(s) of action and health outcomes, which in turn impede improvements in clinical practice and advances in public health. This review describes available analytical resources and good methodological practices that support natural product characterization and strengthen the knowledge gained for designing and interpreting safety and efficacy investigations. The practice of validating analytical methods demonstrates that measurements of constituents of interest are reproducible and appropriate for the sample (e.g., plant material, phytochemical extract, and biological specimen). In particular, the utilization of matrix-based reference materials enables researchers to assess the accuracy, precision, and sensitivity of analytical measurements of natural product constituents, including dietary ingredients and their metabolites. Select case studies are presented where the careful application of these resources and practices has enhanced experimental rigor and benefited research on dietary supplement health effects.
Collapse
Affiliation(s)
| | | | - Adam J. Kuszak
- Office of Dietary Supplements, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
10
|
Bampali E, Germer S, Bauer R, Kulić Ž. HPLC-UV/HRMS methods for the unambiguous detection of adulterations of Ginkgo biloba leaves with Sophora japonica fruits on an extract level. PHARMACEUTICAL BIOLOGY 2021; 59:438-443. [PMID: 33886418 PMCID: PMC8079001 DOI: 10.1080/13880209.2021.1910717] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/09/2021] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
CONTEXT Ginkgo biloba L. (Ginkgoaceae) leaf extract is one of the most frequently sold herbal extracts. There have been reports on poor quality and adulteration of ginkgo leaf extracts or the powdered plant material with extracts or powder of Styphnolobium japonicum (L.) Schott (Fabaceae) (syn. Sophora japonica L.) fruits, which is rich in flavone glycosides. OBJECTIVE The study investigates whether ginkgo leaves genuinely contain genistein and sophoricoside and whether these two substances could be used as markers to detect adulterations with sophora fruits. MATERIALS AND METHODS A total of 33 samples of dried ginkgo leaves were sourced from controlled plantations in China, the USA, and France. After extraction, the samples were analyzed using two high-performance liquid chromatography (HPLC) coupled with UV/HRMS methods for the detection of genistein and sophoricoside, respectively. Chromatograms were compared to standard reference materials. RESULTS In none of the tested ginkgo samples, neither genistein nor sophoricoside could be detected. The applied method was designed to separate genistein from apigenin. The latter is a genuine compound of ginkgo leaves, and its peak may have been previously misidentified as genistein because of the same molecular mass. The method for the detection of sophoricoside allows identification of the adulteration with sophora fruit without prior hydrolysis. By both HPLC methods, it was possible to detect adulterations of ≥2% sophora fruits in the investigated ginkgo extract. CONCLUSION The methods allow unambiguous detection of adulterations of ginkgo leaves with sophora fruits, using genistein and sophoricoside as marker compounds.
Collapse
Affiliation(s)
- Evangelia Bampali
- Institute of Pharmaceutical Sciences, Section of Pharmacognosy, University of Graz, Graz, Austria
- Preclinical Research & Development, Dr. Willmar Schwabe GmbH & Co., Karlsruhe, Germany
| | - Stefan Germer
- Analytical Development, Dr. Willmar Schwabe GmbH & Co., Karlsruhe, Germany
| | - Rudolf Bauer
- Institute of Pharmaceutical Sciences, Section of Pharmacognosy, University of Graz, Graz, Austria
| | - Žarko Kulić
- Preclinical Research & Development, Dr. Willmar Schwabe GmbH & Co., Karlsruhe, Germany
| |
Collapse
|
11
|
Jiang L, Zhou B, Wang X, Bi Y, Guo W, Wang J, Yao R, Li M. The Quality Monitoring of Cistanches Herba ( Cistanche deserticola Ma): A Value Chain Perspective. Front Pharmacol 2021; 12:782962. [PMID: 34803722 PMCID: PMC8602053 DOI: 10.3389/fphar.2021.782962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 10/22/2021] [Indexed: 11/13/2022] Open
Abstract
Cistanche deserticola Ma was used as a medicine food homology, which was mainly produced in the Alxa region of northwest China. In recent years, it has been widely used in various food items. The increasing demand for Cistanches Herba has led to problems such as overexploitation and quality deterioration. The quality and safety of herbal medicines are critical and have been shown to be affected by the value chain (VC). Using the VC framework, the study is embedded in a larger study aiming to investigate the effects of different VCs types on the quality and stakeholders of Cistanches Herba. In this study, 90 Cistanches Herba samples were collected during fieldwork. An additional 40 samples were obtained from the herbal markets and medicine purchasing stations. Semi-structured interviews