1
|
Lockwood TD. Coordination chemistry suggests that independently observed benefits of metformin and Zn 2+ against COVID-19 are not independent. Biometals 2024; 37:983-1022. [PMID: 38578560 PMCID: PMC11255062 DOI: 10.1007/s10534-024-00590-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/12/2024] [Indexed: 04/06/2024]
Abstract
Independent trials indicate that either oral Zn2+ or metformin can separately improve COVID-19 outcomes by approximately 40%. Coordination chemistry predicts a mechanistic relationship and therapeutic synergy. Zn2+ deficit is a known risk factor for both COVID-19 and non-infectious inflammation. Most dietary Zn2+ is not absorbed. Metformin is a naked ligand that presumably increases intestinal Zn2+ bioavailability and active absorption by cation transporters known to transport metformin. Intracellular Zn2+ provides a natural buffer of many protease reactions; the variable "set point" is determined by Zn2+ regulation or availability. A Zn2+-interactive protease network is suggested here. The two viral cysteine proteases are therapeutic targets against COVID-19. Viral and many host proteases are submaximally inhibited by exchangeable cell Zn2+. Inhibition of cysteine proteases can improve COVID-19 outcomes and non-infectious inflammation. Metformin reportedly enhances the natural moderating effect of Zn2+ on bioassayed proteome degradation. Firstly, the dissociable metformin-Zn2+ complex could be actively transported by intestinal cation transporters; thereby creating artificial pathways of absorption and increased body Zn2+ content. Secondly, metformin Zn2+ coordination can create a non-natural protease inhibitor independent of cell Zn2+ content. Moderation of peptidolytic reactions by either or both mechanisms could slow (a) viral multiplication (b) viral invasion and (c) the pathogenic host inflammatory response. These combined actions could allow development of acquired immunity to clear the infection before life-threatening inflammation. Nirmatrelvir (Paxlovid®) opposes COVID-19 by selective inhibition the viral main protease by a Zn2+-independent mechanism. Pending safety evaluation, predictable synergistic benefits of metformin and Zn2+, and perhaps metformin/Zn2+/Paxlovid® co-administration should be investigated.
Collapse
Affiliation(s)
- Thomas D Lockwood
- Department Pharmacology and Toxicology, School of Medicine, Wright State University, Dayton, OH, 45435, USA.
| |
Collapse
|
2
|
Yang F, Smith MJ, Siow RC, Aarsland D, Maret W, Mann GE. Interactions between zinc and NRF2 in vascular redox signalling. Biochem Soc Trans 2024; 52:269-278. [PMID: 38372426 PMCID: PMC10903478 DOI: 10.1042/bst20230490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/20/2024]
Abstract
Recent evidence highlights the importance of trace metal micronutrients such as zinc (Zn) in coronary and vascular diseases. Zn2+ plays a signalling role in modulating endothelial nitric oxide synthase and protects the endothelium against oxidative stress by up-regulation of glutathione synthesis. Excessive accumulation of Zn2+ in endothelial cells leads to apoptotic cell death resulting from dysregulation of glutathione and mitochondrial ATP synthesis, whereas zinc deficiency induces an inflammatory phenotype, associated with increased monocyte adhesion. Nuclear factor-E2-related factor 2 (NRF2) is a transcription factor known to target hundreds of different genes. Activation of NRF2 affects redox metabolism, autophagy, cell proliferation, remodelling of the extracellular matrix and wound healing. As a redox-inert metal ion, Zn has emerged as a biomarker in diagnosis and as a therapeutic approach for oxidative-related diseases due to its close link to NRF2 signalling. In non-vascular cell types, Zn has been shown to modify conformations of the NRF2 negative regulators Kelch-like ECH-associated Protein 1 (KEAP1) and glycogen synthase kinase 3β (GSK3β) and to promote degradation of BACH1, a transcriptional suppressor of select NRF2 genes. Zn can affect phosphorylation signalling, including mitogen-activated protein kinases (MAPK), phosphoinositide 3-kinases and protein kinase C, which facilitate NRF2 phosphorylation and nuclear translocation. Notably, several NRF2-targeted proteins have been suggested to modify cellular Zn concentration via Zn exporters (ZnTs) and importers (ZIPs) and the Zn buffering protein metallothionein. This review summarises the cross-talk between reactive oxygen species, Zn and NRF2 in antioxidant responses of vascular cells against oxidative stress and hypoxia/reoxygenation.
