1
|
Luo S, Zhou X, Wu M, Wang G, Wang L, Feng X, Wu H, Luo R, Lu M, Ju J, Wang W, Yuan L, Luo X, Peng D, Yang L, Zhang Q, Chen M, Liang S, Dong X, Hao G, Zhang Y, Liu Z. Optimizing Nav1.7-Targeted Analgesics: Revealing Off-Target Effects of Spider Venom-Derived Peptide Toxins and Engineering Strategies for Improvement. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2406656. [PMID: 39248322 DOI: 10.1002/advs.202406656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/22/2024] [Indexed: 09/10/2024]
Abstract
The inhibition of Nav1.7 is a promising strategy for the development of analgesic treatments. Spider venom-derived peptide toxins are recognized as significant sources of Nav1.7 inhibitors. However, their development has been impeded by limited selectivity. In this study, eight peptide toxins from three distinct spider venom Nav channel families demonstrated robust inhibition of hNav1.7, rKv4.2, and rKv4.3 (rKv4.2/4.3) currents, exhibiting a similar mode of action. The analysis of structure and function relationship revealed a significant overlap in the pharmacophore responsible for inhibiting hNav1.7 and rKv4.2 by HNTX-III, although Lys25 seems to play a more pivotal role in the inhibition of rKv4.2/4.3. Pharmacophore-guided rational design is employed for the development of an mGpTx1 analogue, mGpTx1-SA, which retains its inhibition of hNav1.7 while significantly reducing its inhibition of rKv4.2/4.3 and eliminating cardiotoxicity. Moreover, mGpTx1-SA demonstrates potent analgesic effects in both inflammatory and neuropathic pain models, accompanied by an improved in vivo safety profile. The results suggest that off-target inhibition of rKv4.2/4.3 by specific spider peptide toxins targeting hNav1.7 may arise from a conserved binding motif. This insight promises to facilitate the design of hNav1.7-specific analgesics, aimed at minimizing rKv4.2/4.3 inhibition and associated toxicity, thereby enhancing their suitability for therapeutic applications.
Collapse
Affiliation(s)
- Sen Luo
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Peptide and small molecule drug R&D platform, Furong Laboratory, Hunan Normal University, Changsha, Hunan, 410081, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
| | - Xi Zhou
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Peptide and small molecule drug R&D platform, Furong Laboratory, Hunan Normal University, Changsha, Hunan, 410081, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
| | - Meijing Wu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Peptide and small molecule drug R&D platform, Furong Laboratory, Hunan Normal University, Changsha, Hunan, 410081, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
| | - Gongxin Wang
- Henan Academy of Innovations in Medical science, Institute of Electrophysiology, Zhengzhou, Henan, 450000, China
| | - Li Wang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Peptide and small molecule drug R&D platform, Furong Laboratory, Hunan Normal University, Changsha, Hunan, 410081, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
| | - Xujun Feng
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Peptide and small molecule drug R&D platform, Furong Laboratory, Hunan Normal University, Changsha, Hunan, 410081, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
| | - Hang Wu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Peptide and small molecule drug R&D platform, Furong Laboratory, Hunan Normal University, Changsha, Hunan, 410081, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
| | - Ren Luo
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Peptide and small molecule drug R&D platform, Furong Laboratory, Hunan Normal University, Changsha, Hunan, 410081, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
| | - Minjuan Lu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Peptide and small molecule drug R&D platform, Furong Laboratory, Hunan Normal University, Changsha, Hunan, 410081, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
| | - Junxian Ju
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Peptide and small molecule drug R&D platform, Furong Laboratory, Hunan Normal University, Changsha, Hunan, 410081, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
| | - Wenxing Wang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Peptide and small molecule drug R&D platform, Furong Laboratory, Hunan Normal University, Changsha, Hunan, 410081, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
| | - Lei Yuan
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Peptide and small molecule drug R&D platform, Furong Laboratory, Hunan Normal University, Changsha, Hunan, 410081, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
| | - Xiaoqing Luo
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Peptide and small molecule drug R&D platform, Furong Laboratory, Hunan Normal University, Changsha, Hunan, 410081, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
| | - Dezheng Peng
- Key Laboratory of Hunan Province for Advanced Carbon-based Functional Materials, School of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan, 414006, China
| | - Li Yang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Peptide and small molecule drug R&D platform, Furong Laboratory, Hunan Normal University, Changsha, Hunan, 410081, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
| | - Qingfeng Zhang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Peptide and small molecule drug R&D platform, Furong Laboratory, Hunan Normal University, Changsha, Hunan, 410081, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
| | - Minzhi Chen
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Peptide and small molecule drug R&D platform, Furong Laboratory, Hunan Normal University, Changsha, Hunan, 410081, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
| | - Songping Liang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Peptide and small molecule drug R&D platform, Furong Laboratory, Hunan Normal University, Changsha, Hunan, 410081, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
| | - Xiuming Dong
- Department of Research, Scope Research Institute of Electrophysiology, Kaifeng, 475004, China
| | - Guoliang Hao
- Henan Academy of Innovations in Medical science, Institute of Electrophysiology, Zhengzhou, Henan, 450000, China
- Department of Research, Scope Research Institute of Electrophysiology, Kaifeng, 475004, China
| | - Yunxiao Zhang
- Key Laboratory of Hunan Province for Advanced Carbon-based Functional Materials, School of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan, 414006, China
| | - Zhonghua Liu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Peptide and small molecule drug R&D platform, Furong Laboratory, Hunan Normal University, Changsha, Hunan, 410081, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
| |
Collapse
|
2
|
Verkerk L, Verkerk AO, Wilders R. Zebrafish as a Model System for Brugada Syndrome. Rev Cardiovasc Med 2024; 25:313. [PMID: 39355588 PMCID: PMC11440409 DOI: 10.31083/j.rcm2509313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/22/2024] [Accepted: 04/28/2024] [Indexed: 10/03/2024] Open
Abstract
Brugada syndrome (BrS) is an inheritable cardiac arrhythmogenic disease, associated with an increased risk of sudden cardiac death. It is most common in males around the age of 40 and the prevalence is higher in Asia than in Europe and the United States. The pathophysiology underlying BrS is not completely understood, but several hypotheses have been proposed. So far, the best effective treatment is the implantation of an implantable cardioverter-defibrillator (ICD), but device-related complications are not uncommon. Therefore, there is an urgent need to improve diagnosis and risk stratification and to find new treatment options. To this end, research should further elucidate the genetic basis and pathophysiological mechanisms of BrS. Several experimental models are being used to gain insight into these aspects. The zebrafish (Danio rerio) is a widely used animal model for the study of cardiac arrhythmias, as its cardiac electrophysiology shows interesting similarities to humans. However, zebrafish have only been used in a limited number of studies on BrS, and the potential role of zebrafish in studying the mechanisms of BrS has not been reviewed. Therefore, the present review aims to evaluate zebrafish as an animal model for BrS. We conclude that zebrafish can be considered as a valuable experimental model for BrS research, not only for gene editing technologies, but also for screening potential BrS drugs.
Collapse
Affiliation(s)
- Leonie Verkerk
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Arie O Verkerk
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Department of Experimental Cardiology, Heart Center, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Ronald Wilders
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
3
|
Reis MC, Mandler L, Kang J, Oliver D, Halaszovich C, Nolte D. A novel KCND3 variant in the N-terminus impairs the ionic current of Kv4.3 and is associated with SCA19/22. J Cell Mol Med 2024; 28:e70039. [PMID: 39180521 PMCID: PMC11344468 DOI: 10.1111/jcmm.70039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/05/2024] [Indexed: 08/26/2024] Open
Abstract
Spinocerebellar ataxias (SCAs) are a genetically heterogeneous group of autosomal dominant movement disorders. Among the SCAs associated with impaired ion channel function, SCA19/22 is caused by pathogenic variants in KCND3, which encodes the voltage-gated potassium channel Kv4.3. SCA19/22 is clinically characterized by ataxia, dysarthria and oculomotor dysfunction in combination with other signs and symptoms, including mild cognitive impairment, peripheral neuropathy and pyramidal signs. The known KCND3 pathogenic variants are localized either in the transmembrane segments, the connecting loops, or the C-terminal region of Kv4.3. We have identified a novel pathogenic variant, c.455A>G (p.D152G), localized in the N-terminus of Kv4.3. It is located in the immediate neighbourhood of the T1 domain, which is responsible for multimerization with the β-subunit KChIP2b and thus for the formation of functional heterooctamers. Electrophysiological studies showed that p.D152G does not affect channel gating, but reduces the ionic current in Kv4.3, even though the variant is not located in the transmembrane domains. Impaired channel trafficking to the plasma membrane may contribute to this effect. In a patient with a clinical picture corresponding to SCA19/22, p.D152G is the first pathogenic variant in the N-terminus of Kv4.3 to be described to date with an effect on ion channel activity.
Collapse
Affiliation(s)
| | - Laura Mandler
- Institute of Human GeneticsJustus‐Liebig‐University GiessenGiessenGermany
- Present address:
Department of NeurologyJustus‐Liebig‐University GiessenGiessenGermany
| | - Jun‐Suk Kang
- Department of NeurologyGoethe‐University FrankfurtFrankfurtGermany
- Present address:
NeuropraxisFrankfurtGermany
| | - Dominik Oliver
- Institute of PhysiologyPhilipps‐University MarburgMarburgGermany
| | | | - Dagmar Nolte
- Institute of Human GeneticsJustus‐Liebig‐University GiessenGiessenGermany
| |
Collapse
|
4
|
Zaytseva AK, Kulichik OE, Kostareva AA, Zhorov BS. Biophysical mechanisms of myocardium sodium channelopathies. Pflugers Arch 2024; 476:735-753. [PMID: 38424322 DOI: 10.1007/s00424-024-02930-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 03/02/2024]
Abstract
Genetic variants of gene SCN5A encoding the alpha-subunit of cardiac voltage-gated sodium channel Nav1.5 are associated with various diseases, including long QT syndrome (LQT3), Brugada syndrome (BrS1), and progressive cardiac conduction disease (PCCD). In the last decades, the great progress in understanding molecular and biophysical mechanisms of these diseases has been achieved. The LQT3 syndrome is associated with gain-of-function of sodium channels Nav1.5 due to impaired inactivation, enhanced activation, accelerated recovery from inactivation or the late current appearance. In contrast, BrS1 and PCCD are associated with the Nav1.5 loss-of-function, which in electrophysiological experiments can be manifested as reduced current density, enhanced fast or slow inactivation, impaired activation, or decelerated recovery from inactivation. Genetic variants associated with congenital arrhythmias can also disturb interactions of the Nav1.5 channel with different proteins or drugs and cause unexpected reactions to drug administration. Furthermore, mutations can affect post-translational modifications of the channels and their sensitivity to pH and temperature. Here we briefly review the current knowledge on biophysical mechanisms of LQT3, BrS1 and PCCD. We focus on limitations of studies that use heterologous expression systems and induced pluripotent stem cells (iPSC) derived cardiac myocytes and summarize our understanding of genotype-phenotype relations of SCN5A mutations.
Collapse
Affiliation(s)
- Anastasia K Zaytseva
- Almazov National Medical Research Centre, St. Petersburg, Russia.
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia.
| | - Olga E Kulichik
- Almazov National Medical Research Centre, St. Petersburg, Russia
| | | | - Boris S Zhorov
- Almazov National Medical Research Centre, St. Petersburg, Russia
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
- McMaster University, Hamilton, Canada
| |
Collapse
|
5
|
Yang C, Li Q, Hu F, Liu Y, Wang K. Inhibition of Cardiac Kv4.3/KChIP2 Channels by Sulfonylurea Drug Gliquidone. Mol Pharmacol 2024; 105:224-232. [PMID: 38164605 DOI: 10.1124/molpharm.123.000787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/09/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024] Open
Abstract
The Kv4.3 channel features fast N-type inactivation and also undergoes a slow C-type inactivation. The gain-of-function mutations of Kv4.3 channels cause an inherited disease called Brugada syndrome (BrS), characterized by a shortened duration of cardiac action potential repolarization and ventricular arrhythmia. The sulfonylurea drug gliquidone, an ATP-dependent K+ channel antagonist, is widely used for the treatment of type 2 diabetes. Here, we report a novel role of gliquidone in inhibiting Kv4.3 and Kv4.3/KChIP2 channels that encode the cardiac transient outward K+ currents responsible for the initial phase of action potential repolarization. Gliquidone results in concentration-dependent inhibition of both Kv4.3 and Kv4.3/KChIP2 fast or steady-state inactivation currents with an IC50 of approximately 8 μM. Gliquidone also accelerates Kv4.3 channel inactivation and shifts the steady-state activation to a more depolarizing direction. Site-directed mutagenesis and molecular docking reveal that the residues S301 in the S4 and Y312A and L321A in the S4-S5 linker are critical for gliquidone-mediated inhibition of Kv4.3 currents, as mutating those residues to alanine significantly reduces the potency for gliquidone-mediated inhibition. Furthermore, gliquidone also inhibits a gain-of-function Kv4.3 V392I mutant identified in BrS patients in voltage- and concentration-dependent manner. Taken together, our findings demonstrate that gliquidone inhibits Kv4.3 channels by acting on the residues in the S4 and the S4-S5 linker. Therefore, gliquidone may hold repurposing potential for the therapy of Brugada syndrome. SIGNIFICANCE STATEMENT: We describe a novel role of gliquidone in inhibiting cardiac Kv4.3 currents and the channel gain-of-function mutation identified from patients with Brugada syndrome, suggesting its repurposing potential for therapy for the heart disease.
Collapse
Affiliation(s)
- Chenxia Yang
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China (C.Y., Q.L., F.H., Y.L., K.W.) and Institute of Innovative Drugs, Qingdao University, Qingdao, China (Y.L., K.W.)
| | - Qinqin Li
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China (C.Y., Q.L., F.H., Y.L., K.W.) and Institute of Innovative Drugs, Qingdao University, Qingdao, China (Y.L., K.W.)
| | - Fang Hu
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China (C.Y., Q.L., F.H., Y.L., K.W.) and Institute of Innovative Drugs, Qingdao University, Qingdao, China (Y.L., K.W.)
| | - Yani Liu
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China (C.Y., Q.L., F.H., Y.L., K.W.) and Institute of Innovative Drugs, Qingdao University, Qingdao, China (Y.L., K.W.)
| | - KeWei Wang
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China (C.Y., Q.L., F.H., Y.L., K.W.) and Institute of Innovative Drugs, Qingdao University, Qingdao, China (Y.L., K.W.)
| |
Collapse
|
6
|
Stevens TL, Coles S, Sturm AC, Hoover CA, Borzok MA, Mohler PJ, El Refaey M. Molecular Pathways and Animal Models of Arrhythmias. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:1057-1090. [PMID: 38884769 DOI: 10.1007/978-3-031-44087-8_67] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Arrhythmias account for over 300,000 annual deaths in the United States, and approximately half of all deaths are associated with heart disease. Mechanisms underlying arrhythmia risk are complex; however, work in humans and animal models over the past 25 years has identified a host of molecular pathways linked with both arrhythmia substrates and triggers. This chapter will focus on select arrhythmia pathways solved by linking human clinical and genetic data with animal models.
Collapse
Affiliation(s)
- Tyler L Stevens
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Sara Coles
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Amy C Sturm
- Genomic Medicine Institute, 23andMe, Sunnyvale, CA, USA
| | - Catherine A Hoover
- Department of Biochemistry, Chemistry, Engineering and Physics, Commonwealth University of Pennsylvania, Mansfield, PA, USA
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Maegen A Borzok
- Department of Biochemistry, Chemistry, Engineering and Physics, Commonwealth University of Pennsylvania, Mansfield, PA, USA
| | - Peter J Mohler
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Mona El Refaey
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
- Department of Surgery, Division of Cardiac Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
7
|
Yaar S, Filatova TS, England E, Kompella SN, Hancox JC, Bechtold DA, Venetucci L, Abramochkin DV, Shiels HA. Global Air Pollutant Phenanthrene and Arrhythmic Outcomes in a Mouse Model. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:117002. [PMID: 37909723 PMCID: PMC10619431 DOI: 10.1289/ehp12775] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND The three-ringed polycyclic aromatic hydrocarbon (PAH) phenanthrene (Phe) has been implicated in the cardiotoxicity of petroleum-based pollution in aquatic systems, where it disrupts the contractile and electrical function of the fish heart. Phe is also found adsorbed to particulate matter and in the gas phase of air pollution, but to date, no studies have investigated the impact of Phe on mammalian cardiac function. OBJECTIVES Our objectives were to determine the arrhythmogenic potential of acute Phe exposure on mammalian cardiac function and define the underlying mechanisms to provide insight into the toxicity risk to humans. METHODS Ex vivo Langendorff-perfused mouse hearts were used to test the arrhythmogenic potential of Phe on myocardial function, and voltage- and current-clamp recordings were used to define underlying cellular mechanisms in isolated cardiomyocytes. RESULTS Mouse hearts exposed to ∼ 8 μ M Phe for 15-min exhibited a significantly slower heart rate (p = 0.0006 , N = 10 hearts), a prolonged PR interval (p = 0.036 , N = 8 hearts), and a slower conduction velocity (p = 0.0143 , N = 7 hearts). Whole-cell recordings from isolated cardiomyocytes revealed action potential (AP) duration prolongation (at 80% repolarization; p = 0.0408 , n = 9 cells) and inhibition of key murine repolarizing currents-transient outward potassium current (I to ) and ultrarapid potassium current (I Kur )-following Phe exposure. A significant reduction in AP upstroke velocity (p = 0.0445 , n = 9 cells) and inhibition of the fast sodium current (I Na ; p = 0.001 , n = 8 cells) and calcium current (I Ca ; p = 0.0001 ) were also observed, explaining the slowed conduction velocity in intact hearts. Finally, acute exposure to ∼ 8 μ M Phe significantly increased susceptibility to arrhythmias (p = 0.0455 , N = 9 hearts). DISCUSSION To the best of our knowledge, this is the first evidence of direct inhibitory effects of Phe on mammalian cardiac electrical activity at both the whole-heart and cell levels. This electrical dysfunction manifested as an increase in arrhythmia susceptibility due to impairment of both conduction and repolarization. Similar effects in humans could have serious health consequences, warranting greater regulatory attention and toxicological investigation into this ubiquitous PAH pollutant generated from fossil-fuel combustion. https://doi.org/10.1289/EHP12775.