and key informant interviews were performed to collect data on stakeholders in major production areas. These samples were analyzed using high performance liquid chromatography (HPLC) coupled with the k-means clustering method; a targeted quality assessment strategy based on chemical analysis was adopted to understand the quality of Cistanches Herba. Based on market research, the collected samples were divided into different grades through k-means clustering analysis. Moreover, quality differences of Cistanches Herba in Alxa region were explored through DNA barcoding and chemical analysis. Accordingly, 10 different types of VCs were determined in the production of Cistanches Herba. The results show that there is a close relationship between the quality of Cistanches Herba and stakeholder benefits. Vertical integration at different levels was found for independent farmer-based VCs, horizontal collaboration was found in the cooperative-based VCs. The vertical coordination has led to a more consistent traceability system and strict regulation of supply chains. At the same time, the Cistanches Herba were divided into three grades. Through DNA barcoding and chemical analysis, we found that the quality differences between Cistanches Herba in the Alxa area were not significant. It was found that geographical suitability and vertical integration could impact the quality and sustainable production of Cistanches Herba. At the same time, the well-developed VCs can provide products with reliable quality, and ensure adequate financial revenue for relevant stakeholders.
Collapse
Affiliation(s)
- Linlin Jiang
- Department of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Baochang Zhou
- Department of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Xiaoqin Wang
- Department of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Yaqiong Bi
- Inner Mongolia Hospital of Institute of Traditional Chinese Medicine, Hohhot, China
| | - Wenfang Guo
- Inner Mongolia Hospital of Institute of Traditional Chinese Medicine, Hohhot, China
| | - Jianhua Wang
- Department of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Ruyu Yao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Minhui Li
- Department of Pharmacy, Inner Mongolia Medical University, Hohhot, China.,Inner Mongolia Hospital of Institute of Traditional Chinese Medicine, Hohhot, China.,Inner Mongolia Key Laboratory of Characteristic Geoherbs Resources Protection and Utilization, Baotou, China.,Baotou Medical College, Baotou, China.,Inner Mongolia Hospital of Traditional Chinese Medicine, Hohhot, China
| |
Collapse
|
12
|
Grazina L, Amaral JS, Costa J, Mafra I. Tracing Styphnolobium japonicum (syn: Sophora japonica) as a potential adulterant of ginkgo-containing foods by real-time PCR. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.103891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Shanmughanandhan J, Shanmughanandhan D, Ragupathy S, Henry TA, Newmaster SG. Validation and Optimization of qPCR Method for Identification of Actaea racemosa (Black Cohosh) NHPs. J AOAC Int 2021; 104:836-846. [PMID: 33346838 DOI: 10.1093/jaoacint/qsaa167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/29/2020] [Accepted: 11/26/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND Actaea racemosa (black cohosh) herbal dietary supplements are commonly used to treat menopausal symptoms in women. However, there is a considerable risk of contamination of A. racemosa herbal products in the natural health product (NHP) industry, impacting potential efficacy. Authentication of A. racemosa products is challenging because of the standard, multi-part analytical chemistry methods that may be too costly and not appropriate for both raw and finished products. OBJECTIVE In this paper, we discuss developing and validating quick alternative biotechnology methods to authenticate A. racemosa herbal dietary supplements, based on the use of a species-specific hydrolysis PCR probe assay. METHODS A qPCR-based species-specific hydrolysis probe assay was designed, validated, and optimized for precisely identifying the species of interest using the following analytical validation criteria: (1) specificity (accuracy) in determining the target species ingredient, while not identifying other non-target species; (2) sensitivity in detecting the smallest amount of the target material; and (3) reliability (repeatability and reproducibility) in detecting the target species in raw materials on a real-time PCR platform. RESULTS The results show that the species-specific hydrolysis probe assay was successfully developed for the raw materials and powders of A. racemosa. The specificity of the test was 100% to the target species. The efficiency of the assay was observed to be 99%, and the reliability of the assay was 100% for the raw/starting and powder materials. CONCLUSION The method developed in this study can be used to authenticate and perform qualitative analysis of A. racemosa supplements.