Collapse
Affiliation(s)
- Fan Yang
- School of Cardiovascular and Metabolic Medicine and Sciences, King's British Heart Foundation Centre of Research Excellence, Faculty of Life Sciences and Medicine, King's College London, 150 Stamford Street, London SE1 9NH, U.K
| | - Matthew J. Smith
- School of Cardiovascular and Metabolic Medicine and Sciences, King's British Heart Foundation Centre of Research Excellence, Faculty of Life Sciences and Medicine, King's College London, 150 Stamford Street, London SE1 9NH, U.K
| | - Richard C.M. Siow
- School of Cardiovascular and Metabolic Medicine and Sciences, King's British Heart Foundation Centre of Research Excellence, Faculty of Life Sciences and Medicine, King's College London, 150 Stamford Street, London SE1 9NH, U.K
| | - Dag Aarsland
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, U.K
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
| | - Wolfgang Maret
- Departments of Biochemistry and Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College, London, U.K
| | - Giovanni E. Mann
- School of Cardiovascular and Metabolic Medicine and Sciences, King's British Heart Foundation Centre of Research Excellence, Faculty of Life Sciences and Medicine, King's College London, 150 Stamford Street, London SE1 9NH, U.K
| |
Collapse
|
3
|
Mazaheri-Tehrani S, Haghighatpanah MA, Abhari AP, Fakhrolmobasheri M, Shekarian A, Kieliszek M. Dynamic changes of serum trace elements following cardiac surgery: A systematic review and meta-analysis. J Trace Elem Med Biol 2024; 81:127331. [PMID: 37897922 DOI: 10.1016/j.jtemb.2023.127331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/11/2023] [Accepted: 10/21/2023] [Indexed: 10/30/2023]
Abstract
BACKGROUND Cardiac surgeries are known to induce an inflammatory response. Besides, dietary factors such as trace elements contribute to promoting cardiovascular health by maintaining oxidative balance. Here we systematically review the literature about alterations in serum concentrations of zinc (Zn), copper (Cu), and selenium (Se) in response to cardiac surgeries. METHODS A systematic search was performed on databases until the end of December 2022. Studies assessing the changes of mentioned elements in adult patients undergoing cardiac surgery were included. Changes in the means and standard deviations of the elements before and after the cardiac surgery were utilized as desired effect sizes. RESULTS Among 1252 records found in the primary search, 23 and 21 articles were included in the systematic review and meta-analysis respectively. Seventeen studies evaluated the changes in serum Zn and Cu levels, and fifteen studies assessed Se levels. According to the results of quantitative analysis, Zn, Cu, and Se concentrations, one day after the surgery were significantly lower than preoperative values (WMD for Zn: 4.64 µmol/L [3.57-5.72], WMD for Cu: 1.62 µmol/L [0.52-2.72], and WMD for Se: 0.1 µmol/L [0.03-0.16]). The concentration of trace elements recovered gradually during the first-week post-operation and reached preoperative levels or even higher. CONCLUSION Serum trace elements dropped significantly soon after the cardiac surgery, but they reached their baseline levels mostly during the first week after the surgery. Future studies are warranted to elucidate the impact of alterations in serum concentration of trace elements on the outcomes and complications of open-heart surgeries.
Collapse
Affiliation(s)
- Sadegh Mazaheri-Tehrani
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran; Student Research Committee, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mohammad Ali Haghighatpanah
- Department of Cardiovascular Surgery, Chamran Heart Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Amir Parsa Abhari
- Heart Failure Research Center, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Fakhrolmobasheri
- Heart Failure Research Center, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Arman Shekarian
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences -SGGW, Nowoursynowska 159C, 02-776 Warsaw, Poland.