Collapse
Affiliation(s)
- Sana Yaar
- Faculty of Biology, Medicine, and Health, Division of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | - Tatiana S. Filatova
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Moscow, Russia
| | - Ellie England
- Faculty of Biology, Medicine, and Health, Division of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | - Shiva N. Kompella
- Faculty of Biology, Medicine, and Health, Division of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | - Jules C. Hancox
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - David A. Bechtold
- Faculty of Biology, Medicine, and Health, Division of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | - Luigi Venetucci
- Faculty of Biology, Medicine, and Health, Division of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | - Denis V. Abramochkin
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Moscow, Russia
| | - Holly A. Shiels
- Faculty of Biology, Medicine, and Health, Division of Cardiovascular Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
8
|
Rahm AK, Hackbarth J, Müller ME, Pfeiffer J, Gampp H, Petersenn F, Rivinius R, Frey N, Lugenbiel P, Thomas D. Differential Effects of the Betablockers Carvedilol, Metoprolol and Bisoprolol on Cardiac K v4.3 (I to) Channel Isoforms. Int J Mol Sci 2023; 24:13842. [PMID: 37762145 PMCID: PMC10530285 DOI: 10.3390/ijms241813842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/03/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Cardiac Kv4.3 channels contribute to the transient outward K+ current, Ito, during early repolarization of the cardiac action potential. Two different isoforms of Kv4.3 are present in the human ventricle and exhibit differential remodeling in heart failure (HF). Cardioselective betablockers are a cornerstone of HF with reduced ejection fraction therapy as well as ventricular arrhythmia treatment. In this study we examined pharmacological effects of betablockers on both Kv4.3 isoforms to explore their potential for isoform-specific therapy. Kv4.3 isoforms were expressed in Xenopus laevis oocytes and incubated with the respective betablockers. Dose-dependency and biophysical characteristics were examined. HEK 293T-cells were transfected with the two Kv4.3 isoforms and analyzed with Western blots. Carvedilol (100 µM) blocked Kv4.3 L by 77 ± 2% and Kv4.3 S by 67 ± 6%, respectively. Metoprolol (100 µM) was less effective with inhibition of 37 ± 3% (Kv4.3 L) and 35 ± 4% (Kv4.3 S). Bisoprolol showed no inhibitory effect. Current reduction was not caused by changes in Kv4.3 protein expression. Carvedilol inhibited Kv4.3 channels at physiologically relevant concentrations, affecting both isoforms. Metoprolol showed a weaker blocking effect and bisoprolol did not exert an effect on Kv4.3. Blockade of repolarizing Kv4.3 channels by carvedilol and metoprolol extend their pharmacological mechanism of action, potentially contributing beneficial antiarrhythmic effects in normal and failing hearts.
Collapse
Affiliation(s)
- Ann-Kathrin Rahm
- Heidelberg Center for Heart Rhythm Disorders, Heidelberg University Hospital, 69120 Heidelberg, Germany (M.E.M.); (R.R.); (P.L.)
- Department of Cardiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Juline Hackbarth
- Heidelberg Center for Heart Rhythm Disorders, Heidelberg University Hospital, 69120 Heidelberg, Germany (M.E.M.); (R.R.); (P.L.)
- Department of Cardiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Mara E. Müller
- Heidelberg Center for Heart Rhythm Disorders, Heidelberg University Hospital, 69120 Heidelberg, Germany (M.E.M.); (R.R.); (P.L.)
- Department of Cardiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Julia Pfeiffer
- Heidelberg Center for Heart Rhythm Disorders, Heidelberg University Hospital, 69120 Heidelberg, Germany (M.E.M.); (R.R.); (P.L.)
- Department of Cardiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Heike Gampp
- Heidelberg Center for Heart Rhythm Disorders, Heidelberg University Hospital, 69120 Heidelberg, Germany (M.E.M.); (R.R.); (P.L.)
- Department of Cardiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Finn Petersenn
- Heidelberg Center for Heart Rhythm Disorders, Heidelberg University Hospital, 69120 Heidelberg, Germany (M.E.M.); (R.R.); (P.L.)
- Department of Cardiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Rasmus Rivinius
- Heidelberg Center for Heart Rhythm Disorders, Heidelberg University Hospital, 69120 Heidelberg, Germany (M.E.M.); (R.R.); (P.L.)
- Department of Cardiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Norbert Frey
- Heidelberg Center for Heart Rhythm Disorders, Heidelberg University Hospital, 69120 Heidelberg, Germany (M.E.M.); (R.R.); (P.L.)
- Department of Cardiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Patrick Lugenbiel
- Heidelberg Center for Heart Rhythm Disorders, Heidelberg University Hospital, 69120 Heidelberg, Germany (M.E.M.); (R.R.); (P.L.)
- Department of Cardiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Dierk Thomas
- Heidelberg Center for Heart Rhythm Disorders, Heidelberg University Hospital, 69120 Heidelberg, Germany (M.E.M.); (R.R.); (P.L.)
- Department of Cardiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| |
Collapse
|
9
|
Moras E, Gandhi K, Narasimhan B, Brugada R, Brugada J, Brugada P, Krittanawong C. Genetic and Molecular Mechanisms in Brugada Syndrome. Cells 2023; 12:1791. [PMID: 37443825 PMCID: PMC10340412 DOI: 10.3390/cells12131791] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Brugada syndrome is a rare hereditary arrhythmia disorder characterized by a distinctive electrocardiogram pattern and an elevated risk of ventricular arrhythmias and sudden cardiac death in young adults. Despite recent advances, it remains a complex condition, encompassing mechanisms, genetics, diagnosis, arrhythmia risk stratification, and management. The underlying electrophysiological mechanism of Brugada syndrome requires further investigation, with current theories focusing on abnormalities in repolarization, depolarization, and current-load match. The genetic basis of the syndrome is strong, with mutations found in genes encoding subunits of cardiac sodium, potassium, and calcium channels, as well as genes involved in channel trafficking and regulation. While the initial discovery of mutations in the SCN5A gene provided valuable insights, Brugada syndrome is now recognized as a multifactorial disease influenced by several loci and environmental factors, challenging the traditional autosomal dominant inheritance model. This comprehensive review aims to provide a current understanding of Brugada syndrome, focusing on its pathophysiology, genetic mechanisms, and novel models of risk stratification. Advancements in these areas hold the potential to facilitate earlier diagnosis, improve risk assessments, and enable more targeted therapeutic interventions.
Collapse
Affiliation(s)
- Errol Moras
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kruti Gandhi
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bharat Narasimhan
- Debakey Cardiovascular Institute, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Ramon Brugada
- Cardiology, Cardiac Genetics Clinical Unit, Hospital Universitari Josep Trueta, Hospital Santa Caterina, 17007 Girona, Spain
- Cardiovascular Genetics Center and Clinical Diagnostic Laboratory, Institut d’Investigació Biomèdica Girona-IdIBGi, 17190 Salt, Spain
| | - Josep Brugada
- Cardiovascular Institute, Hospital Clínic, 08036 Barcelona, Spain
- Pediatric Arrhythmia Unit, Hospital Sant Joan de Déu, 08950 Barcelona, Spain
- Department of Medicine, University of Barcelona, 08036 Barcelona, Spain
| | - Pedro Brugada
- Cardiovascular Division, Free University of Brussels (UZ Brussel) VUB, B-1050 Brussels, Belgium
- Medical Centre Prof. Brugada, B-9300 Aalst, Belgium
- Arrhythmia Unit, Helicopteros Sanitarios Hospital (HSH), Puerto Banús, 29603 Marbella, Spain
| | - Chayakrit Krittanawong
- Cardiology Division, NYU Langone Health and NYU School of Medicine, New York, NY 10016, USA
| |
Collapse
|
10
|
Alrabghi G, Liu Y, Hu W, Hancox JC, Zhang H. Human atrial fibrillation and genetic defects in transient outward currents: mechanistic insights from multi-scale computational models. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220166. [PMID: 37122220 PMCID: PMC10150223 DOI: 10.1098/rstb.2022.0166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Previous studies have linked dysfunctional Ito arising from mutations to KCND3-encoded Kv4.3 and KCND2-encoded Kv4.2 to atrial fibrillation. Using computational models, this study aimed to investigate the mechanisms underlying pro-arrhythmic effects of the gain-of-function Kv4.3 (T361S, A545P) and Kv4.2 (S447R) mutations. Wild-type and mutant Ito formulations were developed from and validated against experimental data and incorporated into the Colman et al. model of human atrial cells. Single-cell models were incorporated into one- (1D) and two-dimensional (2D) models of atrial tissue, and a three-dimensional (3D) realistic model of the human atria. The three gain-of-function mutations had similar, albeit quantitatively different, effects: shortening of the action potential duration; lowering the plateau membrane potential, abbreviating the effective refractory period (ERP) and the wavelength (WL) of atrial excitation at the tissue level. Restitution curves for the WL, the ERP and the conduction velocity were leftward shifted, facilitating the conduction of atrial excitation waves at high excitation rates. The mutations also increased lifespan and stationarity of re-entry in both 2D and 3D simulations, which further highlighted a mutation-induced increase in spatial dispersion of repolarization. Collectively, these changes account for pro-arrhythmic effects of these Kv4.3 and Kv4.2 mutations in facilitating AF. This article is part of the theme issue 'The heartbeat: its molecular basis and physiological mechanisms'.
Collapse
Affiliation(s)
- Ghadah Alrabghi
- Biological Physics Group, Department of Physics and Astronomy, University of Manchester, Manchester M13 9PL, UK
- Department of Physics, Faculty of Science, University of Jeddah, 21959 Jeddah, Saudi Arabia
| | - Yizhou Liu
- Biological Physics Group, Department of Physics and Astronomy, University of Manchester, Manchester M13 9PL, UK
| | - Wei Hu
- Biological Physics Group, Department of Physics and Astronomy, University of Manchester, Manchester M13 9PL, UK
| | - Jules C Hancox
- Biological Physics Group, Department of Physics and Astronomy, University of Manchester, Manchester M13 9PL, UK
- School of Physiology, Pharmacology and Neuroscience, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Henggui Zhang
- Biological Physics Group, Department of Physics and Astronomy, University of Manchester, Manchester M13 9PL, UK
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, 646099 Luzhou, People's Republic of China
| |
Collapse
|
11
|
Bersell KR, Yang T, Mosley JD, Glazer AM, Hale AT, Kryshtal DO, Kim K, Steimle JD, Brown JD, Salem JE, Campbell CC, Hong CC, Wells QS, Johnson AN, Short L, Blair MA, Behr ER, Petropoulou E, Jamshidi Y, Benson MD, Keyes MJ, Ngo D, Vasan RS, Yang Q, Gerszten RE, Shaffer C, Parikh S, Sheng Q, Kannankeril PJ, Moskowitz IP, York JD, Wang TJ, Knollmann BC, Roden DM. Transcriptional Dysregulation Underlies Both Monogenic Arrhythmia Syndrome and Common Modifiers of Cardiac Repolarization. Circulation 2023; 147:824-840. [PMID: 36524479 PMCID: PMC9992308 DOI: 10.1161/circulationaha.122.062193] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/03/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Brugada syndrome (BrS) is an inherited arrhythmia syndrome caused by loss-of-function variants in the cardiac sodium channel gene SCN5A (sodium voltage-gated channel alpha subunit 5) in ≈20% of subjects. We identified a family with 4 individuals diagnosed with BrS harboring the rare G145R missense variant in the cardiac transcription factor TBX5 (T-box transcription factor 5) and no SCN5A variant. METHODS We generated induced pluripotent stem cells (iPSCs) from 2 members of a family carrying TBX5-G145R and diagnosed with Brugada syndrome. After differentiation to iPSC-derived cardiomyocytes (iPSC-CMs), electrophysiologic characteristics were assessed by voltage- and current-clamp experiments (n=9 to 21 cells per group) and transcriptional differences by RNA sequencing (n=3 samples per group), and compared with iPSC-CMs in which G145R was corrected by CRISPR/Cas9 approaches. The role of platelet-derived growth factor (PDGF)/phosphoinositide 3-kinase (PI3K) pathway was elucidated by small molecule perturbation. The rate-corrected QT (QTc) interval association with serum PDGF was tested in the Framingham Heart Study cohort (n=1893 individuals). RESULTS TBX5-G145R reduced transcriptional activity and caused multiple electrophysiologic abnormalities, including decreased peak and enhanced "late" cardiac sodium current (INa), which were entirely corrected by editing G145R to wild-type. Transcriptional profiling and functional assays in genome-unedited and -edited iPSC-CMs showed direct SCN5A down-regulation caused decreased peak INa, and that reduced PDGF receptor (PDGFRA [platelet-derived growth factor receptor α]) expression and blunted signal transduction to PI3K was implicated in enhanced late INa. Tbx5 regulation of the PDGF axis increased arrhythmia risk due to disruption of PDGF signaling and was conserved in murine model systems. PDGF receptor blockade markedly prolonged normal iPSC-CM action potentials and plasma levels of PDGF in the Framingham Heart Study were inversely correlated with the QTc interval (P<0.001). CONCLUSIONS These results not only establish decreased SCN5A transcription by the TBX5 variant as a cause of BrS, but also reveal a new general transcriptional mechanism of arrhythmogenesis of enhanced late sodium current caused by reduced PDGF receptor-mediated PI3K signaling.
Collapse
Affiliation(s)
- Kevin R Bersell
- Departments of Pharmacology (K.R.B., A.M.G., D.O.K., K.K., J-E.S., C.C.C., Q.S.W., S.P., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
| | - Tao Yang
- Medicine (T.Y., J.D.M., J.D.B., J-E.S., Q.S.W., L.S., M.A.B., C.S., T.J.W., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
| | - Jonathan D Mosley
- Departments of Pharmacology (K.R.B., A.M.G., D.O.K., K.K., J-E.S., C.C.C., Q.S.W., S.P., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
| | - Andrew M Glazer
- Departments of Pharmacology (K.R.B., A.M.G., D.O.K., K.K., J-E.S., C.C.C., Q.S.W., S.P., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
| | - Andrew T Hale
- Biochemistry (A.T.H., J.D.Y.), Vanderbilt University, Nashville, TN
| | - Dmytro O Kryshtal
- Departments of Pharmacology (K.R.B., A.M.G., D.O.K., K.K., J-E.S., C.C.C., Q.S.W., S.P., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
| | - Kyungsoo Kim
- Departments of Pharmacology (K.R.B., A.M.G., D.O.K., K.K., J-E.S., C.C.C., Q.S.W., S.P., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
| | - Jeffrey D Steimle
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, IL (J.D.S., I.P.M.)
| | - Jonathan D Brown
- Medicine (T.Y., J.D.M., J.D.B., J-E.S., Q.S.W., L.S., M.A.B., C.S., T.J.W., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
| | - Joe-Elie Salem
- Departments of Pharmacology (K.R.B., A.M.G., D.O.K., K.K., J-E.S., C.C.C., Q.S.W., S.P., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
- Medicine (T.Y., J.D.M., J.D.B., J-E.S., Q.S.W., L.S., M.A.B., C.S., T.J.W., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
- Assistance Publique - Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Department of Pharmacology, CIC-1901, Sorbonne University, Paris, France (J-E.S.)
- Sorbonne Universités, UPMC Univ Paris 06, Faculty of Medicine, France (J-E.S.)
| | - Courtney C Campbell
- Departments of Pharmacology (K.R.B., A.M.G., D.O.K., K.K., J-E.S., C.C.C., Q.S.W., S.P., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
| | - Charles C Hong
- Department of Medicine, University of Maryland School of Medicine, Baltimore (C.C.H.)
| | - Quinn S Wells
- Departments of Pharmacology (K.R.B., A.M.G., D.O.K., K.K., J-E.S., C.C.C., Q.S.W., S.P., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
- Medicine (T.Y., J.D.M., J.D.B., J-E.S., Q.S.W., L.S., M.A.B., C.S., T.J.W., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
- Biomedical Informatics (Q.S.W., D.M.R.), Vanderbilt University, Nashville, TN
| | - Amanda N Johnson
- Molecular Physiology and Biophysics (A.N.J.), Vanderbilt University, Nashville, TN
| | - Laura Short
- Medicine (T.Y., J.D.M., J.D.B., J-E.S., Q.S.W., L.S., M.A.B., C.S., T.J.W., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
| | - Marcia A Blair
- Medicine (T.Y., J.D.M., J.D.B., J-E.S., Q.S.W., L.S., M.A.B., C.S., T.J.W., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
| | | | - Evmorfia Petropoulou
- Cardiology Clinical Academic Group, Molecular and Clinical Sciences Institute, St George's, University of London and St George's University Hospitals National Health Service Foundation Trust, London, UK (E.P., Y.J.)
| | - Yalda Jamshidi
- Cardiology Clinical Academic Group, Molecular and Clinical Sciences Institute, St George's, University of London and St George's University Hospitals National Health Service Foundation Trust, London, UK (E.P., Y.J.)
| | - Mark D Benson
- Cardiovascular Research Center (E.J.B., M.D.B., M.J.K., R.E.G.), Beth Israel Deaconess Hospital, Boston, MA
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA (M.D.B.)
| | - Michelle J Keyes
- Cardiovascular Research Center (E.J.B., M.D.B., M.J.K., R.E.G.), Beth Israel Deaconess Hospital, Boston, MA
| | - Debby Ngo
- Division of Pulmonary and Cardiovascular Medicine (D.N., R.E.G.), Beth Israel Deaconess Hospital, Boston, MA
| | | | - Qiong Yang
- Boston University School of Medicine, MA (R.S.V., Q.Y.)
| | - Robert E Gerszten
- Cardiovascular Research Center (E.J.B., M.D.B., M.J.K., R.E.G.), Beth Israel Deaconess Hospital, Boston, MA
- Division of Pulmonary and Cardiovascular Medicine (D.N., R.E.G.), Beth Israel Deaconess Hospital, Boston, MA
| | - Christian Shaffer
- Medicine (T.Y., J.D.M., J.D.B., J-E.S., Q.S.W., L.S., M.A.B., C.S., T.J.W., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
| | - Shan Parikh
- Departments of Pharmacology (K.R.B., A.M.G., D.O.K., K.K., J-E.S., C.C.C., Q.S.W., S.P., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
| | | | | | - Ivan P Moskowitz
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, IL (J.D.S., I.P.M.)