Collapse
Affiliation(s)
- Jeevitha Shanmughanandhan
- NHP Research Alliance, College of Biological Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Dhivya Shanmughanandhan
- NHP Research Alliance, College of Biological Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Subramanyam Ragupathy
- NHP Research Alliance, College of Biological Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Thomas A Henry
- NHP Research Alliance, College of Biological Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Steven G Newmaster
- NHP Research Alliance, College of Biological Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
14
|
Ichim MC, Booker A. Chemical Authentication of Botanical Ingredients: A Review of Commercial Herbal Products. Front Pharmacol 2021; 12:666850. [PMID: 33935790 PMCID: PMC8082499 DOI: 10.3389/fphar.2021.666850] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/09/2021] [Indexed: 12/30/2022] Open
Abstract
Chemical methods are the most important and widely used traditional plant identification techniques recommended by national and international pharmacopoeias. We have reviewed the successful use of different chemical methods for the botanical authentication of 2,386 commercial herbal products, sold in 37 countries spread over six continents. The majority of the analyzed products were reported to be authentic (73%) but more than a quarter proved to be adulterated (27%). At a national level, the number of products and the adulteration proportions varied very widely. Yet, the adulteration reported for the four countries, from which more than 100 commercial products were purchased and their botanical ingredients chemically authenticated, was 37% (United Kingdom), 31% (Italy), 27% (United States), and 21% (China). Simple or hyphenated chemical analytical techniques have identified the total absence of labeled botanical ingredients, substitution with closely related or unrelated species, the use of biological filler material, and the hidden presence of regulated, forbidden or allergenic species. Additionally, affecting the safety and efficacy of the commercial herbal products, other low quality aspects were reported: considerable variability of the labeled metabolic profile and/or phytochemical content, significant product-to-product variation of botanical ingredients or even between batches by the same manufacturer, and misleading quality and quantity label claims. Choosing an appropriate chemical technique can be the only possibility for assessing the botanical authenticity of samples which have lost their diagnostic microscopic characteristics or were processed so that DNA cannot be adequately recovered.