| |
Collapse
|
4
|
Smith MJ, Yang F, Griffiths A, Morrell A, Chapple SJ, Siow RCM, Stewart T, Maret W, Mann GE. Redox and metal profiles in human coronary endothelial and smooth muscle cells under hyperoxia, physiological normoxia and hypoxia: Effects of NRF2 signaling on intracellular zinc. Redox Biol 2023; 62:102712. [PMID: 37116256 PMCID: PMC10165141 DOI: 10.1016/j.redox.2023.102712] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 04/30/2023] Open
Abstract
Zinc is an important component of cellular antioxidant defenses and dysregulation of zinc homeostasis is a risk factor for coronary heart disease and ischemia/reperfusion injury. Intracellular homeostasis of metals, such as zinc, iron and calcium are interrelated with cellular responses to oxidative stress. Most cells experience significantly lower oxygen levels in vivo (2-10 kPa O2) compared to standard in vitro cell culture (18kPa O2). We report the first evidence that total intracellular zinc content decreases significantly in human coronary artery endothelial cells (HCAEC), but not in human coronary artery smooth muscle cells (HCASMC), after lowering of O2 levels from hyperoxia (18 kPa O2) to physiological normoxia (5 kPa O2) and hypoxia (1 kPa O2). This was paralleled by O2-dependent differences in redox phenotype based on measurements of glutathione, ATP and NRF2-targeted protein expression in HCAEC and HCASMC. NRF2-induced NQO1 expression was attenuated in both HCAEC and HCASMC under 5 kPa O2 compared to 18 kPa O2. Expression of the zinc efflux transporter ZnT1 increased in HCAEC under 5 kPa O2, whilst expression of the zinc-binding protein metallothionine (MT) decreased as O2 levels were lowered from 18 to 1 kPa O2. Negligible changes in ZnT1 and MT expression were observed in HCASMC. Silencing NRF2 transcription reduced total intracellular zinc under 18 kPa O2 in HCAEC with negligible changes in HCASMC, whilst NRF2 activation or overexpression increased zinc content in HCAEC, but not HCASMC, under 5 kPa O2. This study has identified cell type specific changes in the redox phenotype and metal profile in human coronary artery cells under physiological O2 levels. Our findings provide novel insights into the effect of NRF2 signaling on Zn content and may inform targeted therapies for cardiovascular diseases.
Collapse
Affiliation(s)
- Matthew J Smith
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London, SE1 9NH, UK
| | - Fan Yang
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London, SE1 9NH, UK
| | - Alexander Griffiths
- London Metallomics Facility, Faculty of Life Sciences & Medicine, King's College London, UK
| | - Alexander Morrell
- London Metallomics Facility, Faculty of Life Sciences & Medicine, King's College London, UK
| | - Sarah J Chapple
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London, SE1 9NH, UK
| | - Richard C M Siow
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London, SE1 9NH, UK
| | - Theodora Stewart
- Research Management & Innovation Directorate (RMID), King's College London, UK
| | - Wolfgang Maret
- Departments of Biochemistry and Nutritional Sciences, School of Life Course & Population Sciences, Faculty of Life Sciences & Medicine, King's College London, UK
| | - Giovanni E Mann
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London, SE1 9NH, UK.
| |
Collapse
|
5
|
Clinical Significance of Trace Element Zinc in Patients with Chronic Kidney Disease. J Clin Med 2023; 12:jcm12041667. [PMID: 36836202 PMCID: PMC9964431 DOI: 10.3390/jcm12041667] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/02/2023] [Accepted: 02/18/2023] [Indexed: 02/22/2023] Open
Abstract
The trace element zinc is essential for diverse physiological processes in humans. Zinc deficiency can impair growth, skin reproduction, immune function, maintenance of taste, glucose metabolism, and neurological function. Patients with chronic kidney disease (CKD) are susceptible to zinc deficiency, which is associated with erythropoiesis-stimulating agent (ESA) hypo-responsive anemia, nutritional problems, and cardiovascular diseases as well as non-specific symptoms such as dermatitis, prolonged wound healing, taste disturbance, appetite loss, or cognitive decline. Thus, zinc supplementation may be useful for the treatment of its deficiency, although it often causes copper deficiency, which is characterized by several severe disorders including cytopenia and myelopathy. In this review article, we mainly discuss the significant roles of zinc and the association between zinc deficiency and the pathogenesis of complications in patients with CKD.