| | - John D York
- Biochemistry (A.T.H., J.D.Y.), Vanderbilt University, Nashville, TN
| | - Thomas J Wang
- Medicine (T.Y., J.D.M., J.D.B., J-E.S., Q.S.W., L.S., M.A.B., C.S., T.J.W., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
| | - Bjorn C Knollmann
- Departments of Pharmacology (K.R.B., A.M.G., D.O.K., K.K., J-E.S., C.C.C., Q.S.W., S.P., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
- Medicine (T.Y., J.D.M., J.D.B., J-E.S., Q.S.W., L.S., M.A.B., C.S., T.J.W., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
| | - Dan M Roden
- Departments of Pharmacology (K.R.B., A.M.G., D.O.K., K.K., J-E.S., C.C.C., Q.S.W., S.P., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
- Medicine (T.Y., J.D.M., J.D.B., J-E.S., Q.S.W., L.S., M.A.B., C.S., T.J.W., B.C.K., D.M.R.), Vanderbilt University, Nashville, TN
- Biomedical Informatics (Q.S.W., D.M.R.), Vanderbilt University, Nashville, TN
| |
Collapse
|
12
|
d’Apolito M, Santoro F, Santacroce R, Cordisco G, Ragnatela I, D’Arienzo G, Pellegrino PL, Brunetti ND, Margaglione M. A Novel DLG1 Variant in a Family with Brugada Syndrome: Clinical Characteristics and In Silico Analysis. Genes (Basel) 2023; 14:427. [PMID: 36833354 PMCID: PMC9957379 DOI: 10.3390/genes14020427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 01/31/2023] [Accepted: 02/05/2023] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND Brugada syndrome (BrS) is an inherited primary channelopathy syndrome associated to sudden cardiac death. Overall, variants have been identified in eighteen genes encoding for ion channel subunits and seven genes for regulatory proteins. Recently, a missense variant in DLG1 has been found within a BrS phenotype-positive patient. DLG1 encodes for synapse associated protein 97 (SAP97), a protein characterized by the presence of multiple domains for protein-protein interactions including PDZ domains. In cardiomyocytes, SAP97 interacts with Nav1.5, a PDZ binding motif of SCN5A and others potassium channel subunits. AIM OF THE STUDY To characterize the phenotype of an Italian family with BrS syndrome carrying a DLG1 variant. METHODS Clinical and genetic investigations were performed. Genetic testing was performed with whole-exome sequencing (WES) using the Illumina platform. According to the standard protocol, a variant found by WES was confirmed in all members of the family by bi-directional capillary Sanger resequencing. The effect of the variant was investigated by using in silico prediction of pathogenicity. RESULTS The index case was a 74-year-old man with spontaneous type 1 BrS ECG pattern that experienced syncope and underwent ICD implantation. WES of the index case, performed assuming a dominant mode of inheritance, identified a heterozygous variant, c.1556G>A (p.R519H), in the exon 15 of the DLG1 gene. In the pedigree investigation, 6 out of 12 family members had the variant. Carriers of the gene variant all had BrS ECG type 1 drug induced and showed heterogeneous cardiac phenotypes with two patients experiencing syncope during exercise and fever, respectively. The amino acid residue #519 lies near a PDZ domain and in silico analysis suggested a causal role for the variant. Modelling of the resulting protein structure predicted that the variant disrupts an H-bond and a likelihood of being pathogenic. As a consequence, it is likely that a conformational change affects protein functionality and the modulating role on ion channels. CONCLUSIONS A DLG1 gene variant identified was associated with BrS. The variant could modify the formation of multichannel protein complexes, affecting ion channels to specific compartments in cardiomyocytes.
Collapse
Affiliation(s)
- Maria d’Apolito
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Francesco Santoro
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
- Cardiology Unit, Polyclinic Hospital of Foggia, 71122 Foggia, Italy
| | - Rosa Santacroce
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Giorgia Cordisco
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Ilaria Ragnatela
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | | | | | - Natale Daniele Brunetti
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
- Cardiology Unit, Polyclinic Hospital of Foggia, 71122 Foggia, Italy
| | - Maurizio Margaglione
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| |
Collapse
|
13
|
Ahammed MR, Ananya FN. Association of Cardiac Electrical Disorders With KCND3 Gene Mutation. Cureus 2023; 15:e34597. [PMID: 36883079 PMCID: PMC9985904 DOI: 10.7759/cureus.34597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2023] [Indexed: 02/05/2023] Open
Abstract
Globally, cardiac channelopathies leading to electrical disorders are responsible for a significant number of sudden cardiac deaths without structural heart disease. Many genes encoding different ion channels in the heart were identified and their impairment was found to be associated with life-threatening cardiac abnormalities. KCND3, one of the genes expressed both in the heart and brain, is reported to have an association with Brugada syndrome, early-onset atrial fibrillation, early repolarization syndrome, and sudden unexplained death syndrome. KCND3 genetic screening could be a promising tool for functional studies for an understanding of the pathogenesis and genetic determinants of the above-mentioned electrical disorders.
Collapse
Affiliation(s)
- Md Ripon Ahammed
- Internal Medicine, Icahn School of Medicine at Mount Sinai, Queens Hospital Center, New York, USA
| | | |
Collapse
|
14
|
Jeong HK, Hong SN, Yoon N, Lee KH, Park HW, Cho JG. Antiarrhythmic Effect of Artemisinin in an Ex-vivo Model of Brugada Syndrome Induced by NS5806. Korean Circ J 2023; 53:239-250. [PMID: 37161682 PMCID: PMC10172200 DOI: 10.4070/kcj.2022.0312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/09/2022] [Accepted: 01/04/2023] [Indexed: 03/06/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Brugada syndrome (BrS) is an inherited arrhythmia syndrome that presents as sudden cardiac death (SCD) without structural heart disease. One of the mechanisms of SCD has been suggested to be related to the uneven dispersion of transient outward potassium current (Ito) channels between the epicardium and endocardium, thus inducing ventricular tachyarrhythmia. Artemisinin is widely used as an antimalarial drug. Its antiarrhythmic effect, which includes suppression of Ito channels, has been previously reported. We investigated the effect of artemisinin on the suppression of electrocardiographic manifestations in a canine experimental model of BrS. METHODS Transmural pseudo-electrocardiograms and epicardial/endocardial transmembrane action potentials (APs) were recorded from coronary-perfused canine right ventricular wedge preparations (n=8). To mimic the BrS phenotypes, acetylcholine (3 μM), calcium channel blocker verapamil (1 μM), and Ito agonist NS5806 (6-10 μM) were used. Artemisinin (100-150 μM) was then perfused to ameliorate the ventricular tachyarrhythmia in the BrS models. RESULTS The provocation agents induced prominent J waves in all the models on the pseudo-electrocardiograms. The epicardial AP dome was attenuated. Ventricular tachyarrhythmia was induced in six out of 8 preparations. Artemisinin suppressed ventricular tachyarrhythmia in all 6 of these preparations and recovered the AP dome of the right ventricular epicardium in all preparations (n=8). J wave areas and epicardial notch indexes were also significantly decreased after artemisinin perfusion. CONCLUSIONS Our findings suggest that artemisinin has an antiarrhythmic effect on wedge preparation models of BrS. It might work by inhibition of potassium channels including Ito channels, subsequently suppressing ventricular tachycardia/ventricular fibrillation.
Collapse
Affiliation(s)
- Hyung Ki Jeong
- Division of Cardiology, Department of Internal Medicine, Wonkwang University School of Medicine, Iksan, Korea
| | - Seo Na Hong
- Department of Cardiology, Kwangju Christian Hospital, Gwangju, Korea
| | - Namsik Yoon
- Division of Cardiology, Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
- Department of Cardiovascular Medicine, Chonnam National University Hospital, Gwangju, Korea
| | - Ki Hong Lee
- Division of Cardiology, Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
- Department of Cardiovascular Medicine, Chonnam National University Hospital, Gwangju, Korea
| | - Hyung Wook Park
- Division of Cardiology, Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
- Department of Cardiovascular Medicine, Chonnam National University Hospital, Gwangju, Korea
| | - Jeong Gwan Cho
- Division of Cardiology, Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
- Department of Cardiovascular Medicine, Chonnam National University Hospital, Gwangju, Korea
| |
Collapse
|
15
|
Sensitivity Analysis of Cardiac Alternans and Tachyarrhythmia to Ion Channel Conductance Using Population Modeling. Bioengineering (Basel) 2022; 9:bioengineering9110628. [PMID: 36354539 PMCID: PMC9687149 DOI: 10.3390/bioengineering9110628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/15/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
Action potential duration (APD) alternans, an alternating phenomenon between action potentials in cardiomyocytes, causes heart arrhythmia when the heart rate is high. However, some of the APD alternans observed in clinical trials occurs under slow heart rate conditions of 100 to 120 bpm, increasing the likelihood of heart arrhythmias such as atrial fibrillation. Advanced studies have identified the occurrence of this type of APD alternans in terms of electrophysiological ion channel currents in cells. However, they only identified physiological phenomena, such as action potential due to random changes in a particular ion channel’s conductivity through ion models specializing in specific ion channel currents. In this study, we performed parameter sensitivity analysis via population modeling using a validated human ventricular physiology model to check the sensitivity of APD alternans to ion channel conductances. Through population modeling, we expressed the changes in alternans onset cycle length (AOCL) and mean APD in AOCL (AO meanAPD) according to the variations in ion channel conductance. Finally, we identified the ion channel that maximally affected the occurrence of APD alternans. AOCL and AO meanAPD were sensitive to changes in the plateau Ca2+ current. Accordingly, it was expected that APD alternans would be vulnerable to changes in intracellular calcium concentration.
Collapse
|
16
|
Ye D, Zhou W, Hamrick SK, Tester DJ, Kim CSJ, Barajas-Martinez H, Hu D, Giudicessi JR, Antzelevitch C, Ackerman MJ. Acacetin, a Potent Transient Outward Current Blocker, May Be a Novel Therapeutic for KCND3-Encoded Kv4.3 Gain-of-Function-Associated J-Wave Syndromes. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2022; 15:e003238. [PMID: 35861988 PMCID: PMC9588492 DOI: 10.1161/circgen.120.003238] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 04/18/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND The transient outward current (Ito) that mediates early (phase 1) repolarization is conducted by the KCND3-encoded Kv4.3 pore-forming α-subunit. KCND3 gain-of-function mutations have been reported previously as a pathogenic substrate for J wave syndromes (JWS), including the Brugada syndrome and early repolarization syndrome, as well as autopsy-negative sudden unexplained death (SUD). Acacetin, a natural flavone, is a potent Ito current blocker. Acacetin may be a novel therapeutic for KCND3-mediated J wave syndrome. METHODS KCND3-V392I was identified in an 18-year-old male with J wave syndrome/early repolarization syndrome, and a history of cardiac arrest including ventricular tachycardia/ventricular fibrillation and atrial fibrillation/atrial flutter. Pathogenic KCND3 mutation was engineered by site-directed mutagenesis and co-expressed with wild-type KChIP2 in TSA201 cells. Gene-edited/variant-corrected isogenic control and patient-specific pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) from the p. Val392Ile-KCND3-positive patient were generated. Ito currents and action potentials were recorded before and after treatment with Acacetin using the whole cell patch-clamp and multielectrode array technique. Western blot and immunocytochemistry were performed to investigate KCND3 expression. RESULTS KCND3-V392I demonstrated a marked gain-of-function phenotype, increasing peak Ito current density by 92.2% (P<0.05 versus KCND3-WT). KCND3 expression was significantly increased in KCND3-V392I-derived iPSC-CMs (P<0.05 versus isogenic control). While KCND3-WT revealed an IC50 of 7.2±1.0 µmol/L for acacetin effect, 30 µmol/L acacetin dramatically inhibited KCND3-V392I peak Ito current density by 96.2% (P<0.05 versus before Acacetin). Ito was also increased by 60.9% in Kv4.3-V392I iPSC-CM (P<0.05 versus isogenic control iPSC-CM). Ten micromoles per liter acacetin, a concentration approaching its IC50 value, inhibited Ito by ≈50% in patient-derived iPSC-CMs and reduced the accentuated action potential notch displayed in KCND3-V392I-derived iPSC-CMs. CONCLUSIONS This preclinical study provides pharmacological and functional evidence to suggest that Acacetin may be a novel therapeutic for patients with KCND3 gain-of-function-associated J wave syndrome by inhibiting Ito and abolishing the accentuated action potential notch in patient-derived iPSC-CMs.
Collapse
Affiliation(s)
- Dan Ye
- Department of Molecular Pharmacology & Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory); Department of Cardiovascular Medicine/Division of Heart Rhythm Services (Windland Smith Rice Genetic Heart Rhythm Clinic); Department of Pediatric and Adolescent Medicine/Division of Pediatric Cardiology, Mayo Clinic, Rochester, MN
| | - Wei Zhou
- Department of Molecular Pharmacology & Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory); Department of Cardiovascular Medicine/Division of Heart Rhythm Services (Windland Smith Rice Genetic Heart Rhythm Clinic); Department of Pediatric and Adolescent Medicine/Division of Pediatric Cardiology, Mayo Clinic, Rochester, MN
| | - Samantha K. Hamrick
- Department of Molecular Pharmacology & Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory); Department of Cardiovascular Medicine/Division of Heart Rhythm Services (Windland Smith Rice Genetic Heart Rhythm Clinic); Department of Pediatric and Adolescent Medicine/Division of Pediatric Cardiology, Mayo Clinic, Rochester, MN
| | - David J Tester
- Department of Molecular Pharmacology & Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory); Department of Cardiovascular Medicine/Division of Heart Rhythm Services (Windland Smith Rice Genetic Heart Rhythm Clinic); Department of Pediatric and Adolescent Medicine/Division of Pediatric Cardiology, Mayo Clinic, Rochester, MN
| | - CS John Kim
- Department of Molecular Pharmacology & Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory); Department of Cardiovascular Medicine/Division of Heart Rhythm Services (Windland Smith Rice Genetic Heart Rhythm Clinic); Department of Pediatric and Adolescent Medicine/Division of Pediatric Cardiology, Mayo Clinic, Rochester, MN
| | | | - Dan Hu
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, China
| | - John R. Giudicessi
- Department of Molecular Pharmacology & Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory); Department of Cardiovascular Medicine/Division of Heart Rhythm Services (Windland Smith Rice Genetic Heart Rhythm Clinic); Department of Pediatric and Adolescent Medicine/Division of Pediatric Cardiology, Mayo Clinic, Rochester, MN
| | | | - Michael J. Ackerman
- Department of Molecular Pharmacology & Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory); Department of Cardiovascular Medicine/Division of Heart Rhythm Services (Windland Smith Rice Genetic Heart Rhythm Clinic); Department of Pediatric and Adolescent Medicine/Division of Pediatric Cardiology, Mayo Clinic, Rochester, MN
| |
Collapse
|
17
|
Di Resta C, Berg J, Villatore A, Maia M, Pili G, Fioravanti F, Tomaiuolo R, Sala S, Benedetti S, Peretto G. Concealed Substrates in Brugada Syndrome: Isolated Channelopathy or Associated Cardiomyopathy? Genes (Basel) 2022; 13:1755. [PMID: 36292641 PMCID: PMC9602309 DOI: 10.3390/genes13101755] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 09/07/2024] Open
Abstract
Brugada syndrome (BrS) is an inherited autosomal dominant genetic disorder responsible for sudden cardiac death from malignant ventricular arrhythmia. The term "channelopathy" is nowadays used to classify BrS as a purely electrical disease, mainly occurring secondarily to loss-of-function mutations in the α subunit of the cardiac sodium channel protein Nav1.5. In this setting, arrhythmic manifestations of the disease have been reported in the absence of any apparent structural heart disease or cardiomyopathy. Over the last few years, however, a consistent amount of evidence has grown in support of myocardial structural and functional abnormalities in patients with BrS. In detail, abnormal ventricular dimensions, either systolic or diastolic dysfunctions, regional wall motion abnormalities, myocardial fibrosis, and active inflammatory foci have been frequently described, pointing to alternative mechanisms of arrhythmogenesis which challenge the definition of channelopathy. The present review aims to depict the status of the art of concealed arrhythmogenic substrates in BrS, often resulting from an advanced and multimodal diagnostic workup, to foster future preclinical and clinical research in support of the cardiomyopathic nature of the disease.
Collapse
Affiliation(s)
- Chiara Di Resta
- Genomic Unit for the Diagnosis of Human Pathologies, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- School of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Jan Berg
- Department of Cardiac Electrophysiology and Arrhythmology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Andrea Villatore
- School of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy
- Department of Cardiac Electrophysiology and Arrhythmology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Marianna Maia
- School of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy
- Department of Cardiac Electrophysiology and Arrhythmology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Gianluca Pili
- School of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy
- Department of Cardiac Electrophysiology and Arrhythmology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Francesco Fioravanti
- Department of Cardiac Electrophysiology and Arrhythmology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Rossella Tomaiuolo
- School of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Simone Sala
- Department of Cardiac Electrophysiology and Arrhythmology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Sara Benedetti
- UOC Screening Neonatale e Malattie Metaboliche, ASST Fatebenefratelli Sacco Ospedale dei Bambini “Vittore Buzzi”, 20157 Milan, Italy
| | - Giovanni Peretto
- School of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy
- Department of Cardiac Electrophysiology and Arrhythmology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| |
Collapse
|
18
|
Crespo-García T, Cámara-Checa A, Dago M, Rubio-Alarcón M, Rapún J, Tamargo J, Delpón E, Caballero R. Regulation of cardiac ion channels by transcription factors: Looking for new opportunities of druggable targets for the treatment of arrhythmias. Biochem Pharmacol 2022; 204:115206. [PMID: 35963339 DOI: 10.1016/j.bcp.2022.115206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/29/2022]
Abstract
Cardiac electrical activity is governed by different ion channels that generate action potentials. Acquired or inherited abnormalities in the expression and/or function of ion channels usually result in electrophysiological changes that can cause cardiac arrhythmias. Transcription factors (TFs) control gene transcription by binding to specific DNA sequences adjacent to target genes. Linkage analysis, candidate-gene screening within families, and genome-wide association studies have linked rare and common genetic variants in the genes encoding TFs with genetically-determined cardiac arrhythmias. Besides its critical role in cardiac development, recent data demonstrated that they control cardiac electrical activity through the direct regulation of the expression and function of cardiac ion channels in adult hearts. This narrative review summarizes some studies showing functional data on regulation of the main human atrial and ventricular Na+, Ca2+, and K+ channels by cardiac TFs such as Pitx2c, Tbx20, Tbx5, Zfhx3, among others. The results have improved our understanding of the mechanisms regulating cardiac electrical activity and may open new avenues for therapeutic interventions in cardiac acquired or inherited arrhythmias through the identification of TFs as potential drug targets. Even though TFs have for a long time been considered as 'undruggable' targets, advances in structural biology have led to the identification of unique pockets in TFs amenable to be targeted with small-molecule drugs or peptides that are emerging as novel therapeutic drugs.