Collapse
Affiliation(s)
- Mihael Cristin Ichim
- “Stejarul” Research Centre for Biological Sciences, National Institute of Research and Development for Biological Sciences, Piatra Neamt, Romania
| | - Anthony Booker
- Research Centre for Optimal Health, School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, London, United Kingdom
- Pharmacognosy and Phytotherapy, UCL School of Pharmacy, London, United Kingdom
| |
Collapse
|
15
|
Collins BJ, Kerns SP, Aillon K, Mueller G, Rider CV, DeRose EF, London RE, Harnly JM, Waidyanatha S. Comparison of phytochemical composition of Ginkgo biloba extracts using a combination of non-targeted and targeted analytical approaches. Anal Bioanal Chem 2020; 412:6789-6809. [PMID: 32865633 PMCID: PMC7496025 DOI: 10.1007/s00216-020-02839-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/26/2020] [Accepted: 07/23/2020] [Indexed: 01/23/2023]
Abstract
Ginkgo biloba extract (GbE) is a dietary supplement derived from an ethanolic extract of Ginkgo biloba leaves. Unfinished bulk GbE is used to make finished products that are sold as dietary supplements. The variable, complex composition of GbE makes it difficult to obtain consistent toxicological assessments of potential risk. The National Toxicology Program (NTP) observed hepatotoxicity in its rodent studies of a commercially available, unfinished GbE product, but the application of these results to the broader GbE supplement market is unclear. Here, we use a combination of non-targeted and targeted chromatographic and spectrophotometric methods to obtain profiles of 24 commercially available finished GbE products and unfinished standardized and unstandardized extracts with and without hydrolysis, then used principal component analysis to group unfinished products according to their similarity to each other and to National Institute of Standards and Technology (NIST) standard reference materials (SRM), and the finished products. Unfinished products were grouped into those that were characteristic and uncharacteristic of standardized GbE. Our work demonstrates that different analytical approaches produced similar classifications of characteristic and uncharacteristic products in unhydrolyzed samples, but the distinctions largely disappeared once the samples were hydrolyzed. Using our approach, the NTP GbE was most similar to two unfinished GbE products classified as characteristic, finished products, and the NIST GbE SRM. We propose that a simple analysis for the presence, absence, or amounts of compounds unique to GbE in unhydrolyzed samples could be sufficient to determine a sample's authenticity.Graphical abstract.
Collapse
Affiliation(s)
- Bradley J Collins
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA.
| | | | | | - Geoffrey Mueller
- Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - Cynthia V Rider
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - Eugene F DeRose
- Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - Robert E London
- Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - James M Harnly
- U.S. Department of Agriculture, Beltsville Human Nutrition Research Center, Methods and Applications Food Composition Lab, Beltsville, MD, 20705, USA
| | - Suramya Waidyanatha
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| |
Collapse
|
16
|
Grazina L, Amaral JS, Costa J, Mafra I. Authentication of Ginkgo biloba Herbal Products by a Novel Quantitative Real-Time PCR Approach. Foods 2020; 9:E1233. [PMID: 32899672 PMCID: PMC7555165 DOI: 10.3390/foods9091233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/29/2020] [Accepted: 08/29/2020] [Indexed: 01/16/2023] Open
Abstract
Ginkgo biloba is a widely used medicinal plant. Due to its potential therapeutic effects, it is an ingredient in several herbal products, such as plant infusions and plant food supplements (PFS). Currently, ginkgo is one of the most popular botanicals used in PFS. Due to their popularity and high cost, ginkgo-containing products are prone to be fraudulently substituted by other plant species. Therefore, this work aimed at developing a method for G. biloba detection and quantification. A new internal transcribe spacer (ITS) marker was identified, allowing the development of a ginkgo-specific real-time polymerase chain reaction (PCR) assay targeting the ITS region, with high specificity and sensitivity, down to 0.02 pg of DNA. Additionally, a normalized real-time PCR approach using the delta cycle quantification (ΔCq) method was proposed for the effective quantification of ginkgo in plant mixtures. The method exhibited high performance parameters, namely PCR efficiency, coefficient of correlation and covered dynamic range (50-0.01%), achieving limits of detection and quantification of 0.01% (w/w) of ginkgo in tea plant (Camellia sinensis). The quantitative approach was successfully validated with blind mixtures and further applied to commercial ginkgo-containing herbal infusions. The estimated ginkgo contents of plant mixture samples suggest adulterations due to reduction or almost elimination of ginkgo. In this work, useful and robust tools were proposed to detect/quantify ginkgo in herbal products, which suggests the need for a more effective and stricter control of such products.