Collapse
|
6
|
Liu Q, Li S, Qiu Y, Zhang J, Rios FJ, Zou Z, Touyz RM. Cardiovascular toxicity of tyrosine kinase inhibitors during cancer treatment: Potential involvement of TRPM7. Front Cardiovasc Med 2023; 10:1002438. [PMID: 36818331 PMCID: PMC9936099 DOI: 10.3389/fcvm.2023.1002438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
Receptor tyrosine kinases (RTKs) are a class of membrane spanning cell-surface receptors that transmit extracellular signals through the membrane to trigger diverse intracellular signaling through tyrosine kinases (TKs), and play important role in cancer development. Therapeutic approaches targeting RTKs such as vascular endothelial growth factor receptor (VEGFR), epidermal growth factor receptor (EGFR), and platelet-derived growth factor receptor (PDGFR), and TKs, such as c-Src, ABL, JAK, are widely used to treat human cancers. Despite favorable benefits in cancer treatment that prolong survival, these tyrosine kinase inhibitors (TKIs) and monoclonal antibodies targeting RTKs are also accompanied by adverse effects, including cardiovascular toxicity. Mechanisms underlying TKI-induced cardiovascular toxicity remain unclear. The transient receptor potential melastatin-subfamily member 7 (TRPM7) is a ubiquitously expressed chanzyme consisting of a membrane-based ion channel and intracellular α-kinase. TRPM7 is a cation channel that regulates transmembrane Mg2+ and Ca2+ and is involved in a variety of (patho)physiological processes in the cardiovascular system, contributing to hypertension, cardiac fibrosis, inflammation, and atrial arrhythmias. Of importance, we and others demonstrated significant cross-talk between TRPM7, RTKs, and TK signaling in different cell types including vascular smooth muscle cells (VSMCs), which might be a link between TKIs and their cardiovascular effects. In this review, we summarize the implications of RTK inhibitors (RTKIs) and TKIs in cardiovascular toxicities during anti-cancer treatment, with a focus on the potential role of TRPM7/Mg2+ as a mediator of RTKI/TKI-induced cardiovascular toxicity. We also describe the important role of TRPM7 in cancer development and cardiovascular diseases, and the interaction between TRPM7 and RTKs, providing insights for possible mechanisms underlying cardiovascular disease in cancer patients treated with RTKI/TKIs.
Collapse
Affiliation(s)
- Qing Liu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Suyao Li
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuran Qiu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiayu Zhang
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Francisco J. Rios
- Research Institute of McGill University Health Centre, McGill University, Montreal, QC, Canada
| | - Zhiguo Zou
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,Zhiguo Zou ✉
| | - Rhian M. Touyz
- Research Institute of McGill University Health Centre, McGill University, Montreal, QC, Canada,*Correspondence: Rhian M. Touyz ✉
| |
Collapse
|
7
|
Single and Combined Associations of Plasma and Urine Essential Trace Elements (Zn, Cu, Se, and Mn) with Cardiovascular Risk Factors in a Mediterranean Population. Antioxidants (Basel) 2022; 11:antiox11101991. [PMID: 36290714 PMCID: PMC9598127 DOI: 10.3390/antiox11101991] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/01/2022] [Accepted: 10/04/2022] [Indexed: 11/17/2022] Open
Abstract
Trace elements are micronutrients that are required in very small quantities through diet but are crucial for the prevention of acute and chronic diseases. Despite the fact that initial studies demonstrated inverse associations between some of the most important essential trace elements (Zn, Cu, Se, and Mn) and cardiovascular disease, several recent studies have reported a direct association with cardiovascular risk factors due to the fact that these elements can act as both antioxidants and pro-oxidants, depending on several factors. This study aims to investigate the association between plasma and urine concentrations of trace elements and cardiovascular risk factors in a general population from the Mediterranean region, including 484 men and women aged 18−80 years and considering trace elements individually and as joint exposure. Zn, Cu, Se, and Mn were determined in plasma and urine using an inductively coupled plasma mass spectrometer (ICP-MS). Single and combined analysis of trace elements with plasma lipid, blood pressure, diabetes, and anthropometric variables was undertaken. Principal component analysis, quantile-based g-computation, and calculation of trace element risk scores (TERS) were used for the combined analyses. Models were adjusted for covariates. In single trace element models, we found statistically significant associations between plasma Se and increased total cholesterol and systolic blood pressure; plasma Cu and increased triglycerides and body mass index; and urine Zn and increased glucose. Moreover, in the joint exposure analysis using quantile g-computation and TERS, the combined plasma levels of Zn, Cu, Se (directly), and Mn (inversely) were strongly associated with hypercholesterolemia (OR: 2.03; 95%CI: 1.37−2.99; p < 0.001 per quartile increase in the g-computation approach). The analysis of urine mixtures revealed a significant relationship with both fasting glucose and diabetes (OR: 1.91; 95%CI: 1.01−3.04; p = 0.046). In conclusion, in this Mediterranean population, the combined effect of higher plasma trace element levels (primarily Se, Cu, and Zn) was directly associated with elevated plasma lipids, whereas the mixture effect in urine was primarily associated with plasma glucose. Both parameters are relevant cardiovascular risk factors, and increased trace element exposures should be considered with caution.