Collapse
Affiliation(s)
- T Crespo-García
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - A Cámara-Checa
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - M Dago
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - M Rubio-Alarcón
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - J Rapún
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - J Tamargo
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - E Delpón
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain.
| | - R Caballero
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | -
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| |
Collapse
|
19
|
Yu G, Chakrabarti S, Tischenko M, Chen AL, Wang Z, Cho H, French BA, Naga Prasad SV, Chen Q, Wang QK. Gene therapy targeting protein trafficking regulator MOG1 in mouse models of Brugada syndrome, arrhythmias, and mild cardiomyopathy. Sci Transl Med 2022; 14:eabf3136. [PMID: 35675436 DOI: 10.1126/scitranslmed.abf3136] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Brugada syndrome (BrS) is a fatal arrhythmia that causes an estimated 4% of all sudden death in high-incidence areas. SCN5A encodes cardiac sodium channel NaV1.5 and causes 25 to 30% of BrS cases. Here, we report generation of a knock-in (KI) mouse model of BrS (Scn5aG1746R/+). Heterozygous KI mice recapitulated some of the clinical features of BrS, including an ST segment abnormality (a prominent J wave) on electrocardiograms and development of spontaneous ventricular tachyarrhythmias (VTs), seizures, and sudden death. VTs were caused by shortened cardiac action potential duration and late phase 3 early afterdepolarizations associated with reduced sodium current density (INa) and increased Kcnd3 and Cacna1c expression. We developed a gene therapy using adeno-associated virus serotype 9 (AAV9) vector-mediated MOG1 delivery for up-regulation of MOG1, a chaperone that binds to NaV1.5 and traffics it to the cell surface. MOG1 was chosen for gene therapy because the large size of the SCN5A coding sequence (6048 base pairs) exceeds the packaging capacity of AAV vectors. AAV9-MOG1 gene therapy increased cell surface expression of NaV1.5 and ventricular INa, reversed up-regulation of Kcnd3 and Cacna1c expression, normalized cardiac action potential abnormalities, abolished J waves, and blocked VT in Scn5aG1746R/+ mice. Gene therapy also rescued the phenotypes of cardiac arrhythmias and contractile dysfunction in heterozygous humanized KI mice with SCN5A mutation p.D1275N. Using a small chaperone protein may have broad implications for targeting disease-causing genes exceeding the size capacity of AAV vectors.
Collapse
Affiliation(s)
- Gang Yu
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.,Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
| | - Susmita Chakrabarti
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
| | - Miroslava Tischenko
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
| | - Ai-Lan Chen
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.,Department of Cardiology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 511436, P. R. China
| | - Zhijie Wang
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.,Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
| | - Hyosuk Cho
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.,Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Brent A French
- Department of Biomedical Engineering, University of Virginia Health System, Charlottesville, VA 22903, USA
| | - Sathyamangla V Naga Prasad
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
| | - Qiuyun Chen
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
| | - Qing K Wang
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.,Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA.,Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
20
|
Li Y, Duan H, Yi J, Wang G, Cheng W, Feng L, Liu J. Kv4.2 phosphorylation by PKA drives Kv4.2 - KChIP2 dissociation, leading to Kv4.2 out of lipid rafts and internalization. Am J Physiol Cell Physiol 2022; 323:C190-C201. [PMID: 35508186 DOI: 10.1152/ajpcell.00307.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sympathetic regulation of the Kv4.2 transient outward potassium current is critical for the acute electrical and contractile response of the myocardium under physiological and pathological conditions. Previous studies have suggested that KChIP2, the key auxiliary subunit of Kv4 channels, is required for the sympathetic regulation of Kv4.2 current densities. Of interest, Kv4.2 and KChIP2, and key components mediating acute sympathetic signaling transduction are present in lipid rafts, which are profoundly involved in regulation of Ito densities in rat ventricular myocytes. However, little is known about the mechanisms of Kv4.2-raft association and its connection with acute sympathetic regulation. With the aid of high-resolution fluorescent microscope, we demonstrate that KChIP2 assists Kv4.2 localization in lipid rafts in HEK293 cells. Moreover, PKA-mediated Kv4.2 phosphorylation, the downstream signaling event of acute sympathetic stimulation, induced dissociation between Kv4.2 and KChIP2, resulting in Kv4.2 shifting out of lipid rafts in KChIP2-expressed HEK293.The mutation that mimics Kv4.2 phosphorylation by PKA similarly disrupted Kv4.2 interaction with KChIP2 and also decreased the surface stability of Kv4.2. The attenuated Kv4.2-KChIP2 interaction was also observed in native neonatal rat ventricular myocytes (NRVMs) upon acute adrenergic stimulation with phenylephrine (PE). Furthermore, PE accelerated internalization of Kv4.2 in native NRVMs, but disruption of lipid rafts dampens this reaction. In conclusion, KChIP2 contributes to targeting Kv4.2 to lipid rafts. Acute adrenergic stimulation induces Kv4.2 - KChIP2 dissociation, leading to Kv4.2 out of lipid rafts and internalization, reinforcing the critical role of Kv4.2-lipid raft association in the essential physiological response of Ito to acute sympathetic regulation.
Collapse
Affiliation(s)
- Ying Li
- School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, Guangdong, China
| | - Haixia Duan
- School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, Guangdong, China
| | - Jing Yi
- Department of Hepatobiliary and Pancreatic Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Gang Wang
- School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, Guangdong, China
| | - Wanwen Cheng
- School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, Guangdong, China
| | - Li Feng
- Department of Cardiology, Zhongshan People's Hospital, Zhongshan, Guangdong, China
| | - Jie Liu
- School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, Guangdong, China
| |
Collapse
|
21
|
Choubey M, Bansal R, Siddharthan D, Naik N, Sharma G, Saxena A. Early Repolarization Syndrome, Epilepsy and Atrial Fibrillation in a young girl with novel KCND3 mutation managed with quinidine. J Cardiovasc Electrophysiol 2022; 33:1312-1315. [PMID: 35388935 DOI: 10.1111/jce.15489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 03/20/2022] [Accepted: 04/03/2022] [Indexed: 11/30/2022]
Abstract
A 6-year-old girl presented with a difficult to control epilepsy syndrome. On evaluation, additional presyncope episodes associated with polymorphic ventricular tachycardia were also noted. A diagnosis of early repolarization syndrome was made with early repolarization pattern on ECG, documented VT episodes and clinical presyncope (Proposed Shanghai score 7). Paroxysmal atrial fibrillation was also noted on 24-hour Holter recordings. The child was stabilized with isoprenaline infusion and was later discharged with arrhythmia control on quinidine and cilostazol. Genetic evaluation revealed a potassium channel KCND3 gene missense mutation. The case highlights the association of epilepsy syndrome and atrial fibrillation with early repolarization syndrome; possible association of KCND3 gene mutation with a malignant phenotype; and management issues in a small child. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mrigank Choubey
- Cardiology, All India Institute of Medical Sciences, New Delhi, India
| | - Raghav Bansal
- Cardiology, All India Institute of Medical Sciences, New Delhi, India
| | | | - Nitish Naik
- Cardiology, All India Institute of Medical Sciences, New Delhi, India
| | - Gautam Sharma
- Cardiology, All India Institute of Medical Sciences, New Delhi, India
| | - Anita Saxena
- Cardiology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
22
|
Li Y, Lang S, Akin I, Zhou X, El-Battrawy I. Brugada Syndrome: Different Experimental Models and the Role of Human Cardiomyocytes From Induced Pluripotent Stem Cells. J Am Heart Assoc 2022; 11:e024410. [PMID: 35322667 PMCID: PMC9075459 DOI: 10.1161/jaha.121.024410] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Brugada syndrome (BrS) is an inherited and rare cardiac arrhythmogenic disease associated with an increased risk of ventricular fibrillation and sudden cardiac death. Different genes have been linked to BrS. The majority of mutations are located in the SCN5A gene, and the typical abnormal ECG is an elevation of the ST segment in the right precordial leads V1 to V3. The pathophysiological mechanisms of BrS were studied in different models, including animal models, heterologous expression systems, and human-induced pluripotent stem cell-derived cardiomyocyte models. Currently, only a few BrS studies have used human-induced pluripotent stem cell-derived cardiomyocytes, most of which have focused on genotype-phenotype correlations and drug screening. The combination of new technologies, such as clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 (CRISPR associated protein 9)-mediated genome editing and 3-dimensional engineered heart tissues, has provided novel insights into the pathophysiological mechanisms of the disease and could offer opportunities to improve the diagnosis and treatment of patients with BrS. This review aimed to compare different models of BrS for a better understanding of the roles of human-induced pluripotent stem cell-derived cardiomyocytes in current BrS research and personalized medicine at a later stage.
Collapse
Affiliation(s)
- Yingrui Li
- First Department of Medicine Medical Faculty Mannheim University Medical Centre Mannheim (UMM)University of Heidelberg Mannheim Germany
| | - Siegfried Lang
- First Department of Medicine Medical Faculty Mannheim University Medical Centre Mannheim (UMM)University of Heidelberg Mannheim Germany.,DZHK (German Center for Cardiovascular Research), Partner Site, Heidelberg-Mannheim Mannheim Germany
| | - Ibrahim Akin
- First Department of Medicine Medical Faculty Mannheim University Medical Centre Mannheim (UMM)University of Heidelberg Mannheim Germany.,DZHK (German Center for Cardiovascular Research), Partner Site, Heidelberg-Mannheim Mannheim Germany
| | - Xiaobo Zhou
- First Department of Medicine Medical Faculty Mannheim University Medical Centre Mannheim (UMM)University of Heidelberg Mannheim Germany.,Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province Institute of Cardiovascular Research Southwest Medical University Luzhou Sichuan China.,DZHK (German Center for Cardiovascular Research), Partner Site, Heidelberg-Mannheim Mannheim Germany
| | - Ibrahim El-Battrawy
- First Department of Medicine Medical Faculty Mannheim University Medical Centre Mannheim (UMM)University of Heidelberg Mannheim Germany.,DZHK (German Center for Cardiovascular Research), Partner Site, Heidelberg-Mannheim Mannheim Germany.,Department of Cardiology and Angiology Bergmannsheil Bochum Medical Clinic II Ruhr University Bochum Germany
| |
Collapse
|
23
|
Krahn AD, Behr ER, Hamilton R, Probst V, Laksman Z, Han HC. Brugada Syndrome. JACC Clin Electrophysiol 2022; 8:386-405. [PMID: 35331438 DOI: 10.1016/j.jacep.2021.12.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/09/2021] [Accepted: 12/15/2021] [Indexed: 12/15/2022]
Abstract
Brugada syndrome (BrS) is an "inherited" condition characterized by predisposition to syncope and cardiac arrest, predominantly during sleep. The prevalence is ∼1:2,000, and is more commonly diagnosed in young to middle-aged males, although patient sex does not appear to impact prognosis. Despite the perception of BrS being an inherited arrhythmia syndrome, most cases are not associated with a single causative gene variant. Electrocardiogram (ECG) findings support variable extent of depolarization and repolarization changes, with coved ST-segment elevation ≥2 mm and a negative T-wave in the right precordial leads. These ECG changes are often intermittent, and may be provoked by fever or sodium channel blocker challenge. Growing evidence from cardiac imaging, epicardial ablation, and pathology studies suggests the presence of an epicardial arrhythmic substrate within the right ventricular outflow tract. Risk stratification aims to identify those who are at increased risk of sudden cardiac death, with well-established factors being the presence of spontaneous ECG changes and a history of cardiac arrest or cardiogenic syncope. Current management involves conservative measures in asymptomatic patients, including fever management and drug avoidance. Symptomatic patients typically undergo implantable cardioverter defibrillator insertion, with quinidine and epicardial ablation used for patients with recurrent arrhythmia. This review summarizes our current understanding of BrS and provides clinicians with a practical approach to diagnosis and management.
Collapse
Affiliation(s)
- Andrew D Krahn
- Center for Cardiovascular Innovation, Heart Rhythm Services, Division of Cardiology, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Elijah R Behr
- Cardiovascular Clinical Academic Group and Cardiology Research Centre, St. George's, University of London and St. George's University Hospitals NHS Foundation Trust, London, United Kingdom
| | - Robert Hamilton
- Department of Pediatrics (Cardiology), The Labatt Family Heart Centre and Translational Medicine, The Hospital for Sick Children & Research Institute and the University of Toronto, Toronto, Canada
| | - Vincent Probst
- Cardiologic Department and Reference Center for Hereditary Arrhythmic Diseases, Nantes University Hospital, Nantes, France
| | - Zachary Laksman
- Center for Cardiovascular Innovation, Heart Rhythm Services, Division of Cardiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hui-Chen Han
- Center for Cardiovascular Innovation, Heart Rhythm Services, Division of Cardiology, University of British Columbia, Vancouver, British Columbia, Canada; Victorian Heart Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
24
|
Chen L, He Y, Wang X, Ge J, Li H. Ventricular voltage-gated ion channels: Detection, characteristics, mechanisms, and drug safety evaluation. Clin Transl Med 2021; 11:e530. [PMID: 34709746 PMCID: PMC8516344 DOI: 10.1002/ctm2.530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiac voltage-gated ion channels (VGICs) play critical roles in mediating cardiac electrophysiological signals, such as action potentials, to maintain normal heart excitability and contraction. Inherited or acquired alterations in the structure, expression, or function of VGICs, as well as VGIC-related side effects of pharmaceutical drug delivery can result in abnormal cellular electrophysiological processes that induce life-threatening cardiac arrhythmias or even sudden cardiac death. Hence, to reduce possible heart-related risks, VGICs must be acknowledged as important targets in drug discovery and safety studies related to cardiac disease. In this review, we first summarize the development and application of electrophysiological techniques that are employed in cardiac VGIC studies alone or in combination with other techniques such as cryoelectron microscopy, optical imaging and optogenetics. Subsequently, we describe the characteristics, structure, mechanisms, and functions of various well-studied VGICs in ventricular myocytes and analyze their roles in and contributions to both physiological cardiac excitability and inherited cardiac diseases. Finally, we address the implications of the structure and function of ventricular VGICs for drug safety evaluation. In summary, multidisciplinary studies on VGICs help researchers discover potential targets of VGICs and novel VGICs in heart, enrich their knowledge of the properties and functions, determine the operation mechanisms of pathological VGICs, and introduce groundbreaking trends in drug therapy strategies, and drug safety evaluation.
Collapse
Affiliation(s)
- Lulan Chen
- Department of Cardiology, Shanghai Institute of Cardiovascular DiseasesShanghai Xuhui District Central Hospital & Zhongshan‐xuhui Hospital, Zhongshan Hospital, Fudan UniversityShanghaiChina
| | - Yue He
- Department of CardiologyShanghai Xuhui District Central Hospital & Zhongshan‐xuhui HospitalShanghaiChina
| | - Xiangdong Wang
- Institute of Clinical Science, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Junbo Ge
- Department of Cardiology, Shanghai Institute of Cardiovascular DiseasesShanghai Xuhui District Central Hospital & Zhongshan‐xuhui Hospital, Zhongshan Hospital, Fudan UniversityShanghaiChina
| | - Hua Li
- Department of Cardiology, Shanghai Institute of Cardiovascular DiseasesShanghai Xuhui District Central Hospital & Zhongshan‐xuhui Hospital, Zhongshan Hospital, Fudan UniversityShanghaiChina
| |
Collapse
|
25
|
Abstract
Brugada syndrome (BrS) is an inherited cardiac arrhythmia syndrome that causes a heightened risk for ventricular tachyarrhythmias and sudden cardiac death. BrS is characterised by a coved ST-segment elevation in right precordial leads. The prevalence is estimated to range between 1 in 5,000 to 1 in 2,000 in different populations, with the highest being in Southeast Asia and in males. More than 18 genes associated with BrS have been discovered and recent evidence has suggested a complex polygenic mode of inheritance with multiple common and rare genetic variants acting in concert to produce the BrS phenotype. Diagnosis of BrS in patients currently relies on presentation with a type-1 Brugada pattern on ECG either spontaneously or following a drug provocation test using a sodium channel blocker. Risk assessment in patients diagnosed with BrS is controversial, especially with regard to the predictive value of programmed electrical stimulation and novel ECG parameters, such as QRS fragmentation. The first line of BrS therapy remains an implantable cardioverter defibrillator (ICD), although radiofrequency catheter ablation has been shown to be an effective option in patients with contraindications for an ICD. True BrS can be unmasked on ECG in susceptible individuals by monitoring factors such as fever, and this has been recently evident in several patients infected with the 2019 novel coronavirus (COVID-19). Aggressive antipyretic therapy and regular ECG monitoring until fever resolves are current recommendations to help reduce the arrhythmic risk in these COVID-19 patients. In this review, we summarise the current knowledge on the epidemiology, pathophysiology, genetics, clinical diagnosis, risk stratification and treatment of patients with BrS, with special emphasis on COVID-19 comorbidity.