Collapse
Affiliation(s)
- Liliana Grazina
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (L.G.); (J.C.)
| | - Joana S. Amaral
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Sta. Apolónia, 5301-857 Bragança, Portugal;
| | - Joana Costa
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (L.G.); (J.C.)
| | - Isabel Mafra
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (L.G.); (J.C.)
| |
Collapse
|
17
|
Chen Y, Huang C, Jin Z, Xu X, Cai Y, Bai Y. HPTLC-bioautography/SERS screening nifedipine adulteration in food supplement based on Ginkgo biloba. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104647] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
18
|
Frommenwiler DA, Booker A, Vila R, Heinrich M, Reich E, Cañigueral S. Comprehensive HPTLC fingerprinting as a tool for a simplified analysis of purity of ginkgo products. JOURNAL OF ETHNOPHARMACOLOGY 2019; 243:112084. [PMID: 31306695 DOI: 10.1016/j.jep.2019.112084] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/01/2019] [Accepted: 07/12/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Herbal medicinal products based on ginkgo leaf refined dry extract (GBE) are an European development from the Eastern Asia traditionally used species Ginkgo biloba L. Nowadays, ginkgo products have increased the presence in the market, mainly as dietary supplements. Its adulteration with rutin and quercetin or herbal extracts rich in these compounds is a common practice. Tests featuring assays and detection of adulterants need to be performed on top of other existent methods (e.g. identification test). This may increase the costs of evaluating the quality of ginkgo products. AIM OF THE STUDY To prove that comprehensive HPTLC fingerprinting can provide information beyond identification of ginkgo products, avoiding additional chromatographic tests for detection of adulterations. MATERIALS AND METHODS The information contained in the fingerprint obtained by HPTLC analysis of flavonoids was used for identification and for detection of adulterants, as well as to verify the limits of rutin and quercetin, which are normally determined by HPLC and used for detection of adulterants. For this purpose, peak profiles were generated from HPTLC chromatogram images. USP-HPLC methods were used for quantification of total flavonoids and testing the limits of rutin and quercetin. HPLC data were used to support the validity of the HPTLC method. An additional reversed phase HPTLC method was developed as a possible confirmatory method for the quercetin limit test. RESULTS The proposed HPTLC method uses a particular sequence of detections, resulting in a number of images, which are later interpreted in a certain order. It is able to identify ginkgo products, to detect adulterants (rutin, quercetin, sophora fruit and flower bud, and buckwheat), and, using peak profiles generated from the chromatogram images prior to and after derivatisation, to evaluate the limits of rutin and quercetin. Forty-eight out of fifty-nine ginkgo dietary supplements analysed contained one or more adulterants. Furthermore, results of the HPTLC and HPLC limit tests for rutin and quercetin were in agreement in 98% of the cases. Finally, a decision tree showing the sequence of interpretation of the fingerprints obtained with the different detections after a single HPTLC analysis is included to help the analyst to evaluate whether samples have the correct identity and whether they contain or not adulterants. CONCLUSION A single HPTLC analysis is able to provide information on identity and purity of the products. This simplifies the analytical workflow and reduces the number of analyses prescribed in the USP powdered ginkgo extract monograph.
Collapse
Affiliation(s)
- Débora Arruda Frommenwiler
- Unitat de Farmacologia, Farmacognòsia i Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Av. Joan XXIII, 27-31, ES-08028, Barcelona, Spain; CAMAG AG, Sonnenmattstrasse 11, 4132, Muttenz, Switzerland
| | - Anthony Booker
- Pharmacognosy and Phytotherapy, Biodiversity and Medicines Research Cluster, Department of Pharmaceutical and Biological Chemistry, UCL School of Pharmacy. 29-39 Brunswick Square, WC1N 1AX, London, UK; Herbal and East Asian Medicine, Department of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, 115 New Cavendish Street, London, W1W 6UW, UK
| | - Roser Vila
- Unitat de Farmacologia, Farmacognòsia i Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Av. Joan XXIII, 27-31, ES-08028, Barcelona, Spain
| | - Michael Heinrich
- Pharmacognosy and Phytotherapy, Biodiversity and Medicines Research Cluster, Department of Pharmaceutical and Biological Chemistry, UCL School of Pharmacy. 29-39 Brunswick Square, WC1N 1AX, London, UK
| | - Eike Reich
- CAMAG AG, Sonnenmattstrasse 11, 4132, Muttenz, Switzerland
| | - Salvador Cañigueral
- Unitat de Farmacologia, Farmacognòsia i Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Av. Joan XXIII, 27-31, ES-08028, Barcelona, Spain.