Collapse
|
8
|
Kodama A, Komori K, Koyama A, Sato T, Ikeda S, Tsuruoka T, Kawai Y, Niimi K, Sugimoto M, Banno H, Nishida K. Impact of Serum Zinc Level and Oral Zinc Supplementation on Clinical Outcomes in Patients Undergoing Infrainguinal Bypass for Chronic Limb-Threatening Ischemia. Circ J 2022; 86:995-1006. [PMID: 35342125 DOI: 10.1253/circj.cj-21-0832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Zinc (Zn) has been reported to play an important role in wound healing (WH). Nevertheless, the effect of Zn in chronic limb-threatening ischemia (CLTI) patients is unclear. This study investigated the effect of Zn on the clinical outcomes of CLTI patients undergoing bypass surgery. METHODS AND RESULTS This study reviewed 111 consecutive patients who underwent an infrainguinal bypass from 2012 to 2020. Patients with Zn deficiency (serum Zn level <60 μg/dL) received oral Zn supplementation and maintained a normal level until WH. This study aimed to explore: (1) the effect of Zn deficiency; and (2) Zn supplementation in Zn-deficient patients on the clinical outcomes of this cohort. Patients with Zn deficiency, Zn supplementation, and no Zn supplementation despite Zn deficiency accounted for 48, 21, and 42 patients, respectively. (1) Zn deficiency was associated with WH (HR, 0.47; 95% CI, 0.29-0.78: P=0.003), major adverse limb events (MALE) (HR, 2.53; 95% CI, 1.26-5.09: P=0.009), and major amputation or death (HR, 3.17; 95% CI, 1.51-6.63: P=0.002). (2) Zn supplementation was positively related to WH (HR, 2.30; 95% CI, 1.21-4.34: P=0.011). This result was confirmed using propensity score matching (HR, 2.24; 95% CI, 1.02-4.87: P=0.043). CONCLUSIONS The current study revealed that Zn level was associated with clinical outcomes in CLTI patients after bypass surgery. Oral Zn supplementation could improve WH in these patients.
Collapse
Affiliation(s)
- Akio Kodama
- Division of Vascular and Endovascular Surgery, Department of Surgery, Nagoya University School of Medicine
| | - Kimihiro Komori
- Division of Vascular and Endovascular Surgery, Department of Surgery, Nagoya University School of Medicine
| | - Akio Koyama
- Department of Vascular Surgery, Ichinomiya Municipal Hospital
| | - Tomohiro Sato
- Division of Vascular and Endovascular Surgery, Department of Surgery, Nagoya University School of Medicine
| | - Shuta Ikeda
- Division of Vascular and Endovascular Surgery, Department of Surgery, Nagoya University School of Medicine
| | - Takuya Tsuruoka
- Division of Vascular and Endovascular Surgery, Department of Surgery, Nagoya University School of Medicine
| | - Yohei Kawai
- Division of Vascular and Endovascular Surgery, Department of Surgery, Nagoya University School of Medicine
| | - Kiyoaki Niimi
- Division of Vascular and Endovascular Surgery, Department of Surgery, Nagoya University School of Medicine
| | - Masayuki Sugimoto
- Division of Vascular and Endovascular Surgery, Department of Surgery, Nagoya University School of Medicine
| | - Hiroshi Banno
- Division of Vascular and Endovascular Surgery, Department of Surgery, Nagoya University School of Medicine
| | - Kazuki Nishida
- Biostatistics and Bioinformatics Section, Center for Advanced Medicine and Clinical Research, Nagoya University Hospital
| |
Collapse
|
9
|
Narayanam H, Chinni SV, Samuggam S. The Impact of Micronutrients-Calcium, Vitamin D, Selenium, Zinc in Cardiovascular Health: A Mini Review. Front Physiol 2021; 12:742425. [PMID: 34566703 PMCID: PMC8458831 DOI: 10.3389/fphys.2021.742425] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/23/2021] [Indexed: 01/14/2023] Open
Abstract