Collapse
Affiliation(s)
| | - Giridhar Korlipara
- Cardiology Division of Department of Medicine, Renaissance School of Medicine, Stony Brook Medical Center, Stony Brook, NY, USA
| | | |
Collapse
|
26
|
Kamga MVK, Reppel M, Hescheler J, Nguemo F. Modeling genetic cardiac channelopathies using induced pluripotent stem cells - Status quo from an electrophysiological perspective. Biochem Pharmacol 2021; 192:114746. [PMID: 34461117 DOI: 10.1016/j.bcp.2021.114746] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 12/15/2022]
Abstract
Long QT syndrome (LQTS), Brugada syndrome (BrS), and catecholaminergic polymorphic ventricular tachycardia (CPVT) are genetic diseases of the heart caused by mutations in specific cardiac ion channels and are characterized by paroxysmal arrhythmias, which can deteriorate into ventricular fibrillation. In LQTS3 and BrS different mutations in the SCN5A gene lead to a gain-or a loss-of-function of the voltage-gated sodium channel Nav1.5, respectively. Although sharing the same gene mutation, these syndromes are characterized by different clinical manifestations and functional perturbations and in some cases even present an overlapping clinical phenotype. Several studies have shown that Na+ current abnormalities in LQTS3 and BrS can also cause Ca2+-signaling aberrancies in cardiomyocytes (CMs). Abnormal Ca2+ homeostasis is also the main feature of CPVT which is mostly caused by heterozygous mutations in the RyR2 gene. Large numbers of disease-causing mutations were identified in RyR2 and SCN5A but it is not clear how different variants in the SCN5A gene produce different clinical syndromes and if in CPVT Ca2+ abnormalities and drug sensitivities vary depending on the mutation site in the RyR2. These questions can now be addressed by using patient-specific in vitro models of these diseases based on induced pluripotent stem cells (iPSCs). In this review, we summarize different insights gained from these models with a focus on electrophysiological perturbations caused by different ion channel mutations and discuss how will this knowledge help develop better stratification and more efficient personalized therapies for these patients.
Collapse
Affiliation(s)
- Michelle Vanessa Kapchoup Kamga
- Center for Physiology and Pathophysiology, Institute for Neurophysiology, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Michael Reppel
- Center for Physiology and Pathophysiology, Institute for Neurophysiology, Medical Faculty, University of Cologne, 50931 Cologne, Germany; Praxis für Kardiologie und Angiologie, Landsberg am Lech, Germany
| | - Jürgen Hescheler
- Center for Physiology and Pathophysiology, Institute for Neurophysiology, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Filomain Nguemo
- Center for Physiology and Pathophysiology, Institute for Neurophysiology, Medical Faculty, University of Cologne, 50931 Cologne, Germany.
| |
Collapse
|
27
|
Crotti L, Odening KE, Sanguinetti MC. Heritable arrhythmias associated with abnormal function of cardiac potassium channels. Cardiovasc Res 2021; 116:1542-1556. [PMID: 32227190 DOI: 10.1093/cvr/cvaa068] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/24/2020] [Accepted: 03/26/2020] [Indexed: 12/16/2022] Open
Abstract
Cardiomyocytes express a surprisingly large number of potassium channel types. The primary physiological functions of the currents conducted by these channels are to maintain the resting membrane potential and mediate action potential repolarization under basal conditions and in response to changes in the concentrations of intracellular sodium, calcium, and ATP/ADP. Here, we review the diversity and functional roles of cardiac potassium channels under normal conditions and how heritable mutations in the genes encoding these channels can lead to distinct arrhythmias. We briefly review atrial fibrillation and J-wave syndromes. For long and short QT syndromes, we describe their genetic basis, clinical manifestation, risk stratification, traditional and novel therapeutic approaches, as well as insights into disease mechanisms provided by animal and cellular models.
Collapse
Affiliation(s)
- Lia Crotti
- Center for Cardiac Arrhythmias of Genetic Origin, Istituto Auxologico Italiano, IRCCS, Milan, Italy.,Laboratory of Cardiovascular Genetics, Istituto Auxologico Italiano, IRCCS, Milan, Italy.,Department of Cardiovascular, Neural and Metabolic Sciences, Istituto Auxologico Italiano, IRCCS, San Luca Hospital, Milan, Italy.,Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Katja E Odening
- Department of Cardiology and Angiology I, Heart Center University of Freiburg, Medical Faculty, Freiburg, Germany.,Institute of Experimental Cardiovascular Medicine, Heart Center University of Freiburg, Medical Faculty, Freiburg, Germany.,Department of Cardiology, Translational Cardiology, Inselspital, Bern University Hospital, and Institute of Physiology, University of Bern, Bern, Switzerland
| | - Michael C Sanguinetti
- Department of Internal Medicine, Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
28
|
Rare Gain-of-Function KCND3 Variant Associated with Cerebellar Ataxia, Parkinsonism, Cognitive Dysfunction, and Brain Iron Accumulation. Int J Mol Sci 2021; 22:ijms22158247. [PMID: 34361012 PMCID: PMC8347726 DOI: 10.3390/ijms22158247] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 01/08/2023] Open
Abstract
Loss-of-function mutations in the KV4.3 channel-encoding KCND3 gene are linked to neurodegenerative cerebellar ataxia. Patients suffering from neurodegeneration associated with iron deposition may also present with cerebellar ataxia. The mechanism underlying brain iron accumulation remains unclear. Here, we aim to ascertain the potential pathogenic role of KCND3 variant in iron accumulation-related cerebellar ataxia. We presented a patient with slowly progressive cerebellar ataxia, parkinsonism, cognitive impairment, and iron accumulation in the basal ganglia and the cerebellum. Whole exome sequencing analyses identified in the patient a heterozygous KCND3 c.1256G>A (p.R419H) variant predicted to be disease-causing by multiple bioinformatic analyses. In vitro biochemical and immunofluorescence examinations revealed that, compared to the human KV4.3 wild-type channel, the p.R419H variant exhibited normal protein abundance and subcellular localization pattern. Electrophysiological investigation, however, demonstrated that the KV4.3 p.R419H variant was associated with a dominant increase in potassium current amplitudes, as well as notable changes in voltage-dependent gating properties leading to enhanced potassium window current. These observations indicate that, in direct contrast with the loss-of-function KCND3 mutations previously reported in cerebellar ataxia patients, we identified a rare gain-of-function KCND3 variant that may expand the clinical and molecular spectra of neurodegenerative cerebellar disorders associated with brain iron accumulation.
Collapse
|
29
|
Xiao Z, Zhao P, Wu X, Kong X, Wang R, Liang S, Tang C, Liu Z. Variation of Two S3b Residues in K V4.1-4.3 Channels Underlies Their Different Modulations by Spider Toxin κ-LhTx-1. Front Pharmacol 2021; 12:692076. [PMID: 34177600 PMCID: PMC8222713 DOI: 10.3389/fphar.2021.692076] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/27/2021] [Indexed: 11/13/2022] Open
Abstract
The naturally occurred peptide toxins from animal venoms are valuable pharmacological tools in exploring the structure-function relationships of ion channels. Herein we have identified the peptide toxin κ-LhTx-1 from the venom of spider Pandercetes sp (the Lichen huntsman spider) as a novel selective antagonist of the KV4 family potassium channels. κ-LhTx-1 is a gating-modifier toxin impeded KV4 channels' voltage sensor activation, and mutation analysis has confirmed its binding site on channels' S3b region. Interestingly, κ-LhTx-1 differently modulated the gating of KV4 channels, as revealed by toxin inhibiting KV4.2/4.3 with much more stronger voltage-dependence than that for KV4.1. We proposed that κ-LhTx-1 trapped the voltage sensor of KV4.1 in a much more stable resting state than that for KV4.2/4.3 and further explored the underlying mechanism. Swapping the non-conserved S3b segments between KV4.1(280FVPK283) and KV4.3(275VMTN278) fully reversed their voltage-dependence phenotypes in inhibition by κ-LhTx-1, and intensive mutation analysis has identified P282 in KV4.1, D281 in KV4.2 and N278 in KV4.3 being the key residues. Furthermore, the last two residues in this segment of each KV4 channel (P282/K283 in KV4.1, T280/D281 in KV4.2 and T277/N278 in KV4.3) likely worked synergistically as revealed by our combinatorial mutations analysis. The present study has clarified the molecular basis in KV4 channels for their different modulations by κ-LhTx-1, which have advanced our understanding on KV4 channels' structure features. Moreover, κ-LhTx-1 might be useful in developing anti-arrhythmic drugs given its high affinity, high selectivity and unique action mode in interacting with the KV4.2/4.3 channels.
Collapse
Affiliation(s)
- Zhen Xiao
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Piao Zhao
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Xiangyue Wu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Xiangjin Kong
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Ruiwen Wang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Songping Liang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Cheng Tang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Zhonghua Liu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| |
Collapse
|
30
|
Precision Medicine Approaches to Cardiac Arrhythmias: JACC Focus Seminar 4/5. J Am Coll Cardiol 2021; 77:2573-2591. [PMID: 34016268 DOI: 10.1016/j.jacc.2021.03.325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/15/2022]
Abstract
In the initial 3 papers in this Focus Seminar series, the fundamentals and key concepts of precision medicine were reviewed, followed by a focus on precision medicine in the context of vascular disease and cardiomyopathy. For the remaining 2 papers, we focus on precision medicine in the context of arrhythmias. Specifically, in this fourth paper we focus on long QT syndrome, Brugada syndrome, and atrial fibrillation. The final (fifth) paper will deal with catecholaminergic polymorphic ventricular tachycardia. These arrhythmias represent a spectrum of disease ranging from common to relatively rare, with very different genetic and environmental causative factors, and with differing clinical manifestations that range from almost no consequences to lethality in childhood or adolescence if untreated. Accordingly, the emerging precision medicine approaches to these arrhythmias vary significantly, but several common themes include increased use of genetic testing, avoidance of triggers, and personalized risk stratification to guide the use of arrhythmia-specific therapies.
Collapse
|
31
|
Nakajima T, Tamura S, Kurabayashi M, Kaneko Y. Towards Mutation-Specific Precision Medicine in Atypical Clinical Phenotypes of Inherited Arrhythmia Syndromes. Int J Mol Sci 2021; 22:ijms22083930. [PMID: 33920294 PMCID: PMC8069124 DOI: 10.3390/ijms22083930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 04/08/2021] [Indexed: 12/19/2022] Open
Abstract
Most causal genes for inherited arrhythmia syndromes (IASs) encode cardiac ion channel-related proteins. Genotype-phenotype studies and functional analyses of mutant genes, using heterologous expression systems and animal models, have revealed the pathophysiology of IASs and enabled, in part, the establishment of causal gene-specific precision medicine. Additionally, the utilization of induced pluripotent stem cell (iPSC) technology have provided further insights into the pathophysiology of IASs and novel promising therapeutic strategies, especially in long QT syndrome. It is now known that there are atypical clinical phenotypes of IASs associated with specific mutations that have unique electrophysiological properties, which raises a possibility of mutation-specific precision medicine. In particular, patients with Brugada syndrome harboring an SCN5A R1632C mutation exhibit exercise-induced cardiac events, which may be caused by a marked activity-dependent loss of R1632C-Nav1.5 availability due to a marked delay of recovery from inactivation. This suggests that the use of isoproterenol should be avoided. Conversely, the efficacy of β-blocker needs to be examined. Patients harboring a KCND3 V392I mutation exhibit both cardiac (early repolarization syndrome and paroxysmal atrial fibrillation) and cerebral (epilepsy) phenotypes, which may be associated with a unique mixed electrophysiological property of V392I-Kv4.3. Since the epileptic phenotype appears to manifest prior to cardiac events in this mutation carrier, identifying KCND3 mutations in patients with epilepsy and providing optimal therapy will help prevent sudden unexpected death in epilepsy. Further studies using the iPSC technology may provide novel insights into the pathophysiology of atypical clinical phenotypes of IASs and the development of mutation-specific precision medicine.
Collapse
|
32
|
Yoon N, Jeong HK, Lee KH, Park HW, Cho JG. Right Ventricular Longitudinal Conduction Delay in Patients with Brugada Syndrome. J Korean Med Sci 2021; 36:e75. [PMID: 33754508 PMCID: PMC7985285 DOI: 10.3346/jkms.2021.36.e75] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 01/12/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND The mechanism of Brugada syndrome (BrS) is still unclear, with different researchers favoring either the repolarization or depolarization hypothesis. Prolonged longitudinal activation time has been verified in only a small number of human right ventricles (RVs). The purpose of the present study was to demonstrate RV conduction delays in BrS. METHODS The RV outflow tract (RVOT)-to-RV apex (RVA) and RVA-to-RVOT conduction times were measured by endocardial stimulation and mapping in 7 patients with BrS and 14 controls. RESULTS Patients with BrS had a longer PR interval (180 ± 12.6 vs. 142 ± 6.7 ms, P = 0.016). The RVA-to-RVOT conduction time was longer in the patients with BrS than in controls (stimulation at 600 ms, 107 ± 9.9 vs. 73 ± 3.4 ms, P = 0.001; stimulation at 500 ms, 104 ± 12.3 vs. 74 ± 4.2 ms, P = 0.037; stimulation at 400 ms, 107 ±12.2 vs. 73 ± 5.1 ms, P = 0.014). The RVOT-to-RVA conduction time was longer in the patients with BrS than in controls (stimulation at 500 ms, 95 ± 10.3 vs. 62 ± 4.1 ms, P = 0.007; stimulation at 400 ms, 94 ±11.2 vs. 64 ± 4.6 ms, P = 0.027). The difference in longitudinal conduction time was not significant when isoproterenol was administered. CONCLUSION The patients with BrS showed an RV longitudinal conduction delay obviously. These findings suggest that RV conduction delay might contribute to generate the BrS phenotype.
Collapse
Affiliation(s)
- Namsik Yoon
- Heart Center of Chonnam National University Hospital, Gwangju, Korea
- Division of Cardiology, Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Hyung Ki Jeong
- Heart Center of Chonnam National University Hospital, Gwangju, Korea
| | - Ki Hong Lee
- Heart Center of Chonnam National University Hospital, Gwangju, Korea
- Division of Cardiology, Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Hyung Wook Park
- Heart Center of Chonnam National University Hospital, Gwangju, Korea
- Division of Cardiology, Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Jeong Gwan Cho
- Heart Center of Chonnam National University Hospital, Gwangju, Korea
- Division of Cardiology, Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea.
| |
Collapse
|
33
|
Paucar M, Ågren R, Li T, Lissmats S, Bergendal Å, Weinberg J, Nilsson D, Savichetva I, Sahlholm K, Nilsson J, Svenningsson P. V374A KCND3 Pathogenic Variant Associated With Paroxysmal Ataxia Exacerbations. NEUROLOGY-GENETICS 2021; 7:e546. [PMID: 33575485 PMCID: PMC7862093 DOI: 10.1212/nxg.0000000000000546] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/27/2020] [Indexed: 12/27/2022]
Abstract
Objective Ataxia channelopathies share common features such as slow motor progression and variable degrees of cognitive dysfunction. Mutations in potassium voltage-gated channel subfamily D member 3 (KCND3), encoding the K+ channel, Kv4.3, are associated with spinocerebellar ataxia (SCA) 19, allelic with SCA22. Mutations in potassium voltage-gated channel subfamily C member 3 (KCNC3), encoding another K+ channel, Kv3.3, cause SCA13. First, a comprehensive phenotype assessment was carried out in a family with autosomal dominant ataxia harboring 2 genetic variants in KCNC3 and KCND3. To evaluate the physiological impact of these variants on channel currents, in vitro studies were performed. Methods Clinical and psychometric evaluations, neuroimaging, and genotyping of a family (mother and son) affected by ataxia were carried out. Heterozygous and homozygous Kv3.3 A671V and Kv4.3 V374A variants were evaluated in Xenopus laevis oocytes using 2-electrode voltage-clamp. The influence of Kv4 conductance on neuronal activity was investigated computationally using a Purkinje neuron model. Results The main clinical findings were consistent with adult-onset ataxia with cognitive dysfunction and acetazolamide-responsive paroxysmal motor exacerbations in the index case. Despite cognitive deficits, fluorodeoxyglucose (FDG)-PET displayed hypometabolism mainly in the severely atrophic cerebellum. Genetic analyses revealed the new variant c.1121T>C (V374A) in KCND3 and c.2012T>C (A671V) in KCNC3. In vitro electrophysiology experiments on Xenopus oocytes demonstrated that the V374A mutant was nonfunctional when expressed on its own. Upon equal co-expression of wild-type (WT) and V374A channel subunits, Kv4.3 currents were significantly reduced in a dominant negative manner, without alterations of the gating properties of the channel. By contrast, Kv3.3 A671V, when expressed alone, exhibited moderately reduced currents compared with WT, with no effects on channel activation or inactivation. Immunohistochemistry demonstrated adequate cell membrane translocation of the Kv4.3 V374A variant, thus suggesting an impairment of channel function, rather than of expression. Computational modeling predicted an increased Purkinje neuron firing frequency upon reduced Kv4.3 conductance. Conclusions Our findings suggest that Kv4.3 V374A is likely pathogenic and associated with paroxysmal ataxia exacerbations, a new trait for SCA19/22. The present FDG PET findings contrast with a previous study demonstrating widespread brain hypometabolism in SCA19/22.