| |
Collapse
|
19
|
Lazarou R, Heinrich M. Herbal medicine: Who cares? The changing views on medicinal plants and their roles in British lifestyle. Phytother Res 2019; 33:2409-2420. [DOI: 10.1002/ptr.6431] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/10/2019] [Accepted: 06/17/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Rebecca Lazarou
- Pharmacognosy and PhytotherapyUCL School of Pharmacy London UK
| | | |
Collapse
|
20
|
Lejri I, Agapouda A, Grimm A, Eckert A. Mitochondria- and Oxidative Stress-Targeting Substances in Cognitive Decline-Related Disorders: From Molecular Mechanisms to Clinical Evidence. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9695412. [PMID: 31214285 PMCID: PMC6535827 DOI: 10.1155/2019/9695412] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/21/2019] [Accepted: 04/11/2019] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia affecting people mainly in their sixth decade of life and at a higher age. It is an extensively studied neurodegenerative disorder yet incurable to date. While its main postmortem brain hallmarks are the presence of amyloid-β plaques and hyperphosphorylated tau tangles, the onset of the disease seems to be largely correlated to mitochondrial dysfunction, an early event in the disease pathogenesis. AD is characterized by flawed energy metabolism in the brain and excessive oxidative stress, processes that involve less adenosine triphosphate (ATP) and more reactive oxygen species (ROS) production respectively. Mitochondria are at the center of both these processes as they are responsible for energy and ROS generation through mainly oxidative phosphorylation. Standardized Ginkgo biloba extract (GBE), resveratrol, and phytoestrogens as well as the neurosteroid allopregnanolone have shown not only some mitochondria-modulating properties but also significant antioxidant potential in in vitro and in vivo studies. According to our review of the literature, GBE, resveratrol, allopregnanolone, and phytoestrogens showed promising effects on mitochondria in a descending evidence order and, notably, this order pattern is in line with the existing clinical evidence level for each entity. In this review, the effects of these four entities are discussed with special focus on their mitochondria-modulating effects and their mitochondria-improving and antioxidant properties across the spectrum of cognitive decline-related disorders. Evidence from preclinical and clinical studies on their mechanisms of action are summarized and highlighted.
Collapse
Affiliation(s)
- Imane Lejri
- University of Basel, Transfaculty Research Platform Molecular and Cognitive Neuroscience, Basel, Switzerland
- Neurobiology Lab for Brain Aging and Mental Health, Psychiatric University Clinics, Basel, Switzerland
| | - Anastasia Agapouda
- University of Basel, Transfaculty Research Platform Molecular and Cognitive Neuroscience, Basel, Switzerland
- Neurobiology Lab for Brain Aging and Mental Health, Psychiatric University Clinics, Basel, Switzerland
| | - Amandine Grimm
- University of Basel, Transfaculty Research Platform Molecular and Cognitive Neuroscience, Basel, Switzerland
- Neurobiology Lab for Brain Aging and Mental Health, Psychiatric University Clinics, Basel, Switzerland
| | - Anne Eckert
- University of Basel, Transfaculty Research Platform Molecular and Cognitive Neuroscience, Basel, Switzerland
- Neurobiology Lab for Brain Aging and Mental Health, Psychiatric University Clinics, Basel, Switzerland
| |
Collapse
|
21
|
Walkowiak A, Ledziński Ł, Zapadka M, Kupcewicz B. Detection of adulterants in dietary supplements with Ginkgo biloba extract by attenuated total reflectance Fourier transform infrared spectroscopy and multivariate methods PLS-DA and PCA. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 208:222-228. [PMID: 30321862 DOI: 10.1016/j.saa.2018.10.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/27/2018] [Accepted: 10/08/2018] [Indexed: 06/08/2023]
Abstract