The role of micronutrients in health and disease has increased the curiosity and interest among researchers. The prime focus of this review is the significance of trace elements- calcium, vitamin D, selenium and zinc with cardiovascular health. WHO identified cardiovascular diseases (CVD) as the leading cause of deaths globally. Identifying the risk factors that could be modified and creating new treatment strategies remains to be the main concern for CVD prevention. The data that showed the relationship between trace elements and various ways in which they may contribute to cardiovascular health and disease from clinical trials and observational studies were collected from databases such as PubMed and Embase. Based on these collected data, it shows that either high or low circulating serum levels can be associated with the development of cardiovascular diseases. Micronutrients through diet contribute to improved cardiac health. However, due to our current lifestyle, there is a huge dependency on dietary supplements. Based on the observational studies, it is evident that supplements cause sudden increase in the circulating levels of the nutrients and result in cardiovascular damage. Thus, it is advisable to restrict the use of supplements, owing to the potent risks it may cause. In order to understand the exact mechanism between micronutrients and cardiac health, more clinical studies are required.
Collapse
Affiliation(s)
- Harini Narayanam
- Department of Physiology, Manipal University College Malaysia (MUCM), Melaka, Malaysia
| | - Suresh V Chinni
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Bedong, Malaysia
| | - Sumitha Samuggam
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Bedong, Malaysia
| |
Collapse
|
10
|
Story MJ. Essential sufficiency of zinc, ω-3 polyunsaturated fatty acids, vitamin D and magnesium for prevention and treatment of COVID-19, diabetes, cardiovascular diseases, lung diseases and cancer. Biochimie 2021; 187:94-109. [PMID: 34082041 PMCID: PMC8166046 DOI: 10.1016/j.biochi.2021.05.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/19/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023]
Abstract
Despite the development of a number of vaccines for COVID-19, there remains a need for prevention and treatment of the virus SARS-CoV-2 and the ensuing disease COVID-19. This report discusses the key elements of SARS-CoV-2 and COVID-19 that can be readily treated: viral entry, the immune system and inflammation, and the cytokine storm. It is shown that the essential nutrients zinc, ω-3 polyunsaturated fatty acids (PUFAs), vitamin D and magnesium provide the ideal combination for prevention and treatment of COVID-19: prevention of SARS-CoV-2 entry to host cells, prevention of proliferation of SARS-CoV-2, inhibition of excessive inflammation, improved control of the regulation of the immune system, inhibition of the cytokine storm, and reduction in the effects of acute respiratory distress syndrome (ARDS) and associated non-communicable diseases. It is emphasized that the non-communicable diseases associated with COVID-19 are inherently more prevalent in the elderly than the young, and that the maintenance of sufficiency of zinc, ω-3 PUFAs, vitamin D and magnesium is essential for the elderly to prevent the occurrence of non-communicable diseases such as diabetes, cardiovascular diseases, lung diseases and cancer. Annual checking of levels of these essential nutrients is recommended for those over 65 years of age, together with appropriate adjustments in their intake, with these services and supplies being at government cost. The cost:benefit ratio would be huge as the cost of the nutrients and the testing of their levels would be very small compared with the cost savings of specialists and hospitalization.
Collapse
Affiliation(s)
- Michael J Story
- Story Pharmaceutics Pty Ltd, PO Box 6086, Linden Park, South Australia, 5065, Australia.