Collapse
Affiliation(s)
- Martin Paucar
- Department of Clinical Neuroscience (M.P., R.Å., T.L., Å.B., J.N., P.S.), Department of Molecular Medicine and Surgery (D.N.), Center for Molecular Medicine (D.N.), and Science for Life Laboratory (D.N.), Karolinska Institutet (S.L., I.S.), Stockholm; Department of Neurology (M.P., J.W., P.S.), Department of Clinical Genetics (D.N.), Department of Nuclear Medicine (I.S.), and Department of Neurophysiology (J.N.), Karolinska University Hospital (R.Å.), Stockholm; Department of Integrative Medical Biology (K.S.), Umeå University; and Department of Medical Sciences (J.N.), Örebro University, Sweden
| | - Richard Ågren
- Department of Clinical Neuroscience (M.P., R.Å., T.L., Å.B., J.N., P.S.), Department of Molecular Medicine and Surgery (D.N.), Center for Molecular Medicine (D.N.), and Science for Life Laboratory (D.N.), Karolinska Institutet (S.L., I.S.), Stockholm; Department of Neurology (M.P., J.W., P.S.), Department of Clinical Genetics (D.N.), Department of Nuclear Medicine (I.S.), and Department of Neurophysiology (J.N.), Karolinska University Hospital (R.Å.), Stockholm; Department of Integrative Medical Biology (K.S.), Umeå University; and Department of Medical Sciences (J.N.), Örebro University, Sweden
| | - Tianyi Li
- Department of Clinical Neuroscience (M.P., R.Å., T.L., Å.B., J.N., P.S.), Department of Molecular Medicine and Surgery (D.N.), Center for Molecular Medicine (D.N.), and Science for Life Laboratory (D.N.), Karolinska Institutet (S.L., I.S.), Stockholm; Department of Neurology (M.P., J.W., P.S.), Department of Clinical Genetics (D.N.), Department of Nuclear Medicine (I.S.), and Department of Neurophysiology (J.N.), Karolinska University Hospital (R.Å.), Stockholm; Department of Integrative Medical Biology (K.S.), Umeå University; and Department of Medical Sciences (J.N.), Örebro University, Sweden
| | - Simon Lissmats
- Department of Clinical Neuroscience (M.P., R.Å., T.L., Å.B., J.N., P.S.), Department of Molecular Medicine and Surgery (D.N.), Center for Molecular Medicine (D.N.), and Science for Life Laboratory (D.N.), Karolinska Institutet (S.L., I.S.), Stockholm; Department of Neurology (M.P., J.W., P.S.), Department of Clinical Genetics (D.N.), Department of Nuclear Medicine (I.S.), and Department of Neurophysiology (J.N.), Karolinska University Hospital (R.Å.), Stockholm; Department of Integrative Medical Biology (K.S.), Umeå University; and Department of Medical Sciences (J.N.), Örebro University, Sweden
| | - Åsa Bergendal
- Department of Clinical Neuroscience (M.P., R.Å., T.L., Å.B., J.N., P.S.), Department of Molecular Medicine and Surgery (D.N.), Center for Molecular Medicine (D.N.), and Science for Life Laboratory (D.N.), Karolinska Institutet (S.L., I.S.), Stockholm; Department of Neurology (M.P., J.W., P.S.), Department of Clinical Genetics (D.N.), Department of Nuclear Medicine (I.S.), and Department of Neurophysiology (J.N.), Karolinska University Hospital (R.Å.), Stockholm; Department of Integrative Medical Biology (K.S.), Umeå University; and Department of Medical Sciences (J.N.), Örebro University, Sweden
| | - Jan Weinberg
- Department of Clinical Neuroscience (M.P., R.Å., T.L., Å.B., J.N., P.S.), Department of Molecular Medicine and Surgery (D.N.), Center for Molecular Medicine (D.N.), and Science for Life Laboratory (D.N.), Karolinska Institutet (S.L., I.S.), Stockholm; Department of Neurology (M.P., J.W., P.S.), Department of Clinical Genetics (D.N.), Department of Nuclear Medicine (I.S.), and Department of Neurophysiology (J.N.), Karolinska University Hospital (R.Å.), Stockholm; Department of Integrative Medical Biology (K.S.), Umeå University; and Department of Medical Sciences (J.N.), Örebro University, Sweden
| | - Daniel Nilsson
- Department of Clinical Neuroscience (M.P., R.Å., T.L., Å.B., J.N., P.S.), Department of Molecular Medicine and Surgery (D.N.), Center for Molecular Medicine (D.N.), and Science for Life Laboratory (D.N.), Karolinska Institutet (S.L., I.S.), Stockholm; Department of Neurology (M.P., J.W., P.S.), Department of Clinical Genetics (D.N.), Department of Nuclear Medicine (I.S.), and Department of Neurophysiology (J.N.), Karolinska University Hospital (R.Å.), Stockholm; Department of Integrative Medical Biology (K.S.), Umeå University; and Department of Medical Sciences (J.N.), Örebro University, Sweden
| | - Irina Savichetva
- Department of Clinical Neuroscience (M.P., R.Å., T.L., Å.B., J.N., P.S.), Department of Molecular Medicine and Surgery (D.N.), Center for Molecular Medicine (D.N.), and Science for Life Laboratory (D.N.), Karolinska Institutet (S.L., I.S.), Stockholm; Department of Neurology (M.P., J.W., P.S.), Department of Clinical Genetics (D.N.), Department of Nuclear Medicine (I.S.), and Department of Neurophysiology (J.N.), Karolinska University Hospital (R.Å.), Stockholm; Department of Integrative Medical Biology (K.S.), Umeå University; and Department of Medical Sciences (J.N.), Örebro University, Sweden
| | - Kristoffer Sahlholm
- Department of Clinical Neuroscience (M.P., R.Å., T.L., Å.B., J.N., P.S.), Department of Molecular Medicine and Surgery (D.N.), Center for Molecular Medicine (D.N.), and Science for Life Laboratory (D.N.), Karolinska Institutet (S.L., I.S.), Stockholm; Department of Neurology (M.P., J.W., P.S.), Department of Clinical Genetics (D.N.), Department of Nuclear Medicine (I.S.), and Department of Neurophysiology (J.N.), Karolinska University Hospital (R.Å.), Stockholm; Department of Integrative Medical Biology (K.S.), Umeå University; and Department of Medical Sciences (J.N.), Örebro University, Sweden
| | - Johanna Nilsson
- Department of Clinical Neuroscience (M.P., R.Å., T.L., Å.B., J.N., P.S.), Department of Molecular Medicine and Surgery (D.N.), Center for Molecular Medicine (D.N.), and Science for Life Laboratory (D.N.), Karolinska Institutet (S.L., I.S.), Stockholm; Department of Neurology (M.P., J.W., P.S.), Department of Clinical Genetics (D.N.), Department of Nuclear Medicine (I.S.), and Department of Neurophysiology (J.N.), Karolinska University Hospital (R.Å.), Stockholm; Department of Integrative Medical Biology (K.S.), Umeå University; and Department of Medical Sciences (J.N.), Örebro University, Sweden
| | - Per Svenningsson
- Department of Clinical Neuroscience (M.P., R.Å., T.L., Å.B., J.N., P.S.), Department of Molecular Medicine and Surgery (D.N.), Center for Molecular Medicine (D.N.), and Science for Life Laboratory (D.N.), Karolinska Institutet (S.L., I.S.), Stockholm; Department of Neurology (M.P., J.W., P.S.), Department of Clinical Genetics (D.N.), Department of Nuclear Medicine (I.S.), and Department of Neurophysiology (J.N.), Karolinska University Hospital (R.Å.), Stockholm; Department of Integrative Medical Biology (K.S.), Umeå University; and Department of Medical Sciences (J.N.), Örebro University, Sweden
| |
Collapse
|
34
|
Li W, Stauske M, Luo X, Wagner S, Vollrath M, Mehnert CS, Schubert M, Cyganek L, Chen S, Hasheminasab SM, Wulf G, El-Armouche A, Maier LS, Hasenfuss G, Guan K. Disease Phenotypes and Mechanisms of iPSC-Derived Cardiomyocytes From Brugada Syndrome Patients With a Loss-of-Function SCN5A Mutation. Front Cell Dev Biol 2020; 8:592893. [PMID: 33195263 PMCID: PMC7642519 DOI: 10.3389/fcell.2020.592893] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 10/01/2020] [Indexed: 12/19/2022] Open
Abstract
Brugada syndrome (BrS) is one of the major causes of sudden cardiac death in young people, while the underlying mechanisms are not completely understood. Here, we investigated the pathophysiological phenotypes and mechanisms using induced pluripotent stem cell (iPSC)-derived cardiomyocytes (CMs) from two BrS patients (BrS-CMs) carrying a heterozygous SCN5A mutation p.S1812X. Compared to CMs derived from healthy controls (Ctrl-CMs), BrS-CMs displayed a 50% reduction of INa density, a 69.5% reduction of NaV1.5 expression, and the impaired localization of NaV1.5 and connexin 43 (Cx43) at the cell surface. BrS-CMs exhibited reduced action potential (AP) upstroke velocity and conduction slowing. The Ito in BrS-CMs was significantly augmented, and the ICaL window current probability was increased. Our data indicate that the electrophysiological mechanisms underlying arrhythmia in BrS-CMs may involve both depolarization and repolarization disorders. Cilostazol and milrinone showed dramatic inhibitions of Ito in BrS-CMs and alleviated the arrhythmic activity, suggesting their therapeutic potential for BrS patients.
Collapse
Affiliation(s)
- Wener Li
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, Dresden, Germany
| | - Michael Stauske
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK), Partner site Göttingen, Göttingen, Germany
| | - Xiaojing Luo
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, Dresden, Germany
| | - Stefan Wagner
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany.,Department of Hematology and Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Meike Vollrath
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, Dresden, Germany
| | - Carola S Mehnert
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, Dresden, Germany
| | - Mario Schubert
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, Dresden, Germany
| | - Lukas Cyganek
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK), Partner site Göttingen, Göttingen, Germany
| | - Simin Chen
- German Center for Cardiovascular Research (DZHK), Partner site Göttingen, Göttingen, Germany
| | - Sayed-Mohammad Hasheminasab
- Department of Dermatology, Venereology and Allergy, Charité - Universitätsmedizin Berlin, Berlin, Germany.,CCU Translational Radiation Oncology, German Cancer Consortium Core-Center Heidelberg, National Center for Tumor Diseases, Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Gerald Wulf
- Department of Hematology and Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Ali El-Armouche
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, Dresden, Germany
| | - Lars S Maier
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany.,Clinic for Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Gerd Hasenfuss
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK), Partner site Göttingen, Göttingen, Germany
| | - Kaomei Guan
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, Dresden, Germany.,Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK), Partner site Göttingen, Göttingen, Germany
| |
Collapse
|
35
|
Nakajima T, Kawabata-Iwakawa R, Kaneko Y, Hamano SI, Sano R, Tamura S, Hasegawa H, Kobari T, Kominato Y, Nishiyama M, Kurabayashi M. Novel Cardiocerebral Channelopathy Associated with a KCND3 V392I Mutation. Int Heart J 2020; 61:1049-1055. [PMID: 32921676 DOI: 10.1536/ihj.20-203] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
While a KCND3 V392I mutation uniquely displays a mixed electrophysiological phenotype of Kv4.3, only limited clinical information on the mutation carriers is available. We report two teenage siblings exhibiting both cardiac (early repolarization syndrome and paroxysmal atrial fibrillation) and cerebral phenotypes (epilepsy and intellectual disability), in whom we identified the KCND3 V392I mutation. We propose a link between the KCND3 mutation with a mixed electrophysiological phenotype and cardiocerebral phenotypes, which may be defined as a novel cardiocerebral channelopathy.
Collapse
Affiliation(s)
- Tadashi Nakajima
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine
| | - Reika Kawabata-Iwakawa
- Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research
| | - Yoshiaki Kaneko
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine
| | | | - Rie Sano
- Department of Legal Medicine, Gunma University Graduate School of Medicine
| | - Shuntaro Tamura
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine
| | - Hiroshi Hasegawa
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine
| | - Takashi Kobari
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine
| | - Yoshihiko Kominato
- Department of Legal Medicine, Gunma University Graduate School of Medicine
| | - Masahiko Nishiyama
- Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research.,Department of Molecular Pharmacology and Oncology, Gunma University Graduate School of Medicine
| | - Masahiko Kurabayashi
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine
| |
Collapse
|
36
|
Li X, Li Z, Wang DWW, Wang DW, Wang Y. A Novel Gain-of-Function KCND3 Variant Associated with Brugada Syndrome. Cardiology 2020; 145:623-632. [PMID: 32818936 DOI: 10.1159/000508033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/06/2020] [Indexed: 11/19/2022]
Abstract
Brugada syndrome (BrS) is a known cause of sudden cardiac death (SCD) characterized by abnormal electrocardiograms and fatal arrhythmias. The variants in KCND3 encoding the KV4.3 potassium-channel (the α-subunit of the Ito) have seldom been reported in BrS. This study aimed to identify novel KCND3 variants associated with BrS and elucidate BrS pathogenesis. High-depth targeted sequencing was performed and the electrophysiological properties of the variants were detected by whole-cell patch-clamp methods in a cultured-cell expressing system. The transcriptional levels of KV4.3 in different genotypes were studied by real-time PCR. Western blot was used to assess channel protein expression. A novel KCND3heterozygous variant, c.1292G>A (Arg431His, R431H), was found in the proband. Whole-cell patch-clamp results revealed a gain-of-function phenotype in the variant, with peak Ito current density increased and faster recovery from inactivation. The expression of mutant Kv4.3 membrane protein increased and the cytoplasmic protein decreased, demonstrating that the membrane/cytoplasm ratio was significantly different. In conclusion, a novel KCND3 heterozygous variant was associated with BrS. The increased Ito current explained the critical role of KCND3 in the pathogenesis of BrS. Genetic screening for KCND3 could be useful for understanding the pathogenesis of BrS and providing effective risk stratification in the clinic.
Collapse
Affiliation(s)
- Xianqing Li
- Division of Cardiology, Departments of Internal Medicine and Genetic Diagnosis Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Zongzhe Li
- Division of Cardiology, Departments of Internal Medicine and Genetic Diagnosis Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Dao Wen Wen Wang
- Division of Cardiology, Departments of Internal Medicine and Genetic Diagnosis Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Dao Wu Wang
- State Key Laboratory of Reproductive Medicine, the Center for Clinical Reproductive Medicine and Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yan Wang
- Division of Cardiology, Departments of Internal Medicine and Genetic Diagnosis Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China, .,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan, China,
| |
Collapse
|
37
|
Inter-Regulation of K v4.3 and Voltage-Gated Sodium Channels Underlies Predisposition to Cardiac and Neuronal Channelopathies. Int J Mol Sci 2020; 21:ijms21145057. [PMID: 32709127 PMCID: PMC7404392 DOI: 10.3390/ijms21145057] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/04/2020] [Accepted: 07/10/2020] [Indexed: 12/13/2022] Open
Abstract
Background: Genetic variants in voltage-gated sodium channels (Nav) encoded by SCNXA genes, responsible for INa, and Kv4.3 channels encoded by KCND3, responsible for the transient outward current (Ito), contribute to the manifestation of both Brugada syndrome (BrS) and spinocerebellar ataxia (SCA19/22). We examined the hypothesis that Kv4.3 and Nav variants regulate each other’s function, thus modulating INa/Ito balance in cardiomyocytes and INa/I(A) balance in neurons. Methods: Bicistronic and other constructs were used to express WT or variant Nav1.5 and Kv4.3 channels in HEK293 cells. INa and Ito were recorded. Results: SCN5A variants associated with BrS reduced INa, but increased Ito. Moreover, BrS and SCA19/22 KCND3 variants associated with a gain of function of Ito, significantly reduced INa, whereas the SCA19/22 KCND3 variants associated with a loss of function (LOF) of Ito significantly increased INa. Auxiliary subunits Navβ1, MiRP3 and KChIP2 also modulated INa/Ito balance. Co-immunoprecipitation and Duolink studies suggested that the two channels interact within the intracellular compartments and biotinylation showed that LOF SCN5A variants can increase Kv4.3 cell-surface expression. Conclusion: Nav and Kv4.3 channels modulate each other’s function via trafficking and gating mechanisms, which have important implications for improved understanding of these allelic cardiac and neuronal syndromes.
Collapse
|
38
|
Rahm AK, Müller ME, Gramlich D, Lugenbiel P, Uludag E, Rivinius R, Ullrich ND, Schmack B, Ruhparwar A, Heimberger T, Weis T, Karck M, Katus HA, Thomas D. Inhibition of cardiac K v4.3 (I to) channel isoforms by class I antiarrhythmic drugs lidocaine and mexiletine. Eur J Pharmacol 2020; 880:173159. [PMID: 32360350 DOI: 10.1016/j.ejphar.2020.173159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 04/01/2020] [Accepted: 04/23/2020] [Indexed: 12/29/2022]
Abstract
Transient outward K+ current, Ito, contributes to cardiac action potential generation and is primarily carried by Kv4.3 (KCND3) channels. Two Kv4.3 isoforms are expressed in human ventricle and show differential remodeling in heart failure (HF). Lidocaine and mexiletine may be applied in selected patients to suppress ventricular arrhythmias, without effects on sudden cardiac death or mortality. Isoform-dependent effects of antiarrhythmic drugs on Kv4.3 channels and potential implications for remodeling-based antiarrhythmic management have not been assessed to date. We sought to test the hypotheses that Kv4.3 channels are targeted by lidocaine and mexiletine, and that drug sensitivity is determined in isoform-specific manner. Expression of KCND3 isoforms was quantified using qRT-PCR in left ventricular samples of patients with HF due to either ischemic or dilated cardiomyopathies (ICM or DCM). Long (Kv4.3-L) and short (Kv4.3-S) isoforms were heterologously expressed in Xenopus laevis oocytes to study drug sensitivity and effects on biophysical characteristics activation, deactivation, inactivation, and recovery from inactivation. In the present HF patient cohort KCND3 isoform expression did not differ between ICM and DCM. In vitro, lidocaine (IC50-Kv4.3-L: 0.8 mM; IC50-Kv4.3-S: 1.2 mM) and mexiletine (IC50-Kv4.3-L: 146 μM; IC50-Kv4.3-S: 160 μM) inhibited Kv4.3 with different sensitivity. Biophysical analyses identified accelerated and enhanced inactivation combined with delayed recovery from inactivation as primary biophysical mechanisms underlying Kv4.3 current reduction. In conclusion, differential effects on Kv4.3 isoforms extend the electropharmacological profile of lidocaine and mexiletine. Patient-specific remodeling of Kv4.3 isoforms may determine individual drug responses and requires consideration during clinical application of compounds targeting Kv4.3.