The infrared spectroscopy with attenuated total reflectance (ATR) sampling coupled with chemometric methods has been applied to non-destructive detection of adulterants in dietary supplements containing Ginkgo biloba extract. The sample set comprised the spectra of six drugs and sixteen dietary supplements with ginkgo leaf extract. Spectral data (900-1800 cm-1) were analyzed using multivariate partial least squares regression combined with a discriminant analysis (PLS-DA). The second derivative of spectra followed by mean centering was used as pre-processing method. Three models were constructed and validated for detection of potential adulterants: kaempferol, quercetin, and rutin. The iPLS-DA classification models achieved about 87.5%, 93,7%, and 87,5% of correct classification for adulteration with kaempferol, quercetin and rutin, respectively. The results obtained from classification models were verified by chromatographic fingerprints of unhydrolyzed sample extracts. Two-trace two-dimensional asynchronous correlation maps were constructed from pairs of spectra (each dietary supplement spectrum vs. averaged spectrum of drugs) and then analyzed by multiway PCA which revealed good discrimination between samples.
Collapse
Affiliation(s)
- Agata Walkowiak
- Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy, Nicolaus Copernicus University in Torun, Poland
| | - Łukasz Ledziński
- Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy, Nicolaus Copernicus University in Torun, Poland
| | - Mariusz Zapadka
- Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy, Nicolaus Copernicus University in Torun, Poland
| | - Bogumiła Kupcewicz
- Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy, Nicolaus Copernicus University in Torun, Poland.
| |
Collapse
|
22
|
Heinrich M. "How similar is similar enough? A sufficient similarity case study with Ginkgo biloba extract" by Catlin et al.; Food and Chemical Toxicology 118 (2018) 328-339. Food Chem Toxicol 2018; 121:252-253. [PMID: 30201388 DOI: 10.1016/j.fct.2018.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 09/06/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Michael Heinrich
- Research Group Pharmacognosy and Phytotherapy, UCL School of Pharmacy, London, UK.
| |
Collapse
|
23
|
Raclariu AC, Heinrich M, Ichim MC, de Boer H. Benefits and Limitations of DNA Barcoding and Metabarcoding in Herbal Product Authentication. PHYTOCHEMICAL ANALYSIS : PCA 2018; 29:123-128. [PMID: 28906059 PMCID: PMC5836936 DOI: 10.1002/pca.2732] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 08/23/2017] [Accepted: 08/26/2017] [Indexed: 05/21/2023]
Abstract
INTRODUCTION Herbal medicines play an important role globally in the health care sector and in industrialised countries they are often considered as an alternative to mono-substance medicines. Current quality and authentication assessment methods rely mainly on morphology and analytical phytochemistry-based methods detailed in pharmacopoeias. Herbal products however are often highly processed with numerous ingredients, and even if these analytical methods are accurate for quality control of specific lead or marker compounds, they are of limited suitability for the authentication of biological ingredients. OBJECTIVE To review the benefits and limitations of DNA barcoding and metabarcoding in complementing current herbal product authentication. METHOD Recent literature relating to DNA based authentication of medicinal plants, herbal medicines and products are summarised to provide a basic understanding of how DNA barcoding and metabarcoding can be applied to this field. RESULTS Different methods of quality control and authentication have varying resolution and usefulness along the value chain of these products. DNA barcoding can be used for authenticating products based on single herbal ingredients and DNA metabarcoding for assessment of species diversity in processed products, and both methods should be used in combination with appropriate hyphenated chemical methods for quality control. CONCLUSIONS DNA barcoding and metabarcoding have potential in the context of quality control of both well and poorly regulated supply systems. Standardisation of protocols for DNA barcoding and DNA sequence-based identification are necessary before DNA-based biological methods can be implemented as routine analytical approaches and approved by the competent authorities for use in regulated procedures. © 2017 The Authors. Phytochemical Analysis Published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- Ancuta Cristina Raclariu