| |
Collapse
|
11
|
Blinov AV, Siddiqui SA, Nagdalian AA, Blinova AA, Gvozdenko AA, Raffa VV, Oboturova NP, Golik AB, Maglakelidze DG, Ibrahim SA. Investigation of the influence of Zinc-containing compounds on the components of the colloidal phase of milk. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103229] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
12
|
Gać P, Czerwińska K, Macek P, Jaremków A, Mazur G, Pawlas K, Poręba R. The importance of selenium and zinc deficiency in cardiovascular disorders. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 82:103553. [PMID: 33238203 DOI: 10.1016/j.etap.2020.103553] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 11/13/2020] [Accepted: 11/18/2020] [Indexed: 06/11/2023]
Abstract
Cardiovascular diseases often linked with lifestyle are among the main causes of death, especially in the elderly population. The role of trace elements in health and disease has been emphasized in multiple scientific research. Moreover, supplementation of trace elements to improve health is becoming increasingly popular. The following paper presents current views on the relationship between the concentration of trace elements such as selenium and zinc in the body, as well as morphology and function of the cardiovascular system. Research discussing the effect of selenium and zinc supplementation on the function of the heart and blood vessels was also reviewed. The relationship between selenium and zinc concentration and morphology and function of the cardiovascular system is equally unclear, and therefore there is currently no scientific evidence for its supplementation for preventing cardiovascular diseases. It seems justified to continue scientific research on this subject due to the small number of experimental studies available on the topic of selenium and zinc deficiency and their impact on the cardiovascular system.
Collapse
Affiliation(s)
- Paweł Gać
- Department of Hygiene, Wroclaw Medical University, Mikulicza-Radeckiego 7, PL 50-368, Wrocław, Poland.
| | - Karolina Czerwińska
- Department of Hygiene, Wroclaw Medical University, Mikulicza-Radeckiego 7, PL 50-368, Wrocław, Poland
| | - Piotr Macek
- Department of Internal Medicine, Occupational Diseases and Hypertension, Wroclaw Medical University, Borowska 213, PL 50-556, Wroclaw, Poland
| | - Aleksandra Jaremków
- Department of Hygiene, Wroclaw Medical University, Mikulicza-Radeckiego 7, PL 50-368, Wrocław, Poland
| | - Grzegorz Mazur
- Department of Internal Medicine, Occupational Diseases and Hypertension, Wroclaw Medical University, Borowska 213, PL 50-556, Wroclaw, Poland
| | - Krystyna Pawlas
- Department of Hygiene, Wroclaw Medical University, Mikulicza-Radeckiego 7, PL 50-368, Wrocław, Poland
| | - Rafał Poręba
- Department of Internal Medicine, Occupational Diseases and Hypertension, Wroclaw Medical University, Borowska 213, PL 50-556, Wroclaw, Poland
| |
Collapse
|
13
|
Cardozo LFMF, Mafra D. Don't forget the zinc. Nephrol Dial Transplant 2020; 35:1094-1098. [PMID: 32417896 DOI: 10.1093/ndt/gfaa045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/30/2020] [Indexed: 01/09/2023] Open
Affiliation(s)
- Ludmila F M F Cardozo
- Post Graduation Program in Cardiovascular Sciences, Federal Fluminense University (UFF), Niterói-Rio de Janeiro (RJ), Brazil
| | - Denise Mafra
- Post Graduation Program in Cardiovascular Sciences, Federal Fluminense University (UFF), Niterói-Rio de Janeiro (RJ), Brazil.,Post Graduation Program in Medical Sciences, Federal Fluminense University (UFF), Niterói-Rio de Janeiro, Brazil
| |
Collapse
|
14
|
Sullivan K, Moore RET, Rehkämper M, Layton-Matthews D, Leybourne MI, Puxty J, Kyser TK. Postprandial zinc stable isotope response in human blood serum. Metallomics 2020; 12:1380-1388. [DOI: 10.1039/d0mt00122h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The post-meal redistribution of serum Zn to aid with nutrient metabolism is a non-fractionating process.
Collapse
Affiliation(s)
- Kaj Sullivan
- Department of Geological Sciences and Geological Engineering
- Queen's University
- Kingston
- Canada
- Department of Earth Science & Engineering
| | | | - Mark Rehkämper
- Department of Earth Science & Engineering
- Imperial College London
- London
- UK
| | - Daniel Layton-Matthews
- Department of Geological Sciences and Geological Engineering
- Queen's University
- Kingston
- Canada
| | - Matthew I. Leybourne
- Department of Geological Sciences and Geological Engineering
- Queen's University
- Kingston
- Canada
- McDonald Institute
| | - John Puxty
- Centre for Studies in Aging and Health
- Providence Care Hospital
- Kingston
- Canada
- Department of Medicine
| | - T. Kurt Kyser
- Department of Geological Sciences and Geological Engineering
- Queen's University
- Kingston
- Canada
| |
Collapse
|