Collapse
Affiliation(s)
- Ann-Kathrin Rahm
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany; HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Mara Elena Müller
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany; HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Dominik Gramlich
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany; HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Patrick Lugenbiel
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany; HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Ecem Uludag
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany; HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Rasmus Rivinius
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany; HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Nina D Ullrich
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany; Institute of Physiology and Pathophysiology, Division of Cardiovascular Physiology, University of Heidelberg, Im Neuenheimer Feld 307, 69120, Heidelberg, Germany
| | - Bastian Schmack
- Department of Cardiac Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany
| | - Arjang Ruhparwar
- Department of Cardiac Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany
| | - Tanja Heimberger
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Tanja Weis
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Matthias Karck
- Department of Cardiac Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany
| | - Hugo A Katus
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany; HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Dierk Thomas
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany; HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.
| |
Collapse
|
39
|
CYP2J2 Modulates Diverse Transcriptional Programs in Adult Human Cardiomyocytes. Sci Rep 2020; 10:5329. [PMID: 32210298 PMCID: PMC7093536 DOI: 10.1038/s41598-020-62174-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 03/06/2020] [Indexed: 01/05/2023] Open
Abstract
CYP2J2, a member of the Cytochrome P450 family of enzymes, is the most abundant epoxygenase in the heart and has multifunctional properties including bioactivation of arachidonic acid to epoxyeicosatrienoic acids, which, in turn, have been implicated in mediating several cardiovascular conditions. Using a proteomic approach, we found that CYP2J2 expression is lower in cardiac tissue from patients with cardiomyopathy compared to controls. In order to better elucidate the complex role played by CYP2J2 in cardiac cells, we performed targeted silencing of CYP2J2 expression in human adult ventricular cardiomyocytes and interrogated whole genome transcriptional responses. We found that knockdown of CYP2J2 elicits widespread alterations in gene expression of ventricular cardiomyocytes and leads to the activation of a diverse repertoire of programs, including those involved in ion channel signaling, development, extracellular matrix, and metabolism. Several members of the differentially up-regulated ion channel module have well-known pathogenetic roles in cardiac dysrhythmias. By leveraging causal network and upstream regulator analysis, we identified several candidate drivers of the observed transcriptional response to CYP2J2 silencing; these master regulators have been implicated in aberrant cardiac remodeling, heart failure, and myocyte injury and repair. Collectively, our study demonstrates that CYP2J2 plays a central and multifaceted role in cardiomyocyte homeostasis and provides a framework for identifying critical regulators and pathways influenced by this gene in cardiovascular health and disease.
Collapse
|
40
|
Monasky MM, Micaglio E, Ciconte G, Pappone C. Brugada Syndrome: Oligogenic or Mendelian Disease? Int J Mol Sci 2020; 21:ijms21051687. [PMID: 32121523 PMCID: PMC7084676 DOI: 10.3390/ijms21051687] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 02/06/2023] Open
Abstract
Brugada syndrome (BrS) is diagnosed by a coved-type ST-segment elevation in the right precordial leads on the electrocardiogram (ECG), and it is associated with an increased risk of sudden cardiac death (SCD) compared to the general population. Although BrS is considered a genetic disease, its molecular mechanism remains elusive in about 70-85% of clinically-confirmed cases. Variants occurring in at least 26 different genes have been previously considered causative, although the causative effect of all but the SCN5A gene has been recently challenged, due to the lack of systematic, evidence-based evaluations, such as a variant's frequency among the general population, family segregation analyses, and functional studies. Also, variants within a particular gene can be associated with an array of different phenotypes, even within the same family, preventing a clear genotype-phenotype correlation. Moreover, an emerging concept is that a single mutation may not be enough to cause the BrS phenotype, due to the increasing number of common variants now thought to be clinically relevant. Thus, not only the complete list of genes causative of the BrS phenotype remains to be determined, but also the interplay between rare and common multiple variants. This is particularly true for some common polymorphisms whose roles have been recently re-evaluated by outstanding works, including considering for the first time ever a polygenic risk score derived from the heterozygous state for both common and rare variants. The more common a certain variant is, the less impact this variant might have on heart function. We are aware that further studies are warranted to validate a polygenic risk score, because there is no mutated gene that connects all, or even a majority, of BrS cases. For the same reason, it is currently impossible to create animal and cell line genetic models that represent all BrS cases, which would enable the expansion of studies of this syndrome. Thus, the best model at this point is the human patient population. Further studies should first aim to uncover genetic variants within individuals, as well as to collect family segregation data to identify potential genetic causes of BrS.
Collapse
Affiliation(s)
| | | | | | - Carlo Pappone
- Correspondence: ; Tel.: +39-0252-774260; Fax: +39-0252-774306
| |
Collapse
|
41
|
Li KHC, Lee S, Yin C, Liu T, Ngarmukos T, Conte G, Yan GX, Sy RW, Letsas KP, Tse G. Brugada syndrome: A comprehensive review of pathophysiological mechanisms and risk stratification strategies. IJC HEART & VASCULATURE 2020; 26:100468. [PMID: 31993492 PMCID: PMC6974766 DOI: 10.1016/j.ijcha.2020.100468] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 01/01/2020] [Accepted: 01/02/2020] [Indexed: 12/17/2022]
Abstract
Brugada syndrome (BrS) is an inherited ion channel channelopathy predisposing to ventricular arrhythmias and sudden cardiac death. Originally believed to be predominantly associated with mutations in SCN5A encoding for the cardiac sodium channel, mutations of 18 genes other than SCN5A have been implicated in the pathogenesis of BrS to date. Diagnosis is based on the presence of a spontaneous or drug-induced coved-type ST segment elevation. The predominant electrophysiological mechanism underlying BrS remains disputed, commonly revolving around the three main hypotheses based on abnormal repolarization, depolarization or current-load match. Evidence from computational modelling, pre-clinical and clinical studies illustrates that molecular abnormalities found in BrS lead to alterations in excitation wavelength (λ), which ultimately elevates arrhythmic risk. A major challenge for clinicians in managing this condition is the difficulty in predicting the subset of patients who will suffer from life-threatening ventricular arrhythmic events. Several repolarization risk markers have been used thus far, but these neglect the contributions of conduction abnormalities in the form of slowing and dispersion. Indices incorporating both repolarization and conduction based on the concept of λ have recently been proposed. These may have better predictive values than the existing markers. Current treatment options include pharmacological therapy to reduce the occurrence of arrhythmic events or to abort these episodes, and interventions such as implantable cardioverter-defibrillator insertion or radiofrequency ablation of abnormal arrhythmic substrate.
Collapse
Affiliation(s)
- Ka Hou Christien Li
- Faculty of Medicine, Newcastle University, Newcastle, United Kingdom.,Laboratory of Cardiovascular Physiology, Li Ka Shing Institute of Health Sciences, Hong Kong, SAR, PR China
| | - Sharen Lee
- Laboratory of Cardiovascular Physiology, Li Ka Shing Institute of Health Sciences, Hong Kong, SAR, PR China
| | - Chengye Yin
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, PR China
| | - Tachapong Ngarmukos
- Department of Medicine Faculty of Medicine Ramathibodi Hospital Mahidol University, Bangkok, Thailand
| | - Giulio Conte
- Division of Cardiology, Cardiocentro Ticino, Lugano, Switzerland
| | - Gan-Xin Yan
- Lankenau Institute for Medical Research and Lankenau Medical Center, Wynnewood, PA, USA
| | - Raymond W Sy
- Department of Cardiology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia.,Sydney Medical School, University of Sydney, Camperdown, New South Wales, Australia
| | - Konstantinos P Letsas
- Second Department of Cardiology, Laboratory of Cardiac Electrophysiology, Evangelismos General Hospital of Athens, Athens, Greece
| | - Gary Tse
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, PR China.,Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China
| |
Collapse
|
42
|
Pourrier M, Fedida D. The Emergence of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes (hiPSC-CMs) as a Platform to Model Arrhythmogenic Diseases. Int J Mol Sci 2020; 21:ijms21020657. [PMID: 31963859 PMCID: PMC7013748 DOI: 10.3390/ijms21020657] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 12/13/2022] Open
Abstract
There is a need for improved in vitro models of inherited cardiac diseases to better understand basic cellular and molecular mechanisms and advance drug development. Most of these diseases are associated with arrhythmias, as a result of mutations in ion channel or ion channel-modulatory proteins. Thus far, the electrophysiological phenotype of these mutations has been typically studied using transgenic animal models and heterologous expression systems. Although they have played a major role in advancing the understanding of the pathophysiology of arrhythmogenesis, more physiological and predictive preclinical models are necessary to optimize the treatment strategy for individual patients. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have generated much interest as an alternative tool to model arrhythmogenic diseases. They provide a unique opportunity to recapitulate the native-like environment required for mutated proteins to reproduce the human cellular disease phenotype. However, it is also important to recognize the limitations of this technology, specifically their fetal electrophysiological phenotype, which differentiates them from adult human myocytes. In this review, we provide an overview of the major inherited arrhythmogenic cardiac diseases modeled using hiPSC-CMs and for which the cellular disease phenotype has been somewhat characterized.
Collapse
Affiliation(s)
- Marc Pourrier
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada;
- IonsGate Preclinical Services Inc., Vancouver, BC V6T 1Z3, Canada
- Correspondence:
| | - David Fedida
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada;
| |
Collapse
|
43
|
Wang S, Rodríguez-Mañero M, Ibarra-Cortez SH, Kreidieh B, Valderrábano L, Hemam M, Tavares L, Blanco E, Valderrábano M. NS5806 Induces Electromechanically Discordant Alternans and Arrhythmogenic Voltage-Calcium Dynamics in the Isolated Intact Rabbit Heart. Front Physiol 2020; 10:1509. [PMID: 31920713 PMCID: PMC6933003 DOI: 10.3389/fphys.2019.01509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/29/2019] [Indexed: 12/19/2022] Open
Abstract
Background: NS5806 activates the transient outward potassium current I to, and has been claimed to reproduce Brugada Syndrome (BrS) in ventricular wedge preparations. I to modulates excitation-contraction coupling, which is critical in alternans dynamics. We explored NS5806-arrhythmogenic effects in the intact whole heart and its impact on alternans. Methods: Langendorff-perfused rabbit hearts (n = 20) underwent optical AP and Ca mapping during pacing at decremental cycle lengths (CL). Spontaneous arrhythmias and pacing-induced alternans was characterized at baseline (BL), after perfusing with NS5806, before and after adding verapamil (VP), and SEA0400 (SEA, n = 5 each), to modulate Ca-current and Na-Ca exchange, the main AP-Ca coupling mechanisms. Results: NS5806 induced BrS-like ECG features in 6 out of 20 hearts. NS5806 prolonged steady-state (3 Hz) action potential duration (APD) by 16.8%, Ca decay constant by 34%, and decreased conduction velocity (CV) by 52.6%. After NS5806 infusion, spontaneous ventricular ectopy (VE) and AP/Ca alternans occurred. Pacing-induced alternans during NS5806 infusion occurred at longer CL and were AP/Ca discordant from its onset. Spatially discordant alternans after NS5806 infusion had non-propagation-driven nodal line distribution. No spontaneous phase-2 reentry occurred. Under NS5806 + VP, alternans became AP/Ca concordant and only induced in two out of five; NS5806 + SEA did not affect alternans but suppressed spontaneous ectopy. Conclusions: NS5806 disrupts AP-Ca coupling and leads to Ca-driven, AP/Ca-discordant alternans and VE. Despite BrS-like ECG features, no spontaneous sustained arrhythmias or phase-2 reentry occurred. NS5806 does not fully reproduce BrS in the intact rabbit heart.
Collapse
Affiliation(s)
- Sufen Wang
- Department of Cardiology, Houston Methodist DeBakey Heart and Vascular Center, Houston Methodist Hospital, Houston Methodist Research Institute, Houston, TX, United States
| | - Moisés Rodríguez-Mañero
- Cardiology Department, Complejo Hospital Universitario de Santiago, Santiago de Compostela, Spain.,Instituto de Investigación Sanitaria (IDIS), Universidad de Santiago de Compostela, Santiago de Compostela, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV CB16/11/00226 - CB16/11/00420), Madrid, Spain
| | - Sergio H Ibarra-Cortez
- Department of Cardiology, Houston Methodist DeBakey Heart and Vascular Center, Houston Methodist Hospital, Houston Methodist Research Institute, Houston, TX, United States
| | - Bahij Kreidieh
- Department of Cardiology, Houston Methodist DeBakey Heart and Vascular Center, Houston Methodist Hospital, Houston Methodist Research Institute, Houston, TX, United States
| | - Laura Valderrábano
- Department of Cardiology, Houston Methodist DeBakey Heart and Vascular Center, Houston Methodist Hospital, Houston Methodist Research Institute, Houston, TX, United States
| | - Majd Hemam
- Department of Cardiology, Houston Methodist DeBakey Heart and Vascular Center, Houston Methodist Hospital, Houston Methodist Research Institute, Houston, TX, United States
| | - Liliana Tavares
- Department of Cardiology, Houston Methodist DeBakey Heart and Vascular Center, Houston Methodist Hospital, Houston Methodist Research Institute, Houston, TX, United States
| | - Elvin Blanco
- Department of Cardiology, Houston Methodist DeBakey Heart and Vascular Center, Houston Methodist Hospital, Houston Methodist Research Institute, Houston, TX, United States.,Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, United States
| | - Miguel Valderrábano
- Department of Cardiology, Houston Methodist DeBakey Heart and Vascular Center, Houston Methodist Hospital, Houston Methodist Research Institute, Houston, TX, United States
| |
Collapse
|
44
|
Tada Y, Kume K, Matsuda Y, Kurashige T, Kanaya Y, Ohsawa R, Morino H, Tabu H, Kaneko S, Suenaga T, Kakizuka A, Kawakami H. Genetic screening for potassium channel mutations in Japanese autosomal dominant spinocerebellar ataxia. J Hum Genet 2020; 65:363-369. [PMID: 31907387 DOI: 10.1038/s10038-019-0717-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 12/04/2019] [Accepted: 12/19/2019] [Indexed: 01/17/2023]
Abstract
Spinocerebellar ataxia (SCA) is a genetically heterogeneous disease characterized by cerebellar ataxia. Many causative genes have been identified to date, the most common etiology being the abnormal expansion of repeat sequences, and the mutation of ion channel genes also play an important role in the development of SCA. Some of them encode calcium and potassium channels. However, due to limited reports about potassium genes in SCA, we screened 192 Japanese individuals with dominantly inherited SCA who had no abnormal repeat expansions of causative genes for potassium channel mutations (KCNC3 for SCA13 and KCND3 for SCA19/SCA22) by target sequencing. As a result, two variants were identified from two patients: c.1973G>A, p.R658Q and c.1018G>A, p.V340M for KCNC3, and no pathogenic variant was identified for KCND3. The newly identified p.V340M exists in the extracellular domain, and p.R658Q exists in the intracellular domain on the C-terminal side, although most of the reported KCNC3 mutations are present at the transmembrane site. Adult-onset and slowly progressive cerebellar ataxia are the main clinical features of SCA13 and SCA19 caused by potassium channel mutations, which was similar in our cases. SCA13 caused by KCNC3 mutations may present with deep sensory loss and cognitive impairment in addition to cerebellar ataxia. In this study, mild deep sensory loss was observed in one case. SCA caused by potassium channel gene mutations is extremely rare, and more cases should be accumulated in the future to elucidate its pathogenesis due to channel dysfunction.
Collapse
Affiliation(s)
- Yui Tada
- Department of Epidemiology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan.,Laboratory of Functional Biology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Kodai Kume
- Department of Epidemiology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Yukiko Matsuda
- Department of Epidemiology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Takashi Kurashige
- Department of Neurology, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Kure, Japan
| | - Yuhei Kanaya
- Department of Epidemiology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Ryosuke Ohsawa
- Department of Epidemiology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Hiroyuki Morino
- Department of Epidemiology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Hayato Tabu
- Department of Neurology, Kitano Hospital, Osaka, Japan
| | - Satoshi Kaneko
- Department of Neurology, Kansai Medical University, Osaka, Japan
| | | | - Akira Kakizuka
- Laboratory of Functional Biology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Hideshi Kawakami
- Department of Epidemiology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan.
| |
Collapse
|
45
|
Drabkin M, Zilberberg N, Menahem S, Mulla W, Halperin D, Yogev Y, Wormser O, Perez Y, Kadir R, Etzion Y, Katz A, Birk OS. Nocturnal Atrial Fibrillation Caused by Mutation in KCND2, Encoding Pore-Forming (α) Subunit of the Cardiac Kv4.2 Potassium Channel. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2019; 11:e002293. [PMID: 30571183 DOI: 10.1161/circgen.118.002293] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Paroxysmal atrial fibrillation (AF) can be caused by gain-of-function mutations in genes, encoding the cardiac potassium channel subunits KCNJ2, KCNE1, and KCNH2 that mediate the repolarizing potassium currents Ik1, Iks, and Ikr, respectively. METHODS Linkage analysis, whole-exome sequencing, and Xenopus oocyte electrophysiology studies were used in this study. RESULTS Through genetic studies, we showed that autosomal dominant early-onset nocturnal paroxysmal AF is caused by p.S447R mutation in KCND2, encoding the pore-forming (α) subunit of the Kv4.2 cardiac potassium channel. Kv4.2, along with Kv4.3, contributes to the cardiac fast transient outward K+ current, Ito. Ito underlies the early phase of repolarization in the cardiac action potential, thereby setting the initial potential of the plateau phase and governing its duration and amplitude. In Xenopus oocytes, the mutation increased the channel's inactivation time constant and affected its regulation: p.S447 resides in a protein kinase C (PKC) phosphorylation site, which normally allows attenuation of Kv4.2 membrane expression. The mutant Kv4.2 exhibited impaired response to PKC; hence, Kv4.2 membrane expression was augmented, enhancing potassium currents. Coexpression of mutant and wild-type channels (recapitulating heterozygosity in affected individuals) showed results similar to the mutant channel alone. Finally, in a hybrid channel composed of Kv4.3 and Kv4.2, simulating the mature endogenous heterotetrameric channel underlying Ito, the p.S447R Kv4.2 mutation exerted a gain-of-function effect on Kv4.3. CONCLUSIONS The mutation alters Kv4.2's kinetic properties, impairs its inhibitory regulation, and exerts gain-of-function effect on both Kv4.2 homotetramers and Kv4.2-Kv4.3 heterotetramers. These effects presumably increase the repolarizing potassium current Ito, thereby abbreviating action potential duration, creating arrhythmogenic substrate for nocturnal AF. Interestingly, Kv4.2 expression was previously shown to demonstrate circadian variation, with peak expression at daytime in murine hearts (human nighttime), with possible relevance to the nocturnal onset of paroxysmal AF symptoms in our patients. The atrial-specific phenotype suggests that targeting Kv4.2 might be effective in the treatment of nocturnal paroxysmal AF, avoiding adverse ventricular effects.