- Natural History MuseumUniversity of OsloP.O. Box 1172, Blindern0318OsloNorway
- Stejarul Research Centre for Biological SciencesNational Institute of Research and Development for Biological SciencesAlexandru cel Bun Street, 6610004Piatra NeamtRomania
| | - Michael Heinrich
- Research Group of Pharmacognosy and Phytotherapy, Research Cluster ‘Biodiversity and Medicines’, UCL School of PharmacyUniversity of London29–39 Brunswick SqLondonWC1N 1AXUK
| | - Mihael Cristin Ichim
- Stejarul Research Centre for Biological SciencesNational Institute of Research and Development for Biological SciencesAlexandru cel Bun Street, 6610004Piatra NeamtRomania
| | - Hugo de Boer
- Natural History MuseumUniversity of OsloP.O. Box 1172, Blindern0318OsloNorway
| |
Collapse
|
24
|
Booker A, Agapouda A, Frommenwiler DA, Scotti F, Reich E, Heinrich M. St John's wort (Hypericum perforatum) products - an assessment of their authenticity and quality. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 40:158-164. [PMID: 29496168 DOI: 10.1016/j.phymed.2017.12.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 10/12/2017] [Accepted: 12/13/2017] [Indexed: 06/08/2023]
Abstract
BACKGROUND St John's wort products (Hypericum perforatum L.) are widely available for sale in many countries including the UK via the internet. In the UK, these products are required to hold either a marketing authorisation or Traditional herbal registration (THR) to be sold legally. The THR and other regulatory schemes help to ensure product safety and quality providing an example of best practice but there is a risk if both regulated and un-regulated products continue to be available to consumers. AIMS The project is embedded in a larger study aiming to investigate the quality of different herbal medicinal products along diverse value chains. Here we focus on a comparison of the quality of the finished products and assess phytochemical variation between registered products (THRs) and products obtained from the market without any registration. METHODS 47 commercial products (granulated powders and extracts) were sourced from different suppliers. We analysed these samples using high performance thin layer chromatography (HPTLC) and 1H NMR spectroscopy coupled with multi-variate analysis software following a method previously developed by our group. RESULTS The consistency of the products varies significantly. Adulteration of the products (36%), possibly with other Hypericum species obtained from China or use of chemically distinct H. perforatum cultivars or chemotypes, and adulteration of the products (19%) with food dyes (tartrazine, amaranth, brilliant blue, sunset yellow) were the principle findings of this study. CONCLUSIONS There is significant compositional variation among commercial finished products and two main causative quality problems were identified as adulteration by incorrect species or adulteration with food dyes. Generally, food supplements and unlicensed products were found to be of poorer quality than the regulated ones including THRs.
Collapse
Affiliation(s)
- Anthony Booker
- Research Cluster Biodiversity and Medicines/Research Group Pharmacognosy and Phytotherapy, UCL School of Pharmacy, University of London, WC1N 1AX, UK; Division of Herbal and East Asian Medicine, Department of Life Sciences, University of Westminster, London W1W 6UW, UK
| | - Anastasia Agapouda
- Research Cluster Biodiversity and Medicines/Research Group Pharmacognosy and Phytotherapy, UCL School of Pharmacy, University of London, WC1N 1AX, UK
| | | | - Francesca Scotti
- Research Cluster Biodiversity and Medicines/Research Group Pharmacognosy and Phytotherapy, UCL School of Pharmacy, University of London, WC1N 1AX, UK
| | - Eike Reich
- CAMAG, Sonnenmattstrasse 11, 4132 Muttenz, Switzerland
| | - Michael Heinrich
- Research Cluster Biodiversity and Medicines/Research Group Pharmacognosy and Phytotherapy, UCL School of Pharmacy, University of London, WC1N 1AX, UK.
| |
Collapse
|