Collapse
Affiliation(s)
- Max Drabkin
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev and Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel. (M.D., W.M., D.H., Y.Y., O.W., Y.P., R.K., O.S.B.)
| | - Noam Zilberberg
- Department of Life Sciences and Zlotowski Center for Neuroscience, Ben-Gurion University, Beer-Sheva, Israel (N.Z.)
| | - Sasson Menahem
- Department of Family Medicine, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel. (S.M.)
| | - Wesam Mulla
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev and Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel. (M.D., W.M., D.H., Y.Y., O.W., Y.P., R.K., O.S.B.).,Regenerative Medicine and Stem Cell Research Center and Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel. (W.M., Y.E.)
| | - Daniel Halperin
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev and Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel. (M.D., W.M., D.H., Y.Y., O.W., Y.P., R.K., O.S.B.)
| | - Yuval Yogev
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev and Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel. (M.D., W.M., D.H., Y.Y., O.W., Y.P., R.K., O.S.B.)
| | - Ohad Wormser
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev and Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel. (M.D., W.M., D.H., Y.Y., O.W., Y.P., R.K., O.S.B.)
| | - Yonatan Perez
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev and Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel. (M.D., W.M., D.H., Y.Y., O.W., Y.P., R.K., O.S.B.)
| | - Rotem Kadir
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev and Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel. (M.D., W.M., D.H., Y.Y., O.W., Y.P., R.K., O.S.B.)
| | - Yoram Etzion
- Regenerative Medicine and Stem Cell Research Center and Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel. (W.M., Y.E.)
| | - Amos Katz
- Department of Cardiology, Barzilai University Medical Center, Ashkelon, Israel (A.K.).,affiliated to the Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel. (A.K., O.S.B.)
| | - Ohad S Birk
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev and Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel. (M.D., W.M., D.H., Y.Y., O.W., Y.P., R.K., O.S.B.).,The Genetics Institute, Soroka University Medical Center, Beer-Sheva, Israel (O.S.B.).,affiliated to the Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel. (A.K., O.S.B.)
| |
Collapse
|
46
|
Coppola G, Corrado E, Curnis A, Maglia G, Oriente D, Mignano A, Brugada P. Update on Brugada Syndrome 2019. Curr Probl Cardiol 2019; 46:100454. [PMID: 31522883 DOI: 10.1016/j.cpcardiol.2019.100454] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 07/29/2019] [Indexed: 12/15/2022]
Abstract
Brugada syndrome (BrS) was first described in 1992 as an aberrant pattern of ST segment elevation in right precordial leads with a high incidence of sudden cardiac death (SCD) in patients with structurally normal heart. It represents 4% ∼ 12% of all SCD and 20% of SCD in patients with structurally normal heart. The extremely wide genetic heterogeneity of BrS and other inherited cardiac disorders makes this new area of genetic arrhytmology a fascinating one. This review shows the state of art in diagnosis, management, and treatment of BrS focusing all the aspects regarding genetics and Preimplant Genetic Diagnosis (PGD) of embryos, overlapping syndromes, risk stratification, familial screening, and future perspectives. Moreover the review analyzes key points like electrocardiogram (ECG) criteria, the role of electrophysiological study (the role of ventricular programmed stimulation and the need of universal accepted protocol) and the importance of a correct risk stratification to clarify when implantable cardioverter defibrillator or a close follow-up is needed. In recent years, cardiovascular studies have been focused on personalized risk assessment and to determine the most optimal therapy for an individual. The BrS syndrome has also benefited of these advances although there remain several key points to be elucidated. We will review the present knowledge, progress made, and future research directions on BrS.
Collapse
|
47
|
Johnson EK, Springer SJ, Wang W, Dranoff EJ, Zhang Y, Kanter EM, Yamada KA, Nerbonne JM. Differential Expression and Remodeling of Transient Outward Potassium Currents in Human Left Ventricles. Circ Arrhythm Electrophysiol 2019; 11:e005914. [PMID: 29311162 DOI: 10.1161/circep.117.005914] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 11/30/2017] [Indexed: 11/16/2022]
Abstract
BACKGROUND Myocardial, transient, outward currents, Ito, have been shown to play pivotal roles in action potential (AP) repolarization and remodeling in animal models. The properties and contribution of Ito to left ventricular (LV) repolarization in the human heart, however, are poorly defined. METHODS AND RESULTS Whole-cell, voltage-clamp recordings, acquired at physiological (35°C to 37°C) temperatures, from myocytes isolated from the LV of nonfailing human hearts identified 2 distinct transient currents, Ito,fast (Ito,f) and Ito,slow (Ito,s), with significantly (P<0.0001) different rates of recovery from inactivation and pharmacological sensitives: Ito,f recovers in ≈10 ms, 100× faster than Ito,s, and is selectively blocked by the Kv4 channel toxin, SNX-482. Current-clamp experiments revealed regional differences in AP waveforms, notably a phase 1 notch in LV subepicardial myocytes. Dynamic clamp-mediated addition/removal of modeled human ventricular Ito,f, resulted in hyperpolarization or depolarization, respectively, of the notch potential, whereas slowing the rate of Ito,f inactivation resulted in AP collapse. AP-clamp experiments demonstrated that changes in notch potentials modified the time course and amplitudes of voltage-gated Ca2+ currents, ICa. In failing LV subepicardial myocytes, Ito,f was reduced and Ito,s was increased, notch and plateau potentials were depolarized (P<0.0001) and AP durations were prolonged (P<0.001). CONCLUSIONS Ito,f and Ito,s are differentially expressed in nonfailing human LV, contributing to regional heterogeneities in AP waveforms. Ito,f regulates notch and plateau potentials and modulates the time course and amplitude of ICa. Slowing Ito,f inactivation results in dramatic AP shortening. Remodeling of Ito,f in failing human LV subepicardial myocytes attenuates transmural differences in AP waveforms.
Collapse
Affiliation(s)
- Eric K Johnson
- From the Cardiovascular Division, Department of Medicine (E.K.J., S.J.S., W.W., E.J.D., Y.Z., E.M.K., K.A.Y., J.M.N.) and Department of Developmental Biology (J.M.N.), Washington University School of Medicine, St. Louis, MO
| | - Steven J Springer
- From the Cardiovascular Division, Department of Medicine (E.K.J., S.J.S., W.W., E.J.D., Y.Z., E.M.K., K.A.Y., J.M.N.) and Department of Developmental Biology (J.M.N.), Washington University School of Medicine, St. Louis, MO
| | - Wei Wang
- From the Cardiovascular Division, Department of Medicine (E.K.J., S.J.S., W.W., E.J.D., Y.Z., E.M.K., K.A.Y., J.M.N.) and Department of Developmental Biology (J.M.N.), Washington University School of Medicine, St. Louis, MO
| | - Edward J Dranoff
- From the Cardiovascular Division, Department of Medicine (E.K.J., S.J.S., W.W., E.J.D., Y.Z., E.M.K., K.A.Y., J.M.N.) and Department of Developmental Biology (J.M.N.), Washington University School of Medicine, St. Louis, MO
| | - Yan Zhang
- From the Cardiovascular Division, Department of Medicine (E.K.J., S.J.S., W.W., E.J.D., Y.Z., E.M.K., K.A.Y., J.M.N.) and Department of Developmental Biology (J.M.N.), Washington University School of Medicine, St. Louis, MO
| | - Evelyn M Kanter
- From the Cardiovascular Division, Department of Medicine (E.K.J., S.J.S., W.W., E.J.D., Y.Z., E.M.K., K.A.Y., J.M.N.) and Department of Developmental Biology (J.M.N.), Washington University School of Medicine, St. Louis, MO
| | - Kathryn A Yamada
- From the Cardiovascular Division, Department of Medicine (E.K.J., S.J.S., W.W., E.J.D., Y.Z., E.M.K., K.A.Y., J.M.N.) and Department of Developmental Biology (J.M.N.), Washington University School of Medicine, St. Louis, MO
| | - Jeanne M Nerbonne
- From the Cardiovascular Division, Department of Medicine (E.K.J., S.J.S., W.W., E.J.D., Y.Z., E.M.K., K.A.Y., J.M.N.) and Department of Developmental Biology (J.M.N.), Washington University School of Medicine, St. Louis, MO.
| |
Collapse
|
48
|
Abstract
BACKGROUND Early repolarization syndrome (ERS) is characterized by J-point elevation on electrocardiograms and ventricular fibrillation (VF). Early repolarization arises from augmentation of the transmural electrical gradient in the cardiac action potential; therefore, the transient outward potassium current (Ito) has been regarded as a key candidate current for elucidating the mechanism of ERS. KCND3 encoding Kv4.3, an α-subunit of the Ito channel, is considered as one of target genes. OBJECTIVE The purpose of this study was to search for novel KCND3 mutations associated with ERS and to clarify the pathogenesis. METHODS We performed genetic screening for 11 unrelated probands with ERS and analyzed the electrophysiological properties of detected mutations by patch-clamp methods. RESULTS A novel de novo KCND3 heterozygous mutation, Gly306Ala (c.917g>c), was found in 1 proband. The proband was a 12-year-old boy, who suffered VF storm and showed significant J-point elevation in multiple leads. Intravenous isoproterenol and subsequent administration of quinidine were effective in preventing VF recurrence and restored the J-point elevation. In electrophysiological analysis, cultured cells expressing mutant Kv4.3 showed significantly increased current densities, slow inactivation, and slow recovery from inactivation compared to wild type. Extracellular application of quinidine significantly restored the inactivation time course in mutant Kv4.3. A simulation study confirmed the relationship between the novel KCND3 mutation and early repolarization on electrocardiograms. CONCLUSION A novel KCND3 heterozygous mutation was found to be associated with ERS. The pathogenesis can be explained by the increased Ito. Genetic screening for KCND3 could be useful for understanding the pathogenesis and selecting effective treatment.
Collapse
|
49
|
Johnston KJA, Adams MJ, Nicholl BI, Ward J, Strawbridge RJ, Ferguson A, McIntosh AM, Bailey MES, Smith DJ. Genome-wide association study of multisite chronic pain in UK Biobank. PLoS Genet 2019; 15:e1008164. [PMID: 31194737 PMCID: PMC6592570 DOI: 10.1371/journal.pgen.1008164] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 06/25/2019] [Accepted: 04/27/2019] [Indexed: 12/20/2022] Open
Abstract
Chronic pain is highly prevalent worldwide and represents a significant socioeconomic and public health burden. Several aspects of chronic pain, for example back pain and a severity-related phenotype 'chronic pain grade', have been shown previously to be complex heritable traits with a polygenic component. Additional pain-related phenotypes capturing aspects of an individual's overall sensitivity to experiencing and reporting chronic pain have also been suggested as a focus for investigation. We made use of a measure of the number of sites of chronic pain in individuals within the UK general population. This measure, termed Multisite Chronic Pain (MCP), is a complex trait and its genetic architecture has not previously been investigated. To address this, we carried out a large-scale genome-wide association study (GWAS) of MCP in ~380,000 UK Biobank participants. Our findings were consistent with MCP having a significant polygenic component, with a Single Nucleotide Polymorphism (SNP) heritability of 10.2%. In total 76 independent lead SNPs at 39 risk loci were associated with MCP. Additional gene-level association analyses identified neurogenesis, synaptic plasticity, nervous system development, cell-cycle progression and apoptosis genes as enriched for genetic association with MCP. Genetic correlations were observed between MCP and a range of psychiatric, autoimmune and anthropometric traits, including major depressive disorder (MDD), asthma and Body Mass Index (BMI). Furthermore, in Mendelian randomisation (MR) analyses a causal effect of MCP on MDD was observed. Additionally, a polygenic risk score (PRS) for MCP was found to significantly predict chronic widespread pain (pain all over the body), indicating the existence of genetic variants contributing to both of these pain phenotypes. Overall, our findings support the proposition that chronic pain involves a strong nervous system component with implications for our understanding of the physiology of chronic pain. These discoveries may also inform the future development of novel treatment approaches.
Collapse
Affiliation(s)
- Keira J. A. Johnston
- Institute of Health and Wellbeing, University of Glasgow, Scotland, United Kingdom
- Deanery of Molecular, Genetic and Population Health Sciences, College of Medicine and Veterinary Medicine, University of Edinburgh, Scotland, United Kingdom
- School of Life Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Scotland, United Kingdom
| | - Mark J. Adams
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Scotland, United Kingdom
| | - Barbara I. Nicholl
- Institute of Health and Wellbeing, University of Glasgow, Scotland, United Kingdom
| | - Joey Ward
- Institute of Health and Wellbeing, University of Glasgow, Scotland, United Kingdom
| | - Rona J. Strawbridge
- Institute of Health and Wellbeing, University of Glasgow, Scotland, United Kingdom
- Department of Medicine Solna, Karolinska Institute, Stockholm, Sweden
| | - Amy Ferguson
- Institute of Health and Wellbeing, University of Glasgow, Scotland, United Kingdom
| | - Andrew M. McIntosh
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Scotland, United Kingdom
| | - Mark E. S. Bailey
- School of Life Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Scotland, United Kingdom
| | - Daniel J. Smith
- Institute of Health and Wellbeing, University of Glasgow, Scotland, United Kingdom
| |
Collapse
|
50
|
Rivera‐Juárez A, Hernández‐Romero I, Puertas C, Zhang‐Wang S, Sánchez‐Álamo B, Martins R, Figuera C, Guillem MS, Climent AM, Fernández‐Avilés F, Tejedor A, Jalife J, Atienza F. Clinical Characteristics and Electrophysiological Mechanisms Underlying Brugada ECG in Patients With Severe Hyperkalemia. J Am Heart Assoc 2019; 8:e010115. [PMID: 30675825 PMCID: PMC6405573 DOI: 10.1161/jaha.118.010115] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 12/07/2018] [Indexed: 12/19/2022]
Abstract
Background Several metabolic conditions can cause the Brugada ECG pattern, also called Brugada phenotype (BrPh). We aimed to define the clinical characteristics and outcome of BrPh patients and elucidate the mechanisms underlying BrPh attributed to hyperkalemia. Methods and Results We prospectively identified patients hospitalized with severe hyperkalemia and ECG diagnosis of BrPh and compared their clinical characteristics and outcome with patients with hyperkalemia but no BrPh ECG. Computer simulations investigated the roles of extracellular potassium increase, fibrosis at the right ventricular outflow tract, and epicardial/endocardial gradients in transient outward current. Over a 6-year period, 15 patients presented severe hyperkalemia with BrPh ECG that was transient and disappeared after normalization of their serum potassium. Most patients were admitted because of various severe medical conditions causing hyperkalemia. Six (40%) patients presented malignant arrhythmias and 6 died during admission. Multiple logistic regression analysis revealed that higher serum potassium levels (odds ratio, 15.8; 95% CI, 3.1-79; P=0.001) and male sex (odds ratio, 17; 95% CI, 1.05-286; P=0.045) were risk factors for developing BrPh ECG in patients with severe hyperkalemia. In simulations, hyperkalemia yielded BrPh by promoting delayed and heterogeneous right ventricular outflow tract activation attributed to elevation of resting potential, reduced availability of inward sodium channel conductance, and increased right ventricular outflow tract fibrosis. An elevated transient outward current gradient contributed to, but was not essential for, the BrPh phenotype. Conclusions In patients with severe hyperkalemia, a BrPh ECG is associated with malignant arrhythmias and all-cause mortality secondary to resting potential depolarization, reduced sodium current availability, and fibrosis at the right ventricular outflow tract.
Collapse
Affiliation(s)
- Allan Rivera‐Juárez
- Department of CardiologyHospital General Universitario Gregorio MarañónInstituto de Investigación Sanitaria Gregorio MarañónFacultad de MedicinaUniversidad ComplutenseMadridSpain
- CIBERCVCentro de Investigación Biomédica en Red de Enfermedades CardiovascularesMadridSpain
| | - Ismael Hernández‐Romero
- Department of CardiologyHospital General Universitario Gregorio MarañónInstituto de Investigación Sanitaria Gregorio MarañónFacultad de MedicinaUniversidad ComplutenseMadridSpain
- Department of Signal Theory and CommunicationsUniversidad Rey Juan CarlosMadridSpain
- CIBERCVCentro de Investigación Biomédica en Red de Enfermedades CardiovascularesMadridSpain
| | - Carolina Puertas
- Department of BiochemistryHospital General Universitario Gregorio MarañónInstituto de Investigación Sanitaria Gregorio MarañónFacultad de MedicinaUniversidad ComplutenseMadridSpain
| | - Serena Zhang‐Wang
- Department of CardiologyHospital General Universitario Gregorio MarañónInstituto de Investigación Sanitaria Gregorio MarañónFacultad de MedicinaUniversidad ComplutenseMadridSpain
| | - Beatriz Sánchez‐Álamo
- Department of CardiologyHospital General Universitario Gregorio MarañónInstituto de Investigación Sanitaria Gregorio MarañónFacultad de MedicinaUniversidad ComplutenseMadridSpain
| | - Raphael Martins
- CHU RennesService de Cardiologie et Maladies VasculairesRennesFrance
| | - Carlos Figuera
- Department of Signal Theory and CommunicationsUniversidad Rey Juan CarlosMadridSpain
| | | | - Andreu M. Climent
- Department of CardiologyHospital General Universitario Gregorio MarañónInstituto de Investigación Sanitaria Gregorio MarañónFacultad de MedicinaUniversidad ComplutenseMadridSpain
- ITACAUniversitat Politécnica de ValenciaValenciaSpain
- CIBERCVCentro de Investigación Biomédica en Red de Enfermedades CardiovascularesMadridSpain
| | - Francisco Fernández‐Avilés
- Department of CardiologyHospital General Universitario Gregorio MarañónInstituto de Investigación Sanitaria Gregorio MarañónFacultad de MedicinaUniversidad ComplutenseMadridSpain
- CIBERCVCentro de Investigación Biomédica en Red de Enfermedades CardiovascularesMadridSpain
| | - Alberto Tejedor
- Renal Physiopathology LaboratoryDepartment of NephrologyHospital General Universitario Gregorio MarañónInstituto de Investigación Sanitaria Gregorio MarañónFacultad de MedicinaUniversidad ComplutenseMadridSpain
| | - José Jalife
- Center for Arrhythmia ResearchUniversity of MichiganAnn ArborMI
- Departamento de Arritmias CardĺacasFundacion Centro Nacional de Investigaciones Cardiovasculares (CNIC)MadridSpain
- CIBERCVCentro de Investigación Biomédica en Red de Enfermedades CardiovascularesMadridSpain
| | - Felipe Atienza
- Department of CardiologyHospital General Universitario Gregorio MarañónInstituto de Investigación Sanitaria Gregorio MarañónFacultad de MedicinaUniversidad ComplutenseMadridSpain
- CIBERCVCentro de Investigación Biomédica en Red de Enfermedades CardiovascularesMadridSpain
| |
Collapse